Features
Wide frequency range: 6 - 20 GHz
High gain: 23 dB
Low 50 Ω Noise Figure: 2.0 dB
50 Ω Input and Output Match
Single 3V Supply Bias
Applications
Microwave Radio systems
Satellite VSAT, DBS Up/Down Link
LMDS & Pt-Pt mmW Long Haul
Broadband Wireless Access
(including 802.16 and 802.20 WiMax)
WLL and MMDS loops
Description
Avago Technologies’ AMMC-6220 is a high gain, low-
noise amplier that operates from 6 GHz to 20 GHz. This
LNA provides a wide-band solution for system design
since it covers several bands, thus, reduces part inven-
tory. The device has input / output match to 50 Ohm, is
unconditionally stable and can be used as either primary
or sub-sequential low noise gain stage. By eliminating
the complex tuning and assembly processes typically
required by hybrid (discrete-FET) ampliers, the AMMC-
6220 is a cost-eective alternative in the 6 - 20 GHz com-
munications receivers. The backside of the chip is both RF
and DC ground. This helps simplify the assembly process
and reduces assembly related performance variations
and costs. It is fabricated in a PHEMT process to provide
exceptional noise and gain performance. For improved
reliability and moisture protection, the die is passivated
at the active areas.
AMMC-6220 Absolute Maximum Ratings[1]
Symbol Parameters/Conditions Units Min. Max.
Vd Positive Drain Voltage V 7
VgGate Supply Voltage V NA
IdDrain Current mA 100
Pin CW Input Power dBm 15
Tch Operating Channel Temp. °C +150
Tstg Storage Case Temp. °C -65 +150
Tmax Maximum Assembly Temp (60 sec max) °C +300
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device
Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure
that an ESD approved carrier is used when dice are transported from one destination to another.
Personal grounding is to be worn at all times when handling these devices
Chip Size: 1700 x 800 µm (67 x 31.5 mils)
Chip Size Tolerance: ± 10 µm (±0.4 mils)
Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions: 100 x 100 µm (4 ± 0.4 mils)
AMMC - 6220
6 - 20 GHz Low Noise Amplier
Data Sheet
2
Gain at 12 GHz
Typical distribution of Small Signal Gain, Noise Figure, and Return Loss. Based on 1500 part sampled over several
production lots.
AMMC-6220 DC Specications/Physical Properties [1]
Symbol Parameters and Test Conditions Units Min. Typ. Max.
IdDrain Supply Current
(under any RF power drive and temperature)
(Vd=3.0 V)
mA 55 70
VgGate Supply Operating Voltage
(Id(Q) = 800 (mA))
V NA
qch-b Thermal Resistance[2]
(Backside temperature, Tb = 25°C)
°C/W 25
Notes:
1. Ambient operational temperature TA=25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (qch-b) = 26°C/W at Tchannel (Tc) = 34°C as measured using infrared microscopy. Thermal Resistance at
backside temperature (Tb) = 25°C calculated from measured data.
AMMC-6220 RF Specications [3, 4, 5] (TA= 25°C, Vd=3.0 V, Id(Q)=55 mA, Zo=50 )
Symbol Parameters and Test Conditions Units Minimum Typical Maximum Sigma
Gain Small-signal Gain[6] dB 21 23 0.30
NF Noise Figure into 50 W dB 7-10 GHz = 2.1
10-16 GHz = 1.8
16-20 GHz = 2.0
8 GHz = 2.4
12 GHz = 2.2
18 GHz = 2.4
0.10
P-1dB Output Power at 1dB Gain Compres-
sion
dBm +9 0.87
OIP3 Third Order Intercept Point;
Df=100MHz; Pin=-35dBm
dBm +19 1.20
RLin Input Return Loss[6] dB -12 -10 0.31
RLout Output Return Loss[6] dB -16 -10 0.68
Isol Reverse Isolation[6] dB -45 0.50
Notes:
3. Small/Large -signal data measured in wafer form TA = 25°C.
4. 100% on-wafer RF test is done at frequency = 8, 12, and 18 GHz.
5. Specications are derived from measurements in a 50 Ω test environment. Aspects of the amplier performance may be improved over a
more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.
6. As derived from measured s-parameters
Return Loss at 12 GHz Noise Figure at 12 GHz
LSL
22 23 24
USL
-11.6 -11.3 -11 -10.7 -10.4 -10.1 -9.8 -9.5
USL
1.7 1.8 1.9
3
AMMC-6220 Typical Performances
(TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50 Ω unless otherwise stated)
NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplier performance may be improved
over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.Figure
1. Typical Gain
Figure 2. Typical Isolation
Figure 9. Typical Input Return Loss (s11) over
temperature
Figure 8. Typical Isolation (s12) over tempera-
ture
Figure 7. Typical Gain (s21) over temperature
Figure 6. Typical Output P-1dB and 3rd Order
Intercept Pt.
Figure 5. Typical Noise Figure into a 50 W load.Figure 4. Typical Output Return Loss
Figure 3 Typical Input Return Loss
0
5
10
15
20
25
6 8 10 12 14 16 18 20
Frequency (GHz)
Gain (dB)
-60
-50
-40
-30
-20
-10
0
6 8 10 12 14 16 18 20
Frequency (GHz)
Isolation (dB)
-20
-15
-10
-5
0
6 8 10 12 14 16 18 20
Frequency (GHz)
Input Return Loss(dB)
-60
-50
-40
-30
-20
-10
0
4 6 8 10 12 14 16 18 20 22
Frequency (GHz)
S12 (dB)
25degC
-40degC
+85degC
-20
-15
-10
-5
0
4 6 8 10 12 14 16 18 20 22
Frequency (GHz)
S11 (dB)
25degC
-40degC
+85degC
Figure 1. Typical Gain
0
5
10
15
20
25
30
4 6 8 10 12 14 16 18 20 22
Frequency (GHz)
S21 (dB)
25degC
-40degC
+85degC
-30
-20
-10
0
6 8 10 12 14 16 18 20
Frequency (GHz)
Output Return Loss (dB)
0
5
10
15
20
25
6 8 10 12 14 16 18 20
Frequency [GHz]
OP1dB (dBm)
0
5
10
15
20
25
OIP3 (dBm)
4
Figure 10. Typical Output Return Loss over Tem-
perature
Figure 11. Typical Noise Figure over Tempera-
ture
Figure 12. Typical Total Idd over Temperature
Figure 13. Typical Gain over Vdd (supply volt-
age.)
Figure 14. Typical Isolation over Vdd (supply
voltage)
Figure 15. Typical Input Return Loss over Vdd
(supply voltage)
Figure 16. Typical Output Return Loss over Vdd
(supply voltage)
Figure 17. Typical Noise Figure over Vdd (supply
voltage.)
Figure 18. Typical OP-1dB over Vdd (supply volt-
age.)
AMMC-6220 Typical Performances
(TA = 25°C, Vd =3.0 V, ID = 55 mA, Zin = Zout = 50Ω unless otherwise stated)
NOTE: These measurements are in a 50 Ω test environment. Aspects of the amplier performance may be improved
over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Γopt) matching.
-60
-50
-40
-30
-20
-10
0
4 6 8 10 12 14 16 18 20
Frequency (GHz)
S12 (dB)
3V
4V
5V
0.00
0.50
1.00
1.50
2.00
2.50
3.00
6 8 10 12 14 16 18 20
Frequency (GHz)
NF (dB)
3V
4V
5V
0
2
4
6
8
10
12
6 8 10 12 14 16 18 20
Frequency (GHz)
OP1dB (dBm)
3V
4V
5V
0
0.5
1
1.5
2
2.5
3
3.5
4
6 8 10 12 14 16 18 20
Frequency (GHz)
NF (dB)
-40degC
25degC
+85degC
50
52
54
56
58
60
62
3 3.5 4 4.5 5
Vdd (V)
Idd (mA)
-40degC
+25degC
+85degC
0
5
10
15
20
25
30
4 6 8 10 12 14 16 18 20
Frequency (GHz)
S21 (dB)
3V
4V
5V
-20
-15
-10
-5
0
4 6 8 10 12 14 16 18 20
Frequency (GHz)
S11 (dB)
3V
4V
5V
5
AMMC-6220 Typical Scattering Parameters[1]
(Tc=25°C, VD1=VD2= 3 V, Zin = Zout = 50 Ω)
Freq
GHz
S11 S21 S12 S22
dB Mag Phase dB Mag Phase dB Mag Phase dB Mag Phase
4.000 -0.146 0.983 103.687 9.033 2.829 -128.237 -48.748 0.004 -115.810 -4.132 0.621 171.001
4.500 -1.392 0.852 74.728 21.862 12.391 118.600 -41.044 0.009 103.896 -13.516 0.211 141.837
5.000 -0.823 0.910 37.284 23.130 14.338 39.967 -44.986 0.006 29.720 -16.564 0.149 168.028
5.500 -1.961 0.798 -3.456 23.710 15.328 -15.875 -46.775 0.005 -28.575 -17.481 0.134 -175.481
6.000 -5.151 0.553 -33.435 23.699 15.310 -59.866 -50.848 0.003 -45.938 -17.158 0.139 -166.821
6.500 -7.415 0.426 -53.353 23.622 15.174 -95.795 -51.753 0.003 -76.787 -16.707 0.146 -164.516
7.000 -10.150 0.311 -65.197 23.557 15.060 -126.279 -52.284 0.002 -109.752 -16.549 0.149 -165.262
7.500 -11.146 0.277 -71.056 23.641 15.207 -153.658 -52.173 0.002 -108.492 -16.750 0.145 -165.145
8.000 -11.953 0.253 -76.086 23.761 15.419 -179.298 -51.490 0.003 -134.195 -16.835 0.144 -165.958
8.500 -11.917 0.254 -79.875 23.793 15.475 156.812 -50.677 0.003 -149.675 -17.025 0.141 -166.708
9.000 -11.731 0.259 -85.876 23.908 15.681 133.712 -50.500 0.003 -159.105 -17.310 0.136 -167.942
9.500 -11.478 0.267 -93.111 24.000 15.849 111.612 -50.296 0.003 -171.408 -17.862 0.128 -168.952
10.000 -11.328 0.271 -100.430 24.071 15.979 90.667 -48.911 0.004 -176.724 -18.509 0.119 -168.793
10.500 -11.278 0.273 -107.107 23.989 15.829 70.398 -49.083 0.004 174.601 -19.271 0.109 -166.105
11.000 -11.184 0.276 -114.292 23.915 15.695 50.874 -48.773 0.004 155.804 -19.908 0.101 -161.607
11.500 -11.267 0.273 -119.551 23.867 15.607 31.947 -47.506 0.004 155.799 -20.309 0.097 -153.779
12.000 -11.033 0.281 -125.024 23.786 15.464 14.018 -47.811 0.004 150.219 -20.177 0.098 -146.759
12.500 -10.820 0.288 -130.580 23.724 15.354 -3.874 -46.361 0.005 124.708 -19.456 0.106 -141.031
13.000 -10.768 0.289 -136.143 23.620 15.170 -20.953 -46.149 0.005 119.468 -18.642 0.117 -137.531
13.500 -10.685 0.292 -140.774 23.568 15.081 -37.794 -45.536 0.005 120.694 -17.844 0.128 -136.674
14.000 -10.672 0.293 -147.067 23.459 14.891 -54.252 -44.238 0.006 108.871 -17.088 0.140 -136.397
14.500 -10.611 0.295 -151.974 23.351 14.707 -70.766 -44.824 0.006 98.487 -16.419 0.151 -137.700
15.000 -10.629 0.294 -157.342 23.287 14.600 -86.927 -43.591 0.007 85.314 -15.782 0.163 -140.788
15.500 -10.792 0.289 -164.023 23.184 14.428 -102.737 -42.101 0.008 81.787 -15.469 0.168 -145.110
16.000 -11.118 0.278 -169.248 23.119 14.320 -119.061 -41.806 0.008 64.948 -15.429 0.169 -150.386
16.500 -11.744 0.259 -173.681 22.973 14.082 -135.063 -40.650 0.009 63.398 -15.606 0.166 -156.073
17.000 -12.571 0.235 -176.840 22.847 13.879 -151.033 -41.699 0.008 48.516 -16.000 0.158 -160.598
17.500 -13.207 0.219 -179.413 22.728 13.689 -166.718 -40.813 0.009 43.851 -16.795 0.145 -166.616
18.000 -14.063 0.198 -176.351 22.548 13.409 176.850 -40.203 0.010 34.195 -17.791 0.129 -173.574
18.500 -14.853 0.181 -172.040 22.336 13.086 160.709 -39.642 0.010 21.429 -19.662 0.104 178.090
19.000 -14.720 0.184 -161.713 22.122 12.767 144.491 -39.641 0.010 20.910 -22.604 0.074 169.680
19.500 -13.710 0.206 -153.813 21.797 12.298 128.151 -39.632 0.010 8.070 -28.897 0.036 148.784
20.000 -12.221 0.245 -148.391 21.451 11.819 111.521 -38.926 0.011 -7.980 -35.137 0.018 31.294
20.500 -10.382 0.303 -147.276 20.983 11.198 95.148 -39.251 0.011 -13.094 -23.741 0.065 -15.174
21.000 -8.701 0.367 -150.640 20.472 10.558 78.624 -38.616 0.012 -25.399 -18.636 0.117 -26.892
21.500 -7.194 0.437 -156.785 19.879 9.862 62.593 -38.726 0.012 -35.505 -15.322 0.171 -36.809
22.000 -5.883 0.508 -163.716 19.198 9.118 47.073 -38.915 0.011 -38.784 -12.780 0.230 -45.747
Note: Data obtained from on-wafer measurements
6
AMMC-6220: Typical Scattering Parameters[1]
(Tc=25°C, VD1=VD2= 5 V, Zin = Zout = 50 Ω)
Freq
GHz
S11 S21 S12 S22
dB mag phase dB mag phase dB mag phase dB mag phase
4.0 -0.673 0.925 103.544 8.514 2.665 -130.371 -50.551 0.003 -109.410 -3.600 0.661 170.277
4.5 -1.492 0.842 74.318 21.395 11.742 117.926 -43.657 0.007 103.138 -10.722 0.291 137.294
5.0 -0.635 0.929 37.411 22.845 13.875 43.305 -45.849 0.005 43.526 -13.626 0.208 140.892
5.5 -2.032 0.791 -3.432 23.951 15.759 -11.567 -48.892 0.004 -22.501 -17.072 0.140 136.619
6.0 -4.747 0.579 -34.664 24.262 16.335 -56.971 -49.740 0.003 -50.634 -20.223 0.097 138.857
6.5 -7.598 0.417 -55.144 24.334 16.471 -94.487 -51.629 0.003 -90.737 -23.311 0.068 145.708
7.0 -10.093 0.313 -66.567 24.292 16.392 -126.702 -54.247 0.002 -108.004 -26.096 0.050 152.950
7.5 -11.669 0.261 -72.043 24.333 16.468 -155.390 -52.202 0.002 -121.340 -29.853 0.032 167.732
8.0 -12.300 0.243 -74.699 24.406 16.606 178.048 -51.151 0.003 -137.135 -33.106 0.022 -157.216
8.5 -12.080 0.249 -78.056 24.422 16.639 153.532 -52.505 0.002 -155.276 -31.608 0.026 -119.404
9.0 -11.733 0.259 -84.004 24.477 16.744 129.984 -51.516 0.003 -155.878 -28.205 0.039 -97.950
9.5 -11.303 0.272 -91.544 24.511 16.810 107.486 -52.868 0.002 -177.492 -25.326 0.054 -87.835
10.0 -11.062 0.280 -99.362 24.549 16.883 86.003 -51.015 0.003 175.740 -22.836 0.072 -83.845
10.5 -10.806 0.288 -106.223 24.467 16.724 65.381 -50.416 0.003 169.269 -20.540 0.094 -82.739
11.0 -10.685 0.292 -113.824 24.397 16.590 45.507 -50.539 0.003 161.489 -18.620 0.117 -83.562
11.5 -10.652 0.293 -120.486 24.282 16.372 26.125 -49.084 0.004 140.732 -17.073 0.140 -86.634
12.0 -10.584 0.296 -126.927 24.165 16.152 7.602 -49.630 0.003 129.430 -15.819 0.162 -91.173
12.5 -10.383 0.303 -133.049 24.037 15.916 -10.789 -49.737 0.003 117.272 -14.698 0.184 -95.581
13.0 -10.495 0.299 -139.396 23.885 15.641 -28.235 -47.563 0.004 112.685 -13.888 0.202 -100.779
13.5 -10.452 0.300 -144.569 23.757 15.412 -45.463 -47.315 0.004 114.739 -13.275 0.217 -106.161
14.0 -10.610 0.295 -150.864 23.582 15.104 -62.199 -48.035 0.004 101.112 -12.824 0.228 -111.602
14.5 -10.688 0.292 -155.580 23.400 14.792 -79.220 -47.535 0.004 89.549 -12.509 0.237 -116.032
15.0 -10.967 0.283 -161.115 23.239 14.519 -95.555 -46.791 0.005 88.406 -12.349 0.241 -121.314
15.5 -11.235 0.274 -166.831 23.018 14.154 -111.710 -45.741 0.005 82.235 -12.368 0.241 -126.026
16.0 -11.633 0.262 -170.420 22.817 13.831 -128.090 -45.071 0.006 65.758 -12.610 0.234 -130.007
16.5 -12.194 0.246 -173.577 22.522 13.369 -144.087 -46.403 0.005 65.253 -12.974 0.225 -132.934
17.0 -13.128 0.221 -174.413 22.241 12.944 -159.749 -44.636 0.006 52.243 -13.422 0.213 -134.003
17.5 -13.449 0.213 -173.665 21.974 12.552 -175.168 -44.918 0.006 40.428 -13.851 0.203 -134.954
18.0 -13.681 0.207 -169.464 21.613 12.041 169.124 -44.953 0.006 41.677 -14.243 0.194 -134.370
18.5 -13.952 0.201 -166.852 21.241 11.536 154.065 -44.297 0.006 28.636 -14.790 0.182 -132.741
19.0 -13.377 0.214 -162.360 20.881 11.067 139.077 -44.325 0.006 18.417 -15.145 0.175 -128.824
19.5 -12.587 0.235 -158.579 20.458 10.541 124.370 -44.648 0.006 17.829 -15.378 0.170 -124.591
20.0 -11.593 0.263 -155.670 20.070 10.080 109.618 -44.290 0.006 7.552 -15.265 0.172 -118.577
20.5 -10.402 0.302 -156.118 19.610 9.561 95.315 -43.949 0.006 4.072 -14.896 0.180 -112.117
21.0 -9.292 0.343 -158.544 19.157 9.075 81.210 -44.129 0.006 2.016 -14.201 0.195 -108.617
21.5 -8.122 0.393 -161.368 18.767 8.677 66.820 -43.714 0.007 -6.903 -13.518 0.211 -105.366
22.0 -7.019 0.446 -165.866 18.255 8.180 53.298 -43.878 0.006 -4.490 -12.580 0.235 -102.937
Note: Data obtained from on-wafer measurements
7
Biasing and Operation
The AMMC-6220 is normally biased with a single positive
drain supply connected to both VD1 and VD2 bond pads
through the 2 bypass capacitors as shown in Figure 20.
The recommended supply voltage is 3 V. It is important
to have 2 separate 100pF bypass capacitors, and these
two capacitors should be placed as close to the die as
possible.
The AMMC-6220 does not require a negative gate volt-
age to bias any of the three stages. No ground wires are
needed because all ground connections are made with
plated through-holes to the backside of the device.
Refer the Absolute Maximum Ratings table for allowed
DC and thermal conditions
Assembly Techniques
The backside of the MMIC chip is RF ground. For mi-
crostrip applications the chip should be attached directly
to the ground plane (e.g. circuit carrier or heatsink) using
electrically conductive epoxy[1,2]
For best performance, the topside of the MMIC should
be brought up to the same height as the circuit sur-
rounding it. This can be accomplished by mounting a
gold plate metal shim (same length and width as the
MMIC) under the chip which is of correct thickness to
make the chip and adjacent circuit the same height.
The amount of epoxy used for the chip and/or shim
attachment should be just enough to provide a thin
llet around the bottom perimeter of the chip or shim.
The ground plan should be free of any residue that may
jeopardize electrical or mechanical attachment.
Figure 19. AMMC-6220 Schematic
In
Vcc
Out
The location of the RF bond pads is shown in Figure
12. Note that all the RF input and output ports are in a
Ground-Signal-Ground conguration.
RF connections should be kept as short as reasonable
to minimize performance degradation due to undesir-
able series inductance. A single bond wire is normally
sucient for signal connections, however double bond-
ing with 0.7 mil gold wire or use of gold mesh is recom-
mended for best performance, especially near the high
end of the frequency band.
Thermosonic wedge bonding is preferred method for
wire attachment to the bond pads. Gold mesh can be
attached using a 2 mil round tracking tool and a tool
force of approximately 22 grams and a ultrasonic power
of roughly 55 dB for a duration of 76 ± 8 mS. The guided
wedge at an untrasonic power level of 64 dB can be
used for 0.7 mil wire. The recommended wire bond
stage temperature is 150 ± 2 °C.
Caution should be taken to not exceed the Absolute
Maximum Rating for assembly temperature and time.
The chip is 100um thick and should be handled with
care. This MMIC has exposed air bridges on the top
surface and should be handled by the edges or with a
custom collet (do not pick up the die with a vacuum on
die center).
This MMIC is also static sensitive and ESD precautions
should be taken.
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Eutectic attach is not recommended and may jeopardize reliability
of the device.
Figure 20. AMMC-6220 Bonding pad locations
Figure 21. AMMC-6220 Assembly diagram
RF INPUT RF OUTPUT
V
D1
V
D2
Gold Plated Shim (Optional)
100 pF Capacitors
To V
DD
DC supply
AMMC-6220
0
0
330
800
0 700 870 1045 1700
800
330
0
1700
705
90 1600
RFin RFout
VD1 VD2
Ordering Information:
AMMC-6220-W10 = 10 devices per tray
AMMC-6220-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0218EN
AV02-1287EN - June 23, 2008