A KYOCERA GROUP COMPANY TPC Zinc Oxide Varistors Zinc Oxide Varistors Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Ordering Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VE / VF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical Characteristics (VE / VF types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 VN 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VB 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Taping Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Manufacturing Process and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 As we are anxious that our customers should benefit from the latest developments in technology and standards, AVX reserves the right to modify the characteristics published in this brochure. TPC 1 Zinc Oxide Varistors General Metal Oxide Varistors are ceramic passive components made of zinc oxide sintered together with other metal oxide additives. They provide an excellent protective device for limiting surge voltages and absorbing energy pulses. Their very good price / performance ratio enables designers to optimize the transient protection function when designing the circuits. Varistors are Voltage Dependent Resistors whose resistance decreases drastically when voltage is increased. When connected in parallel with the equipment to protect, they divert the transients and avoid any further overvoltage on the equipment. Manufactured according to high level standards of quality and service, our Metal Oxide Varistors are widely used as protective devices in the telecommunications, industrial, automotive and consumer markets. 2 TPC Zinc Oxide Varistors Introduction or, yet again, by changing the chemical composition of the varistor. The polycrystal is schematically represented in Figure 3. At room temperature the semiconducting grains have very low resistivity (a fews ohms/cm). ZINC OXIDE VARISTORS. PROTECTION FUNCTION APPLICATION Definition of the varistor effect The varistor effect is defined as being the property of any material whose electrical resistance changes non-linearly with the voltage applied to its terminals. In other words, within a given current range, the current-voltage relationship can be expressed by the equation: I = KV a In which K represents a constant depending on the geometry of the part and the technology used and a the non-linearity factor. The higher the value of this factor, the greater the effect. The ideal (and theorical) case is shown in Figure1 where a = whereas a linear material has an equation of I = f(V) obeying the well-known Ohm's law (a = 1). The relationship between these two extreme cases is shown in Figure 2. It should be pointed out that the I = f(V) curve is symmetrical with respect to zero in the case of zinc oxide varistors. Current a= a Current Intergranular phase Zinc oxide grains Figure 3 On the contrary, the resistivity of the second phase (or intergranular layer) basically depends on the value of the applied voltage. If the voltage value is low, the phase is insulating (region I of the I = f(V) curve). As the voltage increases this phase becomes conductive (region II). At very high current values the resistivity of the grain can become preponderant and the I = f(V) curve tends towards a linear law (region III). The curve I = f(V) for the different types can be found in corresponding data sheets. 2 - Equivalent electrical circuit diagram =1 0 0 Voltage Voltage Figure 1 Figure 2 ZINC OXIDE VARISTORS 1-Composition of the material Zinc oxide varistors are a polycrystalline structured material consisting of semiconducting zinc oxide crystals and a second phase located at the boundaries of the crystals. This second phase consists of a certain number of metallic oxides (Bi2O3,MnO,Sb2O3, etc.). It forms the heartof the varistor effect since its electrical resistivity is a non-linear function of the applied voltage. Thus, a zinc oxide varistor consists of a large number of boundaries (several millions) forming a series-parallel network of resistors and capacitors, appearing somewhat like a multijunction semiconductor. Experimentally, it is found that the voltage drop (at 1mA) at each boundary is about 3V. The total voltage drop for the thickness of the material is proportional to the number N of boundaries. t V1mA o3 N where N = -- L in which L represents the average dimension of a zinc oxide grain and t the thickness of the material. t In other words: V1mA o3 -- L Thus, with a thickness of 1 mm and average dimension of L = 20 , we obtain a voltage of 150 V for a current of 1mA. The desired voltage at 1mA can thus be obtained either by changing the thickness of the disc or by controlling the average dimension of the zinc oxide grain through heat treatment Figure 4 explains the behavior of a zinc oxide varistor. r represents the equivalent resistance of all semiconducting grains and r that of the intergranular layer (the value of which basically varies with the applied voltage). Cp corresponds to the equivalent capacitance of the intergranular layers. When the applied voltage is low, the resistivity of the intergranular layer is quite high and the current passing through the ceramic is low. When the voltage increases, the resistance r decreases (region II in Figure 5). When a certain voltage value is reached, r becomes lower than r and the I = f(V) characteristic tends to become ohmic (region III). The equivalent capacitance due to the insulating layers depends on their chemical types and geometries. r { Zinc oxide grains III II Current I grains Cp boundaries { r>r r>r r>r Voltage = f (V) Figure 4 Figure 5 Values of a few hundred picofarads are usually found with commonly used discs. Capacitance value decreases with the area of the ceramic. Consequently, this value is lower when maximum permissible energy and current values in the varistor are low, since these latter parameters are related to the diameter of the disc. Capacitance values are not subject to outgoing inspection. TPC 3 Zinc Oxide Varistors Introduction 3 - Temperature influence on the I = f(V) characteristic The A versus curve A typical I = f(V) curve is given in Figure 6. Different distinct regions can be observed: * The first one depends on the temperature and corresponds to low applied voltages (corresponding currents are in the range of the A). Consequently, a higher leakage current is noticeable when temperature is increasing. * The second one shows less variation and corresponds to the nominal varistor voltage region (Figure 7). The temperature coefficient of the varistor voltage at 1 mA is: K= DV/V and has a negative value with K < 9.10-4/C DT As the temperature coefficient decreases with increasing current density, this curve also depends on the type of the varistor. * For higher voltages, the temperature has no significant influence. Practically the clamping voltages of the varistors are not affected by a temperature change. (I) V 1 mA A V 1 mA (%) A 0.5 0.1 a 1 10 20 Figure 8 4.2 - Non-linearity coefficient The peak current and voltage values basically depend on the I = f(V) characteristic or, to be more precise, on the value of the coefficient defined by: log (I1/I2) log (V1/V2) a= 10-4 +2 10-5 0 - 25 10-6 0 25 50 75 100 125 -2 10-7 10-8 100C 75C 10 102 -9.10-4 / C -4 25C (V) 10-9 103 Figure 6 In which I1 and I2 are the current values corresponding to voltage values V1 and V2. The value of a depends on the technology used (chemical composition, heat synthesis, etc.). Nevertheless, the value is not constant over the entire current range (several decades). For example, Figure 9 shows the variation of this coefficient for currents ranging from 100 nA to 100 A. It can be seen that a passes through a maximum value and always stays at high values, even at high levels of current. Figure 7 a 4 - Varistor characteristics The choice of a varistor for a specific application should be guided by the following major characteristics: 1) Working or operating voltage (alternating or direct). 2) Leakage current at the working voltage. 3) Max. clamping voltage for a given current. 4) Maximum current passing through the varistor. 5) Energy of the pulse to be dissipated in the varistor. 6) Average power to be dissipated. l1/ l2 a = Log Log V / V 1 2 where l1 = 10 l2 60 50 b= 40 30 (I) A 4.1 - Max. operating voltage and leakage current The maximum operating voltage corresponds to the "rest" state of the varistor. This "rest" voltage offers a low leakage current in order to limit the power consumption of the protective device and not to disturb the circuit to be protected. The leakage currents usually have values in the range of a few micro-amperes. PA = AV .lp = AKVpa+1 with PA = A PC a in which: A = a constant f( ) K = a constant (I = KVa). PC = dissipated power for a DC voltage Vp. 100 For usual values of (30 to 40), the continuously dissipated power is about 7 times greater than that dissipated by a sinusoidal signal having the same peak value. For example, a protective varistor operating at RMS voltage of 250 V has a power dissipation of a few mW. 10-3 4 50 10-6 10-3 10 102 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 V1 V2 V 2 = Voltage for l2 l1 > l2 l1 = 106 l2 l1 3 l2 = 10 10 Figure 9 V 1 = Voltage for l1 20 30 a Figure 10 The non-lineary of the varistor can be expressed in another way by the ratio of the voltages corresponding to 2 current values. = V1 V2 b Where: V1 voltage for current I1 V2 voltage for current I2 The curve giving versus the value of a is shown in Figure10 for 2 ratios of I1 /I2 =103 and 106. b TPC Zinc Oxide Varistors Introduction 4.3 - Clamping voltage It is the maximum residual voltage Vp across the varistor terminals for a through current Ip. The voltage value gives an indication on the protective function of the varistor. 4.4 - Permissible peak current The value of the permissible peak current depends upon the varistor model and waveform (8 x 20 s, 10 x 1000 s, etc.). It can be seen that, as a first approximation, the permissible peak current is proportional to the area of the varistor electrodes. By way of example, Table I gives the permissible peak current values for different diameters and for one current surge of waveform 8 x 20 s. It corresponds to a maximum permissible variation of 10% in the voltage measured at 1 mA dc after the surges. Overloads greater than specified values may result in a change in varistor voltage by more than 10% and irreversible change in the electrical properties. In case of heavy overload, surge currents beyond the specified ratings will puncture the varistor element. In extreme cases, the varistor will burst. Opposite, we have expressed energy W calculated for different pulse shapes, assuming that the value of the coefficient equals 30. a a) Voltage surge Figure 11 - 12 - 13 - 14 b) Current surge Figure 15 - 16 - 17 - 18 If, for example, we take a current surge as shown in Figure 19, we demonstrate that the dissipated energy is given by the approximate expression: W = Vp Ip (1.4 2 - 0.88 1 ) 10-6 in which Vp is the peak voltage value and Ip the peak current value. W is expressed in joules. in seconds. Vp in volts. Ip in amperes. t t V Operating Voltage (V) 250 250 250 250 250 Uncoated Disc [ (mm) 5 7 10 14 20 Number of Current Surges (8 x 20 s) 1 2 102 104 Ic = KVc V = Vc _t t V I = KV -2 W = 310 Ic Vc Vc Vc Table I t t 0 0 Figure 11 V Permissible Current (A) 6500 4000 1000 200 V = Vc W = Ic Vc t I max. (A) 400 1200 2500 4500 6500 t V V = Vc sin _t t W = 0.22 Ic Vc t Vc/2 t t I t t 0 Figure 13 Figure 14 I = Ic I V = Ic _t t W = 0.5 Ic Vc t W = Ic Vc t Ic Ic t t 0 4.5 - Permissible energy The notion of permissible energy relates much more to the "active" state of the varistor than to its "rest" state where the average power is the predominant notion. Indeed, except in special cases, the overvoltages occur at random and not at a high repetition frequency. Therefore, aging of the varistor will be related to energy of the transient defined by the current and peak voltage values as well as the pulse shape. -t 1.4 t Vc 0 The permissible peak current also depends on the number of current surges applied to the varistor. For example, Table II gives the permissible current values based on the number of consecutive surges of the same magnitude applied on varistor model VE24M00251K. Thus, the smaller the number of surges, the higher the permissible current. Figure 12 W = 4.5 10-2 Ic Vc t Vc Table II V = Vc exp t t 0 Figure 15 I I = Ic exp Figure 16 -t 1.4 t I I = Ic sin _t t W = 0.64 Ic Vc t W = 1.4 Ic Vc t Ic t t Ic Ic/2 0 t Figure 17 TPC t 0 t t Figure 18 5 ZINC OXIDE VARISTORS Introduction Table III gives the energies calculated according to waveform in Figure 19. Current Ip Ip/2 4.6 - Average dissipated power a) Average power dissipated in the "rest" state Considering the high values of the coefficient , a special a attention is required concerning the dissipated power value in case of possible changes in the operating voltage. Indeed, starting with the equation: I = KVa the average power dissipated by the varistor is given by the equation: PC = KV +1 when a direct current voltage is applied, and PA = APC in the case of a sinusoidal voltage having the same peak value and direct current voltage value. a 0 t1 t 2 Time Figure 19 P/P0 105 Table III Vp (V) Ip (A) Waveform (s) Energy (J) 104 500 300 1.2 50 10 500 300 103 8 20 3 500 300 10 1000 210 1 Uncoated Disc o (mm) 5 7 10 14 20 Energy (J) 10 21 40 72 130 10 1 1.1 1.2 1.3 V/V 0 Figure 20 The A value as a function of a was given in Figure 8. A small change of the operating voltage can induce a dissipated power variation which is all the more greater since the value of exponent a is high (Figure 20). the dissipated power by a factor of 20 when coefficient a equals 30, and by a factor of 150 when the coefficient equals 50. Table V gives the power P dissipated at values of the applied direct current voltage when the value of a equals 30. b) Average power dissipated during the transient state If the transients to which the varistor is subjected are repeated at a sufficiently high frequency, there will be an increase T in the average temperature of the part given by the expression: T = P/ in which P represents the average dissipated power which depends on the energy of the pulse and its repetition frequency and d the dissipation factor in air of the unit. This temperature rise should stay below the threshold indicated by the manufacturer or it may damage the component coating resin or even cause thermal runaway of the ceramic. d Table V 6 a = 10 102 It can be seen that a 10% change in the rated voltage increases Table IV V- (V) 180 220 230 a = 30 2 The following changes are found when the varistor absorbs an energy greater than the maximum permissible value: * Higher leakage current. * Decrease in the voltage at 1 mA. * Decrease in coefficient . a If the energy increases well beyond the maximum value, the characteristics degrade to such an extent that, even at the rated voltage, the varistor has a very low resistance value. The permissible energy for a given varistor is mainly related to the size of the part. For example, Table IV gives the permissible energy for different varistors sizes with an operating voltage of 250 V. Operating Voltage (V) 250 250 250 250 250 a = 50 P (mW) 0.5 0.2 0.75 TPC Zinc Oxide Varistors Introduction 5 - Response time of zinc oxide varistors 5.1 - Intrinsic response time 6 - Varistor voltage (V1mA) 6.1 - Nominal varistor voltage (V1mA) This response time corresponds to the conduction mechanisms specific to semiconductors, therefore its value is quite low and is less than one nanosecond. The nominal voltage of a varistor (or "varistor" voltage) is defined as the voltage drop across the varistor when a dc test current of 1 mA is applied to the component. It is defined at a temperature of 25C. This parameter is used as a standard to define the varistors but has no particular electrical or physical significance. 5.2 - Practical response time However, the response time will be modified for several reasons: * Parasitic capacitance of the component due to the insulation of the intergranular layers. * Overshoot phenomenon occurring when the varistor is subjected to a voltage with a steep leading edge (Figure 21) and causing a dynamic voltage peak greater than the static voltage by a few percent. * Impedance of the external circuit to the varistor. In conclusion, the practical response time of a zinc oxide varistor usually stays below 50 nanoseconds. Volts Generator at 50 100 80 Generator at 50 + zinc oxide varistor 60 6.2 - Tolerance on the varistor voltage The standard tolerance is 10%. Other tolerances may be defined on custom design products. To avoid any lack of understanding, different behaviors of Zn0 varistors should be noted when considering the measurement of V 1 mA. * The measurement time must not be too short to allow a "break-in" stabilization of the varistor and not too long so the measurement is not affected by warming the varistor. The limits of V1mA for our products are given for a measurement time comprised between 100 ms and 300 ms. For times comprised between 30 ms and 1s, the varistor voltage will differ typically by less than 2%. * The value of the peak varistor voltage measured with ac current will be slightly higher than the dc value. * When the varistor has been submitted to unipolar stresses (pulses, dc life test, ...) the voltage-current characteristic becomes asymmetrical in polarity. 40 20 0 20 40 60 80 Nanoseconds Figure 21 TPC 7 Zinc Oxide Varistors Applications 1 - Principle of application Zinc oxide varistors are essentially used as protective devices for components or items of equipment subjected to electrical interference whether accidental or otherwise. To be more specific, there are two types of interference: those which can be controlled (switching of resistive or capacitive circuits) and those which occur at random (high voltage surges change in the power supply network, etc.) The "protection" function is related to the non-linear I = f(V) characteristic of the varistor. This component is always connected in parallel with the assembly E to be protected (Figure 22B). The varistor's "rest" state has a very high impedance (several megohms) in relation to the component to be protected and does not change the characteristics or the electric circuit. In the presence of a transient, the varistor then has a very low impedance (a few ohms) and short circuits the component E. The "rest" and operating states are shown in Figure 22A and 22B. In case of a current surge of a peak value Ip, the higher the non-linear coefficient a is, the lower the voltage across the terminals of the component E will be: Vp = (Ip/K) 1/ a In case of a voltage surge Vs, the varistor limits the voltage across the terminals of component E to a value Vp via resistor Rc which can be the impedance of the source (Figure 23). E Id-cor a-c "Rest" state Figure 22A E Ip Protective state Figure 22B Vs Rc Vp E 2 - Main applications Varistors are widely used in the different electronic equipment: * telecommunication and data systems power supply units, switching equipment, answering sets, ... * industrial equipment control and alarm systems, proximity switches, transformers, motors, traffic lighting, ... * consumer electronics television and video sets, washing machines, electronic ballasts, ... * automotive all motor and electronic systems. 8 TPC Figure 23 Zinc Oxide Varistors Applications Three typical examples of applications are shown to illustrate the "protection" function of zinc oxide varistors. 1 - Protection of relay contacts It is a well-known fact that a sudden break in an inductive circuit causes an overvoltage which can seriously damage the contacts of relay due to arcing. Overvoltages of several thousand volts can occur across the terminals of unprotected relay contacts. This disadvantage can be overcome by limiting the overvoltage due to opening an inductive circuit to a level such that it cannot generate an arc. Such limitation is achieved by wiring a zinc oxide varistor in parallel across the terminals of the relay characterized by the value of its inductance coil L and its resistor R (Figure 24). L R Figure 24 2 - Protection of a diode rectifier bridge Semiconductor components (silicon diodes, thyristors, etc.) are especially sensitive to transients and must be protected so that the overvoltage value is limited to levels which are not dangerous. An example of protection for a diode rectifier is schematically represented in Figure 25. The varistor is connected to the transformer secondary at the input of rectifier bridge. If the transformer's magnetizing current is interrupted when it reaches its maximum value, a voltage ten times greater than the normal value can then appear at the terminals of the secondary winding in the absence of a load. Figure 25 This overvoltage, which is excessive for the semiconductors, is limited by the presence of the varistor which absorbs the energy corresponding to the change of state of the primary circuit. The same varistor can also protect the rectifier bridge against overvoltages coming from the mains and reaching the secondary circuit via the stray capacitance of the transformer. Another practical case to be considered involves closing of the primary circuit. If the circuit is closed when the primary voltage reaches its maximum value, the secondary voltage can be two times greater than its steady-state value. Although this case is less dangerous than the preceding one, it still may cause damage to the rectifying diodes. Connection of a varistor in parallel limits this overvoltage to a value such that it does not cause any damage to the semiconductors. 3 - Opening of a resistive circuit supplied with AC current with a loadless rectifier The diagram is given in Figure 26. When the circuit supplied with AC current is opened, an overvoltage appears across the rectifier terminals: - Ldi/dt The energy stored by the inductance coil (1/2 L I2 rms) is transferred to the protective varistor wired in parallel to the inductance coil. L Figure 26 TPC 9 Zinc Oxide Varistors Selection Guide Maximum Operating RMS Voltage (VRMS) VRMS 11 14 75 150 250 300 420 625 18 100 200 330 385 560 825 22 120 240 390 470 680 1000 VDC Maximum Operating Steady State Voltage (VDC) 14 V1mA Nominal Varistor Voltage (V1mA) 18 Types Voltage range and admissible energy (J) (1 surge 10 x 1000 s) VE 07 VF 05 0.3 0.4 2 5 VE 09 VF 07 0.8 0.9 6 11 23 VE 13 VF 10 2.0 12 24 45 68 VE 17 VF 14 4.0 20 40 75 130 40 85 140 230 VE 24 VF 20 VN 32 VB 32 10 TPC 11 25 200 550 200 550 Zinc Oxide Varistors Ordering Code HOW TO ORDER VE09 Type VE 07 VE 09 VE 13 VE 17 VE 24 VF 05 VF 07 VF 10 VF 14 VF 20 VN 32 VB 32 M Series M: Varistors for general applications P: Varistors for heavy duty applications 0 0251 Marking AC nominal voltage VE:0 K AC Operating Voltage (EIA coding) VE -- Tolerance Suffixes at 1 mA See K: 10% on page 32 (J: 5% upon request) Nominal Voltage at 1 mA dc (EIA coding) VF Nominal voltage at 1 mA dc VF:1 1. Operating voltage expressed by 2 significant figures: 1st digit: 0 (zero). 2nd and 3rd digit: the two significant figures of the operating voltage. 4th digit: the number of ZEROS to be added to the operating voltage value. Examples: 75 V: 0750 250 V: 0251 300 V: 0301 TPC 2. Operating voltage expressed by 3 significant figures: 1st, 2nd and 3rd digit: the 3 significant figures of the operating voltage. 4th digit: the number of ZEROS to be added to the operating voltage value. Examples: 205 V: 2050 275 V: 2750 11 Zinc Oxide Varistors VE 07/09/13/17/24 VF 05/07/10/14/20 FEATURES t D 30 (1.18) min H * Radial lead varistors * Wide operating voltage range from 11 V to 625 V (Vrms for VE types) or 18 V to 1000 V (V1mA for VF types) * Available in tape and reel for use with automatic insertion equipment (see pages 31 to 33 for details). E PARTICULAR CHARACTERISTICS UL (USA and Canadian Standards) 12 VE Series P/N codification using (Dmax , Vrms) VE07M00110K VE09M00110K VE07M00140K VE09M00140K VE13M00140K VE17M00140K VE07M00170K VE09M00170K VE13M00170K VE17M00170K VE07M00200K VE09M00200K VE13M00200K VE17M00200K VE07M00250K VE09M00250K VE13M00250K VE17M00250K VE07M00300K VE09M00300K VE13M00300K VE17M00300K VE07M00350K VE09M00350K VE13M00350K VE17M00350K VE07M00400K VE09M00400K VE13M00400K VE17M00400K VE07M00500K VE09M00500K VE13M00500K VE17M00500K VF Series P/N codification using (dceramic, V1mA) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VF05M10180K VF07M10180K VF05M10220K VF07M10220K VF10M10220K VF14M10220K VF05M10270K VF07M10270K VF10M10270K VF14M10270K VF05M10330K VF07M10330K VF10M10330K VF14M10330K VF05M10390K VF07M10390K VF10M10390K VF14M10390K VF05M10470K VF07M10470K VF10M10470K VF14M10470K VF05M10560K VF07M10560K VF10M10560K VF14M10560K VF05M10680K VF07M10680K VF10M10680K VF14M10680K VF05M10820K VF07M10820K VF10M10820K VF14M10820K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ TPC Maximum operating voltage Nominal voltage at 1 mA dc Vrms VDC V1mA mini V1mA nominal V1mA maxi 11 14 16.0 18 20.0 14 18 19.8 22 24.2 17 22 24.0 27 30.0 20 26 29.5 33 36.5 25 31 35 39 43 30 38 42 47 52 35 45 50 56 62 40 56 61 68 75 50 65 73 82 91 Zinc Oxide Varistors VE 07/09/13/17/24 DIMENSIONS VF 05/07/10/14/20 GENERAL CHARACTERISTICS millimeters (inches) D Maximum o Type Type Ceramic coated H t +10% E diameter diameter max. max. -0.05 (.002) 0.8 VE07 VF05 5 (.196) 7 (.275) 10 (.394) 0.6 (.024) 5.08 (0.20) VE09 VF07 7 (.275) 9 (.354) 12 (.472) 0.6 (.024) 5.08 (0.20) VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30) VE17 VF14 14 (.551) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30) VE24** VF20** 20 (.787) 24 (.945) 27 (1.06) 0.8** (.031) 7.62 (0.30) Vp (V) 36 36 43 43 43 43 53 53 53 53 65 65 65 65 77 77 77 77 93 93 93 93 110 110 110 110 135 135 135 135 135 135 135 135 Ip (A) 1 2.5 1 2.5 5 10 1 2.5 5 10 1 2.5 5 10 1 2.5 5 10 1 2.5 5 10 1 2.5 5 10 1 2.5 5 10 5 10 25 50 Max. energy absorption (10 x 1000 s) W (J) Number of surges 1 10 0.3 0.15 0.8 0.5 0.4 0.2 0.9 0.6 2 1.3 4 2.6 0.5 0.3 1.1 0.7 2.5 1.6 4.7 3.0 0.6 0.3 1.3 0.9 3.1 2.0 5.7 4.0 0.7 0.4 1.6 1.0 3.7 3 7 5 0.9 0.4 2.0 1 4.4 4 9.0 7 1.1 0.4 2.5 1 5.4 4.4 10.0 8 1.3 0.5 3.0 1 8.4 5.9 13.0 8.5 1.8 0.6 4.2 1.6 8.4 6 15.0 11 -40C to +125C +85C < 25 ns K < 0.09%/C 2500 V Flame retardant UL94-VO MARKING * VE13 / VF10: For models with VRMS 320 V other version/suffixes available with: E = 5.08 (0.20) Suffix: O = 0.6 (.024) Bulk: HB D = 12.5 (.492) max Tape: DA, DB, DC, DD, DQ, ... **VE24 / VF20: For lead diameter = 1.0 (.039), please consult us. Max. clamping voltage (8 x 20 s) Storage temperature: Max. operating temperature: Response time: Voltage coefficient temp.: Voltage proof: Epoxy coating: Type AC nominal voltage (EIA coding) for VE types V1mA varistor voltage (EIA coding) for VF types Logo UL logo (when approved) Lot number (VE13/17/24 and VF10/14/20 only) Max. permissible peak current (8 x 20 s) Ip (A) 1 surge 2 surges 100 50 250 125 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 100 50 250 125 500 250 1000 500 400 200 1200 600 2500 1250 4500 2500 Typical capacitance f = 1kHz pF 1050 1900 1050 1900 4000 4000 1050 1900 4000 6800 750 1500 3100 5700 660 1250 2800 4600 580 1050 2150 3500 460 850 1900 3100 400 720 1700 2800 300 530 950 1800 TPC Mean power dissipation Maximum thickness t V/I characteristic Derating curves W 0.01 0.02 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10 0.1 0.2 0.4 0.6 mm (inches) 3.6 (.142) 3.6 (.142) 3.6 (.142) 3.6 (.142) 4.3 (.169) 4.3 (.169) 3.7 (.146) 3.7 (.146) 4.3 (.169) 4.3 (.169) 3.9 (.154) 3.9 (.154) 4.5 (.177) 4.5 (.177) 3.6 (.142) 3.6 (.142) 4.4 (.173) 4.4 (.173) 3.8 (.150) 3.8 (.150) 4.4 (.173) 4.4 (.173) 3.9 (.154) 3.9 (.154) 4.7 (.185) 4.7 (.185) 4.1 (.161) 4.1 (.161) 4.9 (.193) 4.9 (.193) 3.5 (.138) 3.5 (.138) 4.1 (.161) 4.1 (.161) Page 22 22 22 22 22 23 22 22 22 23 22 22 22 23 22 22 22 23 22 22 22 23 22 22 22 23 22 22 22 23 22 22 22 23 Page 24 25 24 25 26 27 24 25 26 27 24 25 26 27 24 25 26 27 24 25 26 27 24 25 26 27 24 25 26 27 24 25 26 27 13 Zinc Oxide Varistors VE 07/09/13/17/24 UL (USA and Canadian Standards) 14 VF 05/07/10/14/20 VE Series P/N codification using (Dmax , Vrms) VE07M00600K VE09M00600K VE13M00600K VE17M00600K VE07M00750K VE09M00750K VE13M00750K VE17M00750K VE24M00750K VE07M00950K VE09M00950K VE13M00950K VE17M00950K VE24M00950K VE07M01150K VE09M01150K VE13M01150K VE17M01150K VE24M01150K VE07M00131K VE09M00131K VE13M00131K VE17M00131K VE24M00131K VE07M00141K VE09M00141K VE13M00141K VE17M00141K VE24M00141K VE07M00151K VE09M00151K VE13M00151K VE17M00151K VE24M00151K VE07M01750K VE09M01750K VE13M01750K VE17M01750K VE24M01750K VE07M00211K VE09M00211K VE13M00211K VE17M00211K VE24M00211K VE07M00231K VE09M00231K VE13M00231K VE17M00231K VE24M00231K VF Series P/N codification using (dceramic, V1mA) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VF05M10101K VF07M10101K VF10M10101K VF14M10101K VF05M10121K VF07M10121K VF10M10121K VF14M10121K VF20M10121K VF05M10151K VF07M10151K VF10M10151K VF14M10151K VF20M10151K VF05M10181K VF07M10181K VF10M10181K VF14M10181K VF20M10181K VF05M12050K VF07M12050K VF10M12050K VF14M12050K VF20M12050K VF05M10221K VF07M10221K VF10M10221K VF14M10221K VF20M10221K VF05M10241K VF07M10241K VF10M10241K VF14M10241K VF20M10241K VF05M10271K VF07M10271K VF10M10271K VF14M10271K VF20M10271K VF05M10331K VF07M10331K VF10M10331K VF14M10331K VF20M10331K VF05M10361K VF07M10361K VF10M10361K VF14M10361K VF20M10361K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ TPC Maximum operating voltage Nominal voltage at 1 mA dc Vrms VDC 60 80 V1mA mini 90 V1mA nominal 100 V1mA maxi 110 75 100 108 120 132 95 125 135 150 165 115 150 162 180 198 130 170 184 205 226 140 180 198 220 242 150 200 216 240 264 175 225 243 270 297 210 275 297 330 363 230 300 324 360 396 Zinc Oxide Varistors VE 07/09/13/17/24 Max. clamping voltage (8 x 20 s) Vp (V) 165 165 165 165 200 200 200 200 200 250 250 250 250 250 300 300 300 300 300 340 340 340 340 340 360 360 360 360 360 400 400 400 400 400 445 445 445 445 445 545 545 545 545 545 595 595 595 595 595 Ip (A) 5 10 25 50 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 Max. energy absorption (10 x 1000 s) W (J) Number of surges 1 10 2.2 4.8 10 17 2.5 5.9 12 20 40 3.4 7.6 15 25 50 3.6 8.4 18 30 60 4.2 9.5 19 34 74 4.5 10 22 36 78 4.9 11 24 40 85 5.6 13 28 46 98 7.2 15 31 54 115 7.2 17 36 60 130 0.7 1.7 7 14 0.8 1.8 8 15 30 1 3 9 20 33 1.3 3.3 10.6 22 40 1.5 4 11 25 46 1.5 4 12.5 26.5 50 1.8 4.1 13 30 56 1.9 4.5 13.5 31 56 2.2 5.4 14.0 35 70 2.4 6 14.3 38 75 VF 05/07/10/14/20 Max. permissible peak current (8 x 20 s) Ip (A) 1 surge 2 surges 400 1200 2500 4500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 200 600 1250 2500 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 Typical capacitance f = 1kHz Mean power dissipation Maximum thickness t V/I characteristic Derating curves pF W mm (inches) Page Page 22 22 22 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 24 25 26 27 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 165 440 870 2200 150 400 700 1900 4200 110 310 560 1200 3400 100 280 500 1100 3000 90 250 450 1000 2500 85 235 425 930 2250 80 220 400 850 2000 70 190 340 750 2000 60 155 275 600 1650 55 140 250 550 1500 TPC 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 3.8 3.8 4.5 4.5 4.0 4.0 4.4 4.4 4.8 4.4 4.4 5.0 5.0 5.4 4.5 4.5 5.1 5.1 5.5 4.1 4.1 4.7 4.7 5.1 4.2 4.2 4.8 4.8 5.2 4.3 4.3 4.9 4.9 5.3 4.5 4.5 5.1 5.1 5.5 4.9 4.9 5.5 5.5 5.9 5.1 5.1 5.7 5.7 6.1 (.150) (.150) (.177) (.177) (.157) (.157) (.173) (.173) (.189) (.173) (.173) (.197) (.197) (.213) (.177) (.177) (.201) (.201) (.217) (.161) (.161) (.185) (.185) (.201) (.165) (.165) (.189) (.189) (.205) (.169) (.169) (.193) (.193) (.209) (.177) (.177) (.201) (.201) (.217) (.193) (.193) (.217) (.217) (.232) (.201) (.201) (.224) (.224) (.240) 15 Zinc Oxide Varistors VE 07/09/13/17/24 UL (USA and Canadian Standards) 16 VF 05/07/10/14/20 VE Series P/N codification using VF Series P/N codification using (Dmax , Vrms) (dceramic, V1mA) VE07M00251K VE09M00251K VE13M00251K VE17M00251K VE24M00251K VE07M02750K VE09M02750K VE13M02750K VE17M02750K VE24M02750K VE07M00301K VE09M00301K VE13M00301K VE17M00301K VE24M00301K VE09M00321K VE13M00321K VE17M00321K VE24M00321K VE09M00351K VE13M00351K VE17M00351K VE24M00351K VE09M03850K VE13M03850K VE17M03850K VE24M03850K VE09M00421K VE13M00421K VE17M00421K VE24M00421K VE13M00441K VE17M00441K VE24M00441K VE13M00461K VE17M00461K VE24M00461K VE13M00511K VE17M00511K VE24M00511K VE13M00551K VE17M00551K VE24M00551K VE13M05750K VE17M05750K VE24M05750K VE13M06250K VE17M06250K VE24M06250K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VF05M10391K VF07M10391K VF10M10391K VF14M10391K VF20M10391K VF05M10431K VF07M10431K VF10M10431K VF14M10431K VF20M10431K VF05M10471K VF07M10471K VF10M10471K VF14M10471K VF20M10471K VF07M10511K VF10M10511K VF14M10511K VF20M10511K VF07M10561K VF10M10561K VF14M10561K VF20M10561K VF07M10621K VF10M10621K VF14M10621K VF20M10621K VF07M10681K VF10M10681K VF14M10681K VF20M10681K VF10M17150K VF14M17150K VF20M17150K VF10M10751K VF14M10751K VF20M10751K VF10M10821K VF14M10821K VF20M10821K VF10M10861K VF14M10861K VF20M10861K VF10M10911K VF14M10911K VF20M10911K VF10M10102K VF14M10102K VF20M10102K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ TPC Maximum operating voltage Nominal voltage at 1 mA dc Vrms VDC V1mA mini V1mA nominal V1mA maxi 250 320 351 390 429 275 350 387 430 473 300 385 423 470 517 320 420 459 510 561 350 460 504 560 616 385 505 558 620 682 420 560 612 680 748 440 585 643 715 787 460 615 675 750 825 510 670 738 820 902 550 715 774 860 946 575 730 819 910 1001 625 825 900 1000 1100 Zinc Oxide Varistors VE 07/09/13/17/24 Max. clamping voltage (8 x 20 s) Vp (V) 645 645 645 645 645 710 710 710 710 710 775 775 775 775 775 840 840 840 840 910 910 910 910 1025 1025 1025 1025 1120 1120 1120 1120 1180 1180 1180 1240 1240 1240 1350 1350 1350 1420 1420 1420 1500 1500 1500 1650 1650 1650 Ip (A) 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 25 50 100 Max. energy absorption (10 x 1000 s) W (J) Number of surges 1 10 8.2 19 38 65 140 8.6 21 43 71 151 9 25 45 80 150 25 45 82 150 25 45 85 155 25 45 88 155 25 45 90 160 45 95 165 45 100 175 55 110 190 57 113 200 60 120 210 68 130 230 2.8 7.3 19 39 100 3 7.4 20 40 105 3.3 7.5 20 42 107 7.5 20 42 107 7.5 20 42 107 7.5 20 42 107 7.5 20 42 107 20 44 115 20 47 120 22 57 150 24 57 150 25 60 160 25 60 160 VF 05/07/10/14/20 Max. permissible peak current (8 x 20 s) Ip (A) 1 surge 2 surges 400 1200 2500 4500 6500 400 1200 2500 4500 6500 400 1200 2500 4500 6500 1200 2500 4500 6500 1200 2500 4500 6500 1200 2500 4500 6500 1200 2500 4500 6500 2500 4500 6500 2500 4500 6500 2500 4500 6500 2500 4500 6500 2500 4500 6500 2500 4500 6500 200 600 1250 2500 4000 200 600 1250 2500 4000 200 600 1250 2500 4000 600 1250 2500 4000 600 1250 2500 4000 600 1250 2500 4000 600 1250 2500 4000 1250 2500 4000 1250 2500 4000 1250 2500 4000 1250 2500 4000 1250 2500 4000 1250 2500 4000 Typical capacitance f = 1kHz Mean power dissipation Maximum thickness t V/I characteristic Derating curves pF W mm (inches) Page Page 50 130 230 500 1300 45 120 210 450 1200 40 100 180 400 1000 100 170 380 950 95 160 365 900 95 150 350 850 80 120 300 700 115 275 650 110 250 600 100 220 550 90 200 500 80 180 450 74 165 410 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 5.4 (.213) 5.4 (.213) 5.9 (.232) 5.9 (.232) 6.3 (.248) 5.7 (.224) 5.7 (.224) 6.3 (.248) 6.3 (.248) 6.7 (.264) 6.0 (.236) 6.0 (.236) 6.6 (.260) 6.6 (.260) 7.0 (.276) 6.4 (.252) 7.0 (.276) 7.0 (.276) 7.5 (.276) 6.6 (.260) 7.3 (.287) 7.3 (.287) 7.8 (.307) 7.0 (.276) 7.7 (.303) 7.7 (.303) 8.1 (.319) 7.4 (.291) 8.2 (.323) 8.2 (.323) 8.6 (.339) 8.4 (.331) 8.4 (.331) 8.8 (.346) 8.5 (.335) 8.5 (.335) 9.0 (.354) 9.0 (.354) 9.0 (.354) 9.4 (.370) 9.3 (.366) 9.3 (.366) 9.7 (.382) 9.7 (.382) 9.7 (.382) 10.1 (.398) 10.5 (.413) 10.5 (.413) 11.0 (.433) 22 22 22 23 23 22 22 22 23 23 22 22 22 23 23 22 22 23 23 22 22 23 23 22 22 23 23 22 22 23 23 22 23 23 22 23 23 22 23 23 22 23 23 22 23 23 22 23 23 TPC 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 25 26 27 28 25 26 27 28 25 26 27 28 25 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 17 Zinc Oxide Varistors VE/VF Types for Heavy Duty Applications ("P Series") FEATURES * "P Series" are especially dedicated to heavy duty applications encountered in the AC power network. Higher surge current and energy ratings provide an improved protection and a better reliability * Radial lead varistors * Operating voltage range from 130 V to 625 V (Vrms for VE types) or 205 V to 1000 V (V1mA for VF types) * Available in tape and reel for use with automatic insertion equipment (see pages 31 to 33 for details). t 30 (1.18) min H D E PARTICULAR CHARACTERISTICS UL (USA and Canadian Standards) 18 VE Series P/N codification using VF Series P/N codification using (Dmax , Vrms) (dceramic, V1mA) VE07P00131K VE09P00131K VE13P00131K VE17P00131K VE24P00131K VE07P00141K VE09P00141K VE13P00141K VE17P00141K VE24P00141K VE07P00151K VE09P00151K VE13P00151K VE17P00151K VE24P00151K VE07P01750K VE09P01750K VE13P01750K VE17P01750K VE24P01750K VE07P00211K VE09P00211K VE13P00211K VE17P00211K VE24P00211K VE07P00231K VE09P00231K VE13P00231K VE17P00231K VE24P00231K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VF05P12050K VF07P12050K VF10P12050K VF14P12050K VF20P12050K VF05P10221K VF07P10221K VF10P10221K VF14P10221K VF20P10221K VF05P10241K VF07P10241K VF10P10241K VF14P10241K VF20P10241K VF05P10271K VF07P10271K VF10P10271K VF14P10271K VF20P10271K VF05P10331K VF07P10331K VF10P10331K VF14P10331K VF20P10331K VF05P10361K VF07P10361K VF10P10361K VF14P10361K VF20P10361K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ TPC Maximum operating voltage Nominal voltage at 1 mA dc Vrms VDC V1mA mini V1mA nominal V1mA maxi 130 170 184 205 226 140 180 198 220 242 150 200 216 240 264 175 225 243 270 297 210 275 297 330 363 230 300 324 360 396 Zinc Oxide Varistors VE/VF Types for Heavy Duty Applications ("P Series") DIMENSIONS GENERAL CHARACTERISTICS millimeters (inches) D Type Type Ceramic diameter VE07 VF05 5 (.196) VE09 VF07 7 (.275) VE13* VF10* 10 (.393) VE17 VF14 14 (.551) VE24** VF20** 20 (.787) Maximum o coated H t +10% E diameter max. max. -0.05 (.002) 0.8 7 (.275) 10 (.394) 0.6 (.024) 5.08 (0.20) 9 (.354) 12 (.472) 0.6 (.024) 5.08 (0.20) 13* (.512) 16 (.630) see 0.8* (.031) 7.62*(0.30) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30) 24 (.945) 27 (1.06) 0.8** (.031) 7.62 (0.30) Vp (V) 340 340 340 340 340 360 360 360 360 360 400 400 400 400 400 445 445 445 445 445 545 545 545 545 545 595 595 595 595 595 Ip (A) 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 Max. energy absorption (10 x 1000 s) W (J) Number of surges 1 surge 8.5 17.5 35 70 140 9 19 39 78 155 10.5 21 42 85 170 11 24 50 100 190 13 28 60 115 230 16 32 65 130 250 Type AC nominal voltage (EIA coding) for VE types V1mA varistor voltage (EIA coding) for VF types Logo UL logo (when approved) Lot number (VE13/17/24 and VF10/14/20 only) Max. permissible peak current (8 x 20 s) Ip (A) 1 surge 2 surges 800 1750 3500 6000 10000 800 1750 3500 6000 10000 800 1750 3500 6000 10000 800 1750 3500 6000 10000 800 1750 3500 6000 10000 800 1750 3500 6000 10000 -40C to +125C +85C < 25 ns K < 0.09%/C 2500 V Flame retardant UL94-VO MARKING * VE13 / VF10: For models with VRMS 320 V other version/suffixes available with: E = 5.08 (0.20) Suffix: O = 0.6 (.024) Bulk: HB D = 12.5 (.492) max Tape: DA, DB, DC, DD, DQ, ... **VE24 / VF20: For lead diameter = 1.0 (.039), please consult us. Max. clamping voltage (8 x 20 s) Storage temperature: Max. operating temperature: Response time: Voltage coefficient temp.: Voltage proof: Epoxy coating: 600 1250 2500 4500 7000 600 1250 2500 4500 7000 600 1250 2500 4500 7000 600 1250 2500 4500 7000 600 1250 2500 4500 7000 600 1250 2500 4500 7000 Typical capacitance f = 1kHz Mean power dissipation Maximum thickness t V/I characteristic Derating curves pF W mm (inches) Page Page 90 250 450 1000 2500 85 235 425 930 2250 80 220 400 850 2000 70 190 340 750 2000 60 155 275 600 1650 55 140 250 550 1500 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8 TPC 4.1 4.1 4.7 4.7 5.1 4.2 4.2 4.8 4.8 5.2 4.3 4.3 4.9 4.9 5.3 4.5 4.5 5.1 5.1 5.5 4.9 4.9 5.5 5.5 5.9 5.1 5.1 5.7 5.7 6.1 (.161) (.161) (.185) (.185) (.201) (.165) (.165) (.189) (.189) (.205) (.169) (.169) (.193) (.193) (.209) (.177) (.177) (.201) (.201) (.217) (.193) (.193) (.217) (.217) (.232) (.201) (.201) (.224) (.224) (.240) 34 34 34 35 35 34 34 34 35 35 34 34 34 35 35 34 34 34 35 35 34 34 34 35 35 34 34 34 35 35 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 19 Zinc Oxide Varistors VE/VF Types for Heavy Duty Applications ("P Series") UL (USA and Canadian Standards) 20 VE Series P/N codification using (Dmax , Vrms) VF Series P/N codification using (dceramic, V1mA) Maximum operating voltage Nominal voltage at 1 mA dc Vrms VDC V1mA mini V1mA nominal V1mA maxi VE07P00251K VE09P00251K VE13P00251K VE17P00251K VE24P00251K _ _ _ _ _ _ _ _ _ _ VF05P10391K VF07P10391K VF10P10391K VF14P10391K VF20P10391K _ _ _ _ _ _ _ _ _ _ 250 320 351 390 429 VE07P02750K VE09P02750K VE13P02750K VE17P02750K VE24P02750K _ _ _ _ _ _ _ _ _ _ VF05P10431K VF07P10431K VF10P10431K VF14P10431K VF20P10431K _ _ _ _ _ _ _ _ _ _ 275 350 387 430 473 VE07P00301K VE09P00301K VE13P00301K VE17P00301K VE24P00301K _ _ _ _ _ _ _ _ _ _ VF05P10471K VF07P10471K VF10P10471K VF14P10471K VF20P10471K _ _ _ _ _ _ _ _ _ _ 300 385 423 470 517 VE09P00321K VE13P00321K VE17P00321K VE24P00321K _ _ _ _ _ _ _ _ VF07P10511K VF10P10511K VF14P10511K VF20P10511K _ _ _ _ _ _ _ _ 320 420 459 510 561 VE09P00351K VE13P00351K VE17P00351K VE24P00351K _ _ _ _ _ _ _ _ VF07P10561K VF10P10561K VF14P10561K VF20P10561K _ _ _ _ _ _ _ _ 350 460 504 560 616 VE09P03850K VE13P03850K VE17P03850K VE24P03850K _ _ _ _ _ _ _ _ VF07P10621K VF10P10621K VF14P10621K VF20P10621K _ _ _ _ _ _ _ _ 385 505 558 620 682 VE09P00421K VE13P00421K VE17P00421K VE24P00421K _ _ _ _ _ _ _ _ VF07P10681K VF10P10681K VF14P10681K VF20P10681K _ _ _ _ _ _ _ _ 420 560 612 680 748 VE13P00441K _ _ VE17P00441K _ _ VE24P00441K _ _ VF10P17150K _ _ VF14P17150K _ _ VF20P17150K _ _ 440 585 643 715 787 VE13P00461K _ _ VE17P00461K _ _ VE24P00461K _ _ VF10P10751K _ _ VF14P10751K _ _ VF20P10751K _ _ 460 615 675 750 825 VE13P00511K _ _ VE17P00511K _ _ VE24P00511K _ _ VF10P10821K _ _ VF14P10821K _ _ VF20P10821K _ _ 510 670 738 820 902 VE13P00551K _ _ VE17P00551K _ _ VE24P00551K _ _ VF10P10861K _ _ VF14P10861K _ _ VF20P10861K _ _ 550 715 774 860 946 VE13P05750K _ _ VE17P05750K _ _ VE24P05750K _ _ VF10P10911K _ _ VF14P10911K _ _ VF20P10911K _ _ 575 730 819 910 1001 VE13P06250K _ _ VE17P06250K _ _ VE24P06250K _ _ VF10P10102K _ _ VF14P10102K _ _ VF20P10102K _ _ 625 825 900 1000 1100 TPC Zinc Oxide Varistors VE/VF Types for Heavy Duty Applications ("P Series") Max. clamping voltage (8 x 20 s) Vp (V) Ip (A) Max. energy absorption (10 x 1000 s) W (J) Number of surges 1 surge Max. permissible peak current (8 x 20 s) Ip (A) 1 surge 2 surges Typical capacitance f = 1kHz Mean power dissipation Maximum thickness t V/I characteristic Derating curves pF W mm (inches) Page Page 645 645 645 645 645 5 10 25 50 100 17 35 70 140 280 800 1750 3500 6000 10000 600 1250 2500 4500 7000 50 130 230 500 1300 0.1 0.2 0.4 0.6 0.8 5.4 5.4 5.9 5.9 6.3 (.213) (.213) (.232) (.232) (.248) 34 34 34 35 35 24 25 26 27 28 710 710 710 710 710 5 10 25 50 100 20 40 80 160 310 800 1750 3500 6000 10000 600 1250 2500 4500 7000 45 120 210 450 1200 0.1 0.2 0.4 0.6 0.8 5.7 5.7 6.3 6.3 6.7 (.224) (.224) (.248) (.248) (.264) 34 34 34 35 35 24 25 26 27 28 775 775 775 775 775 5 10 25 50 100 21 42 85 170 340 800 1750 3500 6000 10000 600 1250 2500 4500 7000 40 100 180 400 1000 0.1 0.2 0.4 0.6 0.8 6.0 6.0 6.6 6.6 7.0 (.236) (.236) (.260) (.260) (.276) 34 34 34 35 35 24 25 26 27 28 840 840 840 840 10 25 50 100 45 90 180 360 1750 3500 5000 8000 1250 2500 4000 6000 100 170 380 950 0.2 0.4 0.6 0.8 6.4 7.0 7.0 7.5 (.252) (.276) (.276) (.295) 34 34 35 35 25 26 27 28 910 910 910 910 10 25 50 100 47 95 190 380 1750 3500 5000 8000 1250 2500 4000 6000 95 160 365 900 0.2 0.4 0.6 0.8 6.6 7.3 7.3 7.8 (.260) (.287) (.287) (.307) 34 34 35 35 25 26 27 28 1025 1025 1025 1025 10 25 50 100 50 100 200 400 1750 3500 5000 8000 1250 2500 4000 6000 95 150 350 850 0.2 0.4 0.6 0.8 7.0 7.7 7.7 8.1 (.276) (.303) (.303) (.319) 34 34 35 35 25 26 27 28 1120 1120 1120 1120 10 25 50 100 52 105 210 420 1750 3500 5000 8000 1250 2500 4000 6000 80 120 300 700 0.2 0.4 0.6 0.8 7.4 8.2 8.2 8.6 (.291) (.323) (.323) (.339) 34 34 35 35 25 26 27 28 1180 1180 1180 25 50 100 105 210 420 3500 5000 8000 2500 4000 6000 115 275 650 0.4 0.6 0.8 8.4 (.331) 8.4 (.331) 8.8 (.346) 34 35 35 26 27 28 1240 1240 1240 25 50 100 105 210 420 3500 5000 8000 2500 4000 6000 110 250 600 0.4 0.6 0.8 8.5 (.335) 8.5 (.335) 9.0 (.354) 34 35 35 26 27 28 1350 1350 1350 25 50 100 110 225 450 3500 5000 7500 2500 4000 6000 100 220 550 0.4 0.6 0.8 9.0 (.354) 9.0 (.354) 9.4 (.370) 34 35 35 26 27 28 1420 1420 1420 25 50 100 120 240 480 3500 5000 7500 2500 4000 6000 90 200 500 0.4 0.6 0.8 9.3 (.366) 9.3 (.366) 9.7 (.382) 34 35 35 26 27 28 1500 1500 1500 25 50 100 125 250 500 3500 5000 7500 2500 4000 6000 80 180 450 0.4 0.6 0.8 9.7 (.382) 9.7 (.382) 10.1 (.398) 34 35 35 26 27 28 1650 1650 1650 25 50 100 140 230 560 3500 5000 7500 2500 4000 6000 74 165 410 0.4 0.6 0.8 10.5 (.413) 10.5 (.413) 11.0 (.433) 34 35 35 26 27 28 TPC 21 Zinc Oxide Varistors Electrical Characteristics VE / VF Types VOLTAGE-CURRENT CHARACTERISTICS V/I characteristics give: - for I below 1 mA the maximum leakage current under Vdc - for I above 1 mA the maximum clamping voltage U(V) VE 07/VF 05 103 8 6 275 300 250 230 210 4 275 300 230 175 160 140 130 250 210 2 95 130 240 102 115 150 175 75 115 60 95 95 50 40 75 8 6 60 50 4 35 30 35 40 25 30 17 20 14 20 15 2 14 17 10 10-5 10-4 10-3 10-2 10-1 U(V) 1 102 10 I(A) 103 U(V) VE 13/VF 10 VE 09/VF 07 625 575 103 625 8 3 10 6 420 510 420 385 420 275 230 275 250 300 275 250 230 230 250 175 250 210 150 130 130 115 150 102 130 140 210 2 140 95 95 130 115 75 50 60 50 40 75 50 30 25 20 17 35 50 30 35 25 20 17 14 20 25 2 14 17 10 10-4 30 4 17 20 35 40 14 25 30 60 6 6 40 175 8 35 8 10-5 60 95 102 115 60 130 115 150 75 160 95 150 175 175 2 175 300 210 300 275 22 385 210 230 385 4 385 4 300 6 2 460 420 550 575 8 4 550 510 10-3 10-2 10-1 1 10 102 103 I(A) 14 10 TPC 10-5 10-4 10-3 10-2 10-1 1 10 102 103 I(A) Zinc Oxide Varistors Electrical Characteristics VE / VF Types VOLTAGE-CURRENT CHARACTERISTICS U(V) VE17/VF14 625 103 625 8 6 4 575 550 460 385 300 280 575 550 510 460 420 385 510 320 300 275 250 230 275 175 150 230 140 130 420 320 115 2 175 140 95 150 130 75 115 95 102 8 6 4 50 75 50 36 25 2 60 40 80 40 35 30 25 20 17 30 14 20 17 14 10 10-5 10-4 10-3 10-2 10-1 1 10 102 103 I(A) U(V) VE24/VF20 625 103 8 6 4 625 550 46 385 300 280 550 510 460 420 385 510 320 300 275 250 230 275 175 150 230 140 130 420 0 320 115 2 175 140 95 150 130 75 115 95 102 8 6 75 4 2 10 10-5 10-4 TPC 10-3 10-2 10-1 1 10 102 103 I(A) 23 Zinc Oxide Varistors Electrical Characteristics VE / VF Types MAXIMUM SURGE CURRENT (Ip) DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY Ip (A) 400 300 200 100 80 60 40 Ip (A) VE07M/VF05M 40VRMS 400 300 1 100 80 60 40 20 2 20 10 8 6 4 10 10 8 6 4 2 1 0.8 0.6 0.4 10 2 10 3 10 4 10 5 RMS 1 2 10 2 10 3 10 4 10 5 10 6 2 10 6 1 0.8 0.6 0.4 0.2 200 ( S) 2.000 Ip (A) 0.1 20 200 10000 VE07P/VF05P 130VRMS to 625VRMS 1000 1 2 10 100 10 2 10 3 10 4 10 5 10 6 10 1 10 24 > 40V 10 0.2 0.1 20 VE07M/VF05M 200 100 TPC 1000 ( S) 10000 2.000 (S) Zinc Oxide Varistors Electrical Characteristics VE / VF Types MAXIMUM SURGE CURRENT (Ip) DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY Ip (A) 800 600 400 300 200 100 80 60 40 20 10 8 6 4 Ip 2.000 (A) 1.000 800 600 400 VE09M/VF07M 40VRMS > 40V RMS 1 200 1 2 100 80 60 40 2 10 10 2 10 3 10 4 10 5 10 6 20 10 8 6 2 4 1 0.8 0.6 2 10 10 2 10 3 10 4 10 5 10 6 1 0.8 0.6 0.4 0.4 0.2 0.1 20 VE09M/VF07M 200 ( S) 2.000 Ip (A) 0.2 20 200 2.000 ( S) 10000 VE09P/VF07P 130VRMS to 625VRMS 1000 1 2 100 10 10 2 10 3 10 4 10 5 10 6 10 1 10 100 TPC 1000 ( S) 10000 25 Zinc Oxide Varistors Electrical Characteristics VE / VF Types MAXIMUM SURGE CURRENT (Ip) DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY Ip (A) 500 400 300 200 100 80 60 40 20 10 8 6 4 Ip (A) VE13M/VF10M 40VRMS VE13M/VF10M >40VRMS 1.000 800 600 400 1 2 10 10 2 10 3 10 4 10 5 1 2 200 10 100 80 60 10 6 10 2 10 3 10 4 10 5 10 6 40 20 2 10 8 6 4 1 0.8 0.6 0.4 2 0.2 0.1 0.08 0.06 20 3.000 2.000 200 ( S) 2.000 Ip (A) 1 0.8 0.6 0.4 20 200 10000 VE13P/VF10P 130VRMS to 625VRMS 1000 1 2 100 10 10 2 10 3 10 4 10 5 10 6 10 1 10 26 100 1000 TPC ( S) 10000 2.000 ( S) Zinc Oxide Varistors Electrical Characteristics VE / VF Types MAXIMUM SURGE CURRENT (Ip) DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY Ip (A) 1.000 800 600 Ip 5.000 (A) 4.000 3.000 2.000 VE17M/VF14M 40VRMS 400 1 200 2 100 80 60 40 10 10 2 10 3 10 4 20 10 5 1.000 800 600 400 > 40 V RMS 1 2 10 200 10 2 100 80 60 10 6 10 8 6 4 40 20 10 3 10 4 10 5 10 6 10 8 6 4 2 1 0.8 0.6 0.4 2 0.2 0.1 20 VE17M/VF14M 200 Ip (A) ( S) 2.000 1 0.8 0.6 20 200 2.000 ( S) 10000 VE17P/VF14P 130VRMS to 320VRMS 1000 1 2 10 10 2 10 3 100 10 4 10 5 10 6 10 1 10 100 1000 TPC ( S) 10000 27 Zinc Oxide Varistors Electrical Characteristics VE / VF Types MAXIMUM SURGE CURRENT (Ip) DERATING CURVES WITH PULSE WIDTH () AND FREQUENCY Ip (A) 7.000 6.000 5.000 4.000 3.000 2.000 1.000 800 600 400 200 VE24M/VF20M > 75 VRMS 1 2 10 10 2 10 3 100 80 60 40 10 5 20 10 6 10 4 10 8 6 4 2 1 0.8 20 200 ( S) 2.000 10000 Ip (A) VE24P/VF20P 130VRMS to 625VRMS 1000 100 1 2 10 20 10 2 10 3 10 4 10 5 10 6 10 1 10 28 TPC 100 1000 ( S) 10000 Zinc Oxide Varistors VN 32 Uncoated Discs DIMENSIONS: millimeters (inches) Type VN32M00251KVN32M02750KVN32M00321KVN32M00381KVN32M00421KVN32M00461KVN32M00511KVN32M00750K- d D t M 0 Type Material d 1 28 (1.10) 28 (1.10) 28 (1.10) 28 (1.10) 28 (1.10) 28 (1.10) 28 (1.10) 28 (1.10) t max. 2.8 (.110) 3.1 (.122) 3.7 (.146) 4.4 (.173) 4.9 (.193) 5.5 (.217) 6.0 (.236) 6.6 (.260) GENERAL CHARACTERISTICS HOW TO ORDER VN32 - D 1.5 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 0461 K -- RMS Operating Voltage Tolerance Suffix Max. operating temperature: +85C Storage temperature: -40C to +125C Ceramic discs with silver layer on each face MARKING On packaging only REMARK Discs of 14 mm and 20 mm available upon request PARTICULAR CHARACTERISTICS Max. operating voltage Nominal voltage at 1 mA DC Clamping voltage Vp(V) Type VN32M00251KVN32M02750KVN32M00321KVN32M00381KVN32M00421KVN32M00461KVN32M00511KVN32M00750K- VRMS (V) 250 275 320 380 420 460 510 575 - VDC (V) 330 369 420 500 560 615 675 730 VR (V) 390 430 510 610 680 750 820 910 at 2.5 kA 970 1075 1200 1350 1500 1650 1800 2000 at 2.5 kA 1100 1230 1380 1550 1700 1900 2070 2300 Energy Max. peak current 1 surge with insulating coating (10 x 1000 s) (8 x 20 s) W lp (kA) (J) 1 pulse 2 pulses 200 25 15 260 25 15 300 25 15 350 25 15 400 25 15 450 25 15 500 25 15 550 25 15 VOLTAGE-CURRENT CHARACTERISTICS 10,000 5750 0511 0461 0421 0381 0321 2750 0251 5 4 U (v) 2 1,000 8 5 4 2 100 10-5 10-4 10-3 10-2 10-1 1 10 100 1,000 10,000 I (A) TPC 29 Zinc Oxide Varistors VB 32 Blocks DIMENSIONS millimeters (inches) GENERAL CHARACTERISTICS 15...45 5 (.197) 40 (1.57) 54 (2.13) 44 (1.73) 24 (.945) Max. operating temperature: +85C Storage temperature: -40C to +85C MOUNTING ~ O 5 mm holes for screwing 500 mm long, 6 mm2 insulated copper cables 5 (.197) o 5.1 (.201) 20 (.787) PACKAGING 20 (.787) Bulk or three units per box (one for each phase) 44 (1.73) HOW TO ORDER VB32 M 0 Type Material MARKING 0421 K -- RMS Operating Voltage Tolerance Suffix Type AC nominal voltage (EIA code) Logo PARTICULAR CHARACTERISTICS Max. operating voltage Nominal voltage at 1 mA DC Clamping voltage at 2.5 kA VR (V) 390 430 510 610 680 750 820 910 Vp (V) 970 1075 1200 1350 1500 1650 1800 2000 Type VB32M00251KVB32M02750KVB32M00321KVB32M00381KVB32M00421KVB32M00461KVB32M00511KVB32M00750K- - VRMS (V) 250 275 320 380 420 460 510 575 VDC (V) 330 369 420 500 560 615 675 730 Energy Max. peak current 1 surge with insulating coating (10 x 1000 s) (8 x 20 s) W lp (kA) (J) 1 pulse 2 pulses 200 25 15 260 25 15 300 25 15 350 25 15 400 25 15 450 25 15 500 25 15 550 25 15 VOLTAGE-CURRENT CHARACTERISTICS 10,000 5750 0511 0461 0421 0381 0321 2750 0251 5 4 U (v) 2 1,000 8 5 4 2 100 10-5 10-4 10-3 10-2 10-1 1 I (A) 30 TPC 10 100 1,000 10,000 Zinc Oxide Varistors Taping Characteristics TAPING OF OUR VARISTORS IS MADE ACCORDING TO IEC 286-2 Types: VE07/09 - VF05/07 h P h p p Marking on this side Reference plane H1 P1 W2 H1 E A B H W0 H0 W1 W Adhesive tape I2 Direction of unreeling d D0 Cross section P0 t A-B E Types: VE13/17 - VF10/14 h p P h p Marking on this side Reference plane H1 W2 H1 E A B H W0 H0 W1 W Adhesive tape I2 Direction of unreeling d D0 P1 Cross section t A-B P0 E DIMENSIONS: Adhesive tape width Sprocket hole position Distance between the tops of the tape and the adhesive Diameter of sprocket hole Distance between the tape axis and the bottom plane of component body Distance between the tape axis and the kink Distance between the tape axis and the top of component body VE 07/09 - VF 05/07 VE 13/17 - VF 10/14 Lead diameter Protrusions beyond the lower side of the hold down tape Lead spacing Components pitch DIMENSIONS: millimeters (inches) Dimension Characteristics Leading tape width millimeters (inches) Value Tolerance 18 (.709) +1/-0.5 W The hold down tape shall not protrude beyond the W0 carrier tape 9 (.354) +0.75/-0.5 W1 Dimension Characteristics 3 (.118) max Verticality of components 0 2 Dp Alignment of components 0 2 Dh 4 (.157) 16/ or 18 16/ or 18 (.630)/ (.709) (.630)/ (.709) 33.0 (1.30) max 45.0 (1.77) max 0.6 0.8 (.024) (.031) W2 0.2 D0 0.5/ -0/+2 0.5/ -0/+2 H 7.62 (0.30) 25.4 (0.10) Tolerance Sprocket holes pitch 12.7 (0.50) 0.3 P0 Distance between the sprocket hole axe and the lead axe 3.8 (.150) 0.7 P1 Total thickness of tape 0.9 (.035) max t H0 H1 +10% -0.05 5 (.197) max 5.08 (0.20) 12.7 (0.50) Value d I2 0.8 E 0.3 p TPC 31 Zinc Oxide Varistors Taping Characteristics PACKAGING MISSING COMPONENTS For automatic insertion, the following types can be ordered on tape either in AMMOPACK (fan folder) or on REEL in accordance to IEC 286-2. A maximum of 3 consecutive components may be missing from the bandolier, surrounded by at least 6 filled positions. The number of missing components may not exceed 0.5% of the total per packing module. AMMOPACK millimeters (inches) REEL millimeters (inches) 295 (11.6) 360 (14.2) 33 5 (1 3. 2) 52 (2.05) 50 (1. 97 31 (1.22) ) - Straight leads LEADS CONFIGURATION AND PACKAGING SUFFIXES The tables below indicate the suffixes to be specified when ordering kink and packaging types. For devices on tape, it is necessary to specify the height (H or Ho) which is the distance between the tape axis (sprocket holes) and the sitting plane on the printed circuit board. H represents the distance between the sprocket holes axis and the bottom plane of component body (base of resin or base of stand off). - Kinked leads Ho represents the distance between the sprocket holes axis and the base of the knee. VE 07/09 - VF 05/07 (VE13 - VF10 320 Vrms upon request) Types Leads Straight Kinked (type 1) Kinked (type 2) Dimensions 0.6 (.024) 0.6 (.024) 5.08 (0.2) 0.6 (.024) 5.08 (0.2) 5.08 (0.2) Packaging AMMOPACK REEL AMMOPACK REEL AMMOPACK REEL H/Ho = 16 0.5 DA(*) DB(*) DQ(**) DR(**) D7(**) D5(**) H/Ho = 18 -0/+2 DC(**) DD(**) DS DT D8 D6 Types VE 13/17 - VF 10/14 Leads Straight Kinked (type 1) Kinked (type 2) Dimensions 0.8 (.031) 0.8 (.031) 7.62 (0.3) 0.8 (.031) 7.62 (0.3) 7.62 (0.3) Packaging AMMOPACK REEL AMMOPACK REEL AMMOPACK REEL H/Ho = 16 0.5 EA(*) EN(*) EC(**) EF(**) EQ(**) ER(**) H/Ho = 18 -0/+2 EB(**) ED(**) EG EH ES ET (*) DA, DB, EA, EN suffixes are not available for varistors with VRMS 300V are available only upon request for other types. (**) Preferred versions according to IEC 286-2 32 TPC > 300 VRMS Zinc Oxide Varistors Packaging PACKAGING QUANTITIES VE07 VE09 VE09 VE09 VE13 VE13 VE13 VE17 VE17 VE17 VE24 - Type VF05 all VF07 < 230 VRMS VF07 230 VRMS 300 VRMS VF07 > 300 VRMS VF10 230 VRMS VF10 > 230 VRMS 300 VRMS VF10 > 300 VRMS VF14 230 VRMS VF14 > 230 VRMS 300 VRMS VF14 > 300 VRMS VF20 Bulk 1500 1000 1000 750 500 500 500 500 500 500 250 AMMOPACK 1500 1500 1000 1000 750 500 -- 750 500 -- -- REEL 1500 1500 1000 1000 750 500 -- 750 500 -- -- IDENTIFICATION - TRACEABILITY On the packaging of all shipped varistors, you will find a bar code label. This label gives systematic information on the type of product, part number, lot number, manufacturing date and quantity. An example is given below: Lot number Manufacturing date (YYMMDD) Quantity per packaging Part number This information allows complete traceability of the entire manufacturing process, from raw materials to final inspection. This is extremely useful for any information request. TPC 33 Zinc Oxide Varistors Quality QUALITY SYSTEM A high level of performance, quality and service has been achieved in setting up a quality system based on the ISO 9000 standard. The system includes: * A quality manual ensuring the proper organization * Incoming inspection * Manufacturing process control and final inspection as described on page 35 * Reliability tests according to IEC 68 and CECC 42000 standards as described on page 36 * Continuous improvement programs APPROVALS The quality of our products and organization has been recognized by the following approvals: ISO 9002 Certificate of approval n 928373 CECC, EN100114-1 Certificate of approval of manufacturer n 004-96 CECC 42201-005 Qualification approval certificate N 96-024 All VE/VF types VDE Certificate of approval n 94763E All VE/VF types with VRMS from 25V to 575V Underwriters Laboratories, Inc./Canadian Standards Association * UL 1449 Transient Voltage Surge Suppressors File E 84108 (S) * UL 1414 - Across the line components File 184 051 All types VE/VF with VRMS from 130V to 275V List GAM T1 Types VB1 (VE09) to VB4 (VE24) List LNZ 44004 Types EPV-7A (VE09) to EPV-20A (VE24) 34 TPC Zinc Oxide Varistors Manufacturing Process and Quality Assurance Raw material incoming Grinding Mixing Spray drying Mixing Electrical test Pressing Binder burn out Weight: every batch Grinding time: every batch Density and viscosity: 1 time per batch Temperature, pressure, particle size: every batch Weight, mixing time, moist: every batch Every batch by sampling - Voltage/current characteristics degradation, physical characteristics Weight, thickness, visual inspection: every batch by sampling Thermal cycle: every batch Stacking Visual inspection 100% Sintering Thermal cycle: every batch Electrical test Silvering Silver firing Every batch by sampling: physical characteristics, capacitance, V1mA, leakage current, clamping voltage, degradation Visual inspection: every batch 100% Thermal cycle: every batch Soldering Temperature, visual inspection: every batch 100%. Every batch by sampling: spacing between leads Cleaning Thermal cycle: every batch Coating Thermal cycle, visual inspection: every batch by sampling Marking Visual inspection: every batch 100% Polymerization Thermal cycle: every batch Cutting leads Visual inspection lead length: every batch by sampling Final control Electrical: every batch 100%: V1mA; leakage current: sampling. Visual: every batch 100%, aspect, marking Quality control Every batch by sampling. AQL: V1mA, leakage current clamping voltage, visual inspection, dimensions, solderability Packaging Bulk: every batch pieces quantity. On tape: batch by sampling, visual inspection of taping Packaging Quality Control Every batch, taping dimensions, missing parts, taping defects, label check Shipping consignment Outgoing shipping - Verification Every batch, every shipment, packaging, documentation TPC 35 Zinc Oxide Varistors Reliability PRODUCT QUALITY ASSURANCE RELIABILITY TPC has a Quality System that complies with the ISO & CECC quality requirements. All products are tested and released by the quality department based on the compliance to established customer specifications. Critical raw materials are inspected for dimensional, electrical and physical properties prior to releasing to the production floor. Routine checks are carried out at crucial processes. The finished products are submitted to Quality Control for inspection on electrical, dimensional, physical & visual conformance to relevant specifications, based on established AQLs. The average outgoing quality level is < 10ppm on TPC varistors. The low ppm value is applicable for total functional failures, i.e. short circuit and open circuit. TPC varistors are subjected to reliability tests stated in page 37 (per CECC 42000). Life test is conducted to determine the life time of varistors. The test conditions used are stated in page 00. The varistors are subjected to these conditions for a minimum period of 1000 hours. Failure in time (FIT) is computed for all tested parts based on Arrhenius equation. The definition of failure is a shift in the nominal voltage exceeding 10%. The FIT calculation is computed in units of 10-9/h. Figures below give the FIT for low and high voltage varistors. The FIT values at various stresses are extrapolated based on Arrhenius equation. FIT OF VARISTORS (Vrms > 40 V) 100,000 1.0 VRMS 0.9 VRMS FIT (Failure in Time) 10,000 0.8 VRMS 0.7 VRMS 1,000 100 10 1 40 60 80 Temperature (C) 100 120 FIT OF VARISTORS (Vrms </= 40 V) 1,000,000 1.0 VRMS 0.9 VRMS FIT (Failure in Time) 100,000 10,000 0.8 VRMS 0.7 VRMS 1,000 100 10 1 20 36 TPC 40 60 80 Temperature (C) 100 120 Zinc Oxide Varistors Reliability Test Description Test Condition SURGE CURRENT DERATING 8/20 MICRO SECONDS CECC 42000, Test C 2.1 100 surge currents (8/20 s), unipolar, interval 30 s, amplitude corresponding to derating curve for 20 s. SURGE CURRENT DERATING 10/1000 MICRO SECONDS CECC 42000, Test C 2.1 100 surge currents (10/1000 s), unipolar, interval 120 s, amplitude corresponding to derating curve for 1000 s. RESISTANCE TO SOLDERING HEAT RAPID CHANGE IN TEMPERATURE IEC 68-2-20, Test Tb Method 1A 260C, 5 s IEC 68-2-14, Test Na Ta = -40C; Tb = +85C Duration: 1 Hr/cycle Total: 5 cycles IEC 68-2-27, Test Ea Pulse shape: half sine Acceleration: 490 m/s/s Pulse duration: 11 ms 3 x 6 shocks IEC 68-2-6, Test Fc Method B4 Freq. range: 10 Hz ... 55 Hz Amplitude: 0.75 mm or 98 m/s/s Duration: 6 h (3 x 2 h) CECC 42000, Test 4.16 a) Dry heat - Test Ba Temperature / Duration: 125C / 2 h b) Damp heat cyclic 1st cycle - Test Db Temperature / Duration: 55C / 24 h Humidity: 95-100% RH c) Cold - Test Aa Temperature / Duration: -40C / 2 h d) Damp heat cyclic test remaining 5 humidity cycles - Test Db Duration: 24 h/cycle CECC 42000, Test 4.20 Applied voltage: max continuous a.c. Voltage, continuous application Temperature / Duration: 85C / 1000 h IEC 68-2-3 Temperature / Duration: 40C / 56 days Humidity: 93% IEC 695-2-2 Vertical application: 10 s Current: 1 mA Temperature: -40C / +25C / +85C Test Requirement * I Delta V/V (1 mA) I max 10% Measured in the direction of the surge current * No visible damage * I Delta V/V (1 mA) I max 10% Measured in the direction of the surge current * No visible damage SHOCK VIBRATION CLIMATIC SEQUENCE LIFE TEST DAMP HEAT, STEADY STATE FLAMMABILITY NEEDLE FLAME TEST TEMPERATURE COEFFICIENT OF VOLTAGE TPC * I Delta V/V (1 mA) I max 5% * I Delta V/V (1 mA) I max 5% * No visible damage * I Delta V/V (1 mA) I max 5% * No visible damage * I Delta V/V (1 mA) I max 5% * No visible damage * I Delta V/V (1 mA) I max 10% * Insulation Resistance min 1 Mohm * I Delta V/V (1 mA) I max 10% * Insulation Resistance min 10 Mohm * I Delta V/V (1 mA) I max 10% * Insulation Resistance min 1 Mohm * Burning max 10 s * - (0.09%/K) max 37 USA EUROPE ASIA-PACIFIC AVX Myrtle Beach, SC Corporate Offices AVX Limited, England European Headquarters AVX/Kyocera, Singapore Asia-Pacific Headquarters Tel: 843-448-9411 FAX: 843-448-1943 Tel: ++44 (0)1252 770000 FAX: ++44 (0)1252 770001 Tel: (65) 258-2833 FAX: (65) 350-4880 AVX Northwest, WA AVX S.A., France AVX/Kyocera, Hong Kong Tel: 360-669-8746 FAX: 360-699-8751 Tel: ++33 (1) 69.18.46.00 FAX: ++33 (1) 69.28.73.87 Tel: (852) 2-363-3303 FAX: (852) 2-765-8185 AVX North Central, IN AVX GmbH, Germany - AVX AVX/Kyocera, Korea Tel: 317-848-7153 FAX: 317-844-9314 Tel: ++49 (0) 8131 9004-0 FAX: ++49 (0) 8131 9004-44 Tel: (82) 2-785-6504 FAX: (82) 2-784-5411 AVX Northeast, MA AVX GmbH, Germany - Elco AVX/Kyocera, Taiwan Tel: 508-485-8114 FAX: 508-485-8471 Tel: ++49 (0) 2741 2990 FAX: ++49 (0) 2741 299133 Tel: (886) 2-2696-4636 FAX: (886) 2-2696-4237 AVX Mid-Pacific, CA AVX srl, Italy AVX/Kyocera, China Tel: 408-436-5400 FAX: 408-437-1500 Tel: ++390 (0)2 614571 FAX: ++390 (0)2 614 2576 Tel: (86) 21-6249-0314-16 FAX: (86) 21-6249-0313 AVX Southwest, AZ AVX sro, Czech Republic AVX/Kyocera, Malaysia Tel: 602-539-1496 FAX: 602-539-1501 Tel: ++420 (0)467 558340 FAX: ++420 (0)467 558345 Tel: (60) 4-228-1190 FAX: (60) 4-228-1196 Elco, Japan AVX South Central, TX Tel: 045-943-2906/7 FAX: 045-943-2910 Tel: 972-669-1223 FAX: 972-669-2090 Kyocera, Japan - AVX AVX Southeast, NC Tel: (81) 75-604-3426 FAX: (81) 75-604-3425 Tel: 919-878-6357 FAX: 919-878-6462 Kyocera, Japan - KDP AVX Canada Tel: 905-564-8959 FAX: 905-564-9728 Tel: (81) 75-604-3424 FAX: (81) 75-604-3425 Contact: A KYOCERA GROUP COMPANY http://www.avxcorp.com S-ZOV00M999-C