November 2009 I
© 2009 Actel Corporation
Radiation-Tolerant ProASIC3 Low-Power Space-
Flight Flash FPGAs
with Flash*Freeze Technology
Features and Benefits
MIL-STD-883 Class B Qualified Packaging
Ceramic Column Grid Array with Six Sigma Copper-
Wrapped Lead-Tin Columns
Land Grid Array
Low Power
Dramatic Reduction in Dynamic and Static Power
1.2 V to 1.5 V Core and I/O Voltage Support for Low
Power
Low Power Consumption in Flash*Freeze Mode Enables
Instantaneous Entry To / Exit From Low-Power
Flash*Freeze Mode
Supports Single-Voltage System Operation
Low-Impedance Switches
Radiation Tolerant
15 krad Total Ionizing Dose (TID)
Wafer-Lot-Specific TID Reports
High Capacity
600 k to 3 M System Gates
Up to 504 kbits of True Dual-Port SRAM
Up to 620 User I/Os
Reprogrammable Flash Technology
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Process
Live-at-Power-Up (LAPU) Level 0 Support
Single-Chip Solution
Retains Programmed Design when Powered Off
High Performance
350 MHz (1.5 V) and 250 MHz (1.2 V) System Performance
3.3 V, 66 MHz, 66-Bit PCI (1.5 V); 66 MHz, 32-Bit PCI (1.2 V)
In-System Programming (ISP) and Security
Secure ISP Using On-Chip 128-Bit Advanced Encryption
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)
•FlashLock
® to Secure FPGA Contents
High-Performance Routing Hierarchy
Segmented, Hierarchical Routing and Clock Structure
High-Performance, Low-Skew Global Network
Architecture Supports Ultra-High Utilization
Advanced and Pro (Professional) I/Os
700 Mbps DDR, LVDS-Capable I/Os
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage
Operation
Bank-Selectable I/O Voltages—up to 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and
LVCMOS 2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II (RT3PE3000L only)
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold-Sparing I/Os
Programmable Output Slew Rate and Drive Strength
Programmable Input Delay (RT3PE3000L only)
Schmitt Trigger Option on Single-Ended Inputs
(RT3PE3000L)
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the Radiation-Tolerant
ProASIC®3 Family
Clock Conditioning Circuit (CCC) and PLL
Six CCC Blocks, All with Integrated PLL (RT ProASIC3)
Configurable Phase Shift, Multiply/Divide, Delay
Capabilities, and External Feedback
Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V
systems) and 350 MHz (1.5 V systems)
SRAMs and FIFOs
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4,
×9, and ×18 organizations available)
True Dual-Port SRAM (except ×18)
24 SRAM and FIFO Blocks with Synchronous Operation:
250 MHz: For 1.2 V Systems
350 MHz: For 1.5 V Systems
®
Table I-1 • Radiation-Tolerant (RT) ProASIC3 Low-Power Space-Flight FPGAs
RT ProASIC3 Devices RT3PE600L RT3PE3000L
System Gates 600 k 3 M
VersaTiles (D-flip-flops) 13,824 75,264
RAM kbits (1,024 bits) 108 504
4,608-Bit Blocks 24 112
FlashROM Bits 1 k 1 k
Secure (AES) ISP Yes Yes
Integrated PLL in CCCs 66
VersaNet Globals 18 18
I/O Banks 88
Maximum User I/Os 270 620
Package Pins
CCGA/LGA
CQFP
CG/LG484
CQ256
CG/LG484, CG/LG896
CQ256
Advance v0.2
Radiation-Tolerant ProASIC3 Low-Power Space-Flight Flash FPGAs
II Advance v0.2
I/Os Per Package 1
RT ProASIC3 Ordering Information
Radiation-Tolerant ProASIC3
Low-Power Devices RT3PE600L RT3PE3000L
Package Single-Ended I/Os2Differential I/O Pairs Single-Ended I/Os2Differential I/O Pairs
CG/LG484 270 135 341 168
CG/LG896 620 310
CQ256 TBD TBD TBD TBD
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the
datasheet to ensure you are complying with design and board migration requirements.
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
3. For RT3PE3000L devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V / GTL 2.5 V: up to 72 I/Os per north or south bank
4. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-
ended user I/Os available is reduced by one.
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
RT3PE3000L CG
_
Part Number
RT ProASIC3 Space-Flight FPGAs
1
Package Type
484 B
Package Lead Count
Application (Screening Level)
B = MIL-STD-883 Class B
600,000 System Gates
RT3PE600L =
3,000,000 System Gates
RT3PE3000L =
CG =Ceramic Column Grid Array (1.0 mm pitch)
LG=Land Grid Array (1.0 mm pitch)
CQ=Ceramic Quad Flat Pack
Radiation-Tolerant ProASIC3 Low-Power Space-Flight Flash FPGAs
Advance v0.2 III
Temperature Grade Offerings
Speed Grade and Temperature Grade Matrix
Contact your local Actel representative for device availability: http://www.actel.com/contact/default.aspx.
Package RT3PE600L RT3PE3000L
CG/LG484 BB
CG/LG896 –B
CQ256 BB
Note: B = MIL-STD-883 Class B screening
Temperature Grade Std. –1
B✓✓
Note: B = MIL-STD-883 Class B screening
Advance v0.2 1-1
1 – Radiation-Tolerant ProASIC3 Low-Power Space-
Flight FPGA Overview
General Description
The radiation-tolerant (RT) ProASIC3 family of Actel flash FPGAs dramatically reduces dynamic
power consumption by 40% and static power by 50%. These power savings are coupled with
performance, density, true single chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability,
and advanced features. The RT ProASIC3 FPGA is based on Actel's ProASIC3EL family of low-power
FPGAs.
Actel's proven Flash*Freeze technology enables RT ProASIC3 device users to shut off dynamic
power instantaneously and switch the device to static mode without the need to switch off clocks
or power supplies, and retaining internal states of the device. This greatly simplifies power
management. In addition, optimized software tools using power-driven layout provide instant
push-button power reduction.
Nonvolatile flash technology gives RT ProASIC3 devices the advantage of being a secure, low-
power, single-chip solution that is live at power-up (LAPU). RT ProASIC3 devices offer dramatic
dynamic power savings, giving FPGA users flexibility to combine low power with high performance.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
RT ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well
as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). RT ProASIC3
devices support devices from 600 k system gates to 3 million system gates with up to 504 kbits of
true dual-port SRAM and 620 user I/Os.
Flash*Freeze Technology
RT ProASIC3 devices offer Actel's proven Flash*Freeze technology, which allows instantaneous
switching from an active state to a static state. When Flash*Freeze mode is activated, RT ProASIC3
devices enter a static state while retaining the contents of registers and SRAM. Power is conserved
without the need for additional external components to turn off I/Os or clocks. Flash*Freeze
technology is combined with in-system programmability, which enables users to quickly and easily
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of
RT ProASIC3 devices to support a 1.2 V core voltage allows for an even greater reduction in power
consumption, which enables low total system power.
When the RT ProASIC3 device enters Flash*Freeze mode, the device automatically shuts off the
clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes
and data is retained.
The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage
solution, make RT ProASIC3 devices suitable for low-power data transfer and manipulation in
military-temperature applications where available power may be limited (e.g., in battery-powered
equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling).
Flash Advantages
Low Power
The RT ProASIC3 family of Actel flash-based FPGAs provides a low-power advantage, and when
coupled with high performance, enables designers to make power-smart choices using a single-
chip, reprogrammable, and live-at-power-up device.
RT ProASIC3 devices offer 40% dynamic power and 50% static power savings by reducing the core
operating voltage to 1.2 V. In addition, the power-driven layout (PDL) feature in Libero® Integrated
Design Environment (IDE) offers up to 30% additional power reduction. With Flash*Freeze
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA Overview
1-2 Advance v0.2
technology, an RT ProASIC3 device is able to retain device SRAM and logic while dynamic power is
reduced to a minimum, without the need to stop clock or power supplies. Combining these
features provides a low-power, feature-rich, and high-performance solution.
Security
Nonvolatile, flash-based RT ProASIC3 devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. RT ProASIC3 devices incorporate FlashLock, which
provides a unique combination of reprogrammability and design security without external
overhead, advantages that only an FPGA with nonvolatile flash programming can offer.
RT ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to secure
programmed intellectual property and configuration data. In addition, all FlashROM data in RT
ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192)
bit block cipher encryption standard. AES was adopted by the National Institute of Standards and
Technology (NIST) in 2000 and replaces the 1977 DES standard. RT ProASIC3 devices have a built-in
AES decryption engine and a flash-based AES key that make them the most comprehensive
programmable logic device security solution available today. RT ProASIC3 devices with AES-based
security allow for secure, remote field updates over public networks such as the Internet, and
ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP
thieves. The contents of a programmed device cannot be read back, although secure design
verification is possible.
Security, built into the FPGA fabric, is an inherent component of the RT ProASIC3 family. The flash
cells are located beneath seven metal layers, and many device design and layout techniques have
been used to make invasive attacks extremely difficult. The RT ProASIC3 family, with FlashLock and
AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your
valuable IP is protected and secure, making remote ISP possible. An RT ProASIC3 device provides
the most impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,
the configuration data is an inherent part of the FPGA structure, and no external configuration
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based RT
ProASIC3 FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB
area, and increases security and system reliability.
Live at Power-Up
Actel flash-based RT ProASIC3 devices support Level 0 of the LAPU classification standard. This
feature helps in system component initialization, execution of critical tasks before the processor
wakes up, setup and configuration of memory blocks, clock generation, and bus activity
management. The LAPU feature of flash-based RT ProASIC3 devices greatly simplifies total system
design and reduces total system cost, often eliminating the need for CPLDs and clock generation
PLLs. In addition, glitches and brownouts in system power will not corrupt the device's flash
configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system
power is restored. This enables the reduction or complete removal of the configuration PROM,
expensive voltage monitor, brownout detection, and clock generator devices from the PCB design.
Flash-based RT ProASIC3 devices simplify total system design and reduce cost and design risk while
increasing system reliability and improving system initialization time.
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike
SRAM-based FPGAs, flash-based RT ProASIC3 devices allow all functionality to be live at power-up;
no external boot PROM is required. On-board security mechanisms prevent access to all the
programming information and enable secure remote updates of the FPGA logic. Designers can
perform secure remote in-system reprogramming to support future design iterations and field
upgrades with confidence that valuable intellectual property cannot be compromised or copied.
Secure ISP can be performed using the industry-standard AES algorithm. The RT ProASIC3 family
device architecture mitigates the need for ASIC migration at higher volumes. This makes the RT
ProASIC3 family a cost-effective ASIC replacement.
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA
Advance v0.2 1-3
Advanced Flash Technology
The RT ProASIC3 family offers many benefits, including nonvolatility and reprogrammability,
through an advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS
design techniques are used to implement logic and control functions. The combination of fine
granularity, enhanced flexible routing resources, and abundant flash switches allows for very high
logic utilization without compromising device routability or performance. Logic functions within
the device are interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary RT ProASIC3 architecture provides granularity comparable to standard-cell ASICs.
The RT ProASIC3 device consists of five distinct and programmable architectural features
(Figure 1-1):
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory
Extensive CCCs and PLLs
I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate
flash switch interconnections. The versatility of the RT ProASIC3 core tile, as either a three-input
lookup table (LUT) equivalent or a D-flip-flop/latch with enable, allows for efficient use of the
FPGA fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generation-
architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy.
Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable
interconnect programming. Maximum core utilization is possible for virtually any design.
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)
programming of RT ProASIC3 devices via an IEEE 1532 JTAG interface.
Figure 1-1 • RT ProASIC3 Device Architecture Overview
4,608-Bit Dual-Port SRAM
or FIFO Block
VersaTile
RAM Block
CCC
Pro I/Os
4,608-Bit Dual-Port SRAM
or FIFO Block
RAM Block
ISP AES
Decryption*
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA Overview
1-4 Advance v0.2
Flash*Freeze Technology
RT ProASIC3 devices offer Actel's proven Flash*Freeze technology, which enables designers to
instantaneously shut off dynamic power consumption while retaining all SRAM and register
information. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit
Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are kept at their
original values. In addition, I/Os and global I/Os can still be driven and can be toggling without
impact on power consumption; clocks can still be driven or can be toggling without impact on
power consumption; all core registers and SRAM cells retain their states. I/Os are tristated during
Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute
configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLLs. Flash*Freeze
technology allows the user to switch to active mode on demand, thus simplifying the power
management of the device.
The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when
it is safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if
Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low-
power static and dynamic capabilities of the RT ProASIC3 device. Refer to Figure 1-2 for an
illustration of entering/exiting Flash*Freeze mode.
VersaTiles
The RT ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS®
core tiles. The RT ProASIC3 VersaTile supports the following:
All 3-input logic functions—LUT-3 equivalent
Latch with clear or set
D-flip-flop with clear or set
Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
Figure 1-2 • RT ProASIC3 Flash*Freeze Mode
Actel RT ProASIC3
FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
Figure 1-3 • VersaTile Configurations
X1
Y
X2
X3
LUT-3
Data Y
CLK
Enable
CLR
D-FF
Data Y
CLK
CLR
D-FF
LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA
Advance v0.2 1-5
User Nonvolatile FlashROM
Actel RT ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The
FlashROM can be used in diverse system applications:
Internet protocol addressing (wireless or fixed)
System calibration settings
Device serialization and/or inventory control
Subscription-based business models (for example, set-top boxes)
Secure key storage for secure communications algorithms
Asset management/tracking
Date stamping
Version management
FlashROM is written using the standard RT ProASIC3 IEEE 1532 JTAG programming interface. The
core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored in the FlashROM for
a user design.
FlashROM can be programmed via the JTAG programming interface, and its contents can be read
back either through the JTAG programming interface or via direct FPGA core addressing. Note that
the FlashROM can only be programmed from the JTAG interface and cannot be programmed from
the internal logic array.
FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8
banks and which of the 16 bytes within that bank are being read. The three most significant bits
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of
the FlashROM address define the byte.
The Actel RT ProASIC3 development software solutions, Libero IDE and Designer, have extensive
support for the FlashROM. One such feature is auto-generation of sequential programming files
for applications requiring a unique serial number in each part. Another feature allows the inclusion
of static data for system version control. Data for the FlashROM can be generated quickly and
easily using Actel Libero IDE and Designer software tools. Comprehensive programming file
support is also included to allow for easy programming of large numbers of parts with differing
FlashROM contents.
SRAM and FIFO
RT ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each variable-
aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be
configured with different bit widths on each port. For example, data can be sent through a 4-bit
port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device
JTAG port (ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the
SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The
FIFO width and depth are programmable. The FIFO also features programmable Almost Empty
(AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The
embedded FIFO control unit contains the counters necessary for generation of the read and write
address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
RT ProASIC3 space-flight FPGAs provide designers with flexible clock conditioning circuit (CCC)
capabilities. Each member of the RT ProASIC3 family contains six CCCs, located at the four corners
and the centers of the east and west sides. All six CCC blocks are equipped with a PLL. All six CCC
blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well
as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA Overview
1-6 Advance v0.2
The CCC block has these key features:
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
2 programmable delay types for clock skew minimization
Clock frequency synthesis
Additional CCC specifications:
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output
divider configuration.
Output duty cycle = 50% ± 1.5% or better
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single
global network used
Maximum acquisition time is 300 µs
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC
Global Clocking
RT ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC
and PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for
rapid distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The RT ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages
(1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for RT ProASIC3 devices.
RT ProASIC3 FPGAs support different I/O standards, including single-ended, differential, and
voltage-referenced. The I/Os are organized into banks, with eight banks per device. The
configuration of these banks determines the I/O standards supported. For RT ProASIC3, each I/O
bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks
contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O
in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be
able to use that reference voltage.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
Double-data-rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).
RT ProASIC3 banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up
to 20 loads.
Part Number and Revision Date
Part Number 51700107-001-1
Revised November 2009
Radiation-Tolerant ProASIC3 Low-Power Space-Flight FPGA
Advance v0.2 1-7
List of Changes
The following table lists critical changes that were made in the current version of the document.
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
Previous Version Changes in Current Version (Advance v0.2) Page
Advance v0.1
(September 2008)
The CQFP package was added. The tables in this chapter and the "RT ProASIC3
Ordering Information" section were revised to reflect this.
I-I to I-III
Advance v0.1 2-1
2 – Radiation-Tolerant ProASIC3 DC and Switching
Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
absolute maximum ratings are stress ratings only; functional operation of the device at these or
any other conditions beyond those listed under the Recommended Operating Conditions specified
in Table 2-2 on page 2-2 is not implied.
Table 2-1 Absolute Maximum Ratings
Symbol Parameter Limits Units
VCC DC core supply voltage –0.3 to 1.65 V
VJTAG JTAG DC voltage –0.3 to 3.75 V
VPUMP Programming voltage –0.3 to 3.75 V
VCCPLL Analog power supply (PLL) –0.3 to 1.65 V
VCCI and VMV3DC I/O buffer supply voltage –0.3 to 3.75 V
VI I/O input voltage –0.3 V to 3.6 V (when I/O hot insertion mode is
enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage
is lower (when I/O hot-insertion mode is
disabled)
V
TSTG 2Storage temperature –65 to +150 °C
TJ2Junction temperature +150 °C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input
signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-7.
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for
recommended operating limits, refer to Table 2-2 on page 2-2.
3. VMV pins must be connected to the corresponding VCCI pins. Refer to the Pin Descriptions chapter for
further information.
Radiation-Tolerant ProASIC3 FPGAs
2-2 Advance v0.1
Table 2-2 Recommended Operating Conditions2
Symbol Parameter Military Units
TAAmbient temperature –55 to 125 °C
TJJunction temperature –55 to 125 °C
VCC DC core supply voltage 1.14 to 1.575 V
VJTAG JTAG DC voltage 1.4 to 3.45 V
VPUMP3Programming voltage Programming mode 3.15 to 3.45 V
Operation30 to 3.6 V
VCCPLL Analog power supply (PLL) DC core supply voltage 1.14 to 1.575 V
VCCI and VMV41.2 V DC supply voltage 1.14 to 1.26 V
1.5 V DC supply voltage 1.425 to 1.575 V
1.8 V DC supply voltage 1.7 to 1.9 V
2.5 V DC supply voltage 2.3 to 2.7 V
3.3 V DC supply voltage 3.0 to 3.6 V
LVDS differential I/O 2.375 to 2.625 V
LVPECL differential I/O 3.0 to 3.6 V
Notes:
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each
I/O standard are given in Table 2-17 on page 2-22. VMV and VCCI should be at the same voltage within a
given I/O bank.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. VPUMP can be left floating during normal operation (not programming mode).
4. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter for further
information.
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.
Figure 2-1 • High-Temperature Data Retention (HTR)
0
10
20
30
40
50
60
70
80
90
100
110
70 85 100 105 110 115 120 125 130 135 140 145 150
Temperature (ºC)
Years
Tj (°C)
HTR
Lifetime
(yrs)
70 102.7
85 43.8
100 20.0
105 15.6
110 12.3
115 9.7
120 7.7
125 6.2
130 5.0
135 4.0
140 3.3
145 2.7
150 2.2
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-3
Table 2-3 • Overshoot and Undershoot Limits
VCCI and VMV
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle
Maximum Overshoot/
Undershoot (125°C)
2.7 V or less 10%0.72 V
5%0.82 V
3 V 10%0.72 V
5%0.81 V
3.3 V 10%0.69 V
5%0.79 V
3.6 V 10%N/A
5%N/A
Notes:
1. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two
cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
2. This table does not provide PCI overshoot/undershoot limits.
Radiation-Tolerant ProASIC3 FPGAs
2-4 Advance v0.1
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These
circuits ensure easy transition from the powered-off state to the powered-up state of the device.
The many different supplies can power up in any sequence with minimized current spikes or surges.
In addition, the I/O will be in a known state through the power-up sequence. The basic principle is
shown in Figure 2-2 on page 2-5 and Figure 2-3 on page 2-6.
There are five regions to consider during power-up.
RT ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5 and
Figure 2-3 on page 2-6).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note
the following:
During programming, I/Os become tristated and weakly pulled up to VCCI.
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-5
PLL Behavior at Brownout Condition
Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-
up behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 and
Figure 2-3 on page 2-6 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V
± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Power-
Up/-Down Behavior of Low-Power Flash Devices chapter of the handbook for information on clock
and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
Figure 2-2 • Devices Operating at 1.5 V Core – I/O State as a Function of VCCI and VCC Voltage Levels
Region 1: I/O buffers are OFF
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCC
VCC = 1.425 V
Region 1: I/O Buffers are OFF
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
V
d
= 0.8 V ± 0.3 V
VCC = 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH/VOL , etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH/VIL levels, and output
buffers do not meet VOH/VOL levels.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCCI
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
VCC = VCCI + VT
Radiation-Tolerant ProASIC3 FPGAs
2-6 Advance v0.1
Figure 2-3 • Device Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage Levels
Region 1: I/O buffers are OFF
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because V
CCI
/V
CC
are below
specification. For the same reason, input
buffers do not meet V
IH
/V
IL
levels, and
output buffers do not meet V
OH
/V
OL
levels.
Min V
CCI
datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
V
CC
V
CC
= 1.14 V
Region 1: I/O Buffers are OFF
Activation trip point:
V
a
= 0.85 V ± 0.2 V
Deactivation trip point:
V
d
= 0.75 V ± 0.2 V
Activation trip point:
V
a
= 0.9 V ± 0.15 V
Deactivation trip point:
V
d
= 0.8 V ± 0.15 V
V
CC
= 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, V
IH
/V
IL
, V
OH
/V
OL
, etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because V
CCI
is
below specification. For the
same reason, input buffers do not
meet V
IH
/V
IL
levels, and output
buffers do not meet V
OH
/V
OL
levels.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
V
CCI
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the V
CC
is below specification.
V
CC
= V
CCI
+ VT
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-7
Thermal Characteristics
Introduction
The temperature variable in the Actel Designer software refers to the junction temperature, not
the ambient temperature. This is an important distinction because dynamic and static power
consumption cause the chip junction temperature to be higher than the ambient temperature.
EQ 2-1 can be used to calculate junction temperature.
TJ = Junction Temperature = ΔT + TA
EQ 2-1
where:
TA = Ambient Temperature
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-4.
P = Power dissipation
Package Thermal Characteristics
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The
recommended maximum junction temperature is 125°C. EQ 2-2 shows a sample calculation of the
recommended maximum power dissipation allowed for a 484-pin CCGA package with the junction
at 125°C and with the case temperature maintained at 70°C.
EQ 2-2
Maximum Power Allowed Max. junction temp. (°C) Max. case temp. (°C)
θjc(°C/W)
-----------------------------------------------------------------------------------------------------------------------------=
Table 2-4 • Package Thermal Resistivities
Package Type Device Pin Count θjc
θja
UnitsStill Air 200 ft./min. 500 ft./min.
Ceramic Column Grid Array (CCGA) RT3PE600L 484 TBD TBD TBD TBD C/W
RT3PE3000L 484 TBD TBD TBD TBD C/W
RT3PE3000L 896 TBD TBD TBD TBD C/W
Radiation-Tolerant ProASIC3 FPGAs
2-8 Advance v0.1
Temperature and Voltage Derating Factors
Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 125°C, VCC = 1.14 V)
Junction Temperature
Array Voltage VCC (V) –55°C –40°C 0°C 25°C 70°C 85°C 125°C
1.14 0.86 0.87 0.90 0.92 0.96 0.98 1.00
1.2 0.83 0.84 0.87 0.89 0.93 0.94 0.96
1.26 0.79 0.80 0.83 0.85 0.89 0.90 0.92
1.3 0.77 0.78 0.81 0.83 0.86 0.88 0.90
1.35 0.75 0.75 0.78 0.80 0.83 0.85 0.87
1.4 0.72 0.73 0.75 0.77 0.80 0.81 0.83
1.425 0.70 0.71 0.74 0.76 0.79 0.80 0.82
1.5 0.67 0.67 0.70 0.71 0.75 0.76 0.78
1.575 0.64 0.65 0.67 0.69 0.72 0.73 0.75
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-9
Calculating Power Dissipation
Quiescent Supply Current
Table 2-6 • Quiescent Supply Current (IDD) Characteristics When Using Flash*Freeze Mode in RT ProASIC3*
Core Voltage RT3PE600L RT3PE3000L Units
Typical (25°C) 1.2 V 2.75 mA
1.5 V mA
*IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6
and PDC7).
Table 2-7 Quiescent Supply Current (IDD) Characteristics, RT ProASIC3 Sleep Mode (VCC = 0 V)*
Core Voltage RT3PE600L RT3PE3000L Units
VCCI / VJTAG = 1.2 V (per bank)
Typ ic al ( 2 5 ° C)
1.2 V / 1.5 V 1.7 1.7 µA
VCCI / VJTAG = 1.5 V (per bank)
Typ ic al ( 2 5 ° C)
1.2 V / 1.5 V 1.8 1.8 µA
VCCI / VJTAG = 1.8 V (per bank)
Typ ic al ( 2 5 ° C)
1.2 V / 1.5 V 1.9 1.9 µA
VCCI / VJTAG = 2.5 V (per bank)
Typ ic al ( 2 5 ° C)
1.2 V / 1.5 V 2.2 2.2 µA
VCCI / VJTAG = 3.3 V (per bank)
Typ ic al ( 2 5 ° C)
1.2 V / 1.5 V 2.5 2.5 µA
*IDD includes VCC , VPUMP, and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7).
Table 2-8 • Quiescent Supply Current (IDD) Characteristics Shutdown Mode, (VCC and VCCI = 0 V)*
Core Voltage RT3PE600L RT3PE3000L
Typical (25°C) 1.2 V / 1.5 V 0 µA
*IDD includes VCC , VPUMP, VCCI, VJTAG, and VCCPLL currents. Values do not include I/O static contribution (PDC6
and PDC7).
Radiation-Tolerant ProASIC3 FPGAs
2-10 Advance v0.1
Table 2-9 • Quiescent Supply Current (IDD), RT ProASIC3 Flash*Freeze Mode1
Core Voltage RT3PE600L RT3PE3000L Units
ICCA Current2
Typical (25°C) 1.2 V 2.75 mA
1.5 V mA
ICCI or IJTAG Current3, 4
VCCI / VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V / 1.5 V 1.7 1.7 µA
VCCI / VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V 1.8 1.8 µA
VCCI / VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V / 1.5 V 1.9 1.9 µA
VCCI / VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V 2.2 2.2 µA
VCCI / VJTAG = 3.3 V (per bank)
Typical (25°C)
1.2 V / 1.5 V 2.5 2.5 µA
Notes:
1. To calculate total device IDD, multiply the number of banks used by ICCI and add ICCA contribution.
2. Includes VCC , VCCPLL, and VPUMP currents.
3. Per VCCI or VJTAG bank.
4. Values do not include I/O static contribution (PDC6 and PDC7).
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-11
Power per I/O Pin
Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
VCCI (V)
Static Power PDC6
(mW)1Dynamic Power PAC9
(µW/MHz)2
Single-Ended
3.3 V LVTTL/LVCMOS 3.3 16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger 3.3 24.49
2.5 V LVCMOS 2.5 4.71
2.5 V LVCMOS – Schmitt trigger 2.5 6.13
1.8 V LVCMOS 1.8 1.66
1.8 V LVCMOS – Schmitt trigger 1.8 1.78
1.5 V LVCMOS (JESD8-11) 1.5 1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger 1.5 0.97
1.2 V LVCMOS31.2 0.60
1.2 V LVCMOS (JESD8-11) – Schmitt trigger31.2 0.53
3.3 V PCI 3.3 17.76
3.3 V PCI – Schmitt trigger 3.3 19.10
3.3 V PCI-X 3.3 17.76
3.3 V PCI-X – Schmitt trigger 3.3 19.10
Voltage-Referenced
3.3 V GTL 3.3 2.90 7.07
2.5 V GTL 2.5 2.13 3.62
3.3 V GTL+ 3.3 2.81 2.97
2.5 V GTL+ 2.5 2.57 2.55
HSTL (I) 1.5 0.17 0.85
HSTL (II) 1.5 0.17 0.85
SSTL2 (I) 2.5 1.38 3.30
SSTL2 (II) 2.5 1.38 3.30
SSTL3 (I) 3.3 3.21 8.08
SSTL3 (II) 3.3 3.21 8.08
Differential
LVDS 2.5 2.26 0.95
LVPECL 3.3 5.71 1.62
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
Radiation-Tolerant ProASIC3 FPGAs
2-12 Advance v0.1
Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
CLOAD (pF) VCCI (V)
Static Power
PDC7 (mW)2Dynamic Power
PAC10 (µW/MHz)3
Single-Ended
3.3 V LVTTL/LVCMOS 5 3.3 148.00
2.5 V LVCMOS 5 2.5 83.23
1.8 V LVCMOS 5 1.8 54.58
1.5 V LVCMOS (JESD8-11) 5 1.5 37.05
1.2 V LVCMOS45 1.2 17.94
3.3 V PCI 10 3.3 204.61
3.3 V PCI-X 10 3.3 204.61
Voltage-Referenced
3.3 V GTL 10 3.3 24.08
2.5 V GTL 10 2.5 13.52
3.3 V GTL+ 10 3.3 24.10
2.5 V GTL+ 10 2.5 13.54
HSTL (I) 20 1.5 7.08 26.22
HSTL (II) 20 1.5 13.88 27.22
SSTL2 (I) 30 2.5 16.69 105.56
SSTL2 (II) 30 2.5 25.91 116.60
SSTL3 (I) 30 3.3 26.02 114.87
SSTL3 (II) 30 3.3 42.21 131.76
Differential
LVDS 2.5 7.70 89.62
LVPECL 3.3 19.42 168.02
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output
slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-13
Power Consumption of Various Internal Resources
Table 2-12 • Different Components Contributing to Dynamic Power Consumption in Devices Operating at
1.2 V VCC
Parameter Definition
Device-Specific Dynamic Power
(µW/MHz)
RT3PE3000L RT3PE600L
PAC1 Clock contribution of a Global Rib 12.61
PAC2 Clock contribution of a Global Spine 2.66
PAC3 Clock contribution of a VersaTile row 0.56
PAC4 Clock contribution of a VersaTile used as a sequential
module
0.07
PAC5 First contribution of a VersaTile used as a sequential
module
0.05
PAC6 Second contribution of a VersaTile used as a sequential
module
0.19
PAC7 Contribution of a VersaTile used as a combinatorial
module
0.11
PAC8 Average contribution of a routing net 0.45
PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-10 on page 2-11.
PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-11 on page 2-12.
PAC11 Average contribution of a RAM block during a read
operation
25.00
PAC12 Average contribution of a RAM block during a write
operation
30.00
PAC13 Dynamic contribution for PLL 1.74
Radiation-Tolerant ProASIC3 FPGAs
2-14 Advance v0.1
Table 2-13 • Different Components Contributing to Dynamic Power Consumption in RT ProASIC3 Devices at
1.5 V VCC
Parameter Definition
Device-Specific Dynamic
Power (µW/MHz)
RT3PE3000L RT3PE600L
PAC1 Clock contribution of a Global Rib 19.7
PAC2 Clock contribution of a Global Spine 4.16
PAC3 Clock contribution of a VersaTile row 0.88
PAC4 Clock contribution of a VersaTile used as a sequential
module
0.12
PAC5 First contribution of a VersaTile used as a sequential
module
0.07
PAC6 Second contribution of a VersaTile used as a sequential
module
0.29
PAC7 Contribution of a VersaTile used as a combinatorial module 0.29
PAC8 Average contribution of a routing net 0.70
PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-10 on page 2-11.
PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-11 on page 2-12.
PAC11 Average contribution of a RAM block during a read
operation
25.00
PAC12 Average contribution of a RAM block during a write
operation
30.00
PAC13 Dynamic contribution for PLL 2.60
Table 2-14 • Different Components Contributing to the Static Power Consumption in RT ProASIC3 Devices
Parameter Definition
Device-Specific Dynamic
Power (µW)
RT3PE3000L RT3PE600L
PDC1 Array static power in Active mode See Table 2-9 on page 2-10.
PDC2 Array static power in Static (Idle) mode See Table 2-9 on page 2-10.
PDC3 Array static power in Flash*Freeze mode See Table 2-6 on page 2-9.
PDC4 Static PLL contribution at 1.2 V operating core voltage 1.42 mW
Static PLL contribution 1.5 V operating core voltage 2.55 mW
PDC5 Bank quiescent power (VCCI-dependent) See Table 2-6 on page 2-9,
Table 2-7 on page 2-9,
Table 2-9 on page 2-10.
PDC6 I/O input pin static power (standard-dependent) See Table 2-10 on page 2-11.
PDC7 I/O output pin static power (standard-dependent) See Table 2-11 on page 2-12.
*For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet
calculator or SmartPower tool in Libero® Integrated Design Environment (IDE).
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-15
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For
more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE
software.
The power calculation methodology described below uses the following variables:
The number of PLLs as well as the number and the frequency of each output clock
generated
The number of combinatorial and sequential cells used in the design
•The internal clock frequencies
The number and the standard of I/O pins used in the design
The number of RAM blocks used in the design
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-15 on
page 2-17.
Enable rates of output buffers—guidelines are provided for typical applications in
Table 2-16 on page 2-17.
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-16 on page 2-17. The calculation should be repeated for each clock domain defined
in the design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW*PAC3 + NS-CELL* PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided
in Table 2-15 on page 2-17.
NROW is the number of VersaTile rows used in the design—guidelines are provided in
Table 2-15 on page 2-17.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-15 on
page 2-17.
FCLK is the global clock signal frequency.
Radiation-Tolerant ProASIC3 FPGAs
2-16 Advance v0.1
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-15 on
page 2-17.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-15 on
page 2-17.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-15 on page 2-17.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-15 on page 2-17.
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-16 on page 2-17.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
β2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-16
on page 2-17.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 *FCLKOUT
FCLKOUT is the output clock frequency.1
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-17
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.
Below are some examples:
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at
half of the clock frequency.
The average toggle rate of an 8-bit counter is 25%:
Bit 0 (LSB) = 100%
Bit 1 = 50%
Bit 2 = 25%
–…
Bit 7 (MSB) = 0.78125%
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled.
When nontristate output buffers are used, the enable rate should be 100%.
Table 2-15 • Toggle Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
α1Toggle rate of VersaTile outputs 10%
α2I/O buffer toggle rate 10%
Table 2-16 • Enable Rate Guidelines Recommended for Power Calculation
Component Definition Guideline
β1I/O output buffer enable rate 100%
β2RAM enable rate for read operations 12.5%
β3RAM enable rate for write operations 12.5%
Radiation-Tolerant ProASIC3 FPGAs
2-18 Advance v0.1
User I/O Characteristics
Timing Model
Figure 2-4 • Timing Model
Operating Conditions: –1 Speed, Military Temperature Range (TJ = 125°C), Worst-Case
VCC = 1.14 V (example for RT3PE3000L and RT3PE600L)
DQ
Y
Y
DQ
DQ DQ
Y
Combinational Cell
Combinational Cell
Combinational Cell
I/O Module
(Registered)
I/O Module
(Non-Registered)
Register Cell Register Cell
I/O Module
(Registered)
I/O Module
(Non-Registered)
LVPECL
LVPECL
LVDS,
B-LVDS,
M-LVDS
LVTTL 3.3 V Output Drive
Strength = 12 mA
High Slew Rate
Y
Combinational Cell
Y
Combinational Cell
Y
Combinational Cell
I/O Module
(Non-Registered)
LVTTL Output Drive Strength = 8 mA
High Slew Rate
I/O Module
(Non-Registered)
LVCMOS 1.5 V Output Drive Strength = 4 mA
High Slew Rate
LVTTL Output Drive Strength = 12 mA
High Slew Rate
I/O Module
(Non-Registered)
Input LVTTL
Clock
Input LVTTL
Clock
Input LVTTL
Clock
t
PD
= 0.78 ns t
PD
= 0.67 ns
t
DP
= 1.54 ns
t
PD
= 1.21 ns t
DP
= 2.08 ns
t
PD
= 0.70 ns
t
DP
= 2.37 ns
t
PD
= 0.65 ns t
DP
= 2.83 ns
t
PD
= 0.65 ns
t
PY
= 1.48 ns
t
CLKQ
= 0.76 ns t
OCLKQ
= 0.81 ns
t
SUD
= 0.9 ns t
OSUD
= 0.43 ns
t
DP
= 2.08 ns
t
PY
= 1.48 ns
t
PY
= 2.04 ns
t
CLKQ
= 0.76 ns
t
SUD
= 0.59 ns
t
PY
= 1.48 ns
t
ICLKQ
= 0.33 ns
t
ISUD
= 0.36 ns
t
PY
= 1.84 ns
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-19
Figure 2-5 • Input Buffer Timing Model and Delays (example)
tPY
(R)
PAD
Y
Vtrip
GND tPY
(F)
Vtrip
50%
50%
VIH
VCC
VIL
tDOUT
(R)
DIN
GND tDOUT
(F)
50%50%
VCC
PAD Y
tPY
D
CLK
Q
I/O Interface
DIN
tDIN
To Array
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
Radiation-Tolerant ProASIC3 FPGAs
2-20 Advance v0.1
Figure 2-6 • Output Buffer Model and Delays (example)
tDP
(R)
PAD VOL
tDP
(F)
Vtrip
Vtrip
VOH
VCC
D50%50%
VCC
0 V
DOUT 50%50%0 V
tDOUT
(R)
tDOUT
(F)
From Array
PAD
tDP
Std
Load
D
CLK
Q
I/O Interface
DOUT
D
tDOUT
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-21
Figure 2-7 • Tristate Output Buffer Timing Model and Delays (example)
D
CLK
Q
D
CLK
Q
10% V
CCI
t
ZL
V
trip
50%
t
HZ
90% V
CCI
t
ZH
V
trip
50%50%t
LZ
50%
EOUT
PAD
D
E50%
t
EOUT (R)
50%
t
EOUT (F)
PAD
DOUT
EOUT
D
I/O Interface
E
t
EOUT
t
ZLS
V
trip
50%
t
ZHS
V
trip
50%
EOUT
PAD
D
E50%50%
t
EOUT (R)
t
EOUT (F)
50%
V
CC
V
CC
V
CC
V
CCI
V
CC
V
CC
V
CC
V
OH
V
OL
V
OL
t
ZL
, t
ZH
, t
HZ
, t
LZ
, t
ZLS
, t
ZHS
t
EOUT
= MAX(t
EOUT
(r), t
EOUT
(f))
Radiation-Tolerant ProASIC3 FPGAs
2-22 Advance v0.1
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-17 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Military Conditions—Software Default Settings
I/O Standard
Drive
Strength
Slew
Rate
VIL VIH VOL VOH IOL1IOH1
Min, V Max, V Min, V Max, V Max, V Min, V mA mA
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High
–0.3 0.8 2 3.6 0.4 2.4 12 12
2.5 V LVCMOS 12 mA
High
–0.3 0.7 1.7 2.7 0.7 1.7 12 12
1.8 V LVCMOS 12 mA
High
–0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12
1.5 V LVCMOS 12 mA
High
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12
1.2 V LVCMOS 2 mA
High
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 22
3.3 V PCI Per PCI Specification
3.3 V PCI-X Per PCI-X Specification
3.3 V GTL 25 mA2
High
–0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 25 25
2.5 V GTL 25 mA2
High
–0.3 VREF – 0.05 VREF + 0.05 2.7 0.4 25 25
3.3 V GTL+ 35 mA
High
–0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 51 51
2.5 V GTL+ 33 mA
High
–0.3 VREF – 0.1 VREF + 0.1 2.7 0.6 40 40
HSTL (I) 8 mA
High
–0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 8 8
HSTL (II) 15 mA2
High
–0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 15 15
SSTL2 (I) 15 mA
High
–0.3 VREF – 0.2 VREF + 0.2 2.7 0.54 VCCI – 0.62 15 15
SSTL2 (II) 18 mA
High
–0.3 VREF – 0.2 VREF + 0.2 2.7 0.35 VCCI – 0.43 18 18
SSTL3 (I) 14 mA
High
–0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14
SSTL3 (II) 21 mA
High
–0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21
Notes:
1. Currents are measured at 125°C junction temperature.
2. Output drive strength is below JEDEC specification.
3. Output slew rate can be extracted using the IBIS Models.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-23
Table 2-18 • Summary of Maximum and Minimum DC Input Levels
DC I/O Standard
Military
IIL IIH
µA µA
3.3 V LVTTL / 3.3 V LVCMOS 15 15
2.5 V LVCMOS 15 15
1.8 V LVCMOS 15 15
1.5 V LVCMOS 15 15
1.2 V LVCMOS 15 15
3.3 V PCI 15 15
3.3 V PCI-X 15 15
3.3 V GTL 15 15
2.5 V GTL 15 15
3.3 V GTL+ 15 15
2.5 V GTL+ 15 15
HSTL (I) 15 15
HSTL (II) 15 15
SSTL2 (I) 15 15
SSTL2 (II) 15 15
SSTL3 (I) 15 15
SSTL3 (II) 15 15
Note: Military temperature range: –55°C to 125°C
Radiation-Tolerant ProASIC3 FPGAs
2-24 Advance v0.1
Summary of I/O Timing Characteristics – Default I/O Software Settings
Table 2-19 • Summary of AC Memory Points*
Standard
Input Reference Voltage
(VREF_TYP)
Board Termination
Voltage (VTT_REF)
Measuring Trip Point
(Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS 1.4 V
2.5 V LVCMOS 1.2 V
1.8 V LVCMOS 0.90 V
1.5 V LVCMOS 0.75 V
1.2 V LVCMOS* 0.6V
3.3 V PCI 0.285 * VCCI (RR)
0.615 * VCCI (FF))
3.3 V PCI-X 0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V GTL 0.8 V 1.2 V VREF
2.5 V GTL 0.8 V 1.2 V VREF
3.3 V GTL+ 1.0 V 1.5 V VREF
2.5 V GTL+ 1.0 V 1.5 V VREF
HSTL (I) 0.75 V 0.75 V VREF
HSTL (II) 0.75 V 0.75 V VREF
SSTL2 (I) 1.25 V 1.25 V VREF
SSTL2 (II) 1.25 V 1.25 V VREF
SSTL3 (I) 1.5 V 1.485 V VREF
SSTL3 (II) 1.5 V 1.485 V VREF
LVDS Cross point
LVPECL Cross point
*Applicable to RT3PE600L and RT3PE3000L devices operating at 1.2 V core regions only.
Table 2-20 • I/O AC Parameter Definitions
Parameter Parameter Definition
tDP Data to Pad delay through the Output Buffer
tPY Pad to Data delay through the Input Buffer
tDOUT Data to Output Buffer delay through the I/O interface
tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN Input Buffer to Data delay through the I/O interface
tHZ Enable to Pad delay through the Output Buffer—HIGH to Z
tZH Enable to Pad delay through the Output Buffer—Z to HIGH
tLZ Enable to Pad delay through the Output Buffer—LOW to Z
tZL Enable to Pad delay through the Output Buffer—Z to LOW
tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-25
1.2 V Core Operating Voltage
Table 2-21 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.14 V, Worst Case VCCI
Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tPYS (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High 5 0.68 2.08 0.05 1.48 2.03 0.44 2.12 1.56 2.76 3.04 4.00 3.44 ns
2.5 V LVCMOS 12 mA High 5 0.68 2.12 0.05 1.74 2.16 0.44 2.16 1.74 2.84 2.94 4.04 3.63 ns
1.8 V LVCMOS 12 mA High 5 0.68 2.36 0.05 1.69 2.38 0.44 2.40 1.94 3.14 3.57 4.28 3.82 ns
1.5 V LVCMOS 12 mA High 5 0.68 2.71 0.05 1.86 2.59 0.44 2.76 2.24 3.34 3.68 4.64 4.12 ns
1.2 V LVCMOS 2mA High 5 0.684.400.052.233.200.444.213.714.354.116.025.52 ns
3.3 V PCI Per PCI
spec
High 10 25 0.68 2.36 0.05 2.31 3.12 0.44 2.41 1.68 2.76 3.04 4.29 3.56 ns
3.3 V PCI-X Per
PCI-X
spec
High 10 25 0.68 2.36 0.05 2.31 3.12 0.44 2.41 1.68 2.76 3.04 4.29 3.56 ns
3.3 V GTL 25 mA High 10 25 0.68 1.75 0.05 1.98 0.44 1.72 1.75 3.60 3.63 ns
2.5 V GTL 25 mA High 10 25 0.68 1.79 0.05 1.92 0.44 1.82 1.79 3.70 3.68 ns
3.3 V GTL+ 35 mA High 10 25 0.68 1.73 0.05 1.98 0.44 1.76 1.73 3.65 3.61 ns
2.5 V GTL+ 33 mA High 10 25 0.68 1.86 0.05 1.92 0.44 1.89 1.77 3.78 3.65 ns
HSTL (I) 8 mA High 20 25 0.68 2.68 0.05 2.34 0.44 2.73 2.65 4.61 4.53 ns
HSTL (II) 15 mA High 20 50 0.68 2.55 0.05 2.34 0.44 2.59 2.29 4.48 4.17 ns
SSTL2 (I) 15 mA High 30 25 0.68 1.79 0.05 1.77 0.44 1.82 1.56 1.82 1.56 ns
SSTL2 (II) 18 mA High 30 50 0.68 1.83 0.05 1.77 0.44 1.86 1.49 1.86 1.49 ns
SSTL3 (I) 14 mA High 30 25 0.68 1.94 0.05 1.69 0.44 1.98 1.55 1.98 1.55 ns
SSTL3 (II) 21 mA High 30 50 0.68 1.74 0.05 1.69 0.44 1.77 1.41 1.77 1.41 ns
LVDS 24 mAHigh0.681.570.052.04––––––––ns
LVPECL 24 mAHigh0.681.540.051.84––––––––ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-13 on
page 2-44 for connectivity. This resistor is not required during normal operation.
Radiation-Tolerant ProASIC3 FPGAs
2-26 Advance v0.1
1.5 V Core Voltage
Detailed I/O DC Characteristics
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst Case VCCI
Standard
Drive Strength (mA)
Slew Rate
Capacitive Load (pF)
External Resistor (Ω)
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tPYS (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
tZLS (ns)
tZHS (ns)
Units
3.3 V LVTTL /
3.3 V LVCMOS
12 mA High 5 0.52 2.08 0.03 1.48 2.03 0.34 2.12 1.56 2.76 3.04 4.00 3.44 ns
2.5 V LVCMOS 12 mA High 5 0.52 2.12 0.03 1.74 2.16 0.34 2.16 1.74 2.84 2.94 4.04 3.63 ns
1.8 V LVCMOS 12 mA High 5 0.52 2.36 0.03 1.69 2.38 0.34 2.40 1.94 3.14 3.57 4.28 3.82 ns
1.5 V LVCMOS 12 mA High 5 0.52 2.71 0.03 1.86 2.59 0.34 2.76 2.24 3.34 3.68 4.64 4.12 ns
3.3 V PCI Per PCI
spec
High 10 25 0.52 2.36 0.03 2.31 3.12 0.34 2.41 1.68 2.76 3.04 4.29 3.56 ns
3.3 V PCI-X Per
PCI-X
spec
High 10 25 0.52 2.36 0.03 2.31 3.12 0.34 2.41 1.68 2.76 3.04 4.29 3.56 ns
3.3 V GTL 25 mA High 10 25 0.52 1.75 0.03 1.98 0.34 1.72 1.75 3.60 3.63 ns
2.5 V GTL 25 mA High 10 25 0.52 1.79 0.03 1.92 0.34 1.82 1.79 3.70 3.68 ns
3.3 V GTL+ 35 mA High 10 25 0.52 1.73 0.03 1.98 0.34 1.76 1.73 3.65 3.61 ns
2.5 V GTL+ 33 mA High 10 25 0.52 1.86 0.03 1.92 0.34 1.89 1.77 3.78 3.65 ns
HSTL (I) 8 mA High 20 25 0.52 2.68 0.03 2.34 0.34 2.73 2.65 4.61 4.53 ns
HSTL (II) 15 mA High 20 50 0.52 2.55 0.03 2.34 0.34 2.59 2.29 4.48 4.17 ns
SSTL2 (I) 15 mA High 30 25 0.52 1.79 0.03 1.77 0.34 1.82 1.56 1.82 1.56 ns
SSTL2 (II) 18 mA High 30 50 0.52 1.83 0.03 1.77 0.34 1.86 1.49 1.86 1.49 ns
SSTL3 (I) 14 mA High 30 25 0.52 1.94 0.03 1.69 0.34 1.98 1.55 1.98 1.55 ns
SSTL3 (II) 21 mA High 30 50 0.52 1.74 0.03 1.69 0.34 1.77 1.41 1.77 1.41 ns
LVDS 24 mAHigh0.521.570.032.04––––––––ns
LVPECL 24 mAHigh0.521.540.031.84––––––––ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-13 on
page 2-44 for connectivity. This resistor is not required during normal operation.
Table 2-23 • Input Capacitance
Symbol Definition Conditions Min. Max. Units
CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF
CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-27
Table 2-24 • I/O Output Buffer Maximum Resistances1
Standard Drive Strength
RPULL-DOWN
(Ω)2
RPULL-UP
(Ω)3
3.3 V LVTTL / 3.3 V LVCMOS 4 mA 100 300
8 mA 50 150
12 mA 25 75
16 mA 17 50
24 mA 11 33
2.5 V LVCMOS 4 mA 100 200
8 mA 50 100
12 mA 25 50
16 mA 20 40
24 mA 11 22
1.8 V LVCMOS 2 mA 200 225
4 mA 100 112
6 mA 50 56
8 mA 50 56
12 mA 20 22
16 mA 20 22
1.5 V LVCMOS 2 mA 200 224
4 mA 100 112
6 mA 67 75
8 mA 33 37
12 mA 33 37
1.2 V LVCMOS 2 mA TBD TBD
3.3 V PCI/PCI-X Per PCI/PCI-X
specification
25 75
3.3 V GTL 25 mA 11
2.5 V GTL 25 mA 14
3.3 V GTL+ 35 mA 12
2.5 V GTL+ 33 mA 15
HSTL (I) 8 mA 50 50
HSTL (II) 15 mA 25 25
SSTL2 (I) 15 mA 27 31
SSTL2 (II) 18 mA 13 15
SSTL3 (I) 14 mA 44 69
SSTL3 (II) 21 mA 18 32
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at
http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Radiation-Tolerant ProASIC3 FPGAs
2-28 Advance v0.1
Table 2-25 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
VCCI
R(WEAK PULL-UP)1
(Ω)
R(WEAK PULL-DOWN)2
(Ω)
Min. Max. Min. Max.
3.3 V 10 k 45 k 10 k 45 k
2.5 V 11 k 55 k 12 k 74 k
1.8 V 18 k 70 k 17 k 110 k
1.5 V 19 k 90 k 19 k 140 k
1.2 V TBD TBD TBD TBD
Notes:
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-29
Table 2-26 • I/O Short Currents IOSH/IOSL
Drive Strength IOSL (mA)* IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS 4 mA 25 27
8 mA 51 54
12 mA 103 109
16 mA 132 127
24 mA 268 181
2.5 V LVCMOS 4 mA 16 18
8 mA 32 37
12 mA 65 74
16 mA 83 87
24 mA 169 124
1.8 V LVCMOS 2 mA 9 11
4 mA 17 22
6 mA 35 44
8 mA 45 51
12 mA 91 74
16 mA 91 74
1.5 V LVCMOS 2 mA 13 16
4 mA 25 33
6 mA 32 39
8 mA 66 55
12 mA 66 55
1.2 V LVCMOS 2mA TBD TBD
3.3 V PCI/PCIX Per PCI/PCI-X
Specification
Per PCI Curves
3.3 V GTL 25 mA 268 181
2.5 V GTL 25 mA 169 124
3.3 V GTL+ 35 mA 268 181
2.5 V GTL+ 33 mA 169 124
HSTL (I) 8 mA 32 39
HSTL (II) 15 mA 66 55
SSTL2 (I) 15 mA 83 87
SSTL2 (II) 18 mA 169 124
SSTL3 (I) 14 mA 51 54
SSTL3 (II) 21 mA 103 109
*TJ = 100°C
Radiation-Tolerant ProASIC3 FPGAs
2-30 Advance v0.1
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 110°C, the short current condition would have to be sustained for more than three
months to cause a reliability concern. The I/O design does not contain any short circuit protection,
but such protection would only be needed in extremely prolonged stress conditions.
Table 2-27 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input
Buffers Applicable
Input Buffer Configuration Hysteresis Value (typical)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV
2.5 V LVCMOS (Schmitt trigger mode) 140 mV
1.8 V LVCMOS (Schmitt trigger mode) 80 mV
1.5 V LVCMOS (Schmitt trigger mode) 60 mV
1.2 V LVCMOS (Schmitt trigger mode) 40 mV
Table 2-28 • Duration of Short Circuit Event before Failure
Temperature Time before Failure
–40°C > 20 years
0°C > 20 years
25°C > 20 years
70°C 5 years
85°C 2 years
100°C 6 months
110°C 3 months
125°C 1 month
Table 2-29 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability
LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C)
LVDS/B-LVDS/
M-LVDS/LVPECL
No requirement 10 ns * 10 years (100°C)
*The maximum input rise/fall time is related to the noise induced in the input buffer trace. If the noise is low,
the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity
evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-31
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer.
Table 2-30 • Minimum and Maximum DC Input and Output Levels
3.3 V LVTTL /
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 15 15
8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 15 15
12 mA –0.3 0.8 23.6 0.4 2.4 12 12 103 109 15 15
16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 15 15
24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-8 • AC Loading
Table 2-31 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
03.31.45
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Radiation-Tolerant ProASIC3 FPGAs
2-32 Advance v0.1
Timing Characteristics
1.2 V DC Core Voltage
Table 2-32 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.80 6.03 0.05 1.74 2.39 0.52 6.14 4.84 2.66 2.42 8.35 7.06 ns
–1 0.68 5.13 0.05 1.48 2.03 0.44 5.22 4.12 2.27 2.06 7.11 6.00 ns
8 mA Std. 0.80 4.93 0.05 1.74 2.39 0.52 5.02 4.14 3.01 3.03 7.23 6.35 ns
–1 0.68 4.19 0.05 1.48 2.03 0.44 4.27 3.52 2.56 2.58 6.15 5.40 ns
12 mA Std. 0.80 4.15 0.05 1.74 2.39 0.52 4.22 3.61 3.24 3.43 6.44 5.82 ns
–1 0.68 3.53 0.05 1.48 2.03 0.44 3.59 3.07 2.76 2.92 5.47 4.95 ns
16 mA Std. 0.80 3.92 0.05 1.74 2.39 0.52 3.99 3.49 3.29 3.54 6.21 5.71 ns
–1 0.68 3.34 0.05 1.48 2.03 0.44 3.40 2.97 2.80 3.01 5.28 4.85 ns
24 mA Std. 0.80 3.81 0.05 1.74 2.39 0.52 3.88 3.51 3.35 3.92 6.09 5.72 ns
–1 0.68 3.24 0.05 1.48 2.03 0.44 3.30 2.98 2.85 3.34 5.18 4.87 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-33 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.80 3.39 0.05 1.74 2.39 0.52 3.45 2.60 2.66 2.56 5.67 4.81 ns
–1 0.68 2.89 0.05 1.48 2.03 0.44 2.94 2.21 2.27 2.18 4.82 4.10 ns
8 mA Std. 0.80 2.79 0.05 1.74 2.39 0.52 2.84 2.08 3.02 3.18 5.05 4.30 ns
–1 0.68 2.37 0.05 1.48 2.03 0.44 2.42 1.77 2.57 2.70 4.30 3.65 ns
12 mA Std. 0.80 2.45 0.05 1.74 2.39 0.52 2.49 1.83 3.24 3.58 4.71 4.05 ns
–1 0.68 2.08 0.05 1.48 2.03 0.44 2.12 1.56 2.76 3.04 4.00 3.44 ns
16 mA Std. 0.80 2.39 0.05 1.74 2.39 0.52 2.43 1.79 3.30 3.69 4.65 4.00 ns
–1 0.68 2.03 0.05 1.48 2.03 0.44 2.07 1.52 2.80 3.14 3.95 3.40 ns
24 mA Std. 0.80 2.41 0.05 1.74 2.39 0.52 2.46 1.72 3.35 4.08 4.67 3.94 ns
–1 0.68 2.05 0.05 1.48 2.03 0.44 2.09 1.47 2.85 3.47 3.97 3.35 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-33
1.5 V DC Core Voltage
Table 2-34 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.61 6.03 0.04 1.74 2.39 0.40 6.14 4.84 2.66 2.42 8.35 7.06 ns
–1 0.52 5.13 0.03 1.48 2.03 0.34 5.22 4.12 2.27 2.06 7.11 6.00 ns
8 mA Std. 0.61 4.93 0.04 1.74 2.39 0.40 5.02 4.14 3.01 3.03 7.23 6.35 ns
–1 0.52 4.19 0.03 1.48 2.03 0.34 4.27 3.52 2.56 2.58 6.15 5.40 ns
12 mA Std. 0.61 4.15 0.04 1.74 2.39 0.40 4.22 3.61 3.24 3.43 6.44 5.82 ns
–1 0.52 3.53 0.03 1.48 2.03 0.34 3.59 3.07 2.76 2.92 5.47 4.95 ns
16 mA Std. 0.61 3.92 0.04 1.74 2.39 0.40 3.99 3.49 3.29 3.54 6.21 5.71 ns
–1 0.52 3.34 0.03 1.48 2.03 0.34 3.40 2.97 2.80 3.01 5.28 4.85 ns
24 mA Std. 0.61 3.81 0.04 1.74 2.39 0.40 3.88 3.51 3.35 3.92 6.09 5.72 ns
–1 0.52 3.24 0.03 1.48 2.03 0.34 3.30 2.98 2.85 3.34 5.18 4.87 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.61 3.39 0.04 1.74 2.39 0.40 3.45 2.60 2.66 2.56 5.67 4.81 ns
–1 0.52 2.89 0.03 1.48 2.03 0.34 2.94 2.21 2.27 2.18 4.82 4.10 ns
8 mA Std. 0.61 2.79 0.04 1.74 2.39 0.40 2.84 2.08 3.02 3.18 5.05 4.30 ns
–1 0.52 2.37 0.03 1.48 2.03 0.34 2.42 1.77 2.57 2.70 4.30 3.65 ns
12 mA Std. 0.61 2.45 0.04 1.74 2.39 0.40 2.49 1.83 3.24 3.58 4.71 4.05 ns
–1 0.52 2.08 0.03 1.48 2.03 0.34 2.12 1.56 2.76 3.04 4.00 3.44 ns
16 mA Std. 0.61 2.39 0.04 1.74 2.39 0.40 2.43 1.79 3.30 3.69 4.65 4.00 ns
–1 0.52 2.03 0.03 1.48 2.03 0.34 2.07 1.52 2.80 3.14 3.95 3.40 ns
24 mA Std. 0.61 2.41 0.04 1.74 2.39 0.40 2.46 1.72 3.35 4.08 4.67 3.94 ns
–1 0.52 2.05 0.03 1.48 2.03 0.34 2.09 1.47 2.85 3.47 3.97 3.35 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-34 Advance v0.1
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.
Table 2-36 • Minimum and Maximum DC Input and Output Levels
2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 15 15
8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 15 15
12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 15 15
16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 15 15
24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-9 • AC Loading
Table 2-37 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
02.51.25
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-35
Timing Characteristics
1.2 V DC Core Voltage
Table 2-38 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.61 6.86 0.04 2.04 2.54 0.40 6.99 5.83 2.69 2.17 9.20 8.04 ns
–1 0.52 5.84 0.03 1.74 2.16 0.34 5.95 4.96 2.29 1.85 7.83 6.84 ns
8 mA Std. 0.61 5.61 0.04 2.04 2.54 0.40 5.72 4.94 3.07 2.90 7.93 7.15 ns
–1 0.52 4.77 0.03 1.74 2.16 0.34 4.86 4.20 2.61 2.47 6.75 6.08 ns
12 mA Std. 0.61 4.72 0.04 2.04 2.54 0.40 4.81 4.30 3.33 3.36 7.02 6.51 ns
–1 0.52 4.02 0.03 1.74 2.16 0.34 4.09 3.66 2.84 2.86 5.98 5.54 ns
16 mA Std. 0.61 4.45 0.04 2.04 2.54 0.40 4.53 4.16 3.39 3.49 6.75 6.37 ns
–1 0.52 3.79 0.03 1.74 2.16 0.34 3.86 3.54 2.88 2.97 5.74 5.42 ns
24 mA Std. 0.61 4.33 0.04 2.04 2.54 0.40 4.41 4.18 3.46 3.96 6.63 6.39 ns
–1 0.52 3.69 0.03 1.74 2.16 0.34 3.76 3.55 2.94 3.37 5.64 5.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-39 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.80 3.50 0.05 2.04 2.54 0.52 3.57 3.13 2.69 2.26 5.78 5.34 ns
–1 0.68 2.98 0.05 1.74 2.16 0.44 3.03 2.66 2.29 1.93 4.92 4.54 ns
8 mA Std. 0.80 2.87 0.05 2.04 2.54 0.52 2.92 2.41 3.07 3.00 5.13 4.62 ns
–1 0.68 2.44 0.05 1.74 2.16 0.44 2.48 2.05 2.61 2.55 4.37 3.93 ns
12 mA Std. 0.80 2.49 0.05 2.04 2.54 0.52 2.53 2.05 3.33 3.46 4.75 4.26 ns
–1 0.68 2.12 0.05 1.74 2.16 0.44 2.16 1.74 2.84 2.94 4.04 3.63 ns
16 mA Std. 0.80 2.42 0.05 2.04 2.54 0.52 2.47 1.99 3.39 3.59 4.68 4.20 ns
–1 0.68 2.06 0.05 1.74 2.16 0.44 2.10 1.69 2.88 3.05 3.98 3.57 ns
24 mA Std. 0.80 2.43 0.05 2.04 2.54 0.52 2.48 1.90 3.46 4.07 4.69 4.11 ns
–1 0.68 2.07 0.05 1.74 2.16 0.44 2.11 1.61 2.94 3.46 3.99 3.50 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-36 Advance v0.1
1.5 V DC Core Voltage
Table 2-40 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.61 6.86 0.04 2.04 2.54 0.40 6.99 5.83 2.69 2.17 9.20 8.04 ns
–1 0.52 5.84 0.03 1.74 2.16 0.34 5.95 4.96 2.29 1.85 7.83 6.84 ns
8 mA Std. 0.61 5.61 0.04 2.04 2.54 0.40 5.72 4.94 3.07 2.90 7.93 7.15 ns
–1 0.52 4.77 0.03 1.74 2.16 0.34 4.86 4.20 2.61 2.47 6.75 6.08 ns
12 mA Std. 0.61 4.72 0.04 2.04 2.54 0.40 4.81 4.30 3.33 3.36 7.02 6.51 ns
–1 0.52 4.02 0.03 1.74 2.16 0.34 4.09 3.66 2.84 2.86 5.98 5.54 ns
16 mA Std. 0.61 4.45 0.04 2.04 2.54 0.40 4.53 4.16 3.39 3.49 6.75 6.37 ns
–1 0.52 3.79 0.03 1.74 2.16 0.34 3.86 3.54 2.88 2.97 5.74 5.42 ns
24 mA Std. 0.61 4.33 0.04 2.04 2.54 0.40 4.41 4.18 3.46 3.96 6.63 6.39 ns
–1 0.52 3.69 0.03 1.74 2.16 0.34 3.76 3.55 2.94 3.37 5.64 5.43 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-41 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA Std. 0.61 3.50 0.04 2.04 2.54 0.40 3.57 3.13 2.69 2.26 5.78 5.34 ns
–1 0.52 2.98 0.03 1.74 2.16 0.34 3.03 2.66 2.29 1.93 4.92 4.54 ns
8 mA Std. 0.61 2.87 0.04 2.04 2.54 0.40 2.92 2.41 3.07 3.00 5.13 4.62 ns
–1 0.52 2.44 0.03 1.74 2.16 0.34 2.48 2.05 2.61 2.55 4.37 3.93 ns
12 mA Std. 0.61 2.49 0.04 2.04 2.54 0.40 2.53 2.05 3.33 3.46 4.75 4.26 ns
–1 0.52 2.12 0.03 1.74 2.16 0.34 2.16 1.74 2.84 2.94 4.04 3.63 ns
16 mA Std. 0.61 2.42 0.04 2.04 2.54 0.40 2.47 1.99 3.39 3.59 4.68 4.20 ns
–1 0.52 2.06 0.03 1.74 2.16 0.34 2.10 1.69 2.88 3.05 3.98 3.57 ns
24 mA Std. 0.61 2.43 0.04 2.04 2.54 0.40 2.48 1.90 3.46 4.07 4.69 4.11 ns
–1 0.52 2.07 0.03 1.74 2.16 0.34 2.11 1.61 2.94 3.46 3.99 3.50 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-37
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-42 • Minimum and Maximum DC Input and Output Levels
1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 15 15
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 15 15
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 15 15
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 45 51 15 15
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 15 15
16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 91 74 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-10 • AC Loading
Table 2-43 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
01.80.95
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Radiation-Tolerant ProASIC3 FPGAs
2-38 Advance v0.1
Timing Characteristics
1.2 V DC Core Voltage
Table 2-44 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 9.15 0.05 1.98 2.80 0.52 9.32 7.69 2.75 1.57 11.54 9.90 ns
–1 0.68 7.79 0.05 1.69 2.38 0.44 7.93 6.54 2.34 1.33 9.81 8.42 ns
4 mA Std. 0.80 7.54 0.05 1.98 2.80 0.52 7.68 6.48 3.22 2.74 9.89 8.69 ns
–1 0.68 6.41 0.05 1.69 2.38 0.44 6.53 5.51 2.74 2.33 8.42 7.39 ns
6 mA Std. 0.80 6.39 0.05 1.98 2.80 0.52 6.51 5.65 3.53 3.32 8.72 7.86 ns
–1 0.68 5.44 0.05 1.69 2.38 0.44 5.54 4.80 3.00 2.83 7.42 6.69 ns
8 mA Std. 0.80 6.01 0.05 1.98 2.80 0.52 6.12 5.48 3.60 3.49 8.33 7.70 ns
–1 0.68 5.11 0.05 1.69 2.38 0.44 5.20 4.66 3.07 2.97 7.09 6.55 ns
12 mA Std. 0.80 5.89 0.05 1.98 2.80 0.52 6.00 5.49 3.70 4.07 8.22 7.71 ns
–1 0.68 5.01 0.05 1.69 2.38 0.44 5.11 4.67 3.15 3.46 6.99 6.56 ns
16 mA Std. 0.80 5.89 0.05 1.98 2.80 0.52 6.00 5.49 3.70 4.07 8.22 7.71 ns
–1 0.68 5.01 0.05 1.69 2.38 0.44 5.11 4.67 3.15 3.46 6.99 6.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-45 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 4.14 0.05 1.98 2.80 0.52 4.21 4.05 2.75 1.62 6.43 6.27 ns
–1 0.68 3.52 0.05 1.69 2.38 0.44 3.58 3.45 2.34 1.38 5.47 5.33 ns
4 mA Std. 0.80 3.35 0.05 1.98 2.80 0.52 3.42 3.01 3.22 2.84 5.63 5.22 ns
–1 0.68 2.85 0.05 1.69 2.38 0.44 2.91 2.56 2.74 2.41 4.79 4.44 ns
6 mA Std. 0.80 2.87 0.05 1.98 2.80 0.52 2.93 2.49 3.53 3.43 5.14 4.71 ns
–1 0.68 2.44 0.05 1.69 2.38 0.44 2.49 2.12 3.00 2.92 4.37 4.00 ns
8 mA Std. 0.80 2.78 0.05 1.98 2.80 0.52 2.83 2.40 3.60 3.59 5.05 4.61 ns
–1 0.68 2.37 0.05 1.69 2.38 0.44 2.41 2.04 3.06 3.05 4.29 3.92 ns
12 mA Std. 0.80 2.77 0.05 1.98 2.80 0.52 2.82 2.28 3.70 4.19 5.03 4.49 ns
–1 0.68 2.36 0.05 1.69 2.38 0.44 2.40 1.94 3.14 3.57 4.28 3.82 ns
16 mA Std. 0.80 2.77 0.05 1.98 2.80 0.52 2.82 2.28 3.70 4.19 5.03 4.49 ns
–1 0.68 2.36 0.05 1.69 2.38 0.44 2.40 1.94 3.14 3.57 4.28 3.82 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-39
1.5 V DC Core Voltage
Table 2-46 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.61 9.15 0.04 1.98 2.80 0.40 9.32 7.69 2.75 1.57 11.54 9.90 ns
–1 0.52 7.79 0.03 1.69 2.38 0.34 7.93 6.54 2.34 1.33 9.81 8.42 ns
4 mA Std. 0.61 7.54 0.04 1.98 2.80 0.40 7.68 6.48 3.22 2.74 9.89 8.69 ns
–1 0.52 6.41 0.03 1.69 2.38 0.34 6.53 5.51 2.74 2.33 8.42 7.39 ns
6 mA Std. 0.61 6.39 0.04 1.98 2.80 0.40 6.51 5.65 3.53 3.32 8.72 7.86 ns
–1 0.52 5.44 0.03 1.69 2.38 0.34 5.54 4.80 3.00 2.83 7.42 6.69 ns
8 mA Std. 0.61 6.01 0.04 1.98 2.80 0.40 6.12 5.48 3.60 3.49 8.33 7.70 ns
–1 0.52 5.11 0.03 1.69 2.38 0.34 5.20 4.66 3.07 2.97 7.09 6.55 ns
12 mA Std. 0.61 5.89 0.04 1.98 2.80 0.40 6.00 5.49 3.70 4.07 8.22 7.71 ns
–1 0.52 5.01 0.03 1.69 2.38 0.34 5.11 4.67 3.15 3.46 6.99 6.56 ns
16 mA Std. 0.61 5.89 0.04 1.98 2.80 0.40 6.00 5.49 3.70 4.07 8.22 7.71 ns
–1 0.52 5.01 0.03 1.69 2.38 0.34 5.11 4.67 3.15 3.46 6.99 6.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-47 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.61 4.14 0.04 1.98 2.80 0.40 4.21 4.05 2.75 1.62 6.43 6.27 ns
–1 0.52 3.52 0.03 1.69 2.38 0.34 3.58 3.45 2.34 1.38 5.47 5.33 ns
4 mA Std. 0.61 3.35 0.04 1.98 2.80 0.40 3.42 3.01 3.22 2.84 5.63 5.22 ns
–1 0.52 2.85 0.03 1.69 2.38 0.34 2.91 2.56 2.74 2.41 4.79 4.44 ns
6 mA Std. 0.61 2.87 0.04 1.98 2.80 0.40 2.93 2.49 3.53 3.43 5.14 4.71 ns
–1 0.52 2.44 0.03 1.69 2.38 0.34 2.49 2.12 3.00 2.92 4.37 4.00 ns
8 mA Std. 0.61 2.78 0.04 1.98 2.80 0.40 2.83 2.40 3.60 3.59 5.05 4.61 ns
–1 0.52 2.37 0.03 1.69 2.38 0.34 2.41 2.04 3.06 3.05 4.29 3.92 ns
12 mA Std. 0.61 2.77 0.04 1.98 2.80 0.40 2.82 2.28 3.70 4.19 5.03 4.49 ns
–1 0.52 2.36 0.03 1.69 2.38 0.34 2.40 1.94 3.14 3.57 4.28 3.82 ns
16 mA Std. 0.61 2.77 0.04 1.98 2.80 0.40 2.82 2.28 3.70 4.19 5.03 4.49 ns
–1 0.52 2.36 0.03 1.69 2.38 0.34 2.40 1.94 3.14 3.57 4.28 3.82 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-40 Advance v0.1
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-48 • Minimum and Maximum DC Input and Output Levels
1.5 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2213 161515
4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4425 331515
6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6632 391515
8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8866 551515
12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-11 • AC Loading
Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
01.50.755
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 35 pF
R = 1 k R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-41
Timing Characteristics
1.2 V DC Core Voltage
Table 2-50 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 9.52 0.05 2.19 3.05 0.52 9.69 7.89 3.37 2.65 11.91 10.10 ns
–1 0.68 8.10 0.05 1.86 2.59 0.44 8.25 6.71 2.87 2.26 10.13 8.59 ns
4 mA Std. 0.80 8.14 0.05 2.19 3.05 0.52 8.29 6.89 3.73 3.32 10.50 9.10 ns
–1 0.68 6.92 0.05 1.86 2.59 0.44 7.05 5.86 3.17 2.83 8.93 7.74 ns
6 mA Std. 0.80 7.64 0.05 2.19 3.05 0.52 7.78 6.70 3.80 3.51 9.99 8.92 ns
–1 0.68 6.50 0.05 1.86 2.59 0.44 6.62 5.70 3.24 2.99 8.50 7.59 ns
8 mA Std. 0.80 7.54 0.05 2.19 3.05 0.52 7.68 6.71 3.93 4.18 9.89 8.92 ns
–1 0.68 6.41 0.05 1.86 2.59 0.44 6.53 5.71 3.34 3.55 8.41 7.59 ns
12 mA Std. 0.80 7.54 0.05 2.19 3.05 0.52 7.68 6.71 3.93 4.18 9.89 8.92 ns
–1 0.68 6.41 0.05 1.86 2.59 0.44 6.53 5.71 3.34 3.55 8.41 7.59 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-51 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 3.91 0.05 2.19 3.05 0.52 3.98 3.54 3.36 2.76 6.19 5.76 ns
–1 0.68 3.32 0.05 1.86 2.59 0.44 3.38 3.01 2.86 2.35 5.27 4.90 ns
4 mA Std. 0.80 3.33 0.05 2.19 3.05 0.52 3.39 2.90 3.71 3.44 5.61 5.12 ns
–1 0.68 2.83 0.05 1.86 2.59 0.44 2.89 2.47 3.16 2.93 4.77 4.35 ns
6 mA Std. 0.80 3.22 0.05 2.19 3.05 0.52 3.28 2.78 3.80 3.63 5.49 5.00 ns
–1 0.68 2.74 0.05 1.86 2.59 0.44 2.79 2.37 3.23 3.09 4.67 4.25 ns
8 mA Std. 0.80 3.18 0.05 2.19 3.05 0.52 3.24 2.63 3.92 4.33 5.46 4.85 ns
–1 0.68 2.71 0.05 1.86 2.59 0.44 2.76 2.24 3.34 3.68 4.64 4.12 ns
12 mA Std. 0.80 3.18 0.05 2.19 3.05 0.52 3.24 2.63 3.92 4.33 5.46 4.85 ns
–1 0.68 2.71 0.05 1.86 2.59 0.44 2.76 2.24 3.34 3.68 4.64 4.12 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-42 Advance v0.1
1.5 V DC Core Voltage
Table 2-52 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.61 9.52 0.04 2.19 3.05 0.40 9.69 7.89 3.37 2.65 11.91 10.10 ns
–1 0.52 8.10 0.03 1.86 2.59 0.34 8.25 6.71 2.87 2.26 10.13 8.59 ns
4 mA Std. 0.61 8.14 0.04 2.19 3.05 0.40 8.29 6.89 3.73 3.32 10.50 9.10 ns
–1 0.52 6.92 0.03 1.86 2.59 0.34 7.05 5.86 3.17 2.83 8.93 7.74 ns
6 mA Std. 0.61 7.64 0.04 2.19 3.05 0.40 7.78 6.70 3.80 3.51 9.99 8.92 ns
–1 0.52 6.50 0.03 1.86 2.59 0.34 6.62 5.70 3.24 2.99 8.50 7.59 ns
8 mA Std. 0.61 7.54 0.04 2.19 3.05 0.40 7.68 6.71 3.93 4.18 9.89 8.92 ns
–1 0.52 6.41 0.03 1.86 2.59 0.34 6.53 5.71 3.34 3.55 8.41 7.59 ns
12 mA Std. 0.61 7.54 0.04 2.19 3.05 0.40 7.68 6.71 3.93 4.18 9.89 8.92 ns
–1 0.52 6.41 0.03 1.86 2.59 0.34 6.53 5.71 3.34 3.55 8.41 7.59 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-53 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.61 3.91 0.04 2.19 3.05 0.40 3.98 3.54 3.36 2.76 6.19 5.76 ns
–1 0.52 3.32 0.03 1.86 2.59 0.34 3.38 3.01 2.86 2.35 5.27 4.90 ns
4 mA Std. 0.61 3.33 0.04 2.19 3.05 0.40 3.39 2.90 3.71 3.44 5.61 5.12 ns
–1 0.52 2.83 0.03 1.86 2.59 0.34 2.89 2.47 3.16 2.93 4.77 4.35 ns
6 mA Std. 0.61 3.22 0.04 2.19 3.05 0.40 3.28 2.78 3.80 3.63 5.49 5.00 ns
–1 0.52 2.74 0.03 1.86 2.59 0.34 2.79 2.37 3.23 3.09 4.67 4.25 ns
8 mA Std. 0.61 3.18 0.04 2.19 3.05 0.40 3.24 2.63 3.92 4.33 5.46 4.85 ns
–1 0.52 2.71 0.03 1.86 2.59 0.34 2.76 2.24 3.34 3.68 4.64 4.12 ns
12 mA Std. 0.61 3.18 0.04 2.19 3.05 0.40 3.24 2.63 3.92 4.33 5.46 4.85 ns
–1 0.52 2.71 0.03 1.86 2.59 0.34 2.76 2.24 3.34 3.68 4.64 4.12 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-43
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose
1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.
Timing Characteristics
1.2 V DC Core Voltage
Table 2-54 • Minimum and Maximum DC Input and Output Levels
Applicable to I/Os Operating at 1.2 V Core Voltage
1.2 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSH1IOSL1IIL2IIH2
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA
2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 TBD TBD 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Software default selection highlighted in gray.
Figure 2-12 • AC Loading
Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
01.20.65
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point Test Point
Enable Path
Datapath 5 pF
R = 1 k R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Table 2-56 • 1.2 V LVCMOS Low Slew
Military-Case Conditions: TJ= 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 12.62 0.05 2.62 3.76 0.52 12.07 9.47 5.12 4.68 14.20 11.60 ns
–1 0.68 10.73 0.05 2.23 3.20 0.44 10.27 8.05 4.36 3.98 12.08 9.87 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-57 • 1.2 V LVCMOS High Slew
Military-Case Conditions: TJ= 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive
Strength
Speed
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2 mA Std. 0.80 5.17 0.05 2.62 3.76 0.52 4.95 4.36 5.11 4.83 7.08 6.49 ns
–1 0.68 4.40 0.05 2.23 3.20 0.44 4.21 3.71 4.35 4.11 6.02 5.52 ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-44 Advance v0.1
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.
AC loadings are defined per the PCI/PCI-X specifications for the database; Actel loadings for enable
path characterization are described in Figure 2-13.
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is
described in Table 2-59.
Timing Characteristics
1.2 V DC Core Voltage
1.5 V DC Core Voltage
Table 2-58 • Minimum and Maximum DC Input and Output Levels
3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive Strength Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1Max, mA1µA2µA2
Per PCI specification Per PCI curves 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-13 • AC Loading
Test Point
Enable Path
R to V for t /t /t
CCI LZ ZL ZLS
10 pF for t /t /t /t
ZH ZHS ZLSZL
5 pF for tHZ /tLZ
R to GND for t /t /t
HZ ZH ZH
S
R = 1 k
Test Point
Datapath
R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)
Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V) CLOAD (pF)
0 3.3 0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
10
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Table 2-60 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.78 0.05 2.72 3.67 0.52 2.83 1.98 3.24 3.58 5.04 4.19 ns
–1 0.68 2.36 0.05 2.31 3.12 0.44 2.41 1.68 2.76 3.04 4.29 3.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-61 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.78 0.04 2.72 3.67 0.40 2.83 1.98 3.24 3.58 5.04 4.19 ns
–1 0.52 2.36 0.03 2.31 3.12 0.34 2.41 1.68 2.76 3.04 4.29 3.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-45
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Timing Characteristics
Table 2-62 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
25 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 25 25 268 181 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-14 • AC Loading
Table 2-63 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
10 pF
25
GTL
VTT
Table 2-64 • 3.3 V GTL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =3.0V, VREF =0.8V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.05 0.05 2.33 0.52 2.02 2.05 4.23 4.27 ns
–1 0.68 1.75 0.05 1.98 0.44 1.72 1.75 3.60 3.63 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-65 • 3.3 V GTL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =3.0V, VREF =0.8V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.05 0.04 2.33 0.40 2.02 2.05 4.23 4.27 ns
–1 0.52 1.75 0.03 1.98 0.34 1.72 1.75 3.60 3.63 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-46 Advance v0.1
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
2.5 V.
Timing Characteristics
Table 2-66 • Minimum and Maximum DC Input and Output Levels
2.5 GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
25 mA3–0.3 VREF – 0.05 VREF + 0.05 2.7 0.4 25 25 169 124 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-15 • AC Loading
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
10 pF
25
GTL
VTT
Table 2-68 • 2.5 V GTL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =3.0V, VREF =0.8V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.11 0.05 2.26 0.52 2.14 2.11 4.35 4.32 ns
–1 0.68 1.79 0.05 1.92 0.44 1.82 1.79 3.70 3.68 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-69 • 2.5 V GTL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =3.0V, VREF =0.8V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.11 0.04 2.26 0.40 2.14 2.11 4.35 4.32 ns
–1 0.52 1.79 0.03 1.92 0.34 1.82 1.79 3.70 3.68 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-47
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
3.3 V.
Timing Characteristics
Table 2-70 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
35 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 35 35 268 181 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-16 • AC Loading
Table 2-71 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 1.0 1.0 1.5 10
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
10 pF
25
GTL+
VTT
Table 2-72 • 3.3 V GTL+
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =3.0V, VREF =1.0V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.03 0.05 2.33 0.52 2.07 2.03 4.29 4.25 ns
–1 0.68 1.73 0.05 1.98 0.44 1.76 1.73 3.65 3.61 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-73 • 3.3 V GTL+
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =3.0V, VREF =1.0V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.03 0.04 2.33 0.40 2.07 2.03 4.29 4.25 ns
–1 0.52 1.73 0.03 1.98 0.34 1.76 1.73 3.65 3.61 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-48 Advance v0.1
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
2.5 V.
Timing Characteristics
Table 2-74 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
33 mA –0.3 VREF – 0.1 VREF + 0.1 2.7 0.6 33 33 169 124 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-17 • AC Loading
Table 2-75 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.1 1.0 1.0 1.5 10
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
10 pF
25
GTL+
VTT
Table 2-76 • 2.5 V GTL+
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =2.3V, VREF =1.0V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.18 0.05 2.26 0.52 2.22 2.08 4.44 4.29 ns
–1 0.68 1.86 0.05 1.92 0.44 1.89 1.77 3.78 3.65 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-77 • 2.5 V GTL+
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =2.3V, VREF =1.0V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.18 0.04 2.26 0.40 2.22 2.08 4.44 4.29 ns
–1 0.52 1.86 0.03 1.92 0.34 1.89 1.77 3.78 3.65 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-49
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). RT
ProASIC3 devices support Class I. This provides a differential amplifier input buffer and a push-pull
output buffer.
Timing Characteristics
Table 2-78 • Minimum and Maximum DC Input and Output Levels
HSTL Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
8 mA –0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 8 8 32 39 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-18 • AC Loading
Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring Point*
(V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.10.750.750.75 20
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
20 pF
50
HSTL
Class I
VTT
Table 2-80 • HSTL Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =1.4V, VREF =0.75V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 3.15 0.05 2.75 0.52 3.21 3.11 5.42 5.33 ns
–1 0.68 2.68 0.05 2.34 0.44 2.73 2.65 4.61 4.53 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-81 • HSTL Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =1.4V, VREF =0.75V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 3.15 0.04 2.75 0.40 3.21 3.11 5.42 5.33 ns
–1 0.52 2.68 0.03 2.34 0.34 2.73 2.65 4.61 4.53 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-50 Advance v0.1
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). RT
ProASIC3 devices support Class II. This provides a differential amplifier input buffer and a push-pull
output buffer.
Timing Characteristics
Table 2-82 • Minimum and Maximum DC Input and Output Levels
HSTL Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
15 mA3 –0.3 VREF – 0.1 VREF + 0.1 1.575 0.4 VCCI – 0.4 15 15 66 55 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
3. Output drive strength is below JEDEC specification.
Figure 2-19 • AC Loading
Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.1 VREF + 0.10.750.750.75 20
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
20 pF
25
HSTL
Class II
VTT
Table 2-84 • HSTL Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =1.4V, VREF =0.75V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.99 0.05 2.75 0.52 3.05 2.69 5.26 4.90 ns
–1 0.68 2.55 0.05 2.34 0.44 2.59 2.29 4.48 4.17 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-85 • HSTL Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =1.4V, VREF =0.75V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.99 0.04 2.75 0.40 3.05 2.69 5.26 4.90 ns
–1 0.52 2.55 0.03 2.34 0.34 2.59 2.29 4.48 4.17 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-51
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). RT ProASIC3 devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-86 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
15 mA –0.3 VREF – 0.2 VREF + 0.2 2.7 0.54 VCCI – 0.62 15 15 83 87 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-20 • AC Loading
Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.21.251.251.25 30
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
30 pF
50
25
SSTL2
Class I
VTT
Table 2-88 • SSTL2 Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =2.3V, VREF =1.25V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.11 0.05 2.08 0.52 2.14 1.83 2.14 1.83 ns
–1 0.68 1.79 0.05 1.77 0.44 1.82 1.56 1.82 1.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-89 • SSTL2 Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =2.3V, VREF =1.25V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.11 0.04 2.08 0.40 2.14 1.83 2.14 1.83 ns
–1 0.52 1.79 0.03 1.77 0.34 1.82 1.56 1.82 1.56 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-52 Advance v0.1
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). RT ProASIC3 devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-90 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
18 mA –0.3 VREF – 0.2 VREF + 0.2 2.7 0.35 VCCI – 0.43 18 18 169 124 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-21 • AC Loading
Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.21.251.251.25 30
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
30 pF
25
25
SSTL2
Class II
VTT
Table 2-92 • SSTL2 Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =2.3V, VREF =1.25V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.15 0.05 2.08 0.52 2.19 1.75 2.19 1.75 ns
–1 0.68 1.83 0.05 1.77 0.44 1.86 1.49 1.86 1.49 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-93 • SSTL2 Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =2.3V, VREF =1.25V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.15 0.04 2.08 0.40 2.19 1.75 2.19 1.75 ns
–1 0.52 1.83 0.03 1.77 0.34 1.86 1.49 1.86 1.49 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-53
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). RT ProASIC3 devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-94 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
14 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14 51 54 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-22 • AC Loading
Table 2-95 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
30 pF
50
25
SSTL3
Class I
VTT
Table 2-96 • SSTL3 Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =3.0V, VREF =1.5V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.28 0.05 1.99 0.52 2.33 1.82 2.33 1.82 ns
–1 0.68 1.94 0.05 1.69 0.44 1.98 1.55 1.98 1.55 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-97 • SSTL3 Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =3.0V, VREF =1.5V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.28 0.04 1.99 0.40 2.33 1.82 2.33 1.82 ns
–1 0.52 1.94 0.03 1.69 0.34 1.98 1.55 1.98 1.55 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-54 Advance v0.1
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). RT ProASIC3 devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Timing Characteristics
Table 2-98 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1Max., mA1µA2µA2
21 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 103 109 15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
Figure 2-23 • AC Loading
Table 2-99 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V)
Measuring
Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)
VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Test Point
30 pF
25
25
SSTL3
Class II
VTT
Table 2-100 • SSTL3 Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI =3.0V, VREF =1.5V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.80 2.04 0.05 1.99 0.52 2.08 1.65 2.08 1.65 ns
–1 0.68 1.74 0.05 1.69 0.44 1.77 1.41 1.77 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-101 • SSTL3 Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI =3.0V, VREF =1.5V
Speed
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
Std. 0.61 2.04 0.04 1.99 0.40 2.08 1.65 2.08 1.65 ns
–1 0.52 1.74 0.03 1.69 0.34 1.77 1.41 1.77 1.41 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-55
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Actel Designer software when
the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also
requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in
Figure 2-24. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.
The values for the three driver resistors are different from those used in the LVPECL
implementation because the output standard specifications are different.
Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-
LVDS) configuration (up to 40 nodes).
Figure 2-24 • LVDS Circuit Diagram and Board-Level Implementation
140 Ω100 Ω
Z0 = 50 Ω
Z0 = 50 Ω
165 Ω
165 Ω
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Bourns Part Number: CAT16-LV4F12
Radiation-Tolerant ProASIC3 FPGAs
2-56 Advance v0.1
Table 2-102 • Minimum and Maximum DC Input and Output Levels
DC Parameter Description Min. Typ. Max. Units
VCCI Supply Voltage 2.375 2.5 2.625 V
VOL Output Low Voltage 0.9 1.075 1.25 V
VOH Output High Voltage 1.25 1.425 1.6 V
IOL 4Output Lower Current 0.65 0.91 1.16 mA
IOH 4Output High Current 0.65 0.91 1.16 mA
VIInput Voltage 0 2.925 V
IIH 3Input High Leakage Current 10 µA
IIL 3Input Low Leakage Current 10 µA
VODIFF Differential Output Voltage 250 350 450 mV
VOCM Output Common Mode Voltage 1.125 1.25 1.375 V
VICM Input Common Mode Voltage 0.05 1.25 2.35 V
VIDIFF Input Differential Voltage 100 350 mV
Notes:
1. ± 5%
2. Differential input voltage = ±350 mV.
3. Currents are measured at 125°C junction temperature.
4. IOL/IOH is defined by VODIFF/(Resistor Network).
Table 2-103 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V)
1.075 1.325 Cross point
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-57
Timing Characteristics
1.2 V DC Core Voltage
1.5 V DC Core Voltage
Table 2-104 • LVDS
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.80 1.81 0.05 2.39 ns
–1 0.68 1.57 0.05 2.04 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-105 • LVDS
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.61 1.81 0.04 2.39 ns
–1 0.52 1.57 0.03 2.04 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-58 Advance v0.1
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard
to high-performance multipoint bus applications. Multidrop and multipoint bus configurations
may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the
higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers
require series terminations for better signal quality and to control voltage swing. Termination is
also required at both ends of the bus since the driver can be located anywhere on the bus. These
configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with
appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz
with a maximum of 20 loads. A sample application is given in Figure 2-25. The input and output
buffer delays are available in the LVDS section in Table 2-102 on page 2-56.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the
required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver:
RS=60Ω and RT=70Ω, given Z0=50Ω (2") and Zstub =50Ω (~1.5").
Figure 2-25 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
...
RTRT
BIBUF_LVDS
R
+
-
T
+
-
R
+
-
T
+
-
D
+
-
EN EN EN EN EN
Receiver Transceiver Receiver TransceiverDriver
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
stub
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Z
0
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-59
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It
requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It
also requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in
Figure 2-26. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.
The values for the three driver resistors are different from those used in the LVDS implementation
because the output standard specifications are different.
Figure 2-26 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-106 • Minimum and Maximum DC Input and Output Levels
DC Parameter Description Min. Max. Min. Max. Min. Max. Units
VCCI Supply Voltage 3.0 3.3 3.6 V
VOL Output LOW Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V
VOH Output HIGH Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V
VIL, VIH Input LOW, Input HIGH Voltages 0 3.3 0 3.6 0 3.9 V
VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V
VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V
VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V
VIDIFF Input Differential Voltage 300 300 300 mV
Table 2-107 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V) Input HIGH (V) Measuring Point* (V)
1.64 1.94 Cross point
*Measuring point = Vtrip. See Table 2-19 on page 2-24 for a complete table of trip points.
187 W 100 Ω
Z0 = 50 Ω
Z0 = 50 Ω
100 Ω
100 Ω
+
P
N
P
N
INBUF_LVPECL
OUTBUF_LVPECL
FPGA FPGA
Bourns Part Number: CAT16-PC4F12
Radiation-Tolerant ProASIC3 FPGAs
2-60 Advance v0.1
Timing Characteristics
1.2 V DC Core Voltage
1.5 V DC Core Voltage
Table 2-108 • LVPECL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.80 1.81 0.05 2.16 ns
–1 0.68 1.54 0.05 1.84 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-109 • LVPECL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade tDOUT tDP tDIN tPY Units
Std. 0.61 1.81 0.04 2.16 ns
–1 0.52 1.54 0.03 1.84 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-61
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Preset
Figure 2-27 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
INBUF
INBUF INBUF
TRIBUF
CLKBUF
INBUF
INBUF
CLKBUF
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Pad Out
CLK
Enable
Preset
Data_out
Data
EOUT
DOUT
Enable
CLK
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
DQ
DFN1E1P1
PRE
D_Enable
A
B
C
D
EE
E
EF
G
H
I
J
L
K
Y
Core
Array
Radiation-Tolerant ProASIC3 FPGAs
2-62 Advance v0.1
Table 2-110 • Parameter Definition and Measuring Nodes
Parameter Name Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register H, DOUT
tOSUD Data Setup Time for the Output Data Register F, H
tOHD Data Hold Time for the Output Data Register F, H
tOSUE Enable Setup Time for the Output Data Register G, H
tOHE Enable Hold Time for the Output Data Register G, H
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register L, DOUT
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H
tOECLKQ Clock-to-Q of the Output Enable Register H, EOUT
tOESUD Data Setup Time for the Output Enable Register J, H
tOEHD Data Hold Time for the Output Enable Register J, H
tOESUE Enable Setup Time for the Output Enable Register K, H
tOEHE Enable Hold Time for the Output Enable Register K, H
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register I, EOUT
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H
tICLKQ Clock-to-Q of the Input Data Register A, E
tISUD Data Setup Time for the Input Data Register C, A
tIHD Data Hold Time for the Input Data Register C, A
tISUE Enable Setup Time for the Input Data Register B, A
tIHE Enable Hold Time for the Input Data Register B, A
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A
*See Figure 2-27 on page 2-61 for more information.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-63
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Clear
Figure 2-28 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
Enable
CLK
Pad Out
CLK
Enable
CLR
Data_out
Data
Y
AA
EOUT
DOUT
Core
Array
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
DQ
DFN1E1C1
E
CLR
D_Enable
BB
CC
DD
EE
FF
GG
LL
HH
JJ
KK
CLKBUF
INBUF
INBUF
TRIBUF
INBUF INBUF CLKBUF
INBUF
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Radiation-Tolerant ProASIC3 FPGAs
2-64 Advance v0.1
Table 2-111 • Parameter Definition and Measuring Nodes
Parameter Name Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT
tOSUD Data Setup Time for the Output Data Register FF, HH
tOHD Data Hold Time for the Output Data Register FF, HH
tOSUE Enable Setup Time for the Output Data Register GG, HH
tOHE Enable Hold Time for the Output Data Register GG, HH
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register LL, DOUT
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH
tOECLKQ Clock-to-Q of the Output Enable Register HH, EOUT
tOESUD Data Setup Time for the Output Enable Register JJ, HH
tOEHD Data Hold Time for the Output Enable Register JJ, HH
tOESUE Enable Setup Time for the Output Enable Register KK, HH
tOEHE Enable Hold Time for the Output Enable Register KK, HH
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH
tICLKQ Clock-to-Q of the Input Data Register AA, EE
tISUD Data Setup Time for the Input Data Register CC, AA
tIHD Data Hold Time for the Input Data Register CC, AA
tISUE Enable Setup Time for the Input Data Register BB, AA
tIHE Enable Hold Time for the Input Data Register BB, AA
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA
*See Figure 2-28 on page 2-63 for more information.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-65
Input Register
Figure 2-29 • Input Register Timing Diagram
50%
Preset
Clear
Out_1
CLK
Data
Enable
tISUE
50%
50%
tISUD
tIHD
50%50%
tICLKQ
10
tIHE
tIRECPRE tIREMPRE
tIRECCLR tIREMCLR
tIWCLR
tIWPRE
tIPRE2Q
tICLR2Q
tICKMPWH tICKMPWL
50%50%
50%50%50%
50%50%
50%50%50%50%50%50%
50%
Radiation-Tolerant ProASIC3 FPGAs
2-66 Advance v0.1
Timing Characteristics
Table 2-112 • Input Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.33 0.39 ns
tISUD Data Setup Time for the Input Data Register 0.36 0.43 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.51 0.60 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.63 0.74 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.63 0.74 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.31 0.36 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.31 0.36 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.31 0.36 ns
tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-113 • Input Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tICLKQ Clock-to-Q of the Input Data Register 0.25 0.30 ns
tISUD Data Setup Time for the Input Data Register 0.28 0.33 ns
tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns
tISUE Enable Setup Time for the Input Data Register 0.39 0.46 ns
tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns
tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.48 0.56 ns
tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.48 0.56 ns
tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns
tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.24 0.28 ns
tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns
tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.24 0.28 ns
tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 0.22 ns
tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.31 0.36 ns
tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-67
Output Register
Figure 2-30 • Output Register Timing Diagram
Preset
Clear
DOUT
CLK
Data_out
Enable
t
OSUE
50%
50%
t
OSUD
t
OHD
50%50%
t
OCLKQ
10
t
OHE
t
ORECPRE
t
OREMPRE
t
ORECCLR
t
OREMCLR
t
OWCLR
t
OWPRE
t
OPRE2Q
t
OCLR2Q
t
OCKMPWH
t
OCKMPWL
50%50%
50%50%50%
50%50%
50%50%50%50%50%50%
50%
50%
Radiation-Tolerant ProASIC3 FPGAs
2-68 Advance v0.1
Timing Characteristics
Table 2-114 • Output Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Register 0.81 0.96 ns
tOSUD Data Setup Time for the Output Data Register 0.43 0.51 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.61 0.71 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 1.11 1.31 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 1.11 1.31 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.31 0.36 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.31 0.36 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.31 0.36 ns
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-115 • Output Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tOCLKQ Clock-to-Q of the Output Data Register 0.62 0.73 ns
tOSUD Data Setup Time for the Output Data Register 0.33 0.39 ns
tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns
tOSUE Enable Setup Time for the Output Data Register 0.46 0.55 ns
tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns
tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.85 1.00 ns
tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.85 1.00 ns
tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns
tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.24 0.28 ns
tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns
tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.24 0.28 ns
tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.31 0.36 ns
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-69
Output Enable Register
Figure 2-31 • Output Enable Register Timing Diagram
50%
Preset
Clear
EOUT
CLK
D_Enable
Enable
tOESUE
50%
50%
tOESUD tOEHD
50%50%
tOECLKQ
10
tOEHE
tOERECPRE
tOEREMPRE
tOERECCLR tOEREMCLR
tOEWCLR
tOEWPRE
tOEPRE2Q tOECLR2Q
tOECKMPWH tOECKMPWL
50%50%
50%50%50%
50%50%
50%50%50%50%50%50%
50%
Radiation-Tolerant ProASIC3 FPGAs
2-70 Advance v0.1
Timing Characteristics
Table 2-116 • Output Enable Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.62 0.72 ns
tOESUD Data Setup Time for the Output Enable Register 0.43 0.51 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.60 0.71 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.92 1.08 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.92 1.08 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.31 0.36 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.31 0.36 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.31 0.36 ns
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-117 • Output Enable Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tOECLKQ Clock-to-Q of the Output Enable Register 0.47 0.55 ns
tOESUD Data Setup Time for the Output Enable Register 0.33 0.39 ns
tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns
tOESUE Enable Setup Time for the Output Enable Register 0.46 0.54 ns
tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns
tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.70 0.83 ns
tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.70 0.83 ns
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.24 0.28 ns
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.24 0.28 ns
tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.31 0.36 ns
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register 0.28 0.32 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-71
DDR Module Specifications
Input DDR Module
Figure 2-32 • Input DDR Timing Model
Table 2-118 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDRICLKQ1 Clock-to-Out Out_QR B, D
tDDRICLKQ2 Clock-to-Out Out_QF B, E
tDDRISUD Data Setup Time of DDR input A, B
tDDRIHD Data Hold Time of DDR input A, B
tDDRICLR2Q1 Clear-to-Out Out_QR C, D
tDDRICLR2Q2 Clear-to-Out Out_QF C, E
tDDRIREMCLR Clear Removal C, B
tDDRIRECCLR Clear Recovery C, B
Input DDR
Data
CLK
CLKBUF
INBUF
Out_QF
(to core)
FF2
FF1
INBUF
CLR
DDR_IN
E
A
B
C
D
Out_QR
(to core)
Radiation-Tolerant ProASIC3 FPGAs
2-72 Advance v0.1
Timing Characteristics
Figure 2-33 • Input DDR Timing Diagram
tDDRICLR2Q2
tDDRIREMCLR
tDDRIRECCLR
tDDRICLR2Q1
12 3 4 5 6 7 8 9
CLK
Data
CLR
Out_QR
Out_QF
tDDRICLKQ1
246
357
tDDRIHD
tDDRISUD
tDDRICLKQ2
Table 2-119 • Input DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.38 0.45 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.54 0.63 ns
tDDRISUD1 Data Setup for Input DDR (fall) 0.39 0.46 ns
tDDRISUD2 Data Setup for Input DDR (rise) 0.34 0.40 ns
tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns
tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.64 0.75 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.79 0.93 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.31 0.36 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 0.22 ns
tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.31 0.36 ns
tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.28 0.32 ns
FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-73
Table 2-120 • Input DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.29 0.34 ns
tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.41 0.48 ns
tDDRISUD1 Data Setup for Input DDR (fall) 0.30 0.35 ns
tDDRISUD2 Data Setup for Input DDR (rise) 0.26 0.31 ns
tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns
tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns
tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.49 0.58 ns
tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.60 0.71 ns
tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns
tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.24 0.28 ns
tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 0.22 ns
tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.31 0.36 ns
tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.28 0.32 ns
FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-74 Advance v0.1
Output DDR Module
Figure 2-34 • Output DDR Timing Model
Table 2-121 • Parameter Definitions
Parameter Name Parameter Definition Measuring Nodes (from, to)
tDDROCLKQ Clock-to-Out B, E
tDDROCLR2Q Asynchronous Clear-to-Out C, E
tDDROREMCLR Clear Removal C, B
tDDRORECCLR Clear Recovery C, B
tDDROSUD1 Data Setup Data_F A, B
tDDROSUD2 Data Setup Data_R D, B
tDDROHD1 Data Hold Data_F A, B
tDDROHD2 Data Hold Data_R D, B
Data_F
(from core)
CLK
CLKBUF
Out
FF2
INBUF
CLR
DDR_OUT
Output DDR
FF1
0
1
X
X
X
X
X
X
X
X
A
B
D
E
C
C
B
OUTBUF
Data_R
(from core)
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-75
Timing Characteristics
Figure 2-35 • Output DDR Timing Diagram
116
1
7
2
8
3
910
45
28 3 9
tDDROREMCLR
tDDROHD1
tDDROREMCLR
tDDROHD2
tDDROSUD2
tDDROCLKQ
tDDRORECCLR
CLK
Data_R
Data_F
CLR
Out
tDDROCLR2Q
7104
Table 2-122 • Output DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.97 1.14 ns
tDDRISUD1 Data_F Data Setup for Output DDR 0.52 0.62 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.52 0.62 ns
tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 1.11 1.30 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.31 0.36 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 0.22 ns
tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.31 0.36 ns
tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.28 0.32 ns
FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-76 Advance v0.1
Table 2-123 • Output DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.74 0.87 ns
tDDRISUD1 Data_F Data Setup for Output DDR 0.40 0.47 ns
tDDROSUD2 Data_R Data Setup for Output DDR 0.40 0.47 ns
tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns
tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns
tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.85 1.00 ns
tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns
tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.24 0.28 ns
tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 0.22 ns
tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.31 0.36 ns
tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.28 0.32 ns
FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-77
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The RT ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section,
timing characteristics are presented for a sample of the library. For more details, refer to the
IGLOO, Fusion, and ProASIC3 Macro Library Guide.
Figure 2-36 • Sample of Combinatorial Cells
MAJ3
A
C
BY
MUX2
B
0
1
A
S
Y
AY
B
B
A
XOR2 Y
NOR2
B
A
Y
B
A
YOR2
INV
A
Y
AND2
B
A
Y
NAND3
B
A
C
XOR3
Y
B
A
C
NAND2
Radiation-Tolerant ProASIC3 FPGAs
2-78 Advance v0.1
Figure 2-37 • Timing Model and Waveforms
tPD
A
B
tPD = MAX(tPD(RR), tPD(RF),
tPD(FF), tPD(FR)) where edges are
applicable for the particular
combinatorial cell
Y
NAND2 or
Any Combinatorial
Logic
tPD
tPD
50%
VCC
VCC
VCC
50%
GND
A, B, C
50%50%
50%
(RR)
(RF) GND
OUT
OUT
GND
50%
(FF)
(FR)
tPD
tPD
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-79
Timing Characteristics
Table 2-124 • Combinatorial Cell Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y = !A tPD 0.56 0.65 ns
AND2 Y = A · B tPD 0.65 0.77 ns
NAND2 Y = !(A · B) tPD 0.65 0.77 ns
OR2 Y = A + B tPD 0.67 0.79 ns
NOR2 Y = !(A + B) tPD 0.67 0.79 ns
XOR2 Y = A Bt
PD 1.02 1.20 ns
MAJ3 Y = MAJ(A , B, C) tPD 0.97 1.14 ns
XOR3 Y = A B Ct
PD 1.21 1.42 ns
MUX2 Y = A !S + B S tPD 0.70 0.82 ns
AND3 Y = A · B · C tPD 0.78 0.91 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Table 2-125 • Combinatorial Cell Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Combinatorial Cell Equation Parameter –1 Std. Units
INV Y = !A tPD 0.43 0.50 ns
AND2 Y = A · B tPD 0.50 0.59 ns
NAND2 Y = !(A · B) tPD 0.50 0.59 ns
OR2 Y = A + B tPD 0.51 0.61 ns
NOR2 Y = !(A + B) tPD 0.51 0.61 ns
XOR2 Y = A Bt
PD 0.78 0.92 ns
MAJ3 Y = MAJ(A , B, C) tPD 0.74 0.87 ns
XOR3 Y = A B Ct
PD 0.93 1.09 ns
MUX2 Y = A !S + B S tPD 0.54 0.63 ns
AND3 Y = A · B · C tPD 0.59 0.70 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Radiation-Tolerant ProASIC3 FPGAs
2-80 Advance v0.1
VersaTile Specifications as a Sequential Module
The RT ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches.
Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are
presented for a representative sample from the library. For more details, refer to the IGLOO,
Fusion, and ProASIC3 Macro Library Guide.
Figure 2-38 • Sample of Sequential Cells
DQ
DFN1
Data
CLK
Out
DQ
DFN1C1
Data
CLK
Out
CLR
DQ
DFI1E1P1
Data
CLK
Out
En
PRE
DQ
DFN1E1
Data
CLK
Out
En
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-81
Figure 2-39 • Timing Model and Waveforms
PRE
CLR
Out
CLK
Data
EN
tSUE
50%
50%
tSUD
tHD
50%50%
tCLKQ
0
tHE
tRECPRE tREMPRE
tRECCLR tREMCLRtWCLR
tWPRE
tPRE2Q tCLR2Q
tCKMPWH tCKMPWL
50%50%
50%50%50%
50%50%
50%50%50%50%50%50%
50%
50%
Radiation-Tolerant ProASIC3 FPGAs
2-82 Advance v0.1
Timing Characteristics
Table 2-126 • Register Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.76 0.90 ns
tSUD Data Setup Time for the Core Register 0.59 0.70 ns
tHD Data Hold Time for the Core Register 0.00 0.00 ns
tSUE Enable Setup Time for the Core Register 0.63 0.74 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.55 0.65 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.55 0.65 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.31 0.36 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.31 0.36 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns
tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.56 0.64 ns
tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.56 0.64 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-83
Table 2-127 • Register Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tCLKQ Clock-to-Q of the Core Register 0.58 0.69 ns
tSUD Data Setup Time for the Core Register 0.45 0.53 ns
tHD Data Hold Time for the Core Register 0.00 0.00 ns
tSUE Enable Setup Time for the Core Register 0.48 0.57 ns
tHE Enable Hold Time for the Core Register 0.00 0.00 ns
tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.42 0.50 ns
tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.42 0.50 ns
tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns
tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.24 0.28 ns
tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns
tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.24 0.28 ns
tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns
tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns
tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.56 0.64 ns
tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.56 0.64 ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-84 Advance v0.1
Global Resource Characteristics
RT3PE600L Clock Tree Topology
Clock delays are device-specific. Figure 2-40 is an example of a global tree used for clock routing.
The global tree presented in Figure 2-40 is driven by a CCC located on the west side of the
RT3PE600L device. It is used to drive all D-flip-flops in the device.
Figure 2-40 • Example of Global Tree Use in an RT3PE600L Device for Clock Routing
Central
Global Rib
VersaTile
Rows
Global Spine
CCC
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-85
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be
driven and conditioned internally by the CCC module. For more details on clock conditioning
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-87. Table 2-128 to
Table 2-131 on page 2-86 present minimum and maximum global clock delays within each device.
Minimum and maximum delays are measured with minimum and maximum loading.
Timing Characteristics
1.2 V DC Core Voltage
Table 2-128 • RT3PE600L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input LOW Delay for Global Clock ns
tRCKH Input HIGH Delay for Global Clock ns
tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns
tRCKMPWL Minimum Pulse Width LOW for Global Clock ns
tRCKSW Maximum Skew for Global Clock ns
FRMAX Maximum Frequency for Global Clock MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a
sequential element, located in a lightly loaded row (single element is connected to the global
net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential
element, located in a fully loaded row (all available flip-flops are connected to the global net in
the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for
derating values.
Table 2-129 • RT3PE3000L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input LOW Delay for Global Clock 1.80 2.06 2.12 2.42 ns
tRCKH Input HIGH Delay for Global Clock 1.79 2.09 2.11 2.45 ns
tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns
tRCKMPWL Minimum Pulse Width LOW for Global Clock ns
tRCKSW Maximum Skew for Global Clock 0.30 0.35 ns
FRMAX Maximum Frequency for Global Clock MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a
sequential element, located in a lightly loaded row (single element is connected to the global
net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential
element, located in a fully loaded row (all available flip-flops are connected to the global net in
the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for
derating values.
Radiation-Tolerant ProASIC3 FPGAs
2-86 Advance v0.1
1.5 V DC Core Voltage
Table 2-130 • RT3PE600L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input LOW Delay for Global Clock ns
tRCKH Input HIGH Delay for Global Clock ns
tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns
tRCKMPWL Minimum Pulse Width LOW for Global Clock ns
tRCKSW Maximum Skew for Global Clock ns
FRMAX Maximum Frequency for Global Clock MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a
sequential element, located in a lightly loaded row (single element is connected to the global
net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential
element, located in a fully loaded row (all available flip-flops are connected to the global net in
the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for
derating values.
Table 2-131 • RT3PE3000L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description
–1 Std.
UnitsMin.1Max.2Min.1Max.2
tRCKL Input LOW Delay for Global Clock 1.61 1.85 1.89 2.17 ns
tRCKH Input HIGH Delay for Global Clock 1.60 1.87 1.88 2.20 ns
tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns
tRCKMPWL Minimum Pulse Width LOW for Global Clock ns
tRCKSW Maximum Skew for Global Clock 0.27 0.32 ns
FRMAX Maximum Frequency for Global Clock MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a
sequential element, located in a lightly loaded row (single element is connected to the global
net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential
element, located in a fully loaded row (all available flip-flops are connected to the global net in
the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for
derating values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-87
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-132 • RT ProASIC3 CCC/PLL Specification
For Devices Operating at 1.2 V DC Core Voltage
Parameter Min. Typ. Max. Units
Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 250 MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 250 MHz
Delay Increments in Programmable Delay Blocks 1, 2 270 ps
Number of Programmable Values in Each Programmable Delay Block 32
Serial Clock (SCLK) for Dynamic PLL3100 MHz
Input Cycle-to-Cycle Jitter (peak magnitude) 1 ns
CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter
1 Global
Network
Used
External
FB Used
3 Global
Networks
Used
0.75 MHz to 24 MHz 0.50%0.75%0.70%
24 MHz to 100 MHz 1.00%1.50%1.20%
100 MHz to 250 MHz 2.50% 3.75%2.75%
Acquisition Time
LockControl = 0 300 µs
LockControl = 1 6.0 ms
Tracking Jitter
LockControl = 0 2 ns
LockControl = 1 1 ns
Output Duty Cycle 48.5 51.5 %
Delay Range in Block: Programmable Delay 1 1, 2 1.2 15.65 ns
Delay Range in Block: Programmable Delay 2 1, 2 0.025 15.65 ns
Delay Range in Block: Fixed Delay 1, 2 3.1 ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings.
2. TJ = 25°C, VCC = 1.2 V
3. Maximum value obtained for a Std. speed grade device in worst-case military conditions. For specific
junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input
clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period
jitter parameter.
Radiation-Tolerant ProASIC3 FPGAs
2-88 Advance v0.1
Table 2-133 • RT ProASIC3 CCC/PLL Specification
For Devices Operating at 1.5 V DC Core Voltage
Parameter Min. Typ. Max. Units
Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 350 MHz
Clock Conditioning Circuitry Output Frequency
fOUT_CCC
0.75 350 MHz
Serial Clock (SCLK) for Dynamic PLL 5110 MHz
Delay Increments in Programmable Delay Blocks 1, 2 200 ps
Number of Programmable Values in Each
Programmable Delay Block
32
Input Period Jitter 1.5 ns
CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter
1 Global
Network
Used
3 Global
Networks
Used
0.75 MHz to 24 MHz 0.50% 0.70%
24 MHz to 100 MHz 1.00% 1.20%
100 MHz to 250 MHz 1.75% 2.00%
250 MHz to 350 MHz 2.50% 5.60%
Acquisition Time
LockControl = 0 300 µs
LockControl = 1 6.0 ms
Tracking Jitter
LockControl = 0 1.6 ns
LockControl = 1 0.8 ns
Output Duty Cycle 48.5 51.5 %
Delay Range in Block: Programmable Delay 1 1, 2 0.6 5.56 ns
Delay Range in Block: Programmable Delay 2 1, 2 0.025 5.56 ns
Delay Range in Block: Fixed Delay 1, 2 2.2 ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. Maximum value obtained for a Std. speed grade device in worst-case military conditions. For specific
junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input
clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period
jitter parameter.
5. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-89
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-41 • Peak-to-Peak Jitter Definition
T
period_max
T
period_min
Output Signal
Radiation-Tolerant ProASIC3 FPGAs
2-90 Advance v0.1
Embedded SRAM and FIFO Characteristics
SRAM
Figure 2-42 • RAM Models
ADDRA11 DOUTA8
DOUTA7
DOUTA0
DOUTB8
DOUTB7
DOUTB0
ADDRA10
ADDRA0
DINA8
DINA7
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
ADDRB11
ADDRB10
ADDRB0
DINB8
DINB7
DINB0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
RAM4K9
RADDR8 RD17
RADDR7 RD16
RADDR0 RD0
WD17
WD16
WD0
WW1
WW0
RW1
RW0
PIPE
REN
RCLK
RAM512X18
WADDR8
WADDR7
WADDR0
WEN
WCLK
RESET
RESET
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-91
Timing Waveforms
Figure 2-43 • RAM Read for Pass-Through Output
Figure 2-44 • RAM Read for Pipelined Output
CLK
ADD
BLK_B
WEN_B
DO
A
0
A
1
A
2
D
0
D
1
D
2
t
CYC
t
CKH
t
CKL
t
AS
t
AH
t
BKS
t
ENS
t
ENH
t
DOH1
t
BKH
D
n
t
CKQ1
CLK
ADD
BLK_B
WEN_B
DO
A0A1A2
D0D1
tCYC
tCKH tCKL
tAS tAH
tBKS
tENS tENH
tDOH2
tCKQ2
tBKH
Dn
Radiation-Tolerant ProASIC3 FPGAs
2-92 Advance v0.1
Figure 2-45 • RAM Write, Output Retained (WMODE = 0)
Figure 2-46 • RAM Write, Output as Write Data (WMODE = 1)
tCYC
tCKH tCKL
A0A1A2
DI0DI1
tAS tAH
tBKS
tENS tENH
tDS tDH
CLK
BLK_B
WEN_B
ADD
DI
Dn
DO
tBKH
D2
tCYC
tCKH tCKL
A0A1A2
DI0DI1
tAS tAH
tBKS
tENS
tDS tDH
CLK
BLK_B
WEN_B
ADD
DI
tBKH
DO
(pass-through) DI1
DnDI0
DO
(pipelined) DI0DI1
Dn
DI2
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-93
Figure 2-47 • Write Access after Write onto Same Address
CLK1
CLK2
WEN_B1
WEN_B2
ADD1
ADD2
DI1
DI2
DO2
(pass-through)
DO2
(pipelined)
A0
t
AH
t
AS
t
AH
t
AS
t
DH
t
CCKH
t
DS
t
CKQ1
t
CKQ2
D1
A1
D2
A3
D3
A0
D0
DnD0
DnD0
A0A4
D4
Radiation-Tolerant ProASIC3 FPGAs
2-94 Advance v0.1
Figure 2-48 • Read Access after Write onto Same Address
CLK1
CLK2
WEN_B1
WEN_B2
ADD1
ADD2
DI1
DO2
(pass-through)
DO2
(pipelined)
A0
t
AH
t
AS
t
AH
t
AS
t
DH
t
DS
t
WRO
t
CKQ1
t
CKQ2
D0
A0A1A4
Dn
DnD0
D0D1
A2
D2
A3
D3
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-95
Figure 2-49 • Write Access after Read onto Same Address
Figure 2-50 • RAM Reset
A
0
A
1
A
0
A
0
A
1
A
3
D
1
D
2
D
3
t
AH
t
AS
t
AH
t
AS
t
CKQ1
t
CKQ1
t
CKQ2
t
CCKH
CLK1
ADD1
WEN_B1
DO1
(
pass-through)
DO1
(pipelined)
CLK2
ADD2
DI2
WEN_B2
Dn
Dn
D0D1
D0
CLK
RESET_B
DO D
n
t
CYC
t
CKH
t
CKL
t
RSTBQ
D
m
Radiation-Tolerant ProASIC3 FPGAs
2-96 Advance v0.1
Timing Characteristics
Table 2-134 • RAM4K9
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tAS Address setup time 0.35 0.41 ns
tAH Address hold time 0.00 0.00 ns
tENS REN_B, WEN_B setup time 0.20 0.23 ns
tENH REN_B, WEN_B hold time 0.13 0.16 ns
tBKS BLK_B setup time 0.32 0.38 ns
tBKH BLK_B hold time 0.03 0.03 ns
tDS Input data (DI) setup time 0.25 0.30 ns
tDH Input data (DI) hold time 0.00 0.00 ns
tCKQ1 Clock HIGH to new data valid on DO (output retained, WMODE = 0) 2.47 2.91 ns
Clock HIGH to new data valid on DO (flow-through, WMODE = 1) 3.26 3.84 ns
tCKQ2 Clock HIGH to new data valid on DO (pipelined) 1.24 1.46 ns
tWRO Address collision clk-to-clk delay for reliable read access after write on same
address
TBD TBD ns
tCCKH Address collision clk-to-clk delay for reliable write access after write/read on
same address
TBD TBD ns
tRSTBQ RESET_B LOW to data out LOW on DO (flow-through) 1.28 1.50 ns
RESET_B LOW to data out LOW on DO (pipelined) 1.28 1.50 ns
tREMRSTB RESET_B removal 0.40 0.47 ns
tRECRSTB RESET_B recovery 2.08 2.44 ns
tMPWRSTB RESET_B minimum pulse width 0.66 0.76 ns
tCYC Clock cycle time 6.08 6.99 ns
FMAX Maximum frequency 164 143 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-97
Table 2-135 • RAM4K9
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address setup time 0.26 0.31 ns
tAH Address hold time 0.00 0.00 ns
tENS REN_B, WEN_B setup time 0.15 0.18 ns
tENH REN_B, WEN_B hold time 0.10 0.12 ns
tBKS BLK_B setup time 0.25 0.29 ns
tBKH BLK_B hold time 0.02 0.02 ns
tDS Input data (DI) setup time 0.19 0.23 ns
tDH Input data (DI) hold time 0.00 0.00 ns
tCKQ1 Clock HIGH to new data valid on DO (output retained, WMODE = 0) 1.89 2.22 ns
Clock HIGH to new data valid on DO (flow-through, WMODE = 1) 2.50 2.93 ns
tCKQ2 Clock HIGH to new data valid on DO (pipelined) 0.95 1.11 ns
tWRO Address collision clk-to-clk delay for reliable read access after write on same
address
TBD TBD ns
tCCKH Address collision clk-to-clk delay for reliable write access after write/read on
same address
TBD TBD ns
tRSTBQ RESET_B LOW to data out LOW on DO (flow-through) 0.98 1.15 ns
RESET_B LOW to data out LOW on DO (pipelined) 0.98 1.15 ns
tREMRSTB RESET_B removal 0.30 0.36 ns
tRECRSTB RESET_B recovery 1.59 1.87 ns
tMPWRSTB RESET_B minimum pulse width 0.59 0.67 ns
tCYC Clock cycle time 5.39 6.20 ns
FMAX Maximum frequency 185 161 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-98 Advance v0.1
Table 2-136 • RAM512X18
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tAS Address setup time 0.35 0.41 ns
tAH Address hold time 0.00 0.00 ns
tENS REN_B, WEN_B setup time 0.13 0.15 ns
tENH REN_B, WEN_B hold time 0.08 0.09 ns
tDS Input data (DI) setup time 0.25 0.30 ns
tDH Input data (DI) hold time 0.00 0.00 ns
tCKQ1 Clock HIGH to new data valid on DO (output retained, WMODE = 0) 2.99 3.52 ns
tCKQ2 Clock HIGH to new data valid on DO (pipelined) 1.24 1.46 ns
tWRO Address collision clk-to-clk delay for reliable read access after write on same
address
TBD TBD ns
tCCKH Address collision clk-to-clk delay for reliable write access after write/read on
same address
TBD TBD ns
tRSTBQ RESET_B LOW to data out LOW on DO (flow through) 1.28 1.50 ns
RESET_B LOW to data out LOW on DO (pipelined) 1.28 1.50 ns
tREMRSTB RESET_B removal 0.40 0.47 ns
tRECRSTB RESET_B recovery 2.08 2.44 ns
tMPWRSTB RESET_B minimum pulse width 0.66 0.76 ns
tCYC Clock cycle time 6.08 6.99 ns
FMAX Maximum frequency 164 143 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-99
Table 2-137 • RAM512X18
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tAS Address setup time 0.26 0.31 ns
tAH Address hold time 0.00 0.00 ns
tENS REN_B, WEN_B setup time 0.10 0.11 ns
tENH REN_B, WEN_B hold time 0.06 0.07 ns
tDS Input data (DI) setup time 0.19 0.23 ns
tDH Input data (DI) hold time 0.00 0.00 ns
tCKQ1 Clock HIGH to new data valid on DO (output retained, WMODE = 0) 2.29 2.69 ns
tCKQ2 Clock HIGH to new data valid on DO (pipelined) 0.95 1.12 ns
tWRO Address collision clk-to-clk delay for reliable read access after write on same
address
TBD TBD ns
tCCKH Address collision clk-to-clk delay for reliable write access after write/read on
same address
TBD TBD ns
tRSTBQ RESET_B LOW to data out LOW on DO (flow through) 0.98 1.15 ns
RESET_B LOW to data out LOW on DO (pipelined) 0.98 1.15 ns
tREMRSTB RESET_B removal 0.30 0.36 ns
tRECRSTB RESET_B recovery 1.59 1.87 ns
tMPWRSTB RESET_B minimum pulse width 0.59 0.67 ns
tCYC Clock cycle time 5.39 6.20 ns
FMAX Maximum frequency 185 161 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Radiation-Tolerant ProASIC3 FPGAs
2-100 Advance v0.1
FIFO
Figure 2-51 • FIFO Model
FIFO4K18
RW2
RD17
RW1
RD16
RW0
WW2
WW1
WW0 RD0
ESTOP
FSTOP
FULL
AFULL
EMPTY
AFVAL11
AEMPTY
AFVAL10
AFVAL0
AEVAL11
AEVAL10
AEVAL0
REN
RBLK
RCLK
WEN
WBLK
WCLK
RPIPE
WD17
WD16
WD0
RESET
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-101
Timing Waveforms
Figure 2-52 • FIFO Reset
Figure 2-53 • FIFO EMPTY Flag and AEMPTY Flag Assertion
MATCH (A
0
)
t
MPWRSTB
t
RSTFG
t
RSTCK
t
RSTAF
RCLK/
WCLK
RESET_B
EMPTY
AEMPTY
WA/RA
(Address Counter)
t
RSTFG
t
RSTAF
FULL
AFULL
RCLK
NO MATCH NO MATCH Dist = AEF_TH MATCH (EMPTY)
tCKAF
tRCKEF
EMPTY
AEMPTY
tCYC
WA/RA
(Address Counter)
Radiation-Tolerant ProASIC3 FPGAs
2-102 Advance v0.1
Figure 2-54 • FIFO FULL Flag and AFULL Flag Assertion
Figure 2-55 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
Figure 2-56 • FIFO FULL Flag and AFULL Flag Deassertion
NO MATCH NO MATCH Dist = AFF_TH MATCH (FULL)
tCKAF
tWCKFF
tCYC
WCLK
FULL
AFULL
WA/RA
(Address Counter)
WCLK
WA/RA
(Address Counter) MATCH
(EMPTY) NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1
NO MATCH
RCLK
EMPTY
1st Rising
Edge
After 1st
Write
2nd Rising
Edge
After 1st
Write
tRCKEF
tCKAF
AEMPTY
Dist = AFF_TH – 1
MATCH (FULL) NO MATCH NO MATCH NO MATCH NO MATCH
tWCKF
tCKAF
1st Rising
Edge
After 1st
Read
1st Rising
Edge
After 2nd
Read
RCLK
WA/RA
(Address Counter)
WCLK
FULL
AFULL
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-103
Timing Characteristics
Table 2-138 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.14 V
Parameter Description –1 Std. Units
tENS REN_B, WEN_B Setup Time 1.91 2.24 ns
tENH REN_B, WEN_B Hold Time 0.03 0.03 ns
tBKS BLK_B Setup Time 0.40 0.47 ns
tBKH BLK_B Hold Time 0.00 0.00 ns
tDS Input Data (DI) Setup Time 0.25 0.30 ns
tDH Input Data (DI) Hold Time 0.00 0.00 ns
tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 3.26 3.84 ns
tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.24 1.46 ns
tRCKEF RCLK HIGH to Empty Flag Valid 2.38 2.80 ns
tWCKFF WCLK HIGH to Full Flag Valid 2.26 2.66 ns
tCKAF Clock HIGH to Almost Empty/Full Flag Valid 8.57 10.08 ns
tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.34 2.76 ns
tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 8.48 9.97 ns
tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.28 1.50 ns
RESET_B LOW to Data Out LOW on DO (pipelined) 1.28 1.50 ns
tREMRSTB RESET_B Removal 0.40 0.47 ns
tRECRSTB RESET_B Recovery 2.08 2.44 ns
tMPWRSTB RESET_B Minimum Pulse Width 0.66 0.76 ns
tCYC Clock Cycle Time 6.08 6.99 ns
FMAX Maximum Frequency for FIFO 164 143 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Radiation-Tolerant ProASIC3 FPGAs
2-104 Advance v0.1
Table 2-139 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tENS REN_B, WEN_B Setup Time 1.46 1.71 ns
tENH REN_B, WEN_B Hold Time 0.02 0.02 ns
tBKS BLK_B Setup Time 0.40 0.47 ns
tBKH BLK_B Hold Time 0.00 0.00 ns
tDS Input Data (DI) Setup Time 0.19 0.23 ns
tDH Input Data (DI) Hold Time 0.00 0.00 ns
tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.50 2.93 ns
tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 0.95 1.11 ns
tRCKEF RCLK HIGH to Empty Flag Valid 1.82 2.14 ns
tWCKFF WCLK HIGH to Full Flag Valid 1.73 2.03 ns
tCKAF Clock HIGH to Almost Empty/Full Flag Valid 6.56 7.71 ns
tRSTFG RESET_B LOW to Empty/Full Flag Valid 1.79 2.11 ns
tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 6.49 7.63 ns
tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 0.98 1.15 ns
RESET_B LOW to Data Out LOW on DO (pipelined) 0.98 1.15 ns
tREMRSTB RESET_B Removal 0.30 0.36 ns
tRECRSTB RESET_B Recovery 1.59 1.87 ns
tMPWRSTB RESET_B Minimum Pulse Width 0.59 0.67 ns
tCYC Clock Cycle Time 5.39 6.20 ns
FMAX Maximum Frequency for FIFO 185 161 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-105
Embedded FlashROM Characteristics
Timing Characteristics
Figure 2-57 • Timing Diagram
A
0
A
1
t
SU
t
HOLD
t
SU
t
HOLD
t
SU
t
HOLD
t
CKQ2
t
CKQ2
t
CKQ2
CLK
Address
Data D
0
D
0
D
1
Table 2-140 • Embedded FlashROM Access Time
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tSU Address Setup Time 0.74 0.87 ns
tHOLD Address Hold Time 0.00 0.00 ns
tCK2Q Clock to Out 22.47 26.42 ns
FMAX Maximum Clock Frequency 15 15 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Table 2-141 • Embedded FlashROM Access Time
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
Parameter Description –1 Std. Units
tSU Address Setup Time 0.56 0.66 ns
tHOLD Address Hold Time 0.00 0.00 ns
tCK2Q Clock to Out 17.19 20.21 ns
FMAX Maximum Clock Frequency 15 15 MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Radiation-Tolerant ProASIC3 FPGAs
2-106 Advance v0.1
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays
to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-18 for more details.
Timing Characteristics
Table 2-142 • JTAG 1532
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V
Parameter Description –1 Std. Units
tDISU Test Data Input Setup Time 0.80 0.94 ns
tDIHD Test Data Input Hold Time 1.60 1.88 ns
tTMSSU Test Mode Select Setup Time 0.80 0.94 ns
tTMDHD Test Mode Select Hold Time 1.60 1.88 ns
tTCK2Q Clock to Q (data out) 6.39 7.52 ns
tRSTB2Q Reset to Q (data out) 26.63 31.33 ns
FTCKMAX TCK Maximum Frequency 18.70 15.90 MHz
tTRSTREM ResetB Removal Time 0.48 0.56 ns
tTRSTREC ResetB Recovery Time 0.00 0.00 ns
tTRSTMPW ResetB Minimum Pulse TBD TBD ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Table 2-143 • JTAG 1532
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V
Parameter Description –1 Std. Units
tDISU Test Data Input Setup Time 0.60 0.71 ns
tDIHD Test Data Input Hold Time 1.21 1.42 ns
tTMSSU Test Mode Select Setup Time 0.60 0.71 ns
tTMDHD Test Mode Select Hold Time 1.21 1.42 ns
tTCK2Q Clock to Q (data out) 6.04 7.10 ns
tRSTB2Q Reset to Q (data out) 24.15 28.41 ns
FTCKMAX TCK Maximum Frequency 22.00 19.00 MHz
tTRSTREM ResetB Removal Time 0.00 0.00 ns
tTRSTREC ResetB Recovery Time 0.24 0.28 ns
tTRSTMPW ResetB Minimum Pulse TBD TBD ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8
for derating values.
Radiation-Tolerant ProASIC3 DC and Switching Characteristics
Advance v0.1 2-107
Part Number and Revision Date
Part Number 51700107-002-0
Revised September 2008
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status datasheet may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
Advance v0.1 3-1
Radiation-Tolerant ProASIC3 Packaging
3 – Package Pin Assignments
484-Pin CCGA
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the bottom view of the package.
12345678910111213141516171819202122
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
Package Pin Assignments
3-2 Advance v0.1
484-Pin CCGA
Pin Number RT3PE600L
A1 GND
A2 GND
A3 VCCIB0
A4 IO06NDB0V1
A5 IO06PDB0V1
A6 IO08NDB0V1
A7 IO08PDB0V1
A8 IO11PDB0V1
A9 IO17PDB0V2
A10 IO18NDB0V2
A11 IO18PDB0V2
A12 IO22PDB1V0
A13 IO26PDB1V0
A14 IO29NDB1V1
A15 IO29PDB1V1
A16 IO31NDB1V1
A17 IO31PDB1V1
A18 IO32NDB1V1
A19 NC
A20 VCCIB1
A21 GND
A22 GND
AA1 GND
AA2 VCCIB6
AA3 NC
AA4 IO98PDB5V2
AA5 IO96NDB5V2
AA6 IO96PDB5V2
AA7 IO86NDB5V0
AA8 IO86PDB5V0
AA9 IO85PDB5V0
AA10 IO85NDB5V0
AA11 IO78PPB4V1
AA12 IO79NDB4V1
AA13 IO79PDB4V1
AA14 NC
AA15 NC
AA16 IO71NDB4V0
AA17 IO71PDB4V0
AA18 NC
AA19 NC
AA20 NC
AA21 VCCIB3
AA22 GND
AB1 GND
AB2 GND
AB3 VCCIB5
AB4 IO97NDB5V2
AB5 IO97PDB5V2
AB6 IO93NDB5V1
AB7 IO93PDB5V1
AB8 IO87NDB5V0
AB9 IO87PDB5V0
AB10 NC
AB11 NC
AB12 IO75NDB4V1
AB13 IO75PDB4V1
AB14 IO72NDB4V0
AB15 IO72PDB4V0
AB16 IO73NDB4V0
AB17 IO73PDB4V0
AB18 NC
AB19 NC
AB20 VCCIB4
AB21 GND
AB22 GND
B1 GND
B2 VCCIB7
B3 NC
B4 IO03NDB0V0
B5 IO03PDB0V0
B6 IO07NDB0V1
484-Pin CCGA
Pin Number RT3PE600L
B7 IO07PDB0V1
B8 IO11NDB0V1
B9 IO17NDB0V2
B10 IO14PDB0V2
B11 IO19PDB0V2
B12 IO22NDB1V0
B13 IO26NDB1V0
B14 NC
B15 NC
B16 IO30NDB1V1
B17 IO30PDB1V1
B18 IO32PDB1V1
B19 NC
B20 NC
B21 VCCIB2
B22 GND
C1 VCCIB7
C2 NC
C3 NC
C4 NC
C5 GND
C6 IO04NDB0V0
C7 IO04PDB0V0
C8 VCC
C9 VCC
C10 IO14NDB0V2
C11 IO19NDB0V2
C12 NC
C13 NC
C14 VCC
C15 VCC
C16 NC
C17 NC
C18 GND
C19 NC
C20 NC
484-Pin CCGA
Pin Number RT3PE600L
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-3
C21 NC
C22 VCCIB2
D1 NC
D2 NC
D3 NC
D4 GND
D5 GAA0/IO00NDB0V
0
D6 GAA1/IO00PDB0V
0
D7 GAB0/IO01NDB0V
0
D8 IO05PDB0V0
D9 IO10PDB0V1
D10 IO12PDB0V2
D11 IO16NDB0V2
D12 IO23NDB1V0
D13 IO23PDB1V0
D14 IO28NDB1V1
D15 IO28PDB1V1
D16 GBB1/IO34PDB1V1
D17 GBA0/IO35NDB1V
1
D18 GBA1/IO35PDB1V
1
D19 GND
D20 NC
D21 NC
D22 NC
E1 NC
E2 NC
E3 GND
E4 GAB2/IO133PDB7
V1
E5 GAA2/IO134PDB7
V1
E6 GNDQ
484-Pin CCGA
Pin Number RT3PE600L
E7 GAB1/IO01PDB0V
0
E8 IO05NDB0V0
E9 IO10NDB0V1
E10 IO12NDB0V2
E11 IO16PDB0V2
E12 IO20NDB1V0
E13 IO24NDB1V0
E14 IO24PDB1V0
E15 GBC1/IO33PDB1V1
E16 GBB0/IO34NDB1V
1
E17 GNDQ
E18 GBA2/IO36PDB2V
0
E19 IO42NDB2V0
E20 GND
E21 NC
E22 NC
F1 NC
F2 IO131NDB7V1
F3 IO131PDB7V1
F4 IO133NDB7V1
F5 IO134NDB7V1
F6 VMV7
F7 VCCPLA
F8 GAC0/IO02NDB0V
0
F9 GAC1/IO02PDB0V
0
F10 IO15NDB0V2
F11 IO15PDB0V2
F12 IO20PDB1V0
F13 IO25NDB1V0
F14 IO27PDB1V0
F15 GBC0/IO33NDB1V
1
F16 VCCPLB
484-Pin CCGA
Pin Number RT3PE600L
F17 VMV2
F18 IO36NDB2V0
F19 IO42PDB2V0
F20 NC
F21 NC
F22 NC
G1 IO127NDB7V1
G2 IO127PDB7V1
G3 NC
G4 IO128PDB7V1
G5 IO129PDB7V1
G6 GAC2/IO132PDB7
V1
G7 VCOMPLA
G8 GNDQ
G9 IO09NDB0V1
G10 IO09PDB0V1
G11 IO13PDB0V2
G12 IO21PDB1V0
G13 IO25PDB1V0
G14 IO27NDB1V0
G15 GNDQ
G16 VCOMPLB
G17 GBB2/IO37PDB2V0
G18 IO39PDB2V0
G19 IO39NDB2V0
G20 IO43PDB2V0
G21 IO43NDB2V0
G22 NC
H1 NC
H2 NC
H3 VCC
H4 IO128NDB7V1
H5 IO129NDB7V1
H6 IO132NDB7V1
H7 IO130PDB7V1
484-Pin CCGA
Pin Number RT3PE600L
Package Pin Assignments
3-4 Advance v0.1
H8 VMV0
H9 VCCIB0
H10 VCCIB0
H11 IO13NDB0V2
H12 IO21NDB1V0
H13 VCCIB1
H14 VCCIB1
H15 VMV1
H16 GBC2/IO38PDB2V0
H17 IO37NDB2V0
H18 IO41NDB2V0
H19 IO41PDB2V0
H20 VCC
H21 NC
H22 NC
J1 IO123NDB7V0
J2 IO123PDB7V0
J3 NC
J4 IO124PDB7V0
J5 IO125PDB7V0
J6 IO126PDB7V0
J7 IO130NDB7V1
J8 VCCIB7
J9 GND
J10 VCC
J11 VCC
J12 VCC
J13 VCC
J14 GND
J15 VCCIB2
J16 IO38NDB2V0
J17 IO40NDB2V0
J18 IO40PDB2V0
J19 IO45PPB2V1
J20 NC
J21 IO48PDB2V1
484-Pin CCGA
Pin Number RT3PE600L
J22 IO46PDB2V1
K1 IO121NDB7V0
K2 IO121PDB7V0
K3 NC
K4 IO124NDB7V0
K5 IO125NDB7V0
K6 IO126NDB7V0
K7 GFC1/IO120PPB7V
0
K8 VCCIB7
K9 VCC
K10 GND
K11 GND
K12 GND
K13 GND
K14 VCC
K15 VCCIB2
K16 GCC1/IO50PPB2V1
K17 IO44NDB2V1
K18 IO44PDB2V1
K19 IO49NPB2V1
K20 IO45NPB2V1
K21 IO48NDB2V1
K22 IO46NDB2V1
L1 NC
L2 IO122PDB7V0
L3 IO122NDB7V0
L4 GFB0/IO119NPB7V
0
L5 GFA0/IO118NDB6
V1
L6 GFB1/IO119PPB7V
0
L7 VCOMPLF
L8 GFC0/IO120NPB7V
0
L9 VCC
484-Pin CCGA
Pin Number RT3PE600L
L10 GND
L11 GND
L12 GND
L13 GND
L14 VCC
L15 GCC0/IO50NPB2V1
L16 GCB1/IO51PPB2V1
L17 GCA0/IO52NPB3V
0
L18 VCOMPLC
L19 GCB0/IO51NPB2V1
L20 IO49PPB2V1
L21 IO47NDB2V1
L22 IO47PDB2V1
M1 NC
M2 IO114NPB6V1
M3 IO117NDB6V1
M4 GFA2/IO117PDB6V
1
M5 GFA1/IO118PDB6V
1
M6 VCCPLF
M7 IO116NDB6V1
M8 GFB2/IO116PDB6V
1
M9 VCC
M10 GND
M11 GND
M12 GND
M13 GND
M14 VCC
M15 GCB2/IO54PPB3V0
M16 GCA1/IO52PPB3V0
M17 GCC2/IO55PPB3V0
M18 VCCPLC
M19 GCA2/IO53PDB3V
0
484-Pin CCGA
Pin Number RT3PE600L
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-5
M20 IO53NDB3V0
M21 IO56PDB3V0
M22 NC
N1 IO114PPB6V1
N2 IO111NDB6V1
N3 NC
N4 GFC2/IO115PPB6V
1
N5 IO113PPB6V1
N6 IO112PDB6V1
N7 IO112NDB6V1
N8 VCCIB6
N9 VCC
N10 GND
N11 GND
N12 GND
N13 GND
N14 VCC
N15 VCCIB3
N16 IO54NPB3V0
N17 IO57NPB3V0
N18 IO55NPB3V0
N19 IO57PPB3V0
N20 NC
N21 IO56NDB3V0
N22 IO58PDB3V0
P1 NC
P2 IO111PDB6V1
P3 IO115NPB6V1
P4 IO113NPB6V1
P5 IO109PPB6V0
P6 IO108PDB6V0
P7 IO108NDB6V0
P8 VCCIB6
P9 GND
P10 VCC
484-Pin CCGA
Pin Number RT3PE600L
P11 VCC
P12 VCC
P13 VCC
P14 GND
P15 VCCIB3
P16 GDB0/IO66NPB3V
1
P17 IO60NDB3V1
P18 IO60PDB3V1
P19 IO61PDB3V1
P20 NC
P21 IO59PDB3V0
P22 IO58NDB3V0
R1 NC
R2 IO110PDB6V0
R3 VCC
R4 IO109NPB6V0
R5 IO106NDB6V0
R6 IO106PDB6V0
R7 GEC0/IO104NPB6V
0
R8 VMV5
R9 VCCIB5
R10 VCCIB5
R11 IO84NDB5V0
R12 IO84PDB5V0
R13 VCCIB4
R14 VCCIB4
R15 VMV3
R16 VCCPLD
R17 GDB1/IO66PPB3V1
R18 GDC1/IO65PDB3V
1
R19 IO61NDB3V1
R20 VCC
R21 IO59NDB3V0
R22 IO62PDB3V1
484-Pin CCGA
Pin Number RT3PE600L
T1 NC
T2 IO110NDB6V0
T3 NC
T4 IO105PDB6V0
T5 IO105NDB6V0
T6 GEC1/IO104PPB6V
0
T7 VCOMPLE
T8 GNDQ
T9 GEA2/IO101PPB5V
2
T10 IO92NDB5V1
T11 IO90NDB5V1
T12 IO82NDB5V0
T13 IO74NDB4V1
T14 IO74PDB4V1
T15 GNDQ
T16 VCOMPLD
T17 VJTAG
T18 GDC0/IO65NDB3V
1
T19 GDA1/IO67PDB3V
1
T20 NC
T21 IO64PDB3V1
T22 IO62NDB3V1
U1 NC
U2 IO107PDB6V0
U3 IO107NDB6V0
U4 GEB1/IO103PDB6V
0
U5 GEB0/IO103NDB6
V0
U6 VMV6
U7 VCCPLE
U8 IO101NPB5V2
U9 IO95PPB5V1
U10 IO92PDB5V1
484-Pin CCGA
Pin Number RT3PE600L
Package Pin Assignments
3-6 Advance v0.1
U11 IO90PDB5V1
U12 IO82PDB5V0
U13 IO76NDB4V1
U14 IO76PDB4V1
U15 VMV4
U16 TCK
U17 VPUMP
U18 TRST
U19 GDA0/IO67NDB3V
1
U20 NC
U21 IO64NDB3V1
U22 IO63PDB3V1
V1 NC
V2 NC
V3 GND
V4 GEA1/IO102PDB6V
0
V5 GEA0/IO102NDB6
V0
V6 GNDQ
V7 GEC2/IO99PDB5V2
V8 IO95NPB5V1
V9 IO91NDB5V1
V10 IO91PDB5V1
V11 IO83NDB5V0
V12 IO83PDB5V0
V13 IO77NDB4V1
V14 IO77PDB4V1
V15 IO69NDB4V0
V16 GDB2/IO69PDB4V
0
V17 TDI
V18 GNDQ
V19 TDO
V20 GND
V21 NC
484-Pin CCGA
Pin Number RT3PE600L
V22 IO63NDB3V1
W1 NC
W2 NC
W3 NC
W4 GND
W5 IO100NDB5V2
W6 FF/GEB2/IO100PDB
5V2
W7 IO99NDB5V2
W8 IO88NDB5V0
W9 IO88PDB5V0
W10 IO89NDB5V0
W11 IO80NDB4V1
W12 IO81NDB4V1
W13 IO81PDB4V1
W14 IO70NDB4V0
W15 GDC2/IO70PDB4V
0
W16 IO68NDB4V0
W17 GDA2/IO68PDB4V
0
W18 TMS
W19 GND
W20 NC
W21 NC
W22 NC
Y1 VCCIB6
Y2 NC
Y3 NC
Y4 IO98NDB5V2
Y5 GND
Y6 IO94NDB5V1
Y7 IO94PDB5V1
Y8 VCC
Y9 VCC
Y10 IO89PDB5V0
Y11 IO80PDB4V1
484-Pin CCGA
Pin Number RT3PE600L
Y12 IO78NPB4V1
Y13 NC
Y14 VCC
Y15 VCC
Y16 NC
Y17 NC
Y18 GND
Y19 NC
Y20 NC
Y21 NC
Y22 VCCIB3
484-Pin CCGA
Pin Number RT3PE600L
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-7
484-Pin CCGA
Pin Number RT3PE3000L Function
A1 GND
A2 GND
A3 VCCIB0
A4 IO10NDB0V1
A5 IO10PDB0V1
A6 IO16NDB0V1
A7 IO16PDB0V1
A8 IO18PDB0V2
A9 IO24PDB0V2
A10 IO28NDB0V3
A11 IO28PDB0V3
A12 IO46PDB1V0
A13 IO54PDB1V1
A14 IO56NDB1V1
A15 IO56PDB1V1
A16 IO64NDB1V2
A17 IO64PDB1V2
A18 IO72NDB1V3
A19 IO74NDB1V4
A20 VCCIB1
A21 GND
A22 GND
AA1 GND
AA2 VCCIB6
AA3 IO228PDB5V4
AA4 IO224PDB5V3
AA5 IO218NDB5V3
AA6 IO218PDB5V3
AA7 IO212NDB5V2
AA8 IO212PDB5V2
AA9 IO198PDB5V0
AA10 IO198NDB5V0
AA11 IO188PPB4V4
AA12 IO180NDB4V3
AA13 IO180PDB4V3
AA14 IO170NDB4V2
AA15 IO170PDB4V2
AA16 IO166NDB4V1
AA17 IO166PDB4V1
AA18 IO160NDB4V0
AA19 IO160PDB4V0
AA20 IO158NPB4V0
AA21 VCCIB3
AA22 GND
AB1 GND
AB2 GND
AB3 VCCIB5
AB4 IO216NDB5V2
AB5 IO216PDB5V2
AB6 IO210NDB5V2
AB7 IO210PDB5V2
AB8 IO208NDB5V1
AB9 IO208PDB5V1
AB10 IO197NDB5V0
AB11 IO197PDB5V0
AB12 IO174NDB4V2
AB13 IO174PDB4V2
AB14 IO172NDB4V2
AB15 IO172PDB4V2
AB16 IO168NDB4V1
AB17 IO168PDB4V1
AB18 IO162NDB4V1
AB19 IO162PDB4V1
AB20 VCCIB4
AB21 GND
AB22 GND
B1 GND
B2 VCCIB7
B3 IO06PPB0V0
B4 IO08NDB0V0
B5 IO08PDB0V0
B6 IO14NDB0V1
484-Pin CCGA
Pin Number RT3PE3000L Function
B7 IO14PDB0V1
B8 IO18NDB0V2
B9 IO24NDB0V2
B10 IO34PDB0V4
B11 IO40PDB0V4
B12 IO46NDB1V0
B13 IO54NDB1V1
B14 IO62NDB1V2
B15 IO62PDB1V2
B16 IO68NDB1V3
B17 IO68PDB1V3
B18 IO72PDB1V3
B19 IO74PDB1V4
B20 IO76NPB1V4
B21 VCCIB2
B22 GND
C1 VCCIB7
C2 IO303PDB7V3
C3 IO305PDB7V3
C4 IO06NPB0V0
C5 GND
C6 IO12NDB0V1
C7 IO12PDB0V1
C8 VCC
C9 VCC
C10 IO34NDB0V4
C11 IO40NDB0V4
C12 IO48NDB1V0
C13 IO48PDB1V0
C14 VCC
C15 VCC
C16 IO70NDB1V3
C17 IO70PDB1V3
C18 GND
C19 IO76PPB1V4
C20 IO88NDB2V0
484-Pin CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-8 Advance v0.1
C21 IO94PPB2V1
C22 VCCIB2
D1 IO293PDB7V2
D2 IO303NDB7V3
D3 IO305NDB7V3
D4 GND
D5 GAA0/IO00NDB0V0
D6 GAA1/IO00PDB0V0
D7 GAB0/IO01NDB0V0
D8 IO20PDB0V2
D9 IO22PDB0V2
D10 IO30PDB0V3
D11 IO38NDB0V4
D12 IO52NDB1V1
D13 IO52PDB1V1
D14 IO66NDB1V3
D15 IO66PDB1V3
D16 GBB1/IO80PDB1V4
D17 GBA0/IO81NDB1V4
D18 GBA1/IO81PDB1V4
D19 GND
D20 IO88PDB2V0
D21 IO90PDB2V1
D22 IO94NPB2V1
E1 IO293NDB7V2
E2 IO299PPB7V3
E3 GND
E4 GAB2/IO308PDB7V4
E5 GAA2/IO309PDB7V4
E6 GNDQ
E7 GAB1/IO01PDB0V0
E8 IO20NDB0V2
E9 IO22NDB0V2
E10 IO30NDB0V3
E11 IO38PDB0V4
E12 IO44NDB1V0
484-Pin CCGA
Pin Number RT3PE3000L Function
E13 IO58NDB1V2
E14 IO58PDB1V2
E15 GBC1/IO79PDB1V4
E16 GBB0/IO80NDB1V4
E17 GNDQ
E18 GBA2/IO82PDB2V0
E19 IO86NDB2V0
E20 GND
E21 IO90NDB2V1
E22 IO98PDB2V2
F1 IO299NPB7V3
F2 IO301NDB7V3
F3 IO301PDB7V3
F4 IO308NDB7V4
F5 IO309NDB7V4
F6 VMV7
F7 VCCPLA
F8 GAC0/IO02NDB0V0
F9 GAC1/IO02PDB0V0
F10 IO32NDB0V3
F11 IO32PDB0V3
F12 IO44PDB1V0
F13 IO50NDB1V1
F14 IO60PDB1V2
F15 GBC0/IO79NDB1V4
F16 VCCPLB
F17 VMV2
F18 IO82NDB2V0
F19 IO86PDB2V0
F20 IO96PDB2V1
F21 IO96NDB2V1
F22 IO98NDB2V2
G1 IO289NDB7V1
G2 IO289PDB7V1
G3 IO291PPB7V2
G4 IO295PDB7V2
484-Pin CCGA
Pin Number RT3PE3000L Function
G5 IO297PDB7V2
G6 GAC2/IO307PDB7V4
G7 VCOMPLA
G8 GNDQ
G9 IO26NDB0V3
G10 IO26PDB0V3
G11 IO36PDB0V4
G12 IO42PDB1V0
G13 IO50PDB1V1
G14 IO60NDB1V2
G15 GNDQ
G16 VCOMPLB
G17 GBB2/IO83PDB2V0
G18 IO92PDB2V1
G19 IO92NDB2V1
G20 IO102PDB2V2
G21 IO102NDB2V2
G22 IO105NDB2V2
H1 IO286PSB7V1
H2 IO291NPB7V2
H3 VCC
H4 IO295NDB7V2
H5 IO297NDB7V2
H6 IO307NDB7V4
H7 IO287PDB7V1
H8 VMV0
H9 VCCIB0
H10 VCCIB0
H11 IO36NDB0V4
H12 IO42NDB1V0
H13 VCCIB1
H14 VCCIB1
H15 VMV1
H16 GBC2/IO84PDB2V0
H17 IO83NDB2V0
H18 IO100NDB2V2
484-Pin CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-9
H19 IO100PDB2V2
H20 VCC
H21 VMV2
H22 IO105PDB2V2
J1 IO285NDB7V1
J2 IO285PDB7V1
J3 VMV7
J4 IO279PDB7V0
J5 IO283PDB7V1
J6 IO281PDB7V0
J7 IO287NDB7V1
J8 VCCIB7
J9 GND
J10 VCC
J11 VCC
J12 VCC
J13 VCC
J14 GND
J15 VCCIB2
J16 IO84NDB2V0
J17 IO104NDB2V2
J18 IO104PDB2V2
J19 IO106PPB2V3
J20 GNDQ
J21 IO109PDB2V3
J22 IO107PDB2V3
K1 IO277NDB7V0
K2 IO277PDB7V0
K3 GNDQ
K4 IO279NDB7V0
K5 IO283NDB7V1
K6 IO281NDB7V0
K7 GFC1/IO275PPB7V0
K8 VCCIB7
K9 VCC
K10 GND
484-Pin CCGA
Pin Number RT3PE3000L Function
K11 GND
K12 GND
K13 GND
K14 VCC
K15 VCCIB2
K16 GCC1/IO112PPB2V3
K17 IO108NDB2V3
K18 IO108PDB2V3
K19 IO110NPB2V3
K20 IO106NPB2V3
K21 IO109NDB2V3
K22 IO107NDB2V3
L1 IO257PSB6V2
L2 IO276PDB7V0
L3 IO276NDB7V0
L4 GFB0/IO274NPB7V0
L5 GFA0/IO273NDB6V4
L6 GFB1/IO274PPB7V0
L7 VCOMPLF
L8 GFC0/IO275NPB7V0
L9 VCC
L10 GND
L11 GND
L12 GND
L13 GND
L14 VCC
L15 GCC0/IO112NPB2V3
L16 GCB1/IO113PPB2V3
L17 GCA0/IO114NPB3V0
L18 VCOMPLC
L19 GCB0/IO113NPB2V3
L20 IO110PPB2V3
L21 IO111NDB2V3
L22 IO111PDB2V3
M1 GNDQ
M2 IO255NPB6V2
484-Pin CCGA
Pin Number RT3PE3000L Function
M3 IO272NDB6V4
M4 GFA2/IO272PDB6V4
M5 GFA1/IO273PDB6V4
M6 VCCPLF
M7 IO271NDB6V4
M8 GFB2/IO271PDB6V4
M9 VCC
M10 GND
M11 GND
M12 GND
M13 GND
M14 VCC
M15 GCB2/IO116PPB3V0
M16 GCA1/IO114PPB3V0
M17 GCC2/IO117PPB3V0
M18 VCCPLC
M19 GCA2/IO115PDB3V0
M20 IO115NDB3V0
M21 IO126PDB3V1
M22 IO124PSB3V1
N1 IO255PPB6V2
N2 IO253NDB6V2
N3 VMV6
N4 GFC2/IO270PPB6V4
N5 IO261PPB6V3
N6 IO263PDB6V3
N7 IO263NDB6V3
N8 VCCIB6
N9 VCC
N10 GND
N11 GND
N12 GND
N13 GND
N14 VCC
N15 VCCIB3
N16 IO116NPB3V0
484-Pin CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-10 Advance v0.1
N17 IO132NPB3V2
N18 IO117NPB3V0
N19 IO132PPB3V2
N20 GNDQ
N21 IO126NDB3V1
N22 IO128PDB3V1
P1 IO247PDB6V1
P2 IO253PDB6V2
P3 IO270NPB6V4
P4 IO261NPB6V3
P5 IO249PPB6V1
P6 IO259PDB6V3
P7 IO259NDB6V3
P8 VCCIB6
P9 GND
P10 VCC
P11 VCC
P12 VCC
P13 VCC
P14 GND
P15 VCCIB3
P16 GDB0/IO152NPB3V4
P17 IO136NDB3V2
P18 IO136PDB3V2
P19 IO138PDB3V3
P20 VMV3
P21 IO130PDB3V2
P22 IO128NDB3V1
R1 IO247NDB6V1
R2 IO245PDB6V1
R3 VCC
R4 IO249NPB6V1
R5 IO251NDB6V2
R6 IO251PDB6V2
R7 GEC0/IO236NPB6V0
R8 VMV5
484-Pin CCGA
Pin Number RT3PE3000L Function
R9 VCCIB5
R10 VCCIB5
R11 IO196NDB5V0
R12 IO196PDB5V0
R13 VCCIB4
R14 VCCIB4
R15 VMV3
R16 VCCPLD
R17 GDB1/IO152PPB3V4
R18 GDC1/IO151PDB3V4
R19 IO138NDB3V3
R20 VCC
R21 IO130NDB3V2
R22 IO134PDB3V2
T1 IO243PPB6V1
T2 IO245NDB6V1
T3 IO243NPB6V1
T4 IO241PDB6V0
T5 IO241NDB6V0
T6 GEC1/IO236PPB6V0
T7 VCOMPLE
T8 GNDQ
T9 GEA2/IO233PPB5V4
T10 IO206NDB5V1
T11 IO202NDB5V1
T12 IO194NDB5V0
T13 IO186NDB4V4
T14 IO186PDB4V4
T15 GNDQ
T16 VCOMPLD
T17 VJTAG
T18 GDC0/IO151NDB3V4
T19 GDA1/IO153PDB3V4
T20 IO144PDB3V3
T21 IO140PDB3V3
T22 IO134NDB3V2
484-Pin CCGA
Pin Number RT3PE3000L Function
U1 IO240PPB6V0
U2 IO238PDB6V0
U3 IO238NDB6V0
U4 GEB1/IO235PDB6V0
U5 GEB0/IO235NDB6V0
U6 VMV6
U7 VCCPLE
U8 IO233NPB5V4
U9 IO222PPB5V3
U10 IO206PDB5V1
U11 IO202PDB5V1
U12 IO194PDB5V0
U13 IO176NDB4V2
U14 IO176PDB4V2
U15 VMV4
U16 TCK
U17 VPUMP
U18 TRST
U19 GDA0/IO153NDB3V4
U20 IO144NDB3V3
U21 IO140NDB3V3
U22 IO142PDB3V3
V1 IO239PDB6V0
V2 IO240NPB6V0
V3 GND
V4 GEA1/IO234PDB6V0
V5 GEA0/IO234NDB6V0
V6 GNDQ
V7 GEC2/IO231PDB5V4
V8 IO222NPB5V3
V9 IO204NDB5V1
V10 IO204PDB5V1
V11 IO195NDB5V0
V12 IO195PDB5V0
V13 IO178NDB4V3
V14 IO178PDB4V3
484-Pin CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-11
V15 IO155NDB4V0
V16 GDB2/IO155PDB4V0
V17 TDI
V18 GNDQ
V19 TDO
V20 GND
V21 IO146PDB3V4
V22 IO142NDB3V3
W1 IO239NDB6V0
W2 IO237PDB6V0
W3 IO230PSB5V4
W4 GND
W5 IO232NDB5V4
W6 FF/GEB2/IO232PDB5V
4
W7 IO231NDB5V4
W8 IO214NDB5V2
W9 IO214PDB5V2
W10 IO200NDB5V0
W11 IO192NDB4V4
W12 IO184NDB4V3
W13 IO184PDB4V3
W14 IO156NDB4V0
W15 GDC2/IO156PDB4V0
W16 IO154NDB4V0
W17 GDA2/IO154PDB4V0
W18 TMS
W19 GND
W20 IO150NDB3V4
W21 IO146NDB3V4
W22 IO148PPB3V4
Y1 VCCIB6
Y2 IO237NDB6V0
Y3 IO228NDB5V4
Y4 IO224NDB5V3
Y5 GND
484-Pin CCGA
Pin Number RT3PE3000L Function
Y6 IO220NDB5V3
Y7 IO220PDB5V3
Y8 VCC
Y9 VCC
Y10 IO200PDB5V0
Y11 IO192PDB4V4
Y12 IO188NPB4V4
Y13 IO187PSB4V4
Y14 VCC
Y15 VCC
Y16 IO164NDB4V1
Y17 IO164PDB4V1
Y18 GND
Y19 IO158PPB4V0
Y20 IO150PDB3V4
Y21 IO148NPB3V4
Y22 VCCIB3
484-Pin CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-12 Advance v0.1
896-Pin CCGA
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Note: This is the bottom view.
123456789101112131415161718192021222324252627282930
AK
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-13
896-CCGA
Pin Number RT3PE3000L Function
A2 GND
A3 GND
A4 IO14NPB0V1
A5 GND
A6 IO07NPB0V0
A7 GND
A8 IO09NDB0V1
A9 IO17NDB0V2
A10 IO17PDB0V2
A11 IO21NDB0V2
A12 IO21PDB0V2
A13 IO33NDB0V4
A14 IO33PDB0V4
A15 IO35NDB0V4
A16 IO35PDB0V4
A17 IO41NDB1V0
A18 IO43NDB1V0
A19 IO43PDB1V0
A20 IO45NDB1V0
A21 IO45PDB1V0
A22 IO57NDB1V2
A23 IO57PDB1V2
A24 GND
A25 IO69PPB1V3
A26 GND
A27 GBC1/IO79PPB1V4
A28 GND
A29 GND
AA1 IO256PDB6V2
AA2 IO248PDB6V1
AA3 IO248NDB6V1
AA4 IO246NDB6V1
AA5 GEA1/IO234PDB6V0
AA6 GEA0/IO234NDB6V0
AA7 IO243PPB6V1
AA8 IO245NDB6V1
AA9 GEB1/IO235PPB6V0
AA10 VCC
AA11 IO226PPB5V4
AA12 VCCIB5
AA13 VCCIB5
AA14 VCCIB5
AA15 VCCIB5
AA16 VCCIB4
AA17 VCCIB4
AA18 VCCIB4
AA19 VCCIB4
AA20 IO174PDB4V2
AA21 VCC
AA22 IO142NPB3V3
AA23 IO144NDB3V3
AA24 IO144PDB3V3
AA25 IO146NDB3V4
AA26 IO146PDB3V4
AA27 IO147PDB3V4
AA28 IO139NDB3V3
AA29 IO139PDB3V3
AA30 IO133NDB3V2
AB1 IO256NDB6V2
AB2 IO244PDB6V1
AB3 IO244NDB6V1
AB4 IO241PDB6V0
AB5 IO241NDB6V0
AB6 IO243NPB6V1
AB7 VCCIB6
AB8 VCCPLE
AB9 VCC
AB10 IO222PDB5V3
AB11 IO218PPB5V3
AB12 IO206NDB5V1
AB13 IO206PDB5V1
AB14 IO198NDB5V0
896-CCGA
Pin Number RT3PE3000L Function
AB15 IO198PDB5V0
AB16 IO192NDB4V4
AB17 IO192PDB4V4
AB18 IO178NDB4V3
AB19 IO178PDB4V3
AB20 IO174NDB4V2
AB21 IO162NPB4V1
AB22 VCC
AB23 VCCPLD
AB24 VCCIB3
AB25 IO150PDB3V4
AB26 IO148PDB3V4
AB27 IO147NDB3V4
AB28 IO145PDB3V3
AB29 IO143PDB3V3
AB30 IO137PDB3V2
AC1 IO254PDB6V2
AC2 IO254NDB6V2
AC3 IO240PDB6V0
AC4 GEC1/IO236PDB6V0
AC5 IO237PDB6V0
AC6 IO237NDB6V0
AC7 VCOMPLE
AC8 GND
AC9 IO226NPB5V4
AC10 IO222NDB5V3
AC11 IO216NPB5V2
AC12 IO210NPB5V2
AC13 IO204NDB5V1
AC14 IO204PDB5V1
AC15 IO194NDB5V0
AC16 IO188NDB4V4
AC17 IO188PDB4V4
AC18 IO182PPB4V3
AC19 IO170NPB4V2
AC20 IO164NDB4V1
896-CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-14 Advance v0.1
AC21 IO164PDB4V1
AC22 IO162PPB4V1
AC23 GND
AC24 VCOMPLD
AC25 IO150NDB3V4
AC26 IO148NDB3V4
AC27 GDA1/IO153PDB3V4
AC28 IO145NDB3V3
AC29 IO143NDB3V3
AC30 IO137NDB3V2
AD1 GND
AD2 IO242NPB6V1
AD3 IO240NDB6V0
AD4 GEC0/IO236NDB6V0
AD5 VCCIB6
AD6 GNDQ
AD7 VCC
AD8 VMV5
AD9 VCCIB5
AD10 IO224PPB5V3
AD11 IO218NPB5V3
AD12 IO216PPB5V2
AD13 IO210PPB5V2
AD14 IO202PPB5V1
AD15 IO194PDB5V0
AD16 IO190PDB4V4
AD17 IO182NPB4V3
AD18 IO176NDB4V2
AD19 IO176PDB4V2
AD20 IO170PPB4V2
AD21 IO166PDB4V1
AD22 VCCIB4
AD23 TCK
AD24 VCC
AD25 TRST
AD26 VCCIB3
896-CCGA
Pin Number RT3PE3000L Function
AD27 GDA0/IO153NDB3V4
AD28 GDC0/IO151NDB3V4
AD29 GDC1/IO151PDB3V4
AD30 GND
AE1 IO242PPB6V1
AE2 VCC
AE3 IO239PDB6V0
AE4 IO239NDB6V0
AE5 VMV6
AE6 GND
AE7 GNDQ
AE8 IO230NDB5V4
AE9 IO224NPB5V3
AE10 IO214NPB5V2
AE11 IO212NDB5V2
AE12 IO212PDB5V2
AE13 IO202NPB5V1
AE14 IO200NDB5V0
AE15 IO196PDB5V0
AE16 IO190NDB4V4
AE17 IO184PDB4V3
AE18 IO184NDB4V3
AE19 IO172PDB4V2
AE20 IO172NDB4V2
AE21 IO166NDB4V1
AE22 IO160PDB4V0
AE23 GNDQ
AE24 VMV4
AE25 GND
AE26 GDB0/IO152NDB3V4
AE27 GDB1/IO152PDB3V4
AE28 VMV3
AE29 VCC
AE30 IO149PDB3V4
AF1 GND
AF2 IO238PPB6V0
896-CCGA
Pin Number RT3PE3000L Function
AF3 VCCIB6
AF4 IO220NPB5V3
AF5 VCC
AF6 IO228NDB5V4
AF7 VCCIB5
AF8 IO230PDB5V4
AF9 IO229NDB5V4
AF10 IO229PDB5V4
AF11 IO214PPB5V2
AF12 IO208NDB5V1
AF13 IO208PDB5V1
AF14 IO200PDB5V0
AF15 IO196NDB5V0
AF16 IO186NDB4V4
AF17 IO186PDB4V4
AF18 IO180NDB4V3
AF19 IO180PDB4V3
AF20 IO168NDB4V1
AF21 IO168PDB4V1
AF22 IO160NDB4V0
AF23 IO158NPB4V0
AF24 VCCIB4
AF25 IO154NPB4V0
AF26 VCC
AF27 TDO
AF28 VCCIB3
AF29 GNDQ
AF30 GND
AG1 IO238NPB6V0
AG2 VCC
AG3 IO232NPB5V4
AG4 GND
AG5 IO220PPB5V3
AG6 IO228PDB5V4
AG7 IO231NDB5V4
AG8 GEC2/IO231PDB5V4
896-CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-15
AG9 IO225NPB5V3
AG10 IO223NPB5V3
AG11 IO221PDB5V3
AG12 IO221NDB5V3
AG13 IO205NPB5V1
AG14 IO199NDB5V0
AG15 IO199PDB5V0
AG16 IO187NDB4V4
AG17 IO187PDB4V4
AG18 IO181NDB4V3
AG19 IO171PPB4V2
AG20 IO165NPB4V1
AG21 IO161NPB4V0
AG22 IO159NDB4V0
AG23 IO159PDB4V0
AG24 IO158PPB4V0
AG25 GDB2/IO155PDB4V0
AG26 GDA2/IO154PPB4V0
AG27 GND
AG28 VJTAG
AG29 VCC
AG30 IO149NDB3V4
AH1 GND
AH2 IO233NPB5V4
AH3 VCC
AH4 FF/GEB2/IO232PPB5V
4
AH5 VCCIB5
AH6 IO219NDB5V3
AH7 IO219PDB5V3
AH8 IO227NDB5V4
AH9 IO227PDB5V4
AH10 IO225PPB5V3
AH11 IO223PPB5V3
AH12 IO211NDB5V2
AH13 IO211PDB5V2
896-CCGA
Pin Number RT3PE3000L Function
AH14 IO205PPB5V1
AH15 IO195NDB5V0
AH16 IO185NDB4V3
AH17 IO185PDB4V3
AH18 IO181PDB4V3
AH19 IO177NDB4V2
AH20 IO171NPB4V2
AH21 IO165PPB4V1
AH22 IO161PPB4V0
AH23 IO157NDB4V0
AH24 IO157PDB4V0
AH25 IO155NDB4V0
AH26 VCCIB4
AH27 TDI
AH28 VCC
AH29 VPUMP
AH30 GND
AJ1 GND
AJ2 GND
AJ3 GEA2/IO233PPB5V4
AJ4 VCC
AJ5 IO217NPB5V2
AJ6 VCC
AJ7 IO215NPB5V2
AJ8 IO213NDB5V2
AJ9 IO213PDB5V2
AJ10 IO209NDB5V1
AJ11 IO209PDB5V1
AJ12 IO203NDB5V1
AJ13 IO203PDB5V1
AJ14 IO197NDB5V0
AJ15 IO195PDB5V0
AJ16 IO183NDB4V3
AJ17 IO183PDB4V3
AJ18 IO179NPB4V3
AJ19 IO177PDB4V2
896-CCGA
Pin Number RT3PE3000L Function
AJ20 IO173NDB4V2
AJ21 IO173PDB4V2
AJ22 IO163NDB4V1
AJ23 IO163PDB4V1
AJ24 IO167NPB4V1
AJ25 VCC
AJ26 IO156NPB4V0
AJ27 VCC
AJ28 TMS
AJ29 GND
AJ30 GND
AK2 GND
AK3 GND
AK4 IO217PPB5V2
AK5 GND
AK6 IO215PPB5V2
AK7 GND
AK8 IO207NDB5V1
AK9 IO207PDB5V1
AK10 IO201NDB5V0
AK11 IO201PDB5V0
AK12 IO193NDB4V4
AK13 IO193PDB4V4
AK14 IO197PDB5V0
AK15 IO191NDB4V4
AK16 IO191PDB4V4
AK17 IO189NDB4V4
AK18 IO189PDB4V4
AK19 IO179PPB4V3
AK20 IO175NDB4V2
AK21 IO175PDB4V2
AK22 IO169NDB4V1
AK23 IO169PDB4V1
AK24 GND
AK25 IO167PPB4V1
AK26 GND
896-CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-16 Advance v0.1
AK27 GDC2/IO156PPB4V0
AK28 GND
AK29 GND
B1 GND
B2 GND
B3 GAA2/IO309PPB7V4
B4 VCC
B5 IO14PPB0V1
B6 VCC
B7 IO07PPB0V0
B8 IO09PDB0V1
B9 IO15PPB0V1
B10 IO19NDB0V2
B11 IO19PDB0V2
B12 IO29NDB0V3
B13 IO29PDB0V3
B14 IO31PPB0V3
B15 IO37NDB0V4
B16 IO37PDB0V4
B17 IO41PDB1V0
B18 IO51NDB1V1
B19 IO59PDB1V2
B20 IO53PDB1V1
B21 IO53NDB1V1
B22 IO61NDB1V2
B23 IO61PDB1V2
B24 IO69NPB1V3
B25 VCC
B26 GBC0/IO79NPB1V4
B27 VCC
B28 IO64NPB1V2
B29 GND
B30 GND
C1 GND
C2 IO309NPB7V4
C3 VCC
896-CCGA
Pin Number RT3PE3000L Function
C4 GAA0/IO00NPB0V0
C5 VCCIB0
C6 IO03PDB0V0
C7 IO03NDB0V0
C8 GAB1/IO01PDB0V0
C9 IO05PDB0V0
C10 IO15NPB0V1
C11 IO25NDB0V3
C12 IO25PDB0V3
C13 IO31NPB0V3
C14 IO27NDB0V3
C15 IO39NDB0V4
C16 IO39PDB0V4
C17 IO55PPB1V1
C18 IO51PDB1V1
C19 IO59NDB1V2
C20 IO63NDB1V2
C21 IO63PDB1V2
C22 IO67NDB1V3
C23 IO67PDB1V3
C24 IO75NDB1V4
C25 IO75PDB1V4
C26 VCCIB1
C27 IO64PPB1V2
C28 VCC
C29 GBA1/IO81PPB1V4
C30 GND
D1 IO303PPB7V3
D2 VCC
D3 IO305NPB7V3
D4 GND
D5 GAA1/IO00PPB0V0
D6 GAC1/IO02PDB0V0
D7 IO06NPB0V0
D8 GAB0/IO01NDB0V0
D9 IO05NDB0V0
896-CCGA
Pin Number RT3PE3000L Function
D10 IO11NDB0V1
D11 IO11PDB0V1
D12 IO23NDB0V2
D13 IO23PDB0V2
D14 IO27PDB0V3
D15 IO40PDB0V4
D16 IO47NDB1V0
D17 IO47PDB1V0
D18 IO55NPB1V1
D19 IO65NDB1V3
D20 IO65PDB1V3
D21 IO71NDB1V3
D22 IO71PDB1V3
D23 IO73NDB1V4
D24 IO73PDB1V4
D25 IO74NDB1V4
D26 GBB0/IO80NPB1V4
D27 GND
D28 GBA0/IO81NPB1V4
D29 VCC
D30 GBA2/IO82PPB2V0
E1 GND
E2 IO303NPB7V3
E3 VCCIB7
E4 IO305PPB7V3
E5 VCC
E6 GAC0/IO02NDB0V0
E7 VCCIB0
E8 IO06PPB0V0
E9 IO24NDB0V2
E10 IO24PDB0V2
E11 IO13NDB0V1
E12 IO13PDB0V1
E13 IO34NDB0V4
E14 IO34PDB0V4
E15 IO40NDB0V4
896-CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-17
E16 IO49NDB1V1
E17 IO49PDB1V1
E18 IO50PDB1V1
E19 IO58PDB1V2
E20 IO60NDB1V2
E21 IO77PDB1V4
E22 IO68NDB1V3
E23 IO68PDB1V3
E24 VCCIB1
E25 IO74PDB1V4
E26 VCC
E27 GBB1/IO80PPB1V4
E28 VCCIB2
E29 IO82NPB2V0
E30 GND
F1 IO296PPB7V2
F2 VCC
F3 IO306PDB7V4
F4 IO297PDB7V2
F5 VMV7
F6 GND
F7 GNDQ
F8 IO12NDB0V1
F9 IO12PDB0V1
F10 IO10PDB0V1
F11 IO16PDB0V1
F12 IO22NDB0V2
F13 IO30NDB0V3
F14 IO30PDB0V3
F15 IO36PDB0V4
F16 IO48NDB1V0
F17 IO48PDB1V0
F18 IO50NDB1V1
F19 IO58NDB1V2
F20 IO60PDB1V2
F21 IO77NDB1V4
896-CCGA
Pin Number RT3PE3000L Function
F22 IO72NDB1V3
F23 IO72PDB1V3
F24 GNDQ
F25 GND
F26 VMV2
F27 IO86PDB2V0
F28 IO92PDB2V1
F29 VCC
F30 IO100NPB2V2
G1 GND
G2 IO296NPB7V2
G3 IO306NDB7V4
G4 IO297NDB7V2
G5 VCCIB7
G6 GNDQ
G7 VCC
G8 VMV0
G9 VCCIB0
G10 IO10NDB0V1
G11 IO16NDB0V1
G12 IO22PDB0V2
G13 IO26PPB0V3
G14 IO38NPB0V4
G15 IO36NDB0V4
G16 IO46NDB1V0
G17 IO46PDB1V0
G18 IO56NDB1V1
G19 IO56PDB1V1
G20 IO66NDB1V3
G21 IO66PDB1V3
G22 VCCIB1
G23 VMV1
G24 VCC
G25 GNDQ
G26 VCCIB2
G27 IO86NDB2V0
896-CCGA
Pin Number RT3PE3000L Function
G28 IO92NDB2V1
G29 IO100PPB2V2
G30 GND
H1 IO294PDB7V2
H2 IO294NDB7V2
H3 IO300NDB7V3
H4 IO300PDB7V3
H5 IO295PDB7V2
H6 IO299PDB7V3
H7 VCOMPLA
H8 GND
H9 IO08NDB0V0
H10 IO08PDB0V0
H11 IO18PDB0V2
H12 IO26NPB0V3
H13 IO28NDB0V3
H14 IO28PDB0V3
H15 IO38PPB0V4
H16 IO42NDB1V0
H17 IO52NDB1V1
H18 IO52PDB1V1
H19 IO62NDB1V2
H20 IO62PDB1V2
H21 IO70NDB1V3
H22 IO70PDB1V3
H23 GND
H24 VCOMPLB
H25 GBC2/IO84PDB2V0
H26 IO84NDB2V0
H27 IO96PDB2V1
H28 IO96NDB2V1
H29 IO89PDB2V0
H30 IO89NDB2V0
J1 IO290NDB7V2
J2 IO290PDB7V2
J3 IO302NDB7V3
896-CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-18 Advance v0.1
J4 IO302PDB7V3
J5 IO295NDB7V2
J6 IO299NDB7V3
J7 VCCIB7
J8 VCCPLA
J9 VCC
J10 IO04NPB0V0
J11 IO18NDB0V2
J12 IO20NDB0V2
J13 IO20PDB0V2
J14 IO32NDB0V3
J15 IO32PDB0V3
J16 IO42PDB1V0
J17 IO44NDB1V0
J18 IO44PDB1V0
J19 IO54NDB1V1
J20 IO54PDB1V1
J21 IO76NPB1V4
J22 VCC
J23 VCCPLB
J24 VCCIB2
J25 IO90PDB2V1
J26 IO90NDB2V1
J27 GBB2/IO83PDB2V0
J28 IO83NDB2V0
J29 IO91PDB2V1
J30 IO91NDB2V1
K1 IO288NDB7V1
K2 IO288PDB7V1
K3 IO304NDB7V3
K4 IO304PDB7V3
K5 GAB2/IO308PDB7V4
K6 IO308NDB7V4
K7 IO301PDB7V3
K8 IO301NDB7V3
K9 GAC2/IO307PPB7V4
896-CCGA
Pin Number RT3PE3000L Function
K10 VCC
K11 IO04PPB0V0
K12 VCCIB0
K13 VCCIB0
K14 VCCIB0
K15 VCCIB0
K16 VCCIB1
K17 VCCIB1
K18 VCCIB1
K19 VCCIB1
K20 IO76PPB1V4
K21 VCC
K22 IO78PPB1V4
K23 IO88NDB2V0
K24 IO88PDB2V0
K25 IO94PDB2V1
K26 IO94NDB2V1
K27 IO85PDB2V0
K28 IO85NDB2V0
K29 IO93PDB2V1
K30 IO93NDB2V1
L1 IO286NDB7V1
L2 IO286PDB7V1
L3 IO298NDB7V3
L4 IO298PDB7V3
L5 IO283PDB7V1
L6 IO291NDB7V2
L7 IO291PDB7V2
L8 IO293PDB7V2
L9 IO293NDB7V2
L10 IO307NPB7V4
L11 VCC
L12 VCC
L13 VCC
L14 VCC
L15 VCC
896-CCGA
Pin Number RT3PE3000L Function
L16 VCC
L17 VCC
L18 VCC
L19 VCC
L20 VCC
L21 IO78NPB1V4
L22 IO104NPB2V2
L23 IO98NDB2V2
L24 IO98PDB2V2
L25 IO87PDB2V0
L26 IO87NDB2V0
L27 IO97PDB2V1
L28 IO101PDB2V2
L29 IO103PDB2V2
L30 IO119NDB3V0
M1 IO282NDB7V1
M2 IO282PDB7V1
M3 IO292NDB7V2
M4 IO292PDB7V2
M5 IO283NDB7V1
M6 IO285PDB7V1
M7 IO287PDB7V1
M8 IO289PDB7V1
M9 IO289NDB7V1
M10 VCCIB7
M11 VCC
M12 GND
M13 GND
M14 GND
M15 GND
M16 GND
M17 GND
M18 GND
M19 GND
M20 VCC
M21 VCCIB2
896-CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-19
M22 NC
M23 IO104PPB2V2
M24 IO102PDB2V2
M25 IO102NDB2V2
M26 IO95PDB2V1
M27 IO97NDB2V1
M28 IO101NDB2V2
M29 IO103NDB2V2
M30 IO119PDB3V0
N1 IO276PDB7V0
N2 IO278PDB7V0
N3 IO280PDB7V0
N4 IO284PDB7V1
N5 IO279PDB7V0
N6 IO285NDB7V1
N7 IO287NDB7V1
N8 IO281NDB7V0
N9 IO281PDB7V0
N10 VCCIB7
N11 VCC
N12 GND
N13 GND
N14 GND
N15 GND
N16 GND
N17 GND
N18 GND
N19 GND
N20 VCC
N21 VCCIB2
N22 IO106NDB2V3
N23 IO106PDB2V3
N24 IO108PDB2V3
N25 IO108NDB2V3
N26 IO95NDB2V1
N27 IO99NDB2V2
896-CCGA
Pin Number RT3PE3000L Function
N28 IO99PDB2V2
N29 IO107PDB2V3
N30 IO107NDB2V3
P1 IO276NDB7V0
P2 IO278NDB7V0
P3 IO280NDB7V0
P4 IO284NDB7V1
P5 IO279NDB7V0
P6 GFC1/IO275PDB7V0
P7 GFC0/IO275NDB7V0
P8 IO277PDB7V0
P9 IO277NDB7V0
P10 VCCIB7
P11 VCC
P12 GND
P13 GND
P14 GND
P15 GND
P16 GND
P17 GND
P18 GND
P19 GND
P20 VCC
P21 VCCIB2
P22 GCC1/IO112PDB2V3
P23 IO110PDB2V3
P24 IO110NDB2V3
P25 IO109PPB2V3
P26 IO111NPB2V3
P27 IO105PDB2V2
P28 IO105NDB2V2
P29 GCC2/IO117PDB3V0
P30 IO117NDB3V0
R1 GFC2/IO270PDB6V4
R2 GFB1/IO274PPB7V0
R3 VCOMPLF
896-CCGA
Pin Number RT3PE3000L Function
R4 GFA0/IO273NDB6V4
R5 GFB0/IO274NPB7V0
R6 IO271NDB6V4
R7 GFB2/IO271PDB6V4
R8 IO269PDB6V4
R9 IO269NDB6V4
R10 VCCIB7
R11 VCC
R12 GND
R13 GND
R14 GND
R15 GND
R16 GND
R17 GND
R18 GND
R19 GND
R20 VCC
R21 VCCIB2
R22 GCC0/IO112NDB2V3
R23 GCB2/IO116PDB3V0
R24 IO118PDB3V0
R25 IO111PPB2V3
R26 IO122PPB3V1
R27 GCA0/IO114NPB3V0
R28 VCOMPLC
R29 GCB1/IO113PPB2V3
R30 IO115NPB3V0
T1 IO270NDB6V4
T2 VCCPLF
T3 GFA2/IO272PPB6V4
T4 GFA1/IO273PDB6V4
T5 IO272NPB6V4
T6 IO267NDB6V4
T7 IO267PDB6V4
T8 IO265PDB6V3
T9 IO263PDB6V3
896-CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-20 Advance v0.1
T10 VCCIB6
T11 VCC
T12 GND
T13 GND
T14 GND
T15 GND
T16 GND
T17 GND
T18 GND
T19 GND
T20 VCC
T21 VCCIB3
T22 IO109NPB2V3
T23 IO116NDB3V0
T24 IO118NDB3V0
T25 IO122NPB3V1
T26 GCA1/IO114PPB3V0
T27 GCB0/IO113NPB2V3
T28 GCA2/IO115PPB3V0
T29 VCCPLC
T30 IO121PDB3V0
U1 IO268PDB6V4
U2 IO264NDB6V3
U3 IO264PDB6V3
U4 IO258PDB6V3
U5 IO258NDB6V3
U6 IO257PPB6V2
U7 IO261PPB6V3
U8 IO265NDB6V3
U9 IO263NDB6V3
U10 VCCIB6
U11 VCC
U12 GND
U13 GND
U14 GND
U15 GND
896-CCGA
Pin Number RT3PE3000L Function
U16 GND
U17 GND
U18 GND
U19 GND
U20 VCC
U21 VCCIB3
U22 IO120PDB3V0
U23 IO128PDB3V1
U24 IO124PDB3V1
U25 IO124NDB3V1
U26 IO126PDB3V1
U27 IO129PDB3V1
U28 IO127PDB3V1
U29 IO125PDB3V1
U30 IO121NDB3V0
V1 IO268NDB6V4
V2 IO262PDB6V3
V3 IO260PDB6V3
V4 IO252PDB6V2
V5 IO257NPB6V2
V6 IO261NPB6V3
V7 IO255PDB6V2
V8 IO259PDB6V3
V9 IO259NDB6V3
V10 VCCIB6
V11 VCC
V12 GND
V13 GND
V14 GND
V15 GND
V16 GND
V17 GND
V18 GND
V19 GND
V20 VCC
V21 VCCIB3
896-CCGA
Pin Number RT3PE3000L Function
V22 IO120NDB3V0
V23 IO128NDB3V1
V24 IO132PDB3V2
V25 IO130PPB3V2
V26 IO126NDB3V1
V27 IO129NDB3V1
V28 IO127NDB3V1
V29 IO125NDB3V1
V30 IO123PDB3V1
W1 IO266NDB6V4
W2 IO262NDB6V3
W3 IO260NDB6V3
W4 IO252NDB6V2
W5 IO251NDB6V2
W6 IO251PDB6V2
W7 IO255NDB6V2
W8 IO249PPB6V1
W9 IO253PDB6V2
W10 VCCIB6
W11 VCC
W12 GND
W13 GND
W14 GND
W15 GND
W16 GND
W17 GND
W18 GND
W19 GND
W20 VCC
W21 VCCIB3
W22 IO134PDB3V2
W23 IO138PDB3V3
W24 IO132NDB3V2
W25 IO136NPB3V2
W26 IO130NPB3V2
W27 IO141PDB3V3
896-CCGA
Pin Number RT3PE3000L Function
Radiation-Tolerant ProASIC3 Packaging
Advance v0.1 3-21
W28 IO135PDB3V2
W29 IO131PDB3V2
W30 IO123NDB3V1
Y1 IO266PDB6V4
Y2 IO250PDB6V2
Y3 IO250NDB6V2
Y4 IO246PDB6V1
Y5 IO247NDB6V1
Y6 IO247PDB6V1
Y7 IO249NPB6V1
Y8 IO245PDB6V1
Y9 IO253NDB6V2
Y10 GEB0/IO235NPB6V0
Y11 VCC
Y12 VCC
Y13 VCC
Y14 VCC
Y15 VCC
Y16 VCC
Y17 VCC
Y18 VCC
Y19 VCC
Y20 VCC
Y21 IO142PPB3V3
Y22 IO134NDB3V2
Y23 IO138NDB3V3
Y24 IO140NDB3V3
Y25 IO140PDB3V3
Y26 IO136PPB3V2
Y27 IO141NDB3V3
Y28 IO135NDB3V2
Y29 IO131NDB3V2
Y30 IO133PDB3V2
896-CCGA
Pin Number RT3PE3000L Function
Package Pin Assignments
3-22 Advance v0.1
Part Number and Revision Date
Part Number 51700107-003-0
Revised September 2008
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
51700107-005-1/11.09
Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
Actel Europe Ltd.
River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
Actel Japan
EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Actel Hong Kong
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.
Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered
trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.