1/06/09
www.irf.com 1
HEXFET® Power MOSFET
S
D
G
Benefits
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
l Halogen-Free
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
TO-220AB
IRFB3206GPbF
IRFB3206GPbF
GDS
Gate Drain Source
VDSS 60V
RDS
(
on
)
typ. 2.4m
:
max. 3.0m
:
ID (Silicon Limited) 210A
c
ID (Package Limited) 120A
PD - 96210
S
D
G
D
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
IDM Pulsed Drain Current
d
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dv/dt Peak Diode Recovery
f
V/ns
TJ Operating Junction and
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited) Sin
g
le Pulse Avalanche Ener
g
y
e
mJ
IAR Avalanche Current
d
A
EAR Repetitive Avalanche Ener
g
y
d
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.50
RθCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– °C/W
RθJA Junction-to-Ambient, TO-220 ––– 62
Max.
210
c
150
c
840
120
2.0
10lbf
x
in (1.1N
x
m)
300
A
°C
170
See Fig. 14, 15, 22a, 22b,
300
5.0
-55 to + 175
± 20
IRFB3206GPbF
2www.irf.com
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.023mH
RG = 25, IAS = 120A, VGS =10V. Part not recommended for use
above this value.
S
D
G
ISD 75A, di/dt 360A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
Rθ is measured at TJ approximately 90°C
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.07 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 2.4 3.0 m
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
RGInternal Gate Resistance ––– 0.7 –––
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 210 ––– ––– S
QgTotal Gate Charge ––– 120 170 nC
Qgs Gate-to-Source Charge ––– 29 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 35
Qsync Total Gate Charge Sync. (Qg - Qgd)––– 85 –––
td(on) Turn-On Delay Time ––– 19 ––– ns
trRise Time ––– 82 –––
td(off) Turn-Off Delay Time ––– 55 –––
tfFall Time ––– 83 –––
Ciss Input Capacitance ––– 6540 ––– pF
Coss Output Capacitance ––– 720 –––
Crss Reverse Transfer Capacitance ––– 360 –––
Coss eff. (ER) Effective Output Capacitance (Ener
g
y Related)
––– 1040 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)
h
––– 1230 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 210
c
A
(Body Diode)
ISM Pulsed Source Current ––– ––– 840 A
(Body Diode)
d
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 33 50 ns TJ = 25°C VR = 51V,
––– 37 56 TJ = 125°C IF = 75A
Qrr Reverse Recovery Charge ––– 41 62 nC TJ = 25°C di/dt = 100A/µs
g
––– 53 80 TJ = 125°C
IRRM Reverse Recovery Current ––– 2.1 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VDS = 50V, ID = 75A
ID = 75A
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
VDS =30V
Conditions
VGS = 10V
g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz, See Fig.5
VGS = 0V, VDS = 0V to 48V
i
, See Fig.11
VGS = 0V, VDS = 0V to 48V
h
TJ = 25°C, IS = 75A, VGS = 0V
g
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 5mA
d
VGS = 10V, ID = 75A
g
VDS = VGS, ID = 150µA
VDS =60V, VGS = 0V
VDS = 48V, VGS = 0V, TJ = 125°C
ID = 75A
RG =2.7
VGS = 10V
g
VDD = 30V
ID = 75A, VDS =0V, VGS = 10V
IRFB3206GPbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current
(Α)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
0 40 80 120 160 200
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 75A
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
12000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
IRFB3206GPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
010 20 30 40 50 60
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
Energy (µJ)
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
55
60
65
70
75
80
V(BR)DSS , Drain-to-Source Breakdown Voltage
ID = 5mA
0.1 1 10 100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
40
80
120
160
200
240
ID, Drain Current (A)
Limited By Package
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 21A
33A
BOTTOM 120A
IRFB3206GPbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
Ri (°C/W)
τι (sec)
0.106416 0.0001
0.201878 0.001262
0.190923 0.011922
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci= τi/Ri
Ci= τi/Ri
IRFB3206GPbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 150µA
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
2
4
6
8
10
12
14
16
18
IRRM - (A)
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
50
100
150
200
250
300
350
QRR - (nC)
IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
50
100
150
200
250
300
350
QRR - (nC)
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
2
4
6
8
10
12
14
16
18
IRRM - (A)
IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C
IRFB3206GPbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
IRFB3206GPbF
8www.irf.com
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
(;$03/( 7+,6,6$1,5)%*3%)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
< /$67',*,72)
'$7(&2'(
: : :25.:( (.
; )$&725<&2'(
1RWH*VXIIL[LQSDUWQXPEHU
LQGLFDWHV+DORJHQ)UHH
&$/(1'$5<($5
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2009