A KYOCERA GROUP COMPANY
TPC
Zinc Oxide Varistors
TPC 1
Zinc Oxide Varistors
Contents
Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Ordering Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
VE / VF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical Characteristics (VE / VF types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VN 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VB 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Taping Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Manufacturing Process and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
As we are anxious that our customers should benefit from the latest developments in technology and standards,
AVX reserves the right to modify the characteristics published in this brochure.
2TPC
Zinc Oxide Varistors
General
Metal Oxide Varistors are ceramic passive components
made of zinc oxide sintered together with other metal oxide
additives.
They provide an excellent protective device for limiting surge
voltages and absorbing energy pulses.
Their very good price / performance ratio enables designers
to optimize the transient protection function when designing
the circuits.
Varistors are Voltage Dependent Resistors whose
resistance decreases drastically when voltage is increased.
When connected in parallel with the equipment to protect,
they divert the transients and avoid any further overvoltage
on the equipment.
Manufactured according to high level standards of quality
and service, our Metal Oxide Varistors are widely used as
protective devices in the telecommunications, industrial,
automotive and consumer markets.
TPC 3
TPC 3
Zinc Oxide Varistors
Introduction
ZINC OXIDE VARISTORS.
PROTECTION FUNCTION
APPLICATION
Definition of the varistor effect
The varistor effect is defined as being the property of any
material whose electrical resistance changes non-linearly
with the voltage applied to its terminals.
In other words, within a given curr ent range, the curr ent-volt-
age relationship can be expressed by the equation:
I = KVa
In which K represents a constant depending on the geome-
try of the part and the technology used and athe non-lin-
earity factor.
The higher the value of this factor, the greater the effect. The
ideal (and theorical) case is shown in Figure1 where a=
whereas a linear material has an equation of I = f(V) obeying
the well-known Ohm’s law (a= 1).
The relationship between these two extreme cases is shown
in Figure 2. It should be pointed out that the I = f(V) curve is
symmetrical with respect to zero in the case of zinc oxide
varistors.
ZINC OXIDE VARISTORS
1-Composition of the material
Zinc oxide varistors are a polycrystalline structured material
consisting of semiconducting zinc oxide crystals and a sec-
ond phase located at the boundaries of the crystals.
This second phase consists of a certain number of metallic
oxides (Bi2O3,MnO,Sb2O3, etc.). It forms the «heart»of the
varistor effect since its electrical resistivity is a non-linear
function of the applied voltage.
Thus, a zinc oxide varistor consists of a large number of
boundaries (several millions) forming a series-parallel net-
work of resistors and capacitors, appearing somewhat like a
multijunction semiconductor.
Experimentally, it is found that the voltage drop (at 1mA) at
each boundary is about 3V. The total voltage drop for the
thickness of the material is proportional to the number N of
boundaries. V1mA ø3 N where N =
in which L represents the average dimension of a zinc oxide
grain and t the thickness of the material.
In other words: V1mA ø3 —
Thus, with a thickness of 1 mm and average dimension of
L = 20 µ, we obtain a voltage of 150 V for a current of 1mA.
The desired voltage at 1mA can thus be obtained either by
changing the thickness of the disc or by controlling the aver-
age dimension of the zinc oxide grain through heat tr eatment
or, yet again, by changing the chemical composition of the
varistor.
The polycrystal is schematically represented in Figure 3. At
room temperature the semiconducting grains have very low
resistivity (a fews ohms/cm).
On the contrary, the resistivity of the second phase (or inter-
granular layer) basically depends on the value of the applied
voltage.
If the voltage value is low, the phase is insulating (region I of
the I = f(V) curve). As the voltage increases this phase
becomes conductive (region II). At very high current values
the resistivity of the grain can become preponderant and the
I = f(V) curve tends towards a linear law (region III).
The curve I = f(V) for the different types can be found in cor-
responding data sheets.
2 - Equivalent electrical circuit diagram
Figure 4 explains the behavior of a zinc oxide varistor. r rep-
resents the equivalent resistance of all semiconducting
grains and rthat of the intergranular layer (the value of which
basically varies with the applied voltage). Cp corresponds to
the equivalent capacitance of the intergranular layers.
When the applied voltage is low, the resistivity of the inter-
granular layer is quite high and the current passing through
the ceramic is low. When the voltage increases, the resis-
tance rdecreases (region II in Figure 5).
When a certain voltage value is reached, rbecomes lower
than r and the I = f(V) characteristic tends to become ohmic
(region III).
The equivalent capacitance due to the insulating layers
depends on their chemical types and geometries.
Values of a few hundred picofarads are usually found with
commonly used discs.
Capacitance value decreases with the area of the ceramic.
Consequently, this value is lower when maximum permissi-
ble energy and current values in the varistor are low, since
these latter parameters are related to the diameter of the
disc.
Capacitance values are not subject to outgoing inspection.
Current
Voltage
0
Current
Voltage
0
a
a
= `
= 1
r
{
Cp
{
Zinc oxide
grains
grains
boundaries
ρ= f (V)
Current
r>r r>r r>rVoltage
III III
Intergranular
phase
Zinc oxide
grains
t
L
t
L
Figure 1 Figure 2
Figure 4 Figure 5
Figure 3
4TPC
Zinc Oxide Varistors
Introduction
3 - Temperature influence on the I = f(V) characteristic
A typical I = f(V) curve is given in Figure 6.
Different distinct regions can be observed:
The first one depends on the temperature and corre-
sponds to low applied voltages (corresponding currents
are in the range of the µA). Consequently, a higher leakage
current is noticeable when temperature is increasing.
The second one shows less variation and corresponds to
the nominal varistor voltage region (Figure 7). The temper-
ature coefficient of the varistor voltage at
1 mA is:
As the temperature coefficient decreases with increasing
current density, this curve also depends on the type of the
varistor.
For higher voltages, the temperature has no significant
influence. Practically the clamping voltages of the varistors
are not affected by a temperature change.
4 - Varistor characteristics
The choice of a varistor for a specific application should be
guided by the following major characteristics:
1) Working or operating voltage (alternating or direct).
2) Leakage current at the working voltage.
3) Max. clamping voltage for a given current.
4) Maximum current passing through the varistor.
5) Energy of the pulse to be dissipated in the varistor.
6) Average power to be dissipated.
4.1 - Max. operating voltage and leakage current
The maximum operating voltage corresponds to the “rest”
state of the varistor. This “rest” voltage offers a low leakage
current in order to limit the power consumption of the pro-
tective device and not to disturb the circuit to be protected.
The leakage currents usually have values in the range of a
few micro-amperes.
in which: A = a constant f(a)
K = a constant
(I = KVa).
PC= dissipated power for a DC voltage Vp.
The A versus curve
For usual values of (30 to 40), the continuously dissipated
power is about 7 times greater than that dissipated by a
sinusoidal signal having the same peak value. For example,
a protective varistor operating at RMS voltage of 250 V has
a power dissipation of a few mW.
4.2 - Non-linearity coefficient
The peak current and voltage values basically depend on the
I = f(V) characteristic or, to be more precise, on the value of
the coefficient defined by:
In which I1and I2are the current values corresponding to
voltage values V1and V2.
The value of adepends on the technology used (chemical
composition, heat synthesis, etc.). Nevertheless, the value is
not constant over the entire current range (several decades).
For example, Figure 9 shows the variation of this coefficient
for currents ranging from 100 nA to 100 A. It can be seen
that apasses through a maximum value and always stays at
high values, even at high levels of current.
The non-lineary of the varistor can be expressed in another
way by the ratio of the voltages corresponding to 2 current
values.
Where: V1voltage for current I1
V2voltage for current I2
The curve giving bversus the value of ais shown in
Figure10 for 2 ratios of I1/I2=103and 106.
PA= AV .lp = AKVpa+1
PA
with = A
PC
DV/V
K = and has a negative value with K< 9.10-4/°C
DT
a
A
1 10 20 50 100
0.5
0.1
60
50
40
30
aaLog l1/ l2
Log V1/ V2
l1
l2
where = 10
(I) A
10-3
10-6
10
102
=
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1 10 20 30 a
bV1
V2
l1
l2
l1
l2
=
=
103
=
106
V1 = Voltage for l1
V2 = Voltage for l2
l1 > l2
log (I1/I2)
log (V1/V2)
a=
b= V1
V2
Figure 6 Figure 7
Figure 8
Figure 9 Figure 10
TPC 5
Zinc Oxide Varistors
Introduction
4.3 - Clamping voltage
It is the maximum residual voltage Vp across the varistor
terminals for a through current Ip.
The voltage value gives an indication on the protective func-
tion of the varistor.
4.4 - Permissible peak current
The value of the permissible peak current depends upon the
varistor model and waveform (8 x 20 µs, 10 x 1000 µs, etc.).
It can be seen that, as a first approximation, the permissible
peak current is proportional to the area of the varistor elec-
trodes.
By way of example, Table I gives the permissible peak cur-
rent values for different diameters and for one current surge
of waveform 8 x 20 µs.
It corresponds to a maximum permissible variation of ±10%
in the voltage measured at 1 mA dc after the surges.
Overloads greater than specified values may result in a
change in varistor voltage by more than ±10% and
irreversible change in the electrical properties.
In case of heavy overload, surge currents beyond the spec-
ified ratings will puncture the varistor element. In extreme
cases, the varistor will burst.
The permissible peak current also depends on the number
of current surges applied to the varistor. For example, Table
II gives the permissible current values based on the number
of consecutive surges of the same magnitude applied on
varistor model VE24M00251K.
Thus, the smaller the number of surges, the higher the per-
missible current.
4.5 - Permissible energy
The notion of permissible energy relates much more to the
“active” state of the varistor than to its “rest” state where the
average power is the predominant notion.
Indeed, except in special cases, the overvoltages occur at
random and not at a high repetition frequency.
Therefore, aging of the varistor will be related to energy of
the transient defined by the current and peak voltage values
as well as the pulse shape.
Opposite, we have expressed energy W calculated for
different pulse shapes, assuming that the value of the
coefficient
aequals 30.
a) Voltage surge
Figure 11 - 12 - 13 - 14
b) Current surge
Figure 15 - 16 - 17 - 18
If, for example, we take a current surge as shown in Figure
19, we demonstrate that the dissipated energy is given by
the approximate expression:
W = Vp Ip (1.4 t2- 0.88 t1) 10-6
in which Vp is the peak voltage value and Ip the peak current
value.
W is expressed in joules.
tin µseconds.
Vp in volts.
Ip in amperes.
0
Vc
VV = Vc Ic = KVc
W = Ic Vc t
tt
0
Vc
V V = Vc t I = KV
W = 310-2 Ic Vc
tt
_
t
0
Vc
V
W = 4.5 10-2 Ic Vc t
tt
V = Vc exp
Vc/2
-t
1.4 t
0
Vc
V
W = 0.22 Ic Vc t
tt
V = Vc sin t
_
t
Table I
Table II
0
Ic
I
W = Ic Vc t
tt
I = Ic
0
Ic
I V = Ic t
W = 0.5 Ic Vc t
tt
_
t
0
Ic
I
W = 1.4 Ic Vc t
tt
I = Ic exp
Ic/2
-t
1.4 t
0
Ic
I
W = 0.64 Ic Vc t
tt
I = Ic sin t
_
t
Operating Uncoated I max.
Voltage Disc
(V) [(mm) (A)
250 5 400
250 7 1200
250 10 2500
250 14 4500
250 20 6500
Permissible Number of Current
Current Surges
(A) (8 x 20 µs)
6500 1
4000 2
1000 102
200 104
Figure 11 Figure 12
Figure 13 Figure 14
Figure 15 Figure 16
Figure 17 Figure 18
6TPC
Table III gives the energies calculated according to waveform
in Figure 19.
The following changes are found when the varistor absorbs an
energy greater than the maximum permissible value:
• Higher leakage current.
• Decrease in the voltage at 1 mA.
• Decrease in coefficient a.
If the energy increases well beyond the maximum value, the
characteristics degrade to such an extent that, even at the
rated voltage, the varistor has a very low resistance value.
The permissible energy for a given varistor is mainly related
to the size of the part. For example, Table IV gives the per-
missible energy for different varistors sizes with an operating
voltage of 250 V.
4.6 - Average dissipated power
a) Average power dissipated in the “rest” state
Considering the high values of the coefficient a, a special
attention is required concerning the dissipated power value in
case of possible changes in the operating voltage.
Indeed, starting with the equation:
I = KVa
the average power dissipated by the varistor is given by the
equation: PC = KVa+1
when a direct current voltage is applied, and
PA= APC
in the case of a sinusoidal voltage having the same peak value
and direct current voltage value.
The A value as a function of awas given in Figure 8. A small
change of the operating voltage can induce a dissipated
power variation which is all the more gr eater since the value of
exponent ais high (Figure 20).
It can be seen that a 10% change in the rated voltage increases
the dissipated power by a factor of 20 when coefficient
a equals 30, and by a factor of 150 when the coefficient
equals 50.
Table V gives the power P dissipated at values of the applied
direct current voltage when the value of aequals 30.
b) Average power dissipated during the transient state
If the transients to which the varistor is subjected are repeated at
a sufficiently high fr equency, there will be an incr ease T in the
average temperature of the part given by the expression:
T = P/d
in which P represents the average dissipated power which
depends on the energy of the pulse and its repetition fre-
quency and dthe dissipation factor in air of the unit.
This temperature rise should stay below the thr eshold indicated
by the manufacturer or it may damage the component coat-
ing resin or even cause thermal runaway of the ceramic.
Operating Uncoated
Voltage Disc Energy
(V) ø (mm) (J)
250 5 10
250 7 21
250 10 40
250 14 72
250 20 130
ZINC OXIDE VARISTORS
Introduction
Time
tt
Current
Ip
Ip/2
012
105
104
= 50
= 30
= 10
103
102
10
1 1.1 1.2 1.3 V/V0
P/P0
a
a
a
Table III
V– P
(V) (mW)
180 0.5
220 0.2
230 0.75
Table V
Table IV
Vp Ip Waveform Energy
(V) (A) (µs) (J)
τ1τ2
500 300 1.2 50 10
500 300 8 20 3
500 300 10 1000 210
Figure 19
Figure 20
TPC 7
Zinc Oxide Varistors
Introduction
5 - Response time of zinc oxide varistors
5.1 - Intrinsic response time
This response time corresponds to the conduction mecha-
nisms specific to semiconductors, therefore its value is quite
low and is less than one nanosecond.
5.2 - Practical response time
However, the response time will be modified for several
reasons:
• Parasitic capacitance of the component due to the insula-
tion of the intergranular layers.
Overshoot phenomenon occurring when the varistor is
subjected to a voltage with a steep leading edge (Figure
21) and causing a dynamic voltage peak greater than the
static voltage by a few percent.
• Impedance of the external circuit to the varistor.
In conclusion, the practical response time of a zinc oxide
varistor usually stays below 50 nanoseconds.
6 - Varistor voltage (V1mA)
6.1 - Nominal varistor voltage (V1mA)
The nominal voltage of a varistor (or “varistor” voltage) is
defined as the voltage drop across the varistor when a dc
test current of 1 mA is applied to the component.
It is defined at a temperature of 25°C.
This parameter is used as a standard to define the varistors
but has no particular electrical or physical significance.
6.2 - Tolerance on the varistor voltage
The standard tolerance is ±10%. Other tolerances may be
defined on custom design products.
To avoid any lack of understanding, different behaviors of
Zn0 varistors should be noted when considering the mea-
surement of V 1 mA.
The measurement time must not be too short to allow a
“break-in” stabilization of the varistor and not too long so
the measurement is not affected by warming the varistor.
The limits of V1mA for our products are given for a measure-
ment time comprised between 100 ms and 300 ms. For
times comprised between 30 ms and 1s, the varistor volt-
age will differ typically by less than 2%.
The value of the peak varistor voltage measured with ac
current will be slightly higher than the dc value.
• When the varistor has been submitted to unipolar stresses
(pulses, dc life test, ...) the voltage-current characteristic
becomes asymmetrical in polarity.
Nanoseconds
Generator at 50
+ zinc oxide varistor
Generator at 50
Volts
0 20 40 60 80
100
80
60
40
20
Figure 21
8TPC
Zinc Oxide Varistors
Applications
1 - Principle of application
Zinc oxide varistors are essentially used as protective
devices for components or items of equipment subjected to
electrical interference whether accidental or otherwise. To be
more specific, there are two types of interference: those
which can be controlled (switching of resistive or capacitive
circuits) and those which occur at random (high voltage
surges change in the power supply network, etc.)
The “protection” function is related to the non-linear
I = f(V) characteristic of the varistor. This component is
always connected in parallel with the assembly E to be
protected (Figure 22B).
The varistor’s “rest” state has a very high impedance (several
megohms) in relation to the component to be protected
and does not change the characteristics or the electric
circuit.
In the presence of a transient, the varistor then has a very low
impedance (a few ohms) and short circuits the component E.
The “rest” and operating states are shown in Figure 22A
and 22B. In case of a current surge of a peak value Ip, the
higher the non-linear coefficient ais, the lower the voltage
across the terminals of the component E will be:
Vp = (Ip/K) 1/a
In case of a voltage surge Vs, the varistor limits the voltage
across the terminals of component E to a value Vp via
resistor Rc which can be the impedance of the source
(Figure 23).
2 - Main applications
Varistors ar e widely used in the dif ferent electronic equipment:
• telecommunication and data systems
power supply units,
switching equipment,
answering sets, ...
• industrial equipment
control and alarm systems,
proximity switches,
transformers,
motors,
traffic lighting, ...
• consumer electronics
television and video sets,
washing machines,
electronic ballasts, ...
• automotive
all motor and electronic systems.
Id-c
E
a-c
or “Rest” state
IpE
Protective
state
VsVp
E
Rc
Figure 22A
Figure 22B
Figure 23
TPC 9
Zinc Oxide Varistors
Applications
Three typical examples of applications are shown to
illustrate the “protection” function of zinc oxide
varistors.
1 - Protection of relay contacts
It is a well-known fact that a sudden break in an inductive
circuit causes an overvoltage which can seriously damage
the contacts of relay due to arcing. Overvoltages of several
thousand volts can occur across the terminals of unprotected
relay contacts. This disadvantage can be overcome by limit-
ing the overvoltage due to opening an inductive circuit to a
level such that it cannot generate an arc. Such limitation is
achieved by wiring a zinc oxide varistor in parallel across the
terminals of the relay characterized by the value of its induc-
tance coil L and its resistor R (Figure 24).
2 - Protection of a diode rectifier bridge
Semiconductor components (silicon diodes, thyristors, etc.)
are especially sensitive to transients and must be protected
so that the overvoltage value is limited to levels which are not
dangerous.
An example of protection for a diode rectifier is schematical-
ly represented in Figure 25. The varistor is connected to the
transformer secondary at the input of rectifier bridge.
If the transformer’s magnetizing current is interrupted when
it reaches its maximum value, a voltage ten times greater
than the normal value can then appear at the terminals of the
secondary winding in the absence of a load.
This overvoltage, which is excessive for the semiconductors,
is limited by the presence of the varistor which absorbs the
energy corresponding to the change of state of the primary
circuit.
The same varistor can also protect the rectifier bridge
against overvoltages coming from the mains and reaching
the secondary circuit via the stray capacitance of the trans-
former.
Another practical case to be considered involves closing of
the primary circuit. If the circuit is closed when the primary
voltage reaches its maximum value, the secondary voltage
can be two times greater than its steady-state value.
Although this case is less dangerous than the preceding
one, it still may cause damage to the rectifying diodes.
Connection of a varistor in parallel limits this overvoltage to a
value such that it does not cause any damage to the semi-
conductors.
3 - Opening of a resistive circuit supplied with AC
current with a loadless rectifier
The diagram is given in Figure 26. When the circuit supplied
with AC current is opened, an overvoltage appears across
the rectifier terminals: - Ldi/dt
The energy stored by the inductance coil (1/2 L I2rms) is
transferred to the protective varistor wired in parallel to the
inductance coil.
L
R
L
Figure 24
Figure 25
Figure 26
10 TPC
Maximum Operating
RMS Voltage
(VRMS)
Maximum Operating
Steady State Voltage
(VDC)
Nominal Varistor
Voltage
(V1mA)
Zinc Oxide Varistors
Selection Guide
0.3 0.4 2 5 11
0.8 0.9 6 11 23 25
2.0 12 24 45 68
4.0 20 40 75 130
40 85 140 230
200 550
200 550
VE 07
VF 05
VE 09
VF 07
VE 13
VF 10
VE 17
VF 14
VE 24
VF 20
VN 32
VB 32
11 14 75 150 250 300 420 625
14 18 100 200 330 385 560 825
18 22 120 240 390 470 680 1000
Voltage range and admissible energy (J) (1 surge 10 x 1000 µs)
Types
VRMS
VDC
V1mA
TPC 11
Zinc Oxide Varistors
Ordering Code
HOW TO ORDER
VE09 M 0 0251 K – –
Type
VE 07
VE 09
VE 13
VE 17
VE 24
VF 05
VF 07
VF 10
VF 14
VF 20
VN 32
VB 32
Series
M: Varistors
for general
applications
P: Varistors for
heavy duty
applications
Marking
AC nominal
voltage
VE:0
Nominal
voltage
at 1 mA dc
VF:1
Tolerance
at 1 mA
K: ±10%
(J: ±5% upon request)
Suffixes
See
on page 32
AC Operating Voltage
(EIA coding)
VE
Nominal Voltage
at 1 mA dc
(EIA coding)
VF
1. Operating voltage expressed by
2 significant figures:
1st digit: 0 (zero).
2nd and 3rd digit:
the two significant figures
of the operating voltage.
4th digit: the number of
ZEROS to be added to
the operating voltage
value.
Examples: 75 V: 0750
250 V: 0251
300 V: 0301
2. Operating voltage expressed by
3 significant figures:
1st, 2nd and 3rd digit:
the 3 significant figures of
the operating voltage.
4th digit: the number of
ZEROS to be added to
the operating voltage
value.
Examples: 205 V: 2050
275 V: 2750
12 TPC
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
FEATURES
• Radial lead varistors
• Wide operating voltage range from 11 V to 625 V (Vrms for
VE types) or 18 V to 1000 V (V1mA for VF types)
• Available in tape and reel for use with automatic insertion
equipment (see pages 31 to 33 for details).
PARTICULAR CHARACTERISTICS
E
Dt
30 (1.18) min
H
UL
(USA and VE Series VF Series Maximum Nominal voltage
Canadian P/N codification using P/N codification using operating voltage at 1 mA dc
Standards) (Dmax , Vrms)(d
ceramic, V1mA)V
rms VDC V1mA mini V1mA nominal V1mA maxi
VE07M00110K _ _ VF05M10180K _ _ 11 14 16.0 18 20.0
VE09M00110K _ _ VF07M10180K _ _
VE07M00140K _ _ VF05M10220K _ _ 14 18 19.8 22 24.2
VE09M00140K _ _ VF07M10220K _ _
VE13M00140K _ _ VF10M10220K _ _
VE17M00140K _ _ VF14M10220K _ _
VE07M00170K _ _ VF05M10270K _ _ 17 22 24.0 27 30.0
VE09M00170K _ _ VF07M10270K _ _
VE13M00170K _ _ VF10M10270K _ _
VE17M00170K _ _ VF14M10270K _ _
VE07M00200K _ _ VF05M10330K _ _ 20 26 29.5 33 36.5
VE09M00200K _ _ VF07M10330K _ _
VE13M00200K _ _ VF10M10330K _ _
VE17M00200K _ _ VF14M10330K _ _
VE07M00250K _ _ VF05M10390K _ _ 25 31 35 39 43
VE09M00250K _ _ VF07M10390K _ _
VE13M00250K _ _ VF10M10390K _ _
VE17M00250K _ _ VF14M10390K _ _
VE07M00300K _ _ VF05M10470K _ _ 30 38 42 47 52
VE09M00300K _ _ VF07M10470K _ _
VE13M00300K _ _ VF10M10470K _ _
VE17M00300K _ _ VF14M10470K _ _
VE07M00350K _ _ VF05M10560K _ _ 35 45 50 56 62
VE09M00350K _ _ VF07M10560K _ _
VE13M00350K _ _ VF10M10560K _ _
VE17M00350K _ _ VF14M10560K _ _
VE07M00400K _ _ VF05M10680K _ _ 40 56 61 68 75
VE09M00400K _ _ VF07M10680K _ _
VE13M00400K _ _ VF10M10680K _ _
VE17M00400K _ _ VF14M10680K _ _
VE07M00500K _ _ VF05M10820K _ _ 50 65 73 82 91
VE09M00500K _ _ VF07M10820K _ _
VE13M00500K _ _ VF10M10820K _ _
VE17M00500K _ _ VF14M10820K _ _
TPC 13
* VE13 / VF10: For models with VRMS 320 V
other version/suffixes available with:
E = 5.08 (0.20) Suffix:
Ø = 0.6 (.024) Bulk: HB
D = 12.5 (.492) max Tape: DA, DB, DC,
DD, DQ, ...
**VE24 / VF20: For lead diameter = 1.0 (.039),
please consult us.
GENERAL CHARACTERISTICS
Storage temperature: -40°C to +125°C
Max. operating temperature: +85°C
Response time: < 25 ns
Voltage coefficient temp.: K< 0.09%/°C
Voltage proof: 2500 V
Epoxy coating: Flame retardant
UL94-VO
MARKING
Type
AC nominal voltage (EIA coding) for VE types
V1mA varistor voltage (EIA coding) for VF types
Logo
UL logo (when approved)
Lot number (VE13/17/24 and VF10/14/20 only)
DMaximum ø
Type Type Ceramic coated H t +10% E
diameter diameter max. max. –0.05 (.002) ± 0.8
VE07 VF05 5 (.196) 7 (.275) 10 (.394) 0.6 (.024) 5.08 (0.20)
VE09 VF07 7 (.275) 9 (.354) 12 (.472) 0.6 (.024) 5.08 (0.20)
VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30)
VE17 VF14 14 (.551) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30)
VE24** VF20** 20 (.787) 24 (.945) 27 (1.06) 0.8** (.031) 7.62 (0.30)
Max. clamping Max. energy absorption Max. permissible Typical Mean Maximum V/I Derating
voltage (8 x 20 µs) (10 x 1000 µs) peak current capacitance power thickness characteristic curves
W (J) (8 x 20 µs) f = 1kHz dissipation t
Vp (V) Ip (A) Number of surges Ip (A)
1 10 1 surge 2 surges pF W mm (inches) Page Page
36 1 0.3 0.15 100 50 1050 0.01 3.6 (.142) 22 24
36 2.5 0.8 0.5 250 125 1900 0.02 3.6 (.142) 22 25
43 1 0.4 0.2 100 50 1050 0.01 3.6 (.142) 22 24
43 2.5 0.9 0.6 250 125 1900 0.02 3.6 (.142) 22 25
43 5 2 1.3 500 250 4000 0.05 4.3 (.169) 22 26
43 10 4 2.6 1000 500 4000 0.10 4.3 (.169) 23 27
53 1 0.5 0.3 100 50 1050 0.01 3.7 (.146) 22 24
53 2.5 1.1 0.7 250 125 1900 0.02 3.7 (.146) 22 25
53 5 2.5 1.6 500 250 4000 0.05 4.3 (.169) 22 26
53 10 4.7 3.0 1000 500 6800 0.10 4.3 (.169) 23 27
65 1 0.6 0.3 100 50 750 0.01 3.9 (.154) 22 24
65 2.5 1.3 0.9 250 125 1500 0.02 3.9 (.154) 22 25
65 5 3.1 2.0 500 250 3100 0.05 4.5 (.177) 22 26
65 10 5.7 4.0 1000 500 5700 0.10 4.5 (.177) 23 27
77 1 0.7 0.4 100 50 660 0.01 3.6 (.142) 22 24
77 2.5 1.6 1.0 250 125 1250 0.02 3.6 (.142) 22 25
77 5 3.7 3 500 250 2800 0.05 4.4 (.173) 22 26
77 10 7 5 1000 500 4600 0.10 4.4 (.173) 23 27
93 1 0.9 0.4 100 50 580 0.01 3.8 (.150) 22 24
93 2.5 2.0 1 250 125 1050 0.02 3.8 (.150) 22 25
93 5 4.4 4 500 250 2150 0.05 4.4 (.173) 22 26
93 10 9.0 7 1000 500 3500 0.10 4.4 (.173) 23 27
110 1 1.1 0.4 100 50 460 0.01 3.9 (.154) 22 24
110 2.5 2.5 1 250 125 850 0.02 3.9 (.154) 22 25
110 5 5.4 4.4 500 250 1900 0.05 4.7 (.185) 22 26
110 10 10.0 8 1000 500 3100 0.10 4.7 (.185) 23 27
135 1 1.3 0.5 100 50 400 0.01 4.1 (.161) 22 24
135 2.5 3.0 1 250 125 720 0.02 4.1 (.161) 22 25
135 5 8.4 5.9 500 250 1700 0.05 4.9 (.193) 22 26
135 10 13.0 8.5 1000 500 2800 0.10 4.9 (.193) 23 27
135 5 1.8 0.6 400 200 300 0.1 3.5 (.138) 22 24
135 10 4.2 1.6 1200 600 530 0.2 3.5 (.138) 22 25
135 25 8.4 6 2500 1250 950 0.4 4.1 (.161) 22 26
135 50 15.0 11 4500 2500 1800 0.6 4.1 (.161) 23 27
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
DIMENSIONS millimeters (inches)
14 TPC
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
UL VE Series VF Series Maximum Nominal voltage
(USA and P/N codification using P/N codification using operating voltage at 1 mA dc
Canadian
Standards) (Dmax , Vrms)(d
ceramic, V1mA)V
rms VDC V1mA mini V1mA nominal V1mA maxi
VE07M00600K _ _ VF05M10101K _ _ 60 80 90 100 110
VE09M00600K _ _ VF07M10101K _ _
VE13M00600K _ _ VF10M10101K _ _
VE17M00600K _ _ VF14M10101K _ _
VE07M00750K _ _ VF05M10121K _ _ 75 100 108 120 132
VE09M00750K _ _ VF07M10121K _ _
VE13M00750K _ _ VF10M10121K _ _
VE17M00750K _ _ VF14M10121K _ _
VE24M00750K _ _ VF20M10121K _ _
VE07M00950K _ _ VF05M10151K _ _ 95 125 135 150 165
VE09M00950K _ _ VF07M10151K _ _
VE13M00950K _ _ VF10M10151K _ _
VE17M00950K _ _ VF14M10151K _ _
VE24M00950K _ _ VF20M10151K _ _
VE07M01150K _ _ VF05M10181K _ _ 115 150 162 180 198
VE09M01150K _ _ VF07M10181K _ _
VE13M01150K _ _ VF10M10181K _ _
VE17M01150K _ _ VF14M10181K _ _
VE24M01150K _ _ VF20M10181K _ _
VE07M00131K _ _ VF05M12050K _ _ 130 170 184 205 226
VE09M00131K _ _ VF07M12050K _ _
VE13M00131K _ _ VF10M12050K _ _
VE17M00131K _ _ VF14M12050K _ _
VE24M00131K _ _ VF20M12050K _ _
VE07M00141K _ _ VF05M10221K _ _ 140 180 198 220 242
VE09M00141K _ _ VF07M10221K _ _
VE13M00141K _ _ VF10M10221K _ _
VE17M00141K _ _ VF14M10221K _ _
VE24M00141K _ _ VF20M10221K _ _
VE07M00151K _ _ VF05M10241K _ _ 150 200 216 240 264
VE09M00151K _ _ VF07M10241K _ _
VE13M00151K _ _ VF10M10241K _ _
VE17M00151K _ _ VF14M10241K _ _
VE24M00151K _ _ VF20M10241K _ _
VE07M01750K _ _ VF05M10271K _ _ 175 225 243 270 297
VE09M01750K _ _ VF07M10271K _ _
VE13M01750K _ _ VF10M10271K _ _
VE17M01750K _ _ VF14M10271K _ _
VE24M01750K _ _ VF20M10271K _ _
VE07M00211K _ _ VF05M10331K _ _ 210 275 297 330 363
VE09M00211K _ _ VF07M10331K _ _
VE13M00211K _ _ VF10M10331K _ _
VE17M00211K _ _ VF14M10331K _ _
VE24M00211K _ _ VF20M10331K _ _
VE07M00231K _ _ VF05M10361K _ _ 230 300 324 360 396
VE09M00231K _ _ VF07M10361K _ _
VE13M00231K _ _ VF10M10361K _ _
VE17M00231K _ _ VF14M10361K _ _
VE24M00231K _ _ VF20M10361K _ _
TPC 15
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
Max. clamping Max. energy absorption Max. permissible Typical Mean Maximum V/I Derating
voltage (8 x 20 µs) (10 x 1000 µs) peak current capacitance power thickness characteristic curves
W (J) (8 x 20 µs) f = 1kHz dissipation t
Vp (V) Ip (A) Number of surges Ip (A)
1 10 1 surge 2 surges pF W mm (inches) Page Page
165 5 2.2 0.7 400 200 165 0.1 3.8 (.150) 22 24
165 10 4.8 1.7 1200 600 440 0.2 3.8 (.150) 22 25
165 25 10 7 2500 1250 870 0.4 4.5 (.177) 22 26
165 50 17 14 4500 2500 2200 0.6 4.5 (.177) 23 27
200 5 2.5 0.8 400 200 150 0.1 4.0 (.157) 22 24
200 10 5.9 1.8 1200 600 400 0.2 4.0 (.157) 22 25
200 25 12 8 2500 1250 700 0.4 4.4 (.173) 22 26
200 50 20 15 4500 2500 1900 0.6 4.4 (.173) 23 27
200 100 40 30 6500 4000 4200 0.8 4.8 (.189) 23 28
250 5 3.4 1 400 200 110 0.1 4.4 (.173) 22 24
250 10 7.6 3 1200 600 310 0.2 4.4 (.173) 22 25
250 25 15 9 2500 1250 560 0.4 5.0 (.197) 22 26
250 50 25 20 4500 2500 1200 0.6 5.0 (.197) 23 27
250 100 50 33 6500 4000 3400 0.8 5.4 (.213) 23 28
300 5 3.6 1.3 400 200 100 0.1 4.5 (.177) 22 24
300 10 8.4 3.3 1200 600 280 0.2 4.5 (.177) 22 25
300 25 18 10.6 2500 1250 500 0.4 5.1 (.201) 22 26
300 50 30 22 4500 2500 1100 0.6 5.1 (.201) 23 27
300 100 60 40 6500 4000 3000 0.8 5.5 (.217) 23 28
340 5 4.2 1.5 400 200 90 0.1 4.1 (.161) 22 24
340 10 9.5 4 1200 600 250 0.2 4.1 (.161) 22 25
340 25 19 11 2500 1250 450 0.4 4.7 (.185) 22 26
340 50 34 25 4500 2500 1000 0.6 4.7 (.185) 23 27
340 100 74 46 6500 4000 2500 0.8 5.1 (.201) 23 28
360 5 4.5 1.5 400 200 85 0.1 4.2 (.165) 22 24
360 10 10 4 1200 600 235 0.2 4.2 (.165) 22 25
360 25 22 12.5 2500 1250 425 0.4 4.8 (.189) 22 26
360 50 36 26.5 4500 2500 930 0.6 4.8 (.189) 23 27
360 100 78 50 6500 4000 2250 0.8 5.2 (.205) 23 28
400 5 4.9 1.8 400 200 80 0.1 4.3 (.169) 22 24
400 10 11 4.1 1200 600 220 0.2 4.3 (.169) 22 25
400 25 24 13 2500 1250 400 0.4 4.9 (.193) 22 26
400 50 40 30 4500 2500 850 0.6 4.9 (.193) 23 27
400 100 85 56 6500 4000 2000 0.8 5.3 (.209) 23 28
445 5 5.6 1.9 400 200 70 0.1 4.5 (.177) 22 24
445 10 13 4.5 1200 600 190 0.2 4.5 (.177) 22 25
445 25 28 13.5 2500 1250 340 0.4 5.1 (.201) 22 26
445 50 46 31 4500 2500 750 0.6 5.1 (.201) 23 27
445 100 98 56 6500 4000 2000 0.8 5.5 (.217) 23 28
545 5 7.2 2.2 400 200 60 0.1 4.9 (.193) 22 24
545 10 15 5.4 1200 600 155 0.2 4.9 (.193) 22 25
545 25 31 14.0 2500 1250 275 0.4 5.5 (.217) 22 26
545 50 54 35 4500 2500 600 0.6 5.5 (.217) 23 27
545 100 115 70 6500 4000 1650 0.8 5.9 (.232) 23 28
595 5 7.2 2.4 400 200 55 0.1 5.1 (.201) 22 24
595 10 17 6 1200 600 140 0.2 5.1 (.201) 22 25
595 25 36 14.3 2500 1250 250 0.4 5.7 (.224) 22 26
595 50 60 38 4500 2500 550 0.6 5.7 (.224) 23 27
595 100 130 75 6500 4000 1500 0.8 6.1 (.240) 23 28
16 TPC
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
UL VE Series VF Series Maximum Nominal voltage
(USA and P/N codification using P/N codification using operating voltage at 1 mA dc
Canadian
Standards) (Dmax , Vrms)(d
ceramic, V1mA)V
rms VDC V1mA mini V1mA nominal V1mA maxi
VE07M00251K _ _ VF05M10391K _ _ 250 320 351 390 429
VE09M00251K _ _ VF07M10391K _ _
VE13M00251K _ _ VF10M10391K _ _
VE17M00251K _ _ VF14M10391K _ _
VE24M00251K _ _ VF20M10391K _ _
VE07M02750K _ _ VF05M10431K _ _ 275 350 387 430 473
VE09M02750K _ _ VF07M10431K _ _
VE13M02750K _ _ VF10M10431K _ _
VE17M02750K _ _ VF14M10431K _ _
VE24M02750K _ _ VF20M10431K _ _
VE07M00301K _ _ VF05M10471K _ _ 300 385 423 470 517
VE09M00301K _ _ VF07M10471K _ _
VE13M00301K _ _ VF10M10471K _ _
VE17M00301K _ _ VF14M10471K _ _
VE24M00301K _ _ VF20M10471K _ _
VE09M00321K _ _ VF07M10511K _ _ 320 420 459 510 561
VE13M00321K _ _ VF10M10511K _ _
VE17M00321K _ _ VF14M10511K _ _
VE24M00321K _ _ VF20M10511K _ _
VE09M00351K _ _ VF07M10561K _ _ 350 460 504 560 616
VE13M00351K _ _ VF10M10561K _ _
VE17M00351K _ _ VF14M10561K _ _
VE24M00351K _ _ VF20M10561K _ _
VE09M03850K _ _ VF07M10621K _ _ 385 505 558 620 682
VE13M03850K _ _ VF10M10621K _ _
VE17M03850K _ _ VF14M10621K _ _
VE24M03850K _ _ VF20M10621K _ _
VE09M00421K _ _ VF07M10681K _ _ 420 560 612 680 748
VE13M00421K _ _ VF10M10681K _ _
VE17M00421K _ _ VF14M10681K _ _
VE24M00421K _ _ VF20M10681K _ _
VE13M00441K _ _ VF10M17150K _ _ 440 585 643 715 787
VE17M00441K _ _ VF14M17150K _ _
VE24M00441K _ _ VF20M17150K _ _
VE13M00461K _ _ VF10M10751K _ _ 460 615 675 750 825
VE17M00461K _ _ VF14M10751K _ _
VE24M00461K _ _ VF20M10751K _ _
VE13M00511K _ _ VF10M10821K _ _ 510 670 738 820 902
VE17M00511K _ _ VF14M10821K _ _
VE24M00511K _ _ VF20M10821K _ _
VE13M00551K _ _ VF10M10861K _ _ 550 715 774 860 946
VE17M00551K _ _ VF14M10861K _ _
VE24M00551K _ _ VF20M10861K _ _
VE13M05750K _ _ VF10M10911K _ _ 575 730 819 910 1001
VE17M05750K _ _ VF14M10911K _ _
VE24M05750K _ _ VF20M10911K _ _
VE13M06250K _ _ VF10M10102K _ _ 625 825 900 1000 1100
VE17M06250K _ _ VF14M10102K _ _
VE24M06250K _ _ VF20M10102K _ _
TPC 17
Zinc Oxide Varistors
VE 07/09/13/17/24 VF 05/07/10/14/20
Max. clamping Max. energy absorption Max. permissible Typical Mean Maximum V/I Derating
voltage (8 x 20 µs) (10 x 1000 µs) peak current capacitance power thickness characteristic curves
W (J) (8 x 20 µs) f = 1kHz dissipation t
Vp (V) Ip (A) Number of surges Ip (A)
1 10 1 surge 2 surges pF W mm (inches) Page Page
645 5 8.2 2.8 400 200 50 0.1 5.4 (.213) 22 24
645 10 19 7.3 1200 600 130 0.2 5.4 (.213) 22 25
645 25 38 19 2500 1250 230 0.4 5.9 (.232) 22 26
645 50 65 39 4500 2500 500 0.6 5.9 (.232) 23 27
645 100 140 100 6500 4000 1300 0.8 6.3 (.248) 23 28
710 5 8.6 3 400 200 45 0.1 5.7 (.224) 22 24
710 10 21 7.4 1200 600 120 0.2 5.7 (.224) 22 25
710 25 43 20 2500 1250 210 0.4 6.3 (.248) 22 26
710 50 71 40 4500 2500 450 0.6 6.3 (.248) 23 27
710 100 151 105 6500 4000 1200 0.8 6.7 (.264) 23 28
775 5 9 3.3 400 200 40 0.1 6.0 (.236) 22 24
775 10 25 7.5 1200 600 100 0.2 6.0 (.236) 22 25
775 25 45 20 2500 1250 180 0.4 6.6 (.260) 22 26
775 50 80 42 4500 2500 400 0.6 6.6 (.260) 23 27
775 100 150 107 6500 4000 1000 0.8 7.0 (.276) 23 28
840 10 25 7.5 1200 600 100 0.2 6.4 (.252) 22 25
840 25 45 20 2500 1250 170 0.4 7.0 (.276) 22 26
840 50 82 42 4500 2500 380 0.6 7.0 (.276) 23 27
840 100 150 107 6500 4000 950 0.8 7.5 (.276) 23 28
910 10 25 7.5 1200 600 95 0.2 6.6 (.260) 22 25
910 25 45 20 2500 1250 160 0.4 7.3 (.287) 22 26
910 50 85 42 4500 2500 365 0.6 7.3 (.287) 23 27
910 100 155 107 6500 4000 900 0.8 7.8 (.307) 23 28
1025 10 25 7.5 1200 600 95 0.2 7.0 (.276) 22 25
1025 25 45 20 2500 1250 150 0.4 7.7 (.303) 22 26
1025 50 88 42 4500 2500 350 0.6 7.7 (.303) 23 27
1025 100 155 107 6500 4000 850 0.8 8.1 (.319) 23 28
1120 10 25 7.5 1200 600 80 0.2 7.4 (.291) 22 25
1120 25 45 20 2500 1250 120 0.4 8.2 (.323) 22 26
1120 50 90 42 4500 2500 300 0.6 8.2 (.323) 23 27
1120 100 160 107 6500 4000 700 0.8 8.6 (.339) 23 28
1180 25 45 20 2500 1250 115 0.4 8.4 (.331) 22 26
1180 50 95 44 4500 2500 275 0.6 8.4 (.331) 23 27
1180 100 165 115 6500 4000 650 0.8 8.8 (.346) 23 28
1240 25 45 20 2500 1250 110 0.4 8.5 (.335) 22 26
1240 50 100 47 4500 2500 250 0.6 8.5 (.335) 23 27
1240 100 175 120 6500 4000 600 0.8 9.0 (.354) 23 28
1350 25 55 22 2500 1250 100 0.4 9.0 (.354) 22 26
1350 50 110 57 4500 2500 220 0.6 9.0 (.354) 23 27
1350 100 190 150 6500 4000 550 0.8 9.4 (.370) 23 28
1420 25 57 24 2500 1250 90 0.4 9.3 (.366) 22 26
1420 50 113 57 4500 2500 200 0.6 9.3 (.366) 23 27
1420 100 200 150 6500 4000 500 0.8 9.7 (.382) 23 28
1500 25 60 25 2500 1250 80 0.4 9.7 (.382) 22 26
1500 50 120 60 4500 2500 180 0.6 9.7 (.382) 23 27
1500 100 210 160 6500 4000 450 0.8 10.1 (.398) 23 28
1650 25 68 25 2500 1250 74 0.4 10.5 (.413) 22 26
1650 50 130 60 4500 2500 165 0.6 10.5 (.413) 23 27
1650 100 230 160 6500 4000 410 0.8 11.0 (.433) 23 28
18 TPC
FEATURES
• “P Series” are especially dedicated to heavy duty applica-
tions encountered in the AC power network. Higher surge
current and energy ratings provide an improved protection
and a better reliability
• Radial lead varistors
Operating voltage range from 130 V to 625 V (Vrms for
VE types) or 205 V to 1000 V (V1mA for VF types)
• Available in tape and reel for use with automatic insertion
equipment (see pages 31 to 33 for details).
PARTICULAR CHARACTERISTICS
E
Dt
30 (1.18) min
H
UL
(USA and VE Series VF Series Maximum Nominal voltage
Canadian P/N codification using P/N codification using operating voltage at 1 mA dc
Standards) (Dmax , Vrms)(d
ceramic, V1mA)V
rms VDC V1mA mini V1mA nominal V1mA maxi
VE07P00131K _ _ VF05P12050K _ _ 130 170 184 205 226
VE09P00131K _ _ VF07P12050K _ _
VE13P00131K _ _ VF10P12050K _ _
VE17P00131K _ _ VF14P12050K _ _
VE24P00131K _ _ VF20P12050K _ _
VE07P00141K _ _ VF05P10221K _ _ 140 180 198 220 242
VE09P00141K _ _ VF07P10221K _ _
VE13P00141K _ _ VF10P10221K _ _
VE17P00141K _ _ VF14P10221K _ _
VE24P00141K _ _ VF20P10221K _ _
VE07P00151K _ _ VF05P10241K _ _
VE09P00151K _ _ VF07P10241K _ _ 150 200 216 240 264
VE13P00151K _ _ VF10P10241K _ _
VE17P00151K _ _ VF14P10241K _ _
VE24P00151K _ _ VF20P10241K _ _
VE07P01750K _ _ VF05P10271K _ _ 175 225 243 270 297
VE09P01750K _ _ VF07P10271K _ _
VE13P01750K _ _ VF10P10271K _ _
VE17P01750K _ _ VF14P10271K _ _
VE24P01750K _ _ VF20P10271K _ _
VE07P00211K _ _ VF05P10331K _ _ 210 275 297 330 363
VE09P00211K _ _ VF07P10331K _ _
VE13P00211K _ _ VF10P10331K _ _
VE17P00211K _ _ VF14P10331K _ _
VE24P00211K _ _ VF20P10331K _ _
VE07P00231K _ _ VF05P10361K _ _ 230 300 324 360 396
VE09P00231K _ _ VF07P10361K _ _
VE13P00231K _ _ VF10P10361K _ _
VE17P00231K _ _ VF14P10361K _ _
VE24P00231K _ _ VF20P10361K _ _
Zinc Oxide Varistors
VE/VF Types for Heavy Duty Applications (“P Series”)
TPC 19
* VE13 / VF10: For models with VRMS 320 V
other version/suffixes available with:
E = 5.08 (0.20) Suffix:
Ø = 0.6 (.024) Bulk: HB
D = 12.5 (.492) max Tape: DA, DB, DC,
DD, DQ, ...
**VE24 / VF20: For lead diameter = 1.0 (.039),
please consult us.
GENERAL CHARACTERISTICS
Storage temperature: -40°C to +125°C
Max. operating temperature: +85°C
Response time: < 25 ns
Voltage coefficient temp.: K< 0.09%/°C
Voltage proof: 2500 V
Epoxy coating: Flame retardant
UL94-VO
MARKING
Type
AC nominal voltage (EIA coding) for VE types
V1mA varistor voltage (EIA coding) for VF types
Logo
UL logo (when approved)
Lot number (VE13/17/24 and VF10/14/20 only)
DMaximum ø
Type Type Ceramic coated H t +10% E
diameter diameter max. max. –0.05 (.002) ± 0.8
VE07 VF05 5 (.196) 7 (.275) 10 (.394) 0.6 (.024) 5.08 (0.20)
VE09 VF07 7 (.275) 9 (.354) 12 (.472) 0.6 (.024) 5.08 (0.20)
VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30)
VE17 VF14 14 (.551) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30)
VE24** VF20** 20 (.787) 24 (.945) 27 (1.06) 0.8** (.031) 7.62 (0.30)
Max. clamping Max. energy absorption Max. permissible Typical Mean Maximum V/I Derating
voltage (8 x 20 µs) (10 x 1000 µs) peak current capacitance power thickness characteristic curves
W (J) (8 x 20 µs) f = 1kHz dissipation t
Vp (V) Ip (A) Number of surges Ip (A)
1 surge 1 surge 2 surges pF W mm (inches) Page Page
340 5 8.5 800 600 90 0.1 4.1 (.161) 34 24
340 10 17.5 1750 1250 250 0.2 4.1 (.161) 34 25
340 25 35 3500 2500 450 0.4 4.7 (.185) 34 26
340 50 70 6000 4500 1000 0.6 4.7 (.185) 35 27
340 100 140 10000 7000 2500 0.8 5.1 (.201) 35 28
360 5 9 800 600 85 0.1 4.2 (.165) 34 24
360 10 19 1750 1250 235 0.2 4.2 (.165) 34 25
360 25 39 3500 2500 425 0.4 4.8 (.189) 34 26
360 50 78 6000 4500` 930 0.6 4.8 (.189) 35 27
360 100 155 10000 7000 2250 0.8 5.2 (.205) 35 28
400 5 10.5 800 600 80 0.1 4.3 (.169) 34 24
400 10 21 1750 1250 220 0.2 4.3 (.169) 34 25
400 25 42 3500 2500 400 0.4 4.9 (.193) 34 26
400 50 85 6000 4500 850 0.6 4.9 (.193) 35 27
400 100 170 10000 7000 2000 0.8 5.3 (.209) 35 28
445 5 11 800 600 70 0.1 4.5 (.177) 34 24
445 10 24 1750 1250 190 0.2 4.5 (.177) 34 25
445 25 50 3500 2500 340 0.4 5.1 (.201) 34 26
445 50 100 6000 4500 750 0.6 5.1 (.201) 35 27
445 100 190 10000 7000 2000 0.8 5.5 (.217) 35 28
545 5 13 800 600 60 0.1 4.9 (.193) 34 24
545 10 28 1750 1250 155 0.2 4.9 (.193) 34 25
545 25 60 3500 2500 275 0.4 5.5 (.217) 34 26
545 50 115 6000 4500 600 0.6 5.5 (.217) 35 27
545 100 230 10000 7000 1650 0.8 5.9 (.232) 35 28
595 5 16 800 600 55 0.1 5.1 (.201) 34 24
595 10 32 1750 1250 140 0.2 5.1 (.201) 34 25
595 25 65 3500 2500 250 0.4 5.7 (.224) 34 26
595 50 130 6000 4500 550 0.6 5.7 (.224) 35 27
595 100 250 10000 7000 1500 0.8 6.1 (.240) 35 28
DIMENSIONS millimeters (inches)
Zinc Oxide Varistors
VE/VF Types for Heavy Duty Applications (“P Series”)
20 TPC
UL
(USA and VE Series VF Series Maximum Nominal voltage
Canadian P/N codification using P/N codification using operating voltage at 1 mA dc
Standards) (Dmax , Vrms)(d
ceramic, V1mA)V
rms VDC V1mA mini V1mA nominal V1mA maxi
VE07P00251K _ _ VF05P10391K _ _ 250 320 351 390 429
VE09P00251K _ _ VF07P10391K _ _
VE13P00251K _ _ VF10P10391K _ _
VE17P00251K _ _ VF14P10391K _ _
VE24P00251K _ _ VF20P10391K _ _
VE07P02750K _ _ VF05P10431K _ _ 275 350 387 430 473
VE09P02750K _ _ VF07P10431K _ _
VE13P02750K _ _ VF10P10431K _ _
VE17P02750K _ _ VF14P10431K _ _
VE24P02750K _ _ VF20P10431K _ _
VE07P00301K _ _ VF05P10471K _ _ 300 385 423 470 517
VE09P00301K _ _ VF07P10471K _ _
VE13P00301K _ _ VF10P10471K _ _
VE17P00301K _ _ VF14P10471K _ _
VE24P00301K _ _ VF20P10471K _ _
VE09P00321K _ _ VF07P10511K _ _ 320 420 459 510 561
VE13P00321K _ _ VF10P10511K _ _
VE17P00321K _ _ VF14P10511K _ _
VE24P00321K _ _ VF20P10511K _ _
VE09P00351K _ _ VF07P10561K _ _ 350 460 504 560 616
VE13P00351K _ _ VF10P10561K _ _
VE17P00351K _ _ VF14P10561K _ _
VE24P00351K _ _ VF20P10561K _ _
VE09P03850K _ _ VF07P10621K _ _ 385 505 558 620 682
VE13P03850K _ _ VF10P10621K _ _
VE17P03850K _ _ VF14P10621K _ _
VE24P03850K _ _ VF20P10621K _ _
VE09P00421K _ _ VF07P10681K _ _ 420 560 612 680 748
VE13P00421K _ _ VF10P10681K _ _
VE17P00421K _ _ VF14P10681K _ _
VE24P00421K _ _ VF20P10681K _ _
VE13P00441K _ _ VF10P17150K _ _ 440 585 643 715 787
VE17P00441K _ _ VF14P17150K _ _
VE24P00441K _ _ VF20P17150K _ _
VE13P00461K _ _ VF10P10751K _ _ 460 615 675 750 825
VE17P00461K _ _ VF14P10751K _ _
VE24P00461K _ _ VF20P10751K _ _
VE13P00511K _ _ VF10P10821K _ _ 510 670 738 820 902
VE17P00511K _ _ VF14P10821K _ _
VE24P00511K _ _ VF20P10821K _ _
VE13P00551K _ _ VF10P10861K _ _ 550 715 774 860 946
VE17P00551K _ _ VF14P10861K _ _
VE24P00551K _ _ VF20P10861K _ _
VE13P05750K _ _ VF10P10911K _ _ 575 730 819 910 1001
VE17P05750K _ _ VF14P10911K _ _
VE24P05750K _ _ VF20P10911K _ _
VE13P06250K _ _ VF10P10102K _ _ 625 825 900 1000 1100
VE17P06250K _ _ VF14P10102K _ _
VE24P06250K _ _ VF20P10102K _ _
Zinc Oxide Varistors
VE/VF Types for Heavy Duty Applications (“P Series”)
TPC 21
Max. clamping Max. energy absorption Max. permissible Typical Mean Maximum V/I Derating
voltage (8 x 20 µs) (10 x 1000 µs) peak current capacitance power thickness characteristic curves
W (J) (8 x 20 µs) f = 1kHz dissipation t
Vp (V) Ip (A) Number of surges Ip (A)
1 surge 1 surge 2 surges pF W mm (inches) Page Page
645 5 17 800 600 50 0.1 5.4 (.213) 34 24
645 10 35 1750 1250 130 0.2 5.4 (.213) 34 25
645 25 70 3500 2500 230 0.4 5.9 (.232) 34 26
645 50 140 6000 4500 500 0.6 5.9 (.232) 35 27
645 100 280 10000 7000 1300 0.8 6.3 (.248) 35 28
710 5 20 800 600 45 0.1 5.7 (.224) 34 24
710 10 40 1750 1250 120 0.2 5.7 (.224) 34 25
710 25 80 3500 2500 210 0.4 6.3 (.248) 34 26
710 50 160 6000 4500 450 0.6 6.3 (.248) 35 27
710 100 310 10000 7000 1200 0.8 6.7 (.264) 35 28
775 5 21 800 600 40 0.1 6.0 (.236) 34 24
775 10 42 1750 1250 100 0.2 6.0 (.236) 34 25
775 25 85 3500 2500 180 0.4 6.6 (.260) 34 26
775 50 170 6000 4500 400 0.6 6.6 (.260) 35 27
775 100 340 10000 7000 1000 0.8 7.0 (.276) 35 28
840 10 45 1750 1250 100 0.2 6.4 (.252) 34 25
840 25 90 3500 2500 170 0.4 7.0 (.276) 34 26
840 50 180 5000 4000 380 0.6 7.0 (.276) 35 27
840 100 360 8000 6000 950 0.8 7.5 (.295) 35 28
910 10 47 1750 1250 95 0.2 6.6 (.260) 34 25
910 25 95 3500 2500 160 0.4 7.3 (.287) 34 26
910 50 190 5000 4000 365 0.6 7.3 (.287) 35 27
910 100 380 8000 6000 900 0.8 7.8 (.307) 35 28
1025 10 50 1750 1250 95 0.2 7.0 (.276) 34 25
1025 25 100 3500 2500 150 0.4 7.7 (.303) 34 26
1025 50 200 5000 4000 350 0.6 7.7 (.303) 35 27
1025 100 400 8000 6000 850 0.8 8.1 (.319) 35 28
1120 10 52 1750 1250 80 0.2 7.4 (.291) 34 25
1120 25 105 3500 2500 120 0.4 8.2 (.323) 34 26
1120 50 210 5000 4000 300 0.6 8.2 (.323) 35 27
1120 100 420 8000 6000 700 0.8 8.6 (.339) 35 28
1180 25 105 3500 2500 115 0.4 8.4 (.331) 34 26
1180 50 210 5000 4000 275 0.6 8.4 (.331) 35 27
1180 100 420 8000 6000 650 0.8 8.8 (.346) 35 28
1240 25 105 3500 2500 110 0.4 8.5 (.335) 34 26
1240 50 210 5000 4000 250 0.6 8.5 (.335) 35 27
1240 100 420 8000 6000 600 0.8 9.0 (.354) 35 28
1350 25 110 3500 2500 100 0.4 9.0 (.354) 34 26
1350 50 225 5000 4000 220 0.6 9.0 (.354) 35 27
1350 100 450 7500 6000 550 0.8 9.4 (.370) 35 28
1420 25 120 3500 2500 90 0.4 9.3 (.366) 34 26
1420 50 240 5000 4000 200 0.6 9.3 (.366) 35 27
1420 100 480 7500 6000 500 0.8 9.7 (.382) 35 28
1500 25 125 3500 2500 80 0.4 9.7 (.382) 34 26
1500 50 250 5000 4000 180 0.6 9.7 (.382) 35 27
1500 100 500 7500 6000 450 0.8 10.1 (.398) 35 28
1650 25 140 3500 2500 74 0.4 10.5 (.413) 34 26
1650 50 230 5000 4000 165 0.6 10.5 (.413) 35 27
1650 100 560 7500 6000 410 0.8 11.0 (.433) 35 28
Zinc Oxide Varistors
VE/VF Types for Heavy Duty Applications (“P Series”)
22 TPC
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
14
U(V)
I(A)
10
3
8
6
4
2
8
6
4
2
10
2
1010
-5
10
-4
10
-3
10
-2
10
-1
10 10
2
10
3
1
VE 09/VF 07
385
275
230
150
130
60
40
30
20 17
25
35
50
75
115
160
175
210
250
300
420
385
275
230
150
130
95
60
50
40
30
20 17
25
35
75
115
130
175
210
250
300
420
95
14
U(V)
I(A)
103
8
6
4
2
8
6
4
2
102
10-5 10-4 10-3 10-2 10-1 10 102103
1
10
VE 07/VF 05
275
300
275
300
250 210
250
175
240
115
75
50
35
15
17 14
14
230
150
210
230
160
130
95
20
30
60
175
140
115
75
50
40
35
25
17
130
9595
60
40
30
20
10
U(V)
I(A)
10
3
8
6
4
2
8
6
4
2
10
2
10
-5
10
-4
10
-3
10
-2
10
-1
10 10
2
10
3
1
VE 13/VF 10
510
420
300
250
210
175
140
115
175
50
35
25
17
20
30
40
60
95
130
150
230
275
385
550
510
420
300
250
210
175
140
115
130
150
230
275
385
460
550
625
575
75
50
35
25
17
20
30
60
95
14
14
575
625
VOLTAGE-CURRENT CHARACTERISTICS
V/I characteristics give:
- for I below 1 mA the maximum leakage current under Vdc
- for I above 1 mA the maximum clamping voltage
TPC 23
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
VE17/VF14
U(V)
103
102
10
8
6
4
2
8
6
4
2
575
625
550 510
460 420
385 320
300 275
280 230
175 150
140 130
115 95
75 80
50 40
36 30
25 20
14
17
575 625
550 510
460 420
385 320
300 275
250 230
175 150
140 130
115 95
75 60
50 40
35 30
25 20
17 14
10-5 10-4 10-3 10-2 10-1 1 10 102 103 I(A)
VE24/VF20
10-5 10-4 10-3 10-2 10-1 1 10 102 103 I(A)
U(V)
103
102
10
8
6
4
2
8
6
4
2
625
550 510
46 0
420
385 320
300 275
280 230
175 150
140 130
115 95
75
625
550 510
460 420
385 320
300 275
250 230
175 150
140 130
115 95
75
VOLTAGE-CURRENT CHARACTERISTICS
24 TPC
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
Ip
(A)
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
0.1
20 200 2.000
(µS)
VE07M/VF05M 40V
RMS
300
1
2
10
10
2
10
3
10
4
10
5
10
6
Ip
(A)
10 100 1000
(µS)
130V
2
10
3
10
5
1000
10000
10000
100
10
1
10
6
10
1
10
2
VE07P/VF05P to 625V
RMS RMS
10
4
Ip
(A)
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
0.1
20 200 2.000
(µS)
VE07M/VF05M > 40VRMS
300
1
2
10
10
2
10
3
10
4
10
5
10
6
MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY
TPC 25
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
Ip
(A)
20 200 2.000
(µS)
VE09M/VF07M 40V
RMS
1
2
10
2
10
3
10
4
10
10
5
10
6
800
600
400
300
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
0.1
Ip
(A)
10 100 1000 10000
(µS)
130VRMS to 625VRMS
10
4
10
5
1000
10000
100
10
1
10
6
10
1
10
2
10
3
VE09P/VF07P
2
20 200 2.000
(µS)
VE09M/VF07M > 40V
RMS
1
2
10
2
10
10
5
10
6
Ip
(A)
10
3
10
4
2.000
1.000
800
600
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY
26 TPC
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
Ip
(A)
20 200 2.000
(µS)
VE13M/VF10M 40V
RMS
1
10
2
10
3
10
4
10
10
5
10
6
2
500
400
300
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
0.1
0.08
0.06
Ip
(A)
10 100 1000
(µS)
to 625VRMS
130VRMS
4
10
5
1000
10000
10000
100
10
1
10
6
10
1
10
2
10
3
VE13P/VF10P
10
2
20 200 2.000
(µS)
VE13M/VF10M >40V
RMS
2
10
2
10
10
5
10
6
Ip
(A)
10
3
10
4
1
3.000
2.000
1.000
800
600
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY
TPC 27
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
1.000
Ip
(A) 800
600
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
0.4
0.2
0.1
20 200 2.000
(µS)
VE17M/VF14M 40V
RMS
1
2
10
10
2
10
3
10
4
10
5
10
6
Ip
(A)
10 100 1000
(µS)
VE17P/VF14P
130V
RMS to 320VRMS
10
4
10
5
1000
10000
10000
100
10
1
10
6
10
1
10
2
10
3
2
Ip
(A)
20 200 2.000
(µS)
VE17M/VF14M > 40 VRMS
5.000
4.000
3.000
2.000
1.000
800
600
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
0.6
1
2
10
10
2
10
3
10
4
10
5
10
6
MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY
28 TPC
Zinc Oxide Varistors
Electrical Characteristics VE / VF Types
VE24M/VF20M > 75 VRMS
Ip
(A)
20 200 2.000
(µS)
7.000
6.000
5.000
4.000
3.000
2.000
1.000
800
600
400
200
100
80
60
40
20
10
8
6
4
2
1
0.8
1
2
10
10
2
10
3
10
4
10
5
10
6
Ip
(A)
10 100 1000
(µS)
VE24P/VF20P
130VRMS to 625VRMS
10
5
1000
10000
10000
100
10
1
10
6
20
10
1
10
2
10
3
2
10
4
MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY
TPC 29
Zinc Oxide Varistors
VN 32 Uncoated Discs
t
d
D
5750
0511
0461
0421
0381
0321
2750
0251
U (v)
10,000
2
4
5
1,000
2
100
10-5 10-4 10-3 10-2 10-1 1
I (A)
10 100 1,000 10,000
4
5
8
Max. operating Nominal voltage Clamping voltage Energy Max. peak current
voltage at 1 mA DC Vp(V) 1 surge with insulating coating
Type (10 x 1000 µs) (8 x 20 µs)
VRMS VDC VRW lp (kA)
(V) (V) (V) at 2.5 kA at 2.5 kA (J) 1 pulse 2 pulses
VN32M00251K- - 250 330 390 970 1100 200 25 15
VN32M02750K- - 275 369 430 1075 1230 260 25 15
VN32M00321K- - 320 420 510 1200 1380 300 25 15
VN32M00381K- - 380 500 610 1350 1550 350 25 15
VN32M00421K- - 420 560 680 1500 1700 400 25 15
VN32M00461K- - 460 615 750 1650 1900 450 25 15
VN32M00511K- - 510 675 820 1800 2070 500 25 15
VN32M00750K- - 575 730 910 2000 2300 550 25 15
GENERAL CHARACTERISTICS
Max. operating temperature: +85°C
Storage temperature: -40°C to +125°C
Ceramic discs with silver layer on each face
MARKING
On packaging only
REMARK
Discs of 14 mm and 20 mm available upon request
PARTICULAR CHARACTERISTICS
VOLTAGE-CURRENT CHARACTERISTICS
VN32
Type
M
Material
0461
RMS
Operating Voltage
K
Tolerance
– –
Suffix
HOW TO ORDER
Type D d t
±1.5 ±1 max.
VN32M00251K- - 32 (1.26) 28 (1.10) 2.8 (.110)
VN32M02750K- - 32 (1.26) 28 (1.10) 3.1 (.122)
VN32M00321K- - 32 (1.26) 28 (1.10) 3.7 (.146)
VN32M00381K- - 32 (1.26) 28 (1.10) 4.4 (.173)
VN32M00421K- - 32 (1.26) 28 (1.10) 4.9 (.193)
VN32M00461K- - 32 (1.26) 28 (1.10) 5.5 (.217)
VN32M00511K- - 32 (1.26) 28 (1.10) 6.0 (.236)
VN32M00750K- - 32 (1.26) 28 (1.10) 6.6 (.260)
0
DIMENSIONS: millimeters (inches)
30 TPC
Zinc Oxide Varistors
VB 32 Blocks
20 (.787)
~
40 (1.57)
o5.1 (.201)
20 (.787)
44 (1.73)
15...45°
54 (2.13)
44 (1.73)
24 (.945)
5 (.197)
5 (.197)
Max. operating Nominal voltage Clamping voltage Energy Max. peak current
voltage at 1 mA DC at 2.5 kA 1 surge with insulating coating
Type (10 x 1000 µs) (8 x 20 µs)
VRMS VDC VRVp W lp (kA)
(V) (V) (V) (V) (J) 1 pulse 2 pulses
VB32M00251K- - 250 330 390 970 200 25 15
VB32M02750K- - 275 369 430 1075 260 25 15
VB32M00321K- - 320 420 510 1200 300 25 15
VB32M00381K- - 380 500 610 1350 350 25 15
VB32M00421K- - 420 560 680 1500 400 25 15
VB32M00461K- - 460 615 750 1650 450 25 15
VB32M00511K- - 510 675 820 1800 500 25 15
VB32M00750K- - 575 730 910 2000 550 25 15
GENERAL CHARACTERISTICS
Max. operating temperature: +85°C
Storage temperature: -40°C to +85°C
MOUNTING
Ø 5 mm holes for screwing
500 mm long, 6 mm2insulated copper cables
PACKAGING
Bulk or three units per box (one for each phase)
MARKING
Type
AC nominal voltage (EIA code)
Logo
PARTICULAR CHARACTERISTICS
VOLTAGE-CURRENT CHARACTERISTICS
DIMENSIONS millimeters (inches)
VB32
Type
M
Material
0421
RMS
Operating Voltage
K
Tolerance
– –
Suffix
HOW TO ORDER
0
5750
0511
0461
0421
0381
0321
2750
0251
U (v)
10,000
2
4
5
1,000
2
100
10-5 10-4 10-3 10-2 10-1 1
I (A)
10 100 1,000 10,000
4
5
8
TPC 31
Zinc Oxide Varistors
Taping Characteristics
TAPING OF OUR VARISTORS IS MADE ACCORDING TO IEC 286-2
hh
H1H1
H
P1
P0
P
d
W
E
t
AB
W2
W1
H0
E
I2
D0
p p
W0
A - B
Cross section
Direction of unreeling
Marking on
this side
Adhesive
tape
Reference plane
hh
H1
P0
P1
P
d
W
AB
W2
W1
H0
E
I2
D0
W0
Reference plane
H1
H
E
t
A - B
Cross section
Direction of unreeling
p p
Marking on
this side
Adhesive
tape
Types: VE07/09 - VF05/07
Types: VE13/17 - VF10/14
Dimension Characteristics Value Tolerance
Sprocket holes pitch 12.7 (0.50) ±0.3 P
0
Distance between the sprocket 3.8 (.150) ±0.7 P
1
hole axe and the lead axe
Total thickness of tape 0.9 (.035) max t
Verticality of components 0 ±2 Dp
Alignment of components 0 ±2 Dh
Dimension Characteristics Value Tolerance
Leading tape width 18 (.709) +1/-0.5 W
The hold down tape shall
Adhesive tape width not protrude beyond the W
0
carrier tape
Sprocket hole position
9 (.354) +0.75/-0.5 W
1
Distance between the tops of
3 (.118) max W
2
the tape and the adhesive
Diameter of sprocket hole
4 (.157) ±0.2 D
0
Distance between the tape axis
and the bottom plane of
16/ (.630)/ ±0.5/ H
component body
or 18 (.709) -0/+2
Distance between the tape axis
16/ (.630)/ ±0.5/ H
0
and the kink
or 18 (.709) -0/+2
Distance between the tape axis
and the top of component body
VE 07/09 - VF 05/07 33.0 (1.30) max H
1
VE 13/17 - VF 10/14 45.0 (1.77) max
Lead diameter
0.6 0.8 +10% d
(.024) (.031) -0.05
Protrusions beyond the lower
5 (.197) max I
2
side of the hold down tape
Lead spacing
5.08 7.62 ±0.8 E
(0.20) (0.30)
Components pitch
12.7 25.4 ±0.3 p
(0.50) (0.10)
DIMENSIONS: millimeters (inches) DIMENSIONS: millimeters (inches)
32 TPC
Zinc Oxide Varistors
Taping Characteristics
PACKAGING
For automatic insertion, the following types can be ordered
on tape either in AMMOPACK (fan folder) or on REEL in
accordance to IEC 286-2.
LEADS CONFIGURATION AND
PACKAGING SUFFIXES
The tables below indicate the suffixes to be specified when
ordering kink and packaging types. For devices on tape, it is
necessary to specify the height (H or Ho) which is the
distance between the tape axis (sprocket holes) and the
sitting plane on the printed circuit board.
MISSING COMPONENTS
A maximum of 3 consecutive components may be missing
from the bandolier, surrounded by at least 6 filled positions.
The number of missing components may not exceed 0.5%
of the total per packing module.
– Straight leads
Hrepresents the distance between the sprocket holes axis
and the bottom plane of component body (base of resin or
base of stand off).
– Kinked leads
Ho represents the distance between the sprocket holes axis
and the base of the knee.
295 (11.6)
335 (13.2)
50 (1.97)
360 (14.2)
31 (1.22)
52 (2.05)
Types VE 07/09 - VF 05/07 (VE13 - VF10 320 Vrms upon request)
Leads Straight Kinked (type 1) Kinked (type 2)
Packaging AMMOPACK REEL AMMOPACK REEL AMMOPACK REEL
H/Ho = 16 ± 0.5 DA(*) DB(*) DQ(**) DR(**) D7(**) D5(**)
H/Ho = 18 -0/+2 DC(**) DD(**) DS DT D8 D6
0.6 (.024)
5.08 (0.2)
0.6 (.024)
5.08 (0.2)
0.6 (.024)
5.08 (0.2)
Types VE 13/17 - VF 10/14
Leads Straight Kinked (type 1) Kinked (type 2)
Packaging AMMOPACK REEL AMMOPACK REEL AMMOPACK REEL
H/Ho = 16 ± 0.5 EA(*) EN(*) EC(**) EF(**) EQ(**) ER(**)
H/Ho = 18 -0/+2 EB(**) ED(**) EG EH ES ET
0.8 (.031)
7.62 (0.3)
0.8 (.031)
7.62 (0.3)
0.8 (.031)
7.62 (0.3)
(*) DA, DB, EA, EN suffixes are not available for varistors with VRMS 300V are available only upon request for other types.
(**) Preferred versions according to IEC 286-2
Dimensions
Dimensions
AMMOPACK millimeters (inches) REEL millimeters (inches)
TPC 33
Zinc Oxide Varistors
Packaging
Type Bulk AMMOPACK REEL
VE07 - VF05 all 1500 1500 1500
VE09 - VF07 < 230 VRMS 1000 1500 1500
VE09 - VF07 230 VRMS 300 VRMS 1000 1000 1000
VE09 - VF07 > 300 VRMS 750 1000 1000
VE13 - VF10 230 VRMS 500 750 750
VE13 - VF10 > 230 VRMS 300 VRMS 500 500 500
VE13 - VF10 > 300 VRMS 500
VE17 - VF14 230 VRMS 500 750 750
VE17 - VF14 > 230 VRMS 300 VRMS 500 500 500
VE17 - VF14 > 300 VRMS 500
VE24 - VF20 250
> 300 VRMS
IDENTIFICATION - TRACEABILITY
On the packaging of all shipped varistors, you will find a bar code label.
This label gives systematic information on the type of product, part number, lot number,
manufacturing date and quantity.
An example is given below:
This information allows complete traceability of the entire manufacturing process,
from raw materials to final inspection.
This is extremely useful for any information request.
Lot number
Manufacturing date (YYMMDD)
Quantity per packaging
Part number
PACKAGING QUANTITIES
34 TPC
Zinc Oxide Varistors
Quality
QUALITY SYSTEM
A high level of performance, quality and service has been
achieved in setting up a quality system based on the ISO
9000 standard.
The system includes:
• A quality manual ensuring the proper organization
• Incoming inspection
• Manufacturing process control and final inspection as
described on page 35
• Reliability tests according to IEC 68 and CECC 42000
standards as described on page 36
• Continuous improvement programs
APPROVALS
The quality of our products and organization has been recognized by the following approvals:
ISO 9002
Certificate of approval n° 928373
CECC, EN100114-1
Certificate of approval of manufacturer n° 004-96
CECC 42201-005
Qualification approval certificate N° 96-024
All VE/VF types
VDE Certificate of approval n° 94763E
All VE/VF types with VRMS from 25V to 575V
Underwriters Laboratories, Inc./Canadian Standards Association
• UL 1449 Transient Voltage Surge Suppressors
File E 84108 (S)
• UL 1414 - Across the line components
File 184 051
All types VE/VF with VRMS from 130V to 275V
List GAM T1
Types VB1 (VE09) to VB4 (VE24)
List LNZ 44004
Types EPV-7A (VE09) to EPV-20A (VE24)
TPC 35
Zinc Oxide Varistors
Manufacturing Process and Quality Assurance
Raw material incoming Weight: every batch
Grinding Grinding time: every batch
Mixing Density and viscosity: 1 time per batch
Spray drying Temperature, pressure, particle size: every batch
Mixing Weight, mixing time, moist: every batch
Electrical test Every batch by sampling - Voltage/current characteristics
degradation, physical characteristics
Pressing Weight, thickness, visual inspection: every batch
by sampling
Binder burn out Thermal cycle: every batch
Stacking Visual inspection 100%
Sintering Thermal cycle: every batch
Electrical test
Every batch by sampling: physical characteristics, capacitance,
V1mA, leakage current, clamping voltage, degradation
Silvering Visual inspection: every batch 100%
Silver firing Thermal cycle: every batch
Soldering Temperature, visual inspection: every batch 100%.
Every batch by sampling: spacing between leads
Cleaning Thermal cycle: every batch
Coating Thermal cycle, visual inspection: every batch by sampling
Marking Visual inspection: every batch 100%
Polymerization Thermal cycle: every batch
Cutting leads Visual inspection lead length: every batch by sampling
Final control
Electrical: every batch 100%: V1mA; leakage current:
sampling. Visual: every batch 100%, aspect, marking
Quality control
Every batch by sampling. AQL: V1mA, leakage current
clamping voltage, visual inspection, dimensions, solderability
Packaging Bulk: every batch pieces quantity. On tape: batch by
sampling, visual inspection of taping
Packaging Quality Control Every batch, taping dimensions, missing parts, taping
defects, label check
Shipping consignment
Outgoing shipping - Verification Every batch, every shipment, packaging, documentation
Zinc Oxide Varistors
Reliability
36 TPC
PRODUCT QUALITY ASSURANCE
TPC has a Quality System that complies with the ISO &
CECC quality requirements.
All products are tested and released by the quality depart-
ment based on the compliance to established customer
specifications. Critical raw materials are inspected for dimen-
sional, electrical and physical properties prior to releasing to
the production floor.
Routine checks are carried out at crucial processes. The
finished products ar e submitted to Quality Control for inspec-
tion on electrical, dimensional, physical & visual conformance
to relevant specifications, based on established AQLs.
The average outgoing quality level is < 10ppm on TPC
varistors. The low ppm value is applicable for total function-
al failures, i.e. short circuit and open circuit.
TPC varistors are subjected to reliability tests stated in page
37 (per CECC 42000).
Life test is conducted to determine the life time of varistors.
The test conditions used are stated in page 00. The varistors
are subjected to these conditions for a minimum period of
1000 hours.
Failure in time (FIT) is computed for all tested parts based on
Arrhenius equation. The definition of failure is a shift in the
nominal voltage exceeding ± 10%. The FIT calculation is
computed in units of 10-9/h.
Figures below give the FIT for low and high voltage varistors.
The FIT values at various stresses are extrapolated based
on Arrhenius equation.
RELIABILITY
1.0 VRMS
0.9 VRMS
0.8 VRMS
0.7 VRMS
100,000
10,000
1,000
100
10
1
40 60 80
Temperature (°C)
FIT (Failure in Time)
100 120
1.0 VRMS
0.9 VRMS
0.8 VRMS
0.7 VRMS
1,000,000
100,000
10,000
1,000
100
10
14020 60 80
Temperature (°C)
FIT (Failure in Time)
100 120
FIT OF VARISTORS (Vrms > 40 V)
FIT OF VARISTORS (Vrms </= 40 V)
TPC 37
Zinc Oxide Varistors
Reliability
Test Description Test Condition Test Requirement
SURGE CURRENT DERATING CECC 42000, Test C 2.1 • I Delta V/V (1 mA) I max 10%
8/20 MICRO SECONDS 100 surge currents (8/20 µs), unipolar, Measured in the direction of the
interval 30 s, amplitude corresponding surge current
to derating curve for 20 µs. • No visible damage
SURGE CURRENT DERATING CECC 42000, Test C 2.1 • I Delta V/V (1 mA) I max 10%
10/1000 MICRO SECONDS 100 surge currents (10/1000 µs), unipolar, Measured in the direction of the
interval 120 s, amplitude corresponding surge current
to derating curve for 1000 µs. • No visible damage
RESISTANCE TO SOLDERING IEC 68-2-20, Test Tb Method 1A • I Delta V/V (1 mA) I max 5%
HEAT 260°C, 5 s
RAPID CHANGE IN IEC 68-2-14, Test Na • I Delta V/V (1 mA) I max 5%
TEMPERATURE Ta = -40°C; Tb = +85°C
Duration: 1 Hr/cycle • No visible damage
Total: 5 cycles
SHOCK IEC 68-2-27, Test Ea • I Delta V/V (1 mA) I max 5%
Pulse shape: half sine
Acceleration: 490 m/s/s • No visible damage
Pulse duration: 11 ms
3 x 6 shocks
VIBRATION IEC 68-2-6, Test Fc Method B4 • I Delta V/V (1 mA) I max 5%
Freq. range: 10 Hz ... 55 Hz
Amplitude: 0.75 mm or 98 m/s/s • No visible damage
Duration: 6 h (3 x 2 h)
CLIMATIC SEQUENCE CECC 42000, Test 4.16 • I Delta V/V (1 mA) I max 10%
a) Dry heat - Test Ba
Temperature / Duration: 125°C / 2 h • Insulation Resistance min 1 Mohm
b) Damp heat cyclic 1st cycle - Test Db
Temperature / Duration: 55°C / 24 h
Humidity: 95-100% RH
c) Cold - Test Aa
Temperature / Duration: -40°C / 2 h
d) Damp heat cyclic test remaining
5 humidity cycles - Test Db
Duration: 24 h/cycle
LIFE TEST CECC 42000, Test 4.20 • I Delta V/V (1 mA) I max 10%
Applied voltage: max continuous a.c.
Voltage, continuous application • Insulation Resistance min 10 Mohm
Temperature / Duration: 85°C / 1000 h
DAMP HEAT, STEADY STATE IEC 68-2-3 • I Delta V/V (1 mA) I max 10%
Temperature / Duration: 40°C / 56 days
Humidity: 93% • Insulation Resistance min 1 Mohm
FLAMMABILITY - IEC 695-2-2 • Burning max 10 s
NEEDLE FLAME TEST Vertical application: 10 s
TEMPERATURE COEFFICIENT Current: 1 mA • - (0.09%/K) max
OF VOLTAGE Temperature: -40°C / +25°C / +85°C
S-ZOV00M999-C
Contact:
USA
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-448-9411
FAX: 843-448-1943
AVX Northwest, WA
Tel: 360-669-8746
FAX: 360-699-8751
AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314
AVX Northeast, MA
Tel: 508-485-8114
FAX: 508-485-8471
AVX Mid-Pacific, CA
Tel: 408-436-5400
FAX: 408-437-1500
AVX Southwest, AZ
Tel: 602-539-1496
FAX: 602-539-1501
AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090
AVX Southeast, NC
Tel: 919-878-6357
FAX: 919-878-6462
AVX Canada
Tel: 905-564-8959
FAX: 905-564-9728
EUROPE
AVX Limited, England
European Headquarters
Tel: ++44 (0)1252 770000
FAX: ++44 (0)1252 770001
AVX S.A., France
Tel: ++33 (1) 69.18.46.00
FAX: ++33 (1) 69.28.73.87
AVX GmbH, Germany - AVX
Tel: ++49 (0) 8131 9004-0
FAX: ++49 (0) 8131 9004-44
AVX GmbH, Germany - Elco
Tel: ++49 (0) 2741 2990
FAX: ++49 (0) 2741 299133
AVX srl, Italy
Tel: ++390 (0)2 614571
FAX: ++390 (0)2 614 2576
AVX sro, Czech Republic
Tel: ++420 (0)467 558340
FAX: ++420 (0)467 558345
A KYOCERA GROUP COMPANY
http://www.avxcorp.com
ASIA-PACIFIC
AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 258-2833
FAX: (65) 350-4880
AVX/Kyocera, Hong Kong
Tel: (852) 2-363-3303
FAX: (852) 2-765-8185
AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411
AVX/Kyocera, Taiwan
Tel: (886) 2-2696-4636
FAX: (886) 2-2696-4237
AVX/Kyocera, China
Tel: (86) 21-6249-0314-16
FAX: (86) 21-6249-0313
AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196
Elco, Japan
Tel: 045-943-2906/7
FAX: 045-943-2910
Kyocera, Japan - AVX
Tel: (81) 75-604-3426
FAX: (81) 75-604-3425
Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425