Data Sheet No. PD60161-R IR2108(4) (S) & (PbF) HALF-BRIDGE DRIVER Features * Floating channel designed for bootstrap operation Fully operational to +600V Packages Tolerant to negative transient voltage dV/dt immune 14-Lead SOIC 8-Lead SOIC * Gate drive supply range from 10 to 20V IR21084S IR2108S * Undervoltage lockout for both channels * 3.3V, 5V and 15V input logic compatible 14-Lead PDIP * Cross-conduction prevention logic IR21084 Matched propagation delay for both channels * * High side output in phase with HIN input 8-Lead PDIP * Low side output out of phase with LIN input IR2108 * Logic and power ground +/- 5V offset. * Internal 540ns dead-time, and 2106/2301//2108//2109/2302/2304 Feature Comparison programmable up to 5us with one external RDT resistor (IR21084) CrossInput conduction * Lower di/dt gate driver for better Dead-Time Ground Pins Part logic prevention noise immunity logic * Available in Lead-Free 2106/2301 COM 21064 2108 21084 2109/2302 21094 Description HIN/LIN HIN/LIN no yes none Internal 540ns VSS/COM COM VSS/COM COM VSS/COM Programmable 0.54~5 s The IR2108(4)(S) are high voltage, high speed Internal 540ns IN/SD yes power MOSFET and IGBT drivers with depenProgrammable 0.54~5 s dent high and low side referenced output yes Internal 100ns HIN/LIN COM 2304 channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD up to 600V HO IR2108 (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VCC VCC VB HIN HIN VS LIN LIN IR21084 TO LOAD DT V SS RDT VSS COM LO 1 IR2108(4) (S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating absolute voltage VS Min. Max. -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 DT Programmable dead-time pin voltage (IR21084 only) VSS - 0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN ) VSS - 0.3 VCC + 0.3 VSS Logic ground (IR21084 only) VCC - 25 VCC + 0.3 dV S/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient -- 50 (8 lead PDIP) -- 1.0 (8 lead SOIC) -- 0.625 (14 lead PDIP) -- 1.6 (14 lead SOIC) -- 1.0 (8 lead PDIP) -- 125 (8 lead SOIC) -- 200 (14 lead PDIP) -- 75 (14 lead SOIC) -- 120 TJ Junction temperature -- 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) -- 300 V V/ns W C/W C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V S and VSS offset rating are tested with all supplies biased at 15V differential. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 Note 1 600 VB VHO High side floating output voltage VS VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage COM VCC DT Programmable dead-time pin voltage (IR21084 only) VSS Logic ground (IR21084 only) IR2108 IR21084 VSS VCC VSS VCC -5 5 Units V C TA Ambient temperature -40 125 Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2108(4) (S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25C, DT = VSS unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay -- 220 300 toff Turn-off propagation delay -- 200 280 MT Delay matching | ton - toff | -- 0 30 tr Turn-on rise time -- 150 220 tf Turn-off fall time -- 50 80 Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) 400 4 540 5 680 6 Deadtime matching = | DTLO-HO - DTHO-LO | -- 0 60 -- 0 600 DT MDT VS = 0V VS = 0V or 600V nsec VS = 0V VS = 0V usec nsec RDT= 0 RDT = 200k (IR21084) RDT=0 RDT = 200k (IR21084) Static Electrical Characteristics VBIAS (VCC , VBS) = 15V, VSS = COM, DT= VSS and TA = 25C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic "1" input voltage for HIN & logic "0" for LIN 2.9 -- -- VIL Logic "0" input voltage for HIN & logic "1" for LIN -- -- 0.8 VOH High level output voltage, VBIAS - VO -- 0.8 1.4 VOL Low level output voltage, VO -- 0.3 0.6 VCC = 10V to 20V V VCC = 10V to 20V IO = 20 mA IO = 20 mA ILK Offset supply leakage current -- -- 50 IQBS Quiescent V BS supply current 20 75 130 A IQCC Quiescent VCC supply current 0.4 1.0 1.6 mA IIN+ Logic "1" input bias current -- 5 20 IIN- Logic "0" input bias current -- -- 2 VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8 VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0 VBSUV- threshold VCCUVH Hysteresis 0.3 0.7 -- IO+ Output high short circuit pulsed current 120 200 -- IO- Output low short circuit pulsed current 250 350 -- VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V RDT=0 HIN = 5V, LIN = 0V A HIN = 0V, LIN = 5V V VBSUVH www.irf.com mA VO = 0V, PW 10 s VO = 15V, PW 10 s 3 IR2108(4) (S) & (PbF) Functional Block Diagram VB 2108 UV DETECT VSS/COM LEVEL SHIFT HIN DT HO R HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT +5V VSS/COM LEVEL SHIFT LIN LO DELAY COM VSS VB 21084 UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER Q S VS PULSE GENERATOR VCC DEADTIME & SHOOT-THROUGH PREVENTION DT UV DETECT +5V LIN R PULSE FILTER VSS/COM LEVEL SHIFT DELAY LO COM VSS 4 www.irf.com IR2108(4) (S) & (PbF) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2108 and VSS for IR21084) LIN Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2108 DT Programmable dead-time lead, referenced to VSS. (IR21084 only) VSS Logic Ground (21084 only) VB High side floating supply HO High side gate driver output VS High side floating supply return and VSS for IR21084) VCC Low side and logic fixed supply LO Low side gate driver output COM Low side return Lead Assignments 8 HIN HO 7 3 LIN VS 6 4 COM LO 5 8 1 HIN 7 2 3 LIN VS 6 4 COM LO 5 2 1 2 www.irf.com VB VB HO VCC 1 VCC 8 Lead PDIP 8 Lead SOIC IR2108 IR2108S VCC HIN VB 14 14 1 VCC 13 2 HIN VB 13 12 11 3 LIN HO 12 3 LIN HO 4 DT VS 11 4 DT VS 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 7 LO 8 7 LO 8 14 Lead PDIP 14 Lead SOIC IR21084 IR21084S 5 IR2108(4) (S) & (PbF) HIN LIN LIN HO 50% 50% LO ton toff tr Figure 1. Input/Output Timing Diagram 90% tf 90% 10% LO 10% 50% 50% HIN ton toff tr 90% HIN LIN 50% LO 90% 50% HO DT LO-HO 10% 10% Figure 2. Switching Time Waveform Definitions 90% HO tf 10% DT HO-LO 90% 10% MDT= DT LO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions 6 www.irf.com 500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) IR2108(4) (S) & (PbF) 400 300 Max. 200 T yp. 100 0 -50 -25 0 25 50 75 500 400 Max . 300 T yp. 200 100 0 100 125 10 Temperature ( C) Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 100 Max . T yp. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs.Tem perature www.irf.com 14 16 18 20 Figure 4B. Turn-on Propagation Delay vs. Supply Voltage Figure 4A. Turn-on Propagation Delay vs. Tem perature 200 12 V BIAS Supply Voltage (V) o 500 400 300 Max . T yp. 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 7 IR2108(4) (S) & (PbF) 500 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 500 400 300 200 Max . 100 T yp. 400 300 Max. 200 T yp. 100 0 0 -50 -25 0 25 50 75 10 100 125 Temperature ( oC) 16 18 20 Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 Turn-off Fall Time (ns) 200 Turn-off Fall Time (ns) 14 V BIAS Supply Voltage (V) Figure 6A.Turn-on Rise Tim e vs. Tem perature 150 100 Max. 50 T yp. 0 -50 150 100 Max. 50 T yp. 0 -25 0 25 50 75 100 125 o Temperature ( C) Figure 7A. Turn-off Fall Tim e vs. Tem perature 8 12 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 7B. Turn-off Fall Tim e vs. Supply Voltage www.irf.com 1000 1000 800 800 Deadtime (ns) Deadtime (ns) IR2108(4) (S) & (PbF) Max. 600 T yp. 400 Mi n. 200 -50 -25 Max. T yp. 600 Min. 400 200 0 25 50 75 10 100 125 14 16 18 20 V BIAS Supply Voltage (V) Temperature (oC) Figure 8B. Deadtime vs. Supply Voltage Figure 8A. Deadtim e vs. Tem perature 8 7 7 6 Max . 5 Input Voltage (V) Deadtime ( s) 12 T yp. 4 Mi n. 3 2 1 6 5 4 3 Max . 2 1 0 0 50 100 150 RDT (K) Figure 8C. Deadtim e vs. RDT (IR21084 Only) www.irf.com 200 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 9A. Logic "1" Input Voltage vs. Tem perature 9 IR2108(4) (S) & (PbF) 8 4.0 Input Voltage (V) Input Voltage (V) 7 6 5 4 Max . 3 2 1 0 10 12 14 16 18 3.2 2.4 1.6 Min. 0.8 0.0 -50 20 -25 0 V CC Supply Voltage (V) High Level Output Voltage (V) Input Voltage (V) 3.2 2.4 1.6 Min. 0.0 12 14 16 18 V CC Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage 10 75 100 125 Figure 10A. Logic "0" Input Voltage vs. Tem perature 4.0 10 50 Temperature (oC) Figure 9B. Logic "1" Input Voltage vs. Supply Voltage 0.8 25 20 4 3 2 1 Max . T yp. 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 11A. High Level Output vs. Temperature www.irf.com 4 Low Level Output Voltage (V) High Level Output Voltage (V) IR2108(4) (S) & (PbF) 3 2 Max. 1 T yp. 0 10 12 14 16 18 20 1.5 1.2 0.9 0.6 Max. 0.3 T yp. 0 -50 -25 V CC Supply Voltage (V) Max . 0.6 T yp. 0.3 0 18 V CC Supply Voltage (V) Figure 12B. Low Level Output vs. Supply Voltage www.irf.com 20 Offset Supply Leakage Current ( A) Low Level Output Voltage (V) 0.9 16 75 100 125 Figure 12A. Low Level Output vs. Temperature 1.2 14 50 Temperature ( C) 1.5 12 25 o Figure 11B. High Level Output vs. Supply Voltage 10 0 500 400 300 200 100 Max . 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 13A. Offset Supply Leakage Current vs. Tem perature 11 Offset Supply Leakage Current ( A) IR2108(4) (S) & (PbF) 500 V BS Supply Current ( A) 400 400 300 200 100 Max . 300 200 100 Max . T yp. Min. 0 0 100 200 300 400 500 0 -50 600 -25 V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. Tem perature 3.0 Vcc Supply Current (mA) V BS Supply Current ( A) 100 125 Figure 14A. V BS Supply Current vs. Tem perature 400 300 200 Max. 100 T yp. Min. 0 10 12 14 16 18 V BS Supply Voltage (V) Figure 14B. V BS Supply Current vs. Supply Voltage 12 0 25 50 75 Temperature ( oC) 20 2.5 2.0 Max. 1.5 T yp. 1.0 0.5 Min. 0.0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 15A. V CC Supply Current vs. Tem perature www.irf.com IR2108(4) (S) & (PbF) 60 Logic "1" Input Current ( A) V CC Supply Current (mA) 3.0 2.5 2.0 1.5 1.0 Max . T yp. 0.5 Min. 0.0 10 12 14 16 18 V CC Supply Voltage (V) 50 40 30 20 Max . 10 T yp. 0 -50 20 0 25 50 75 100 125 Temperature ( oC) Figure 15B. V CC Supply Current vs. Supply Voltage Figure 16A. Logic "1" Input Current vs. Tem perature 5 Logic "0" Input Current ( A) 60 Logic "1" Input Current ( A) -25 50 40 30 Max. 20 10 T yp. 0 10 12 14 16 18 V CC Supply Voltage (V) Figure 16B. Logic "1" Input Current vs. Supply Voltage www.irf.com 20 4 3 Max . 2 1 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 17A. Logic "0" Input Current vs . Te m pe rature 13 IR2108(4) (S) & (PbF) 12 V CC UVLO Threshold (+) (V) Logic "0" Input Current ( A) 5 4 3 Max. 2 1 12 14 16 18 10 Max . 9 T yp. 8 Mi n. 7 -50 0 10 11 20 -25 0 V CC Supply Voltage (V) 11 75 100 125 12 V BS UVLO Threshold (+) (V) VCC UVLO Threshold (-) (V) 50 Figure 18. V CC Undervoltage Threshold (+) vs. Tem perature Figure 17B. Logic "0" Input Current vs. Supply Voltage 10 Max. 9 T yp. 8 Mi n. 7 6 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 19. V CC Undervoltage Threshold (-) vs. Tem perature 14 25 Temperature (oC) 11 10 Max . 9 T yp. 8 Min. 7 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 20. V BS Undervoltage Threshold (+) vs. Tem perature www.irf.com IR2108(4) (S) & (PbF) 500 Output Source Current ( A) V BS UVLO Threshold (-) (V) 11 10 9 Max . T yp. 8 Min. 7 6 -50 -25 0 25 50 75 400 300 T yp. 200 Min. 100 0 -50 100 125 -25 0 Temperature (oC) 75 100 125 Temperature ( C) Figure 22A. Output Source Current vs. Tem perature 600 Output Sink Current (mA) 500 Output Source Current ( A) 50 o Figure 21. V BS Undervoltage Threshold (-) vs. Tem perature 400 300 200 100 25 T yp. Min. 0 10 12 14 16 18 V BIAS Supply Voltage (V) Figure 22B. Output Source Current vs. Supply Voltage www.irf.com 20 500 T yp. 400 300 Min. 200 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 23A. Output Sink Current vs. Tem perature 15 IR2108(4) (S) & (PbF) 0 V S Offset Supply Voltage (V) Output Sink Current ( A) 600 500 400 300 T yp. 200 Min. 100 -2 T yp. -4 -6 -8 -10 0 10 12 14 16 18 10 20 140 120 120 100 140V 70V 0V 40 Temperature (oC) Temprature (oC) 140 18 20 100 140V 80 70V 60 0V 40 20 1 10 100 1000 Frequency (KHz) Figure 25. IR2108 vs. Frequency (IRFBC20), Rgate=33 , V CC=15V : 16 16 Figure 24. Maxim um V s Negative Offset vs. Supply Voltage Figure 23B. Output Sink Current vs. Supply Voltage 60 14 V BS Flouting Supply Voltage (V) V BIAS Supply Voltage (V) 80 12 20 1 10 100 1000 Frequency (KHz) Figure 26. IR2108 vs. Frequency (IRFBC30), Rgate =22: , VC C=15V www.irf.com 140 140 120 120 100 1 40V 80 70V 0V 60 40 Temperature (oC) Temperature (oC) IR2108(4) (S) & (PbF) 1 40V 70V 0V 100 80 60 40 20 20 1 10 100 1 1000 : : 140 140 120 120 100 80 140V 70V 0V 20 Temperature (oC) Temperature (oC) 1000 Figure 28. IR2108 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V Figure 27. IR2108 vs. Frequency (IRFBC40), Rgate=15 , V CC=15V 40 100 Frequency (KHz) Frequency (KHz) 60 10 100 80 1 40V 60 70V 40 0V 20 1 10 100 1000 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 29. IR21084 vs. Frequency (IRFBC20), Rgate=33 , V CC=15V Figure 30. IR21084 vs. Frequency (IRFBC30), Rgate=22 , V CC=15V : www.irf.com : 17 140 140 120 120 100 140V 80 70V 60 0V Temperature (oC) Temperature (oC) IR2108(4) (S) & (PbF) 60 20 20 100 0V 80 40 10 70V 100 40 1 140V 1 1000 Figure 31. IR21084 vs. Frequency (IRFBC40), Rgate=15 , V CC=15V 140 120 120 100 1 40V 70V 0V 40 Temperature (oC) Temperature (oC) : 140 20 140V 100 70V 80 0V 60 40 20 1 10 100 1000 Frequency (KHz) Figure 33. IR2108S vs. Frequency (IRFBC20), Rgate=33 , V CC=15V : 18 1000 Figure 32. IR21084 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V : 60 100 Frequency (KHz) Frequency (KHz) 80 10 1 10 100 1000 Frequency (KHz) Figure 34. IR2108S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V : www.irf.com IR2108(4) (S) & (PbF) 0V 100 80 60 Tempreture (oC) 120 120 Temperature (oC) 140V 70V 0V 140 140V70V 140 100 80 60 40 40 20 20 1 10 100 1 1000 : : 140 140 120 120 100 80 140V 70V 0V Temperature (oC) Temperature (oC) 1000 Figure 36. IR2108S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V Figure 35. IR2108S vs. Frequency (IRFBC40), Rgate=15 , V CC=15V 40 100 Frequency (KHz) Frequency (KHz) 60 10 100 80 1 40V 70V 60 0V 40 20 20 1 10 100 1000 Frequency (KHz) Figure 37. IR21084S vs. Frequency (IRFBC20), Rgate=33 , V CC=15V : www.irf.com 1 10 100 1000 Frequency (KHz) Figure 38. IR21084S vs. Frequency (IRFBC30), Rgate =22 , VCC =15V : 19 140 140 120 120 100 1 40V 80 70V 0V 60 40 140V 70V 0V 100 80 60 40 20 20 1 10 100 1000 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 39. IR21084S vs. Frequency (IRFBC40), Rgate=15 , V CC=15V Figure 40. IR21084S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V : 20 Temperature (oC) Temperature (oC) IR2108(4) (S) & (PbF) : www.irf.com IR2108(4) (S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A F OOT PRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BAS IC e1 6X e 3X 1.27 [.050] e1 8X b 0.25 [.010] A1 A 8X 1.78 [.070] MAX .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0 8 0 8 K x 45 C y 0.10 [.004] 8X L 8X c 7 C A B NOT ES : 1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIME TER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S]. 4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA. 8-Lead SOIC www.irf.com MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O A SUBS TRAT E. 01-6027 01-0021 11 (MS-012AA) 21 IR2108(4) (S) & (PbF) 14-Lead PDIP 14-Lead SOIC (narrow body) 22 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) www.irf.com IR2108(4) (S) & (PbF) ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2108 8-Lead SOIC IR2108S 14-Lead PDIP IR21084 14-Lead SOICIR21084S order order order order Lead-Free Part IR2108 IR2108S IR21084 IR21084S 8-Lead PDIP IR2108 8-Lead SOIC IR2108S 14-Lead PDIP IR21084 14-Lead SOIC IR21084S order order order order IR2108PbF IR2108SPbF IR21084PbF IR21084SPbF This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Website. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/08/04 www.irf.com 23