Standard Software Package Axial Winder SPW420 for the T400 Technology Board Software Version 2.21 Axial winder SPW420 - SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 1 Warning information Abbreviations 2 AG Automation unit (PLC) CB Communications board such as CBP/CB1 CU Base drive converter or converter CUVC New SIMOVERT MASTERDRIVES CUMC SIMOVERT MASTERDRIVES Motion Control CUD1 SIMOREG DC MASTER dxxx Technology parameters, number xxx, cannot be changed FB Function block Hxxx Technology parameters, number xxx, can be changed M Torque n Speed n_act Speed actual value n_set Speed setpoint PG Programmer (e.g. PG685, PG730, PG750) PTP (PtP) Peer-to-peer communications T400 T400 technology module TA Sampling time b.d. n Block diagram, Page n v Web velocity USS USS communications Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Warning information Contents 0 Warning information...................................................................................... 6 1 Overview......................................................................................................... 8 1.1 Validity................................ ................................................................................................ 8 1.2 General overview................................................................................................................ 8 1.2.1 T400 technology module .......................................................................................... 9 1.2.2 Interface module (CB).................... ........................................................................ 10 1.3 Overview of the closed-loop winder control...................................................................... 11 1.3.1 Hardware/software prerequisites ........................................................................... 11 1.3.2 Main features of the closed-loop winder control..................................................... 11 2 T400 technology module ............................................................................. 13 2.1 Communication interfaces................................................................................................ 13 2.1.1 Interface to the base drive converter (b.d. 15a) ..................................................... 14 2.1.2 Interface to COMBOARD (b.d. 15)......................................................................... 15 2.1.3 Interface to the peer-to-peer (b.d. 14) .................................................................... 17 2.1.4 USS slave interface (b.d. 14a) ............................................................................... 18 2.1.5 Interface to the monitor .......................................................................................... 18 2.2 Terminal assignment................ ........................................................................................ 18 2.2.1 Digital inputs and outputs ....................................................................................... 20 2.2.2 Analog inputs and outputs...................................................................................... 21 2.2.3 Pulse encoders....................... ............................................................................... 22 3 Function description 24 3.1 Reading-in setpoints 25 3.1.1 General information (block diagrams 11-13).......................................................... 25 3.1.2 Speed setpoint (block diagram 5) .......................................................................... 25 3.1.2.1 Main setpoint................ .............................................................................. 25 3.1.2.2 Stretch compensation for a speed setpoint................................................ 25 3.1.2.3 Speed setpoint for winder operation........................................................... 26 3.1.2.4 Velocity setpoint for local operation............................................................ 27 3.1.2.5 Limiting the velocity setpoint ...................................................................... 29 3.1.2.6 Winder overcontrol ..................................................................................... 29 3.1.3 Setpoint for the closed-loop tension / position controller (block diagram 7/8)........ 30 3.1.3.1 Winding hardness control (block diagram 7) ............................................. 30 3.1.3.2 Standstill tension (block diagram 7) ........................................................... 32 3.2 Sensing actual values....................................................................................................... 32 3.2.1 Selecting the speed actual value (block diagram 13)............................................. 32 3.2.2 Speed actual value calibration ............................................................................... 33 3.3 Control................................. ............................................................................................. 35 3.3.1 Control signals (block diagrams 16/17/22b)........................................................... 35 3.3.2 Winding direction.................................................................................................... 35 3.3.3 Gearbox stage changeover (block diagram 5)....................................................... 36 3.3.4 Two operating modes (block diagram 18).............................................................. 36 3.3.5 Motorized potentiometer functions (block diagram 19) .......................................... 38 3.3.6 Splice control (block diagram 21)........................................................................... 39 3.4 Closed-loop control........................................................................................................... 41 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 3 Warning information 3.4.1 Closed-loop control structure (block diagram 4) .................................................... 41 3.4.2 Closed-loop speed control (block diagram 6/6a).................................................... 41 3.4.2.1 Influence of the speed controller (block diagram 6) ................................... 41 3.4.2.2 Kp adaptation (block diagram 6a) .............................................................. 42 3.4.3 Closed-loop tension / dancer roll - position control (block diagram 7/8)................ 43 3.4.3.1 Kp adaptation......................... .................................................................... 44 3.4.3.2 D component of the tension controller (block diagram 7) .......................... 45 3.4.4 Generating the supplementary torque setpoint (block diagram 6/ 9b) ................... 46 3.4.4.1 Compensation calculation (block diagram 9b) ........................................... 46 3.5 Calculation................................ ........................................................................................ 47 3.5.1 Diameter computer (block diagram 9a).................................................................. 47 3.5.2 Length measurement and length stop (block diagram 13)..................................... 50 3.6 Monitoring and signaling53 3.6.1 Web break detection (block diagram 7) ................................................................. 53 3.6.2 Freely-connectable limit value monitors (block diagram 10) .................................. 54 3.6.3 Analog outputs (block diagram 10) ........................................................................ 55 3.6.4 Overspeed (block diagram 20)............................................................................... 55 3.6.5 Excessive torque................... ................................................................................. 55 3.6.6 Stall protection........................................................................................................ 56 3.6.7 Receiving telegrams from CU, CB and PTP (block diagram 20) ........................... 56 3.7 Others............................................................................................................................... 57 3.7.1 Free function blocks (block diagram 23a/23b/23c) ................................................ 57 3.7.2 Free display parameters (block diagram 25).......................................................... 58 4 Configuring instructions and examples..................................................... 59 4.1 Some formulas for a winder drive..................................................................................... 59 4.2 Calculating the inertia compensation................................................................................ 63 4.2.1 Determining parameter H228 for the fixed moment of inertia ................................ 63 4.2.2 Determining parameter H227 for the variable moment of inertia ........................... 65 4.3 Selecting the winding ratio (winding range) ...................................................................... 67 4.4 Power and torque....................... ...................................................................................... 67 4.5 Defining the sign............................ ................................................................................... 67 4.6 Selecting the closed-loop control concept ........................................................................ 69 4.6.1 Indirect closed-loop tension control ("Open-loop tension control")......................... 69 4.6.2 Direct closed-loop tension control with dancer roll ................................................. 70 4.6.3 Direct closed-loop tension control with a tension transducer ................................. 71 4.6.4 Closed-loop constant v control ............................................................................... 71 4.6.5 Selecting a suitable control concept....................................................................... 71 4.7 Configuring example: Winder with indirect tension control............................................... 72 4.8 Configuring example: Unwinder with indirect tension control ........................................... 76 4.9 Configuring example: Winder with dancer roll, speed correction ..................................... 79 4.10 Configuring example: Unwinder with dancer roll, speed correction.................................. 82 4.11 Configuring example: Winder with tension transducer ..................................................... 85 4.12 Configuring example: Unwinder with tension transducer ................................................. 88 4.13 Configuring example: Winder with closed-loop constant v control ................................... 91 4.14 Configuring example: Cut tension with freely-assignable blocks...................................... 93 5 Parameters................................ ................................................................... 94 5.1 Parameter handling.................... ...................................................................................... 94 5.2 Parameter lists.................................................................................................................. 95 6 Commissioning............................ .............................................................. 161 6.1 Commissioning the base drive ....................................................................................... 161 4 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Warning information 6.2 Commissioning the winder ............................................................................................. 163 6.3 Information on commissioning ....................................................................................... 164 6.3.1 Resources used for adaptation and commissioning ............................................ 164 6.3.2 Specification of the parameter numbers .............................................................. 165 6.3.3 BICO technology........................ .......................................................................... 165 6.3.4 Establishing the factory setting............................................................................. 166 6.4 Commissioning the winder functions.............................................................................. 167 6.4.1 Checking the speed actual value calibration........................................................ 167 6.4.2 Compensation, friction torque (block diagram 9b) ............................................... 167 6.4.2.1 Friction characteristic ............................................................................... 168 6.4.3 Compensating the accelerating torque (block diagram 9b) ................................. 169 6.4.3.1 Constant moment of inertia, H228 ........................................................... 170 6.4.3.2 Variable moment of inertia, H227............................................................. 170 6.4.4 Setting the Kp adaptation for the speed control ................................................... 171 6.4.4.1 Setting on the T400 .................................................................................. 171 6.4.4.2 Setting for CUVC or CUMC...................................................................... 171 6.4.5 Setting the tension or dancer roll controller (block diagram 7/8).......................... 172 6.4.6 Setting the tension controller, Kp adaptation........................................................ 174 6.4.7 Setting the saturation setpoint H145 .................................................................... 174 6.4.8 Setting the braking characteristic H256-259 ........................................................ 174 6.5 Operation with the communications module (CBP/CB1)................................................ 175 6.6 Operation with peer-to-peer............................................................................................ 175 6.7 Operation with USS slave............................................................................................... 176 6.8 Operation with free function blocks ................................................................................ 176 6.9 Trace function with "symTrace-D7" ................................................................................ 177 7 Diagnostic LEDs, alarms, faults ............................................................... 178 7.1 Diagnostic LEDs on the T400......................................................................................... 178 7.2 Alarms and faults of the axial winder.............................................................................. 179 8 Literature............................. ....................................................................... 180 9 Appendix..................................................................................................... 181 9.1 Version changes............................................................................................................. 181 9.2 Definition of the 5 cycle times......................................................................................... 183 9.3 List of block I/O (connectors and parameters) ............................................................... 183 9.3.1 List of parameters and connections which can be changed ................................ 183 9.3.2 List of block I/O (connectors and binectors)......................................................... 193 9.4 Block diagram................................................................................................................. 200 9.5 CFC charts......................................... ............................................................................ 201 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 5 Warning information 0 Warning information WARNING Electrical equipment has components which are at dangerous voltage levels. If these instructions are not strictly adhered to, this can result in severe bodily injury and material damage. Only appropriately qualified personnel may work on/commission this equipment. This personnel must be completely knowledgable about all the warnings and service measures according to this User Manual. It is especially important that the warning information in the relevant Operating Instructions (MASTERDRIVES or DC MASTER) is strictly observed. Definitions D Qualified personnel for the purpose of this User Manual and product labels are personnel who are familiar with the installation, mounting, start-up and operation of the equipment and the hazards involved. He or she must have the following qualifications: 1. Trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety procedures. 2. Trained in the proper care and use of protective equipment in accordance with established safety procedures. 3. Trained in rendering first aid. ! ! ! 6 DANGER For the purpose of this User Manual and product labels, Danger" indicates death, severe personal injury and/or substantial property damage will result if proper precautions are not taken. WARNING For the purpose of this User Manual and product labels, Warning" indicates death, severe personal injury or property damage can result if proper precautions are not taken CAUTION For the purpose of this User Manual and product labels, Caution" indicates that minor personal injury or material damage can result if proper precautions are not taken. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Warning information NOTE For the purpose of this User Manual, Note" indicates information about the product or the respective part of the User Manual which is essential to highlight. CAUTION This board contains components which can be destroyed by electrostatic discharge. Prior to touching any electronics board, your body must be electrically discharged. This can be simply done by touching a conductive, grounded object immediately beforehand (e.g. bare metal cabinet components, socket protective conductor contact). Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 7 Overview 1 Overview 1.1 Validity This User Manual is valid for the standard "Axial winder" SPW420 software package, from Version 2.0. The configured software, based on T300 MS320 (version 1.3) has been expanded, and has been implemented on the T400 technology module (32 bit). Differences to the previous versions will be shown in Chapter 10 "Version changes". This SPW420 software can only run on the T400 technology module, both in the drive converter as well as in the SRT400 subrack. SPW420 Note Base- and interface modules The control core (all of the functions) of the standard SPW420 software package are essentially also available to other SIMADYN D modules (PM4 - PM6 and FM 458). This standard software package has been released for the SIMOVERT MASTERDRIVES drive converters and the SIMOREG DC-MASTER drive converters with the following base- and interface modules: Base modules (CU): * CUVC or CUMC, installed in the SIMOVERT MASTERDRIVES VC or MC converters as well as the earlier CU2 or CU3 modules, installed in SIMOVERT MASTERDRIVES VC or SC. * SIMOREG DC-MASTER Interface modules (CB): Only the subsequently described slots and combinations have been released: * PROFIBUS interface module CBP on the ADB carrier module (lower slot of the ADB), installed in slot 3 of the Electronics box, if a CUVC or CUMC are used. * PROFIBUS interface module CB1 at slot 3, if either CU2 or CU3 is used. * Peer-to-peer / USS interface module SCB1 or SCB2 at slot 3. 1.2 General overview The digital SIMOVERT MASTERDRIVES and SIMOREG DC-MASTER converters can be expanded by the T400 technology module and various interface modules. Standard software packages are available for applications which are frequently used, e.g. angular synchronism, sheetcutters or axial winder controls (closed-loop). If the technological functions of the standard software packages have to be expanded to fulfill specific 8 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Overview customer requirements, then the software packages can be purchased on CD-ROM, and then modified with the graphics CFC configuring tool (from version 4.0). The standard software packages can run with and without interface module (e.g. CBP/CB1). Note Getting to know the software and commissioning: 1. Configuring examples, refer to Chapters 4.7 to 4.13. 2. Block diagrams (b.d.), refer to Appendix (Chapter 10.4) 3. Controlling the configured winder software package via CBP/ CB1, peer-to-peer and terminals, refer to the block diagram, Sheets 13a 19, 22 - 22b. 1.2.1 T400 technology module The T400 technology module is a processor module, which can be freely configured using CFC. It is compatible to SIMADYN D, and has been especially designed for use with the SIMOVERT MASTERDRIVES, SIMOREG DC-MASTER drive converters and SRT400 subracks. The graphical CFC configuring tool is used to define the function of the various modules. The generated software is downloaded into a program memory of the T400. Table 1-1 shows an overview of the characteristics of the T400[1]. The communications with the base drive is realized via a parallel interface, which is also implemented as dual port RAM (DPR). In addition, the T400 can communicate via PROFIBUS DP, the USS bus and peer-to-peer links. Refer to Chapter 2 for details. Processor / clock frequency RISC R3081/ 32 MHz RAM memory 4 Mbyte Communications with CU Parallel bus, dual port RAM, 16 words (each 16 bit) Program memory 2 Mbyte EPROM and 32 kbyte EEPROM, 128 byte NOVRAM Digital inputs 12 of which 4 bidirectional inputs or outputs 24 V Digital outputs 6 of which 4 bidirectional inputs or outputs 24 V, 50 mA Analog inputs 5 12-bit resolution 10 V (2 differential inputs) Analog outputs 2 12-bit resolution 10 V, 10 mA Serial interfaces 2 1* RS232 or RS485 (2-wire) 1* RS485 (2- or 4-wire) Pulse encoder inputs 2 1* track A, B, zero, HTL (15V) or TTL/RS422 (5V) 1* track A, B, zero and coarse HTL pulse Table 1-1 Overview of the T400 technology module Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 9 Overview Prerequisite The following components are required to operate the SPW420 axial winder: Product description Order No. Software package, SPW420 axial winder with T400 6DD1842-0AA0 Manual, axial winder SPW420 German 6DD1903-0AA0 English 6DD1903-0AB0 French 6DD1903-0AC0 Table 1-2 Adaptation possibility SPW420 components required The source code of the standard SPW420 axial winder software package is available on CD-ROM. Using the graphic configuring platform of SIMADYN D, i.e. CFC, when required, the functionality of the closed-loop winder control can be adapted to specific customer requirements. The individual components in Table 1-3 are also available: Product description Order No. Axial winder software (CD-ROM) including User Manual 6DD1843-0AA0 T400 technology module 6DD1606-0AD0 D7-ES V5.1 6DD1801-4DA2 (complete software package: STEP7, CFC, D7SYS) Or Service-IBS V5.0 (German/English) Table 1-3 6DD1803-1BA1 Components to adapt the software package using CFC 1.2.2 Interface module (CB) For applications which require the SIMOVERT MASTERDRIVES or SIMOREG DC-MASTER drive converters to be coupled with a higherlevel automation system, interface modules are used, depending on the protocol used. Thus, it is possible for automation systems to read and change setpoints, actual values, technology parameters as well as base drive converter parameters. PROFIBUS DP is the preferred communications type. In this case, the interface modules CBP with ADP or CB1 are required; also refer to Chapter 1.1. 10 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Overview 1.3 Overview of the closed-loop winder control Applications The standard "Axial winder" software package allows, in conjunction with the appropriate devices, winders and unwinders to be implemented for the widest range of applications. This include for example, foil machines, all types of printing machines, coating systems, paper finishing machines, coilers for wire-drawing machines, textile machines and coilers for sheet steel. 1.3.1 Hardware/software prerequisites Hardware The drive converter must be designed for 4 Q operation, as braking must be possible. Software The minimum software releases are required as follows: Base drive converter modules: * CU2: Software release 1.2 * CU3: Software release 1.1 * CUVC: Software release 3.0 * CUMC: Software release 1.1 * CUD1: Software release 1.3. Interface modules: * CBP: Software release 1.0 * CB1: Software release 1.3 Configuring tool (if the software is not only to be just parameterized): * STEP7, CFC, D7-SYS 1.3.2 Main features of the closed-loop winder control Function - various winding techniques, e.g. direct closed-loop tension control, indirect closed-loop tension control or closed-loop constant v control are possible; - override speed controller (the tension controller acts directly on the motor torque) or the speed correction technique (the tension controller acts on the speed setpoint), switchable; - tension controller- and speed controller gain adaptation as a function of the diameter; - winding hardness control using a polygon characteristic with 5 points, diameter-dependent, can be parameterized; Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 11 Overview - speed-dependent friction compensation using a polygon characteristic with 10 points, can be parameterized; - acceleration pre-control as a function of the diameter as well as the web width, gearbox stage and material thickness. The thickness can be automatically learned; - tension pre-control as a function of the diameter and tension setpoint; - two techniques to calculate the diameter, i.e. with/without vset signals; - diameter calculation with a control function for 'Set diameter' and 'Hold diameter'; - web length calculation; - it is possible to changeover between several gearbox stages; - free function blocks for additional user-specific requirements; - freely-assignable display parameters to visualize the actual value of the connector/binector. Communications - data transfer to the base drive converter and via PROFIBUS DP, peerto-peer, USS and digital or analog I/O possible; - versatile as it is possible, within the standard axial winder software, to freely-interconnect analog and digital inputs, analog and digital outputs as well as parts of the dual port RAM to the interface module and to the base drive using BICO technology (start-up program). Monitoring - optional web break detection and the appropriate measures; - automatic standstill identification and switching to standstill tension; - monitoring of all communication interfaces; - winder-related open-loop control with alarm- and fault evaluation; - automatic protection against web sag. Operating mode - suitable for winders and unwinders with and without flying reel change for changeover mechanical system. - inching-, positioning- and crawl operation. - two motorized potentiometers which can be freely used. - shutdown without overshoot, with braking characteristic for fast stop. Measured value sensing - tension transducer or dancer roll can be connected; - two pulse encoders can be connected to measure the motor speed and web velocity; - surface tachometer can be connected to sense the diameter actual value. 12 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module 2 T400 technology module 2.1 Communication interfaces All of the T400 interfaces, included in the standard software package, are shown in Fig. 2-1: n Communications interface: PROFIBUS, peer-to-peer, USS-BUS and PC/start-up interface n Base drive or converter n I/O interface: Analog and digital inputs/outputs n Actual value sensing: Two incremental encoders The closed-loop control core of the axial winder and the actual value sensing is executed on the T400. Its functions are explained in detail in Chapter 3. All of the interfaces, shown in Fig. 2-1, which are used to transfer process- and parameter data with the T400, are described in the following Chapters. Communications interface Basic drive Control core BUS connection CUx (CBP, CB1) T400 USS Alt ern ati v Analog I/O PC interface Digital I/O Peer to peer Incremental encoder 1 Incremental encoder 2 I/O interface Actual value sensing Fig. 2-1 Communications interface for T400 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 13 T400 technology module 2.1.1 Interface to the base drive converter (b.d. 15a) Communications with CU Fast process data and parameter transfer as well as faults/alarms between the T400 technology module and the base drive is realized using the backplane bus via a parallel dual port RAM interface. The process data, i.e. the setpoints and actual values are cyclically written and read by the technology module and base drive. Parameters are read and changed, task-controlled. Base drive setting NOTE The base drive must be commissioned. In order to operate the standard SPW420 software package, the following parameters must be set on the base drive for the setpoint/actual value channels and control / status words, refer to Table 2-1, Table 2-2 and Chapter 6. In Table 2-1 and Table 2-2 Pxxx: Base drive parameters Hxxx: T400 parameter Setpoint channels T400 --> CU The technology module transfers 10 words to the base drive. 8 of these words are defined as in Table 2-1. The other 2 words can be freely connected. The control word transferred is generated by the automation (higher-level open-loop control, data transfer via the interface module) or from the T400 terminals and fixed values. CUVC CUMC CUD1 param. param. param. P648 P649 P554 P554 P654 P555 P555 P655 P558 P558 P658 P561 P561 P661 P565 P565 P665 P575 P575 P675 P443 P443 P625 P585 P585 P685 P506 P262 P501 P493 P265 P605 P499 P266 P606 P232 P232 P553 Table 2-1 14 Word . bit Sampl. Par. time T400 9 9 3100 3101 3102 3103 3107 3115 3002 3409 3005 3006 3007 3008 3009 3010 Word 1.0 Word 1.1 Word 1.2 Word 1.3 Word 1.7 Word 1.15 Word 2 Word 4.9 Word 5 Word 6 Word 7 Word 8 Word 9 Word 10 16 ms 16 ms 16 ms 16 ms 16 ms 16 ms 2 ms 16 ms 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms Source for control word 1 Source for control word 2 On command (main contactor) Off2 Off3 Pulse enable Acknowledge fault External fault Speed setpoint Speed controller enable Supplement. torque setpoint Positive torque limit Negative torque limit Variable moment of inertia free free H500 H519 H501 H502 H503 H504 H505 H506 Control word- and setpoint channel from the T400 to the base drive Act. value channels CU --> T400 Value Explanation The technology module receives 8 words from the base drive; the sequence and the contents are defined with appropriate parameters, e.g. P734 for CUVC. Status word 1 which is transferred is logically combined with the status messages of the T400, and transferred to the automation. Various status bits are evaluated in the configured software. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module Additional status words and actual values can be sent from the base drive to the T400 via the backplane bus for monitoring, setpoint from the CU or for output. CUVC/ Param. P734.01 P734.02 P734.03 P734.04 P734.05 P734.06 P734.07 P734.08 Table 2-2 CUMC Value 32 148/91 0 CU Param. U734.01 U734.02 U734.03 U734.04 165 U734.05 24/241 U734.06 0 U734.07 0 U734.08 D1 Explanation Word Status word 1 (block diag. 22) Receive word 2 (free) Receive word 3 (free) Status word 2 (not used) Torque setpoint Torque actual value Receive word 7 (free) Receive word 8 (free) Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8 Value 32 167 0 141 142 0 0 Sampl. time 16 ms 2 ms 2 ms Par. T400 2 ms 2 ms 2 ms 2 ms d552 d553 d554 d555 d550 d551 Status word- and actual value channel from the base drive to T400 2.1.2 Interface to COMBOARD (b.d. 15) Communications via PROFIBUS DP Permanently set and freely selectable setpoints/actual values can be transferred via the COMBOARD communications module (in this case, only CB1 or CBP/ADB). The T400 with the COMBOARD only has a PROFIBUS slave function. The COMBOARD is parameterized on the base drive, such as e. g. PPO type, baud rate, telegram length etc., refer to Lit. [2-4]). The standard software package defines which data should be transferred. It occupies 10 process data. Some of them can be freely selected. NOTE Cycle time Various protocol versions are available for the PROFIBUS. PPO type 5 is used in this software package. This type includes 10 process data (each 16-bit words) and parameters. Data is transferred between the communication modules and the technology module via dual port RAM. The process data (setpoints and actual values) are read or written from the T400 in the fastest cycle time (2 ms). T400 in the SRT400 Parameterization from the T400 is only realized when the T400 is operated in the standalone mode in the SRT400 with COMBOARD at slot 2. Parameters H602-H604 are provided for this special case. Enable H288 The configured software can be operated with and without a communications module. If the communications module is not used, PROFIBUS communications for the configured software can be deactivated using parameter H288. This then relieves the CPU, and disables the monitoring function. In addition, parameters H011 and H012 (alarm / fault suppression mask) must be appropriately set (refer to Chapter 5). Receive data SPW420 expects a maximum of 10 words of process data from a higherlevel automation system (8 setpoints and 2 control words). The setpoints which are transferred, can be freely connected within the software using BICO technology so that they do not have a fixed assignment (refer to COMBD --> T400 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 15 T400 technology module block diagrams 2, 15 and 22a). The telegram structure for PROFIBUS DP is shown in Table 2-3 (with PPO type 5). Telegram word Receive data Parameter (T400) 1 Control word 1 (control word 1 T400) Refer to block diagram 15/22a 2 Setpoint W2 (free) d450 refer to block diagram 15 3 Setpoint W3 (free) d451 refer to block diagram 15 4 Control word 2 (control word 2 T400) Refer to block diagram 22a 5 Setpoint W5 (free) d452 refer to block diagram 15 6 Setpoint W6 (free) d453 refer to block diagram 15 7 Setpoint W7 (free) d454 refer to block diagram 15 8 Setpoint W8 (free) d455 refer to block diagram 15 9 Setpoint W9 (free) d456 refer to block diagram 15 10 Setpoint W10 (free) d457 refer to block diagram 15 Table 2-3 Receive channels from PROFIBUS (2 ms sampling time) Send data T400 --> COMBD The send data (actual value/status word) selection can also be parameterized. Telegram word Send data (pre-assignment) Parameter (T400) 1 Status word 1 (status word 1 T400) H444(4335) r.t.b.d. 15/22 2 Actual value W2 (actual diameter) H440(310) r.t.b.d. 15 3 Actual value W3 (free) H441(0) 4 Status word (status word 2 T400) H445(4336) r.t.b.d. 15/22 5 Actual value W5 (free) H442(0) r.t.b.d. 15 6 Actual value W6 (free) H443(0) r.t.b.d. 15 7 Actual value W7 (free) H446(0) r.t.b.d. 15 8 Actual value W8 (free) H447(0) r.t.b.d. 15 9 Actual value W9 (free) H448(0) r.t.b.d. 15 10 Actual value W10 (free) H449(0) r.t.b.d. 15 Table 2-4 Send channels (sampling time 2 ms) Monitoring the telegram receive 16 r.t.b.d. 15 The telegram data transfer can be monitored during communications. The time limits after power-on and during operation can be set separately (H495-496). The fault- and alarm messages are transferred to the CU, where they are displayed, if a data suppression mask (H011,H012) has not been activated (refer to Chapter 8.2). Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module 2.1.3 Interface to the peer-to-peer (b.d. 14) Communications via peer-to-peer The serial interface X02 is assigned to the peer-to-peer protocol through configuring. This protocol allows data to be extremely quickly transferred, without any delay, to - additional T400 - other drive converters with SCB 2 - SIMOREG 6RA24 and 6RA70 refer to Table 2-5 and Table 2-6. Pre-assignment This interface has the following pre-assignment: - baud rate (H245): 19200 baud - monitoring time limit (H246-H247): 10000 - 9920ms - telegram length: 5 words (1 control word and 4 setpoints) NOTE The telegram may include a maximum of 5 words (each 16 bit). The maximum baud rate is 38400 baud. Caution The terminating resistors of the interface used must be switched-in to avoid data transfer disturbances (switch S1/3 to S1/6; refer to [1,5]). The peer-to-peer communications can be inhibited using parameter H289. Thus, all of the peer-to-peer relevant function blocks are deactivated. Enable Telegram word Receive data Parameter (T400) 1 Control word 1 refer to block diagram 22a 2 Setpoint W2 d018 refer to b.d. 14 3 Setpoint W3 d019 refer to b.d. 14 4 Setpoint W4 d066 refer to b.d. 14 5 Setpoint W5 d067 refer to b.d. 14 Table 2-5 Receive data from peer-to-peer (2 ms sampling time) Telegram word Send data Parameter (T400) 1 Status word 1(status word 1 from T400) H015 (4335) r.t.b.d. 22b 2 Actual value W2 (actual diameter ) H016(310) r.t.b.d. 14 3 Actual value W3 (velocity setpoint) H017(340) r.t.b.d. 14 4 Actual value W4 H064(0) r.t.b.d. 14 5 Actual value W5 H065(0) r.t.b.d. 14 Table 2-6 Send data from peer-to-peer (2 ms sampling time) Monitoring telegram receive The telegram data transfer can be monitored during communications. The time limits after power-on and during operation can be set separately (H246-H247). The fault- and alarm messages are transferred to the CU and displayed on the PMU, if a data suppression mask (H011-H012) has not been activated (refer to Chapter 8.2). Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 17 T400 technology module 2.1.4 USS slave interface (b.d. 14a) Communications via USS The serial interface X01 (RS232 / RS485) can be alternatively used for parameterization. This is provided for the special case where the T400 is used in the SRT400. In this case, the following settings are required: Involves Significance 1 H600 Enable USS slave H601 USS data transfer cable 0: RS485 (OP1S) 1: RS232 (SIMOVIS) S1/8 on T400 Table 2-7 Caution Act. value 1 0 Changeover from online operation (CFC, simple start-up) to USS. ON: USS, OFF: Online operation OFF Settings for USS slave operation It is not possible to simultaneously use USS and be in online mode! USS operation is not possible if the parameterization is incorrect. This means, the error can only be removed, if you re-select online operation, and, for example, rectify the error using the Service-IBS tool. Operation with OP1S is only possible from version 2.2. 2.1.5 Interface to the monitor An operator control program, based on the SIMADYN D monitor (CFC online and Service-IBS) can be connected at the serial interface X01 (RS232). This then allows all connectors to be viewed and changed. Further, connection changes are possible (not using SIMOVIS). The baud rate is, as standard 19200 baud. Terminal designation Function 67 RxD 68 TxD 69 Ground Table 2-8 2.2 Terminals of interface X01 on T400 Terminal assignment Control signals and setpoints can be read-in and status signals and actual values output via digital and analog channels. For T400, the plant signals are connected directly at appropriate terminals, which are accessible from the front. An overview of the T400 connections is shown in Fig. 2-2. The subsequent description of the terminal assignment refers to this Fig. For additional information regarding T400, refer to Lit. [1, 5]. 18 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module T400 80 +15V / 100mA 81 Track A 82 Track B HTL Pulse 83 Zero pulseencod.1 Tracks A and B from CUx MASTER DRIVES or DC-MASTER Zero pulse from CUx Basic drive converter CUx 84 Coarse pulse 85 Pulse encoder Increm_1 M Fct.block 62 Track A + 63 Track B + HTL/ TTL (RS422) T/Rx+ 70 64 0 pulse + 65 Coarse p. Pulse encod. 66 2 M Selected with switch S2 RS485, 2-wire X01 T/Rx- 71 69 Increm_2 TxD TTL Hardwareaddresses of the basic configured software 87 Track B 88 0 pulse -. 5 analog inputs differential inputs 11 bits + sign 10V / 10k 10V 90 91 10V 92 93 94 + - A + - A + - 10V 95 10V 68 RxD 67 86 Track A - D D A RS232 Ana_In_1 Ana_In_2 Ana_Out_1 11 bit + VZ 97 D A Ana_In_3 D + - A + - A D Serial interface 1 - Program download - CFC test mode (start-up) - USS (SIMOVIS) Ana_Out_2 Ana_In_4 98 D 2 analog outputs 10V / 10mA 11 bits + sign A 99 96 10V 99 M 50 M 45 P24 external +24V 46 47 48 49 4 binary outputs bi-directional 24V DC (8mA input current) Ana_In_5 D P24 external 45 +24V 50 51 2 binary o utputs 52 BinInOut (bidirectional) 76 77 78 79 SSI_1 Absolute value encoder 1 Fct.block 4 binary inputs alarm-capable 24V DC (8mA input current) 53 54 55 61 +24V 4 binaryinputs 24V DC SSI_2 M 72 BinInput 56 57 58 59 60 or 73 X02 Fct.block DualCommunications module port e.g. CB1, ADB RAM Fig. 2-2 Absolute value encoder 2 74 75 Dual port RAM Serial interface 2: for - peer-to-peer - USS MASTER DRIVES or DC-MASTER basic drive CUx Layout of the terminals of T400 technology module Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 19 T400 technology module 2.2.1 Digital inputs and outputs Power supply voltage The digital inputs and outputs of the T400 technology module require or supply 24 volt signals. In this case, the 24 V supply voltage for the digital outputs must be externally supplied. Digital control inputs The SPW420 closed-loop control core uses all of the 8 digital inputs on the T400 (Table 2-9). When required, the default values (pre-assigned values) can be changed. Bit inversion H295 When required, it is possible to invert each bit of the digital inputs by using the appropriate parameterization. To realize this, the appropriate bit of parameter H295 must be set to 1; refer to Chapter 5. Term. Connector 53 B2003 System start (H021) 1 = operation enable for system operation 54 B2004 Tension control on (H022) 1 = on, switch-in the closed-loop tension control 55 B2005 Inhib. tension contr. (H023) 1 = inhibit, tension controller output = 0 56 B2006 Set diameter (H024) 1 = set, transfer setting diameter 57 B2007 Enter suppl.. Vset (H025) 1 = yes, addition, supplementary velocity setpoint 58 B2008 Local positioning (H026) 1 = yes, local operation with positioning ref. value 59 B2009 Local operator control (H027) 1 = local, local/system operation changeover 60 B2010 Local stop (H028) Table 2-9 Assignment Explanation 1 = stop for local operation Terminal assignment, digital inputs, T400 module (16ms cycle time) Digital outputs The digital outputs are used for status signals as well as during start-up and during winding, refer to Table 2-10. Characteristics When the drive is first powered-up, all of the outputs are first inhibited (high-ohmic state). In the initialization phase, they are controlled with the values which are present at that time. When the drive is shutdown, or under a fault condition, all of the outputs are connected to ground. NOTE Freely interconnectable Terminal Logical "0": Output is open or connected to ground Logical "1": Output is closed, i.e. the power supply voltage connected at the terminal (24V) is present. The following table shows the pre-assigned digital outputs of the T400 technology module. The digital outputs can be freely inter-connected using BICO-technology or Service-IBS program. Assignment (binector) Explanation 46 (H521) Web break (B2501) Web break detected 47 (H522) Standstill (Vact = 0) (B2502) Speed actual value < H157 48 (H523) Tension controller on (B2503) Tension/pos. controller on, speed contr. enabled 49(H524) Base drive on (B2504) Operating signal from the base drive 20 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module 52(H525) Speed setpoint =0 (B2505) Speed controller setpoint < 0.1% 51(H526) Limit value monitor 1 (B2114) Output can be parameterized, H114 Table 2-10 Terminal assignment, digital outputs, T400 module (16ms cycle time) 2.2.2 Analog inputs and outputs Scaling An output- and input voltage of 10 V corresponds to an internal value of 1.0. The gain in the following table offers additional normalization possibilities. Analog inputs Analog value = terminal voltage scaling factor - offset The following tables indicate the relevant T400 analog inputs for commissioning the closed-loop control core. Para. in T400 Term. Significance (pre-assignment) Gain Offset d320 90/91 Analog input 1 H054 H055 d321 92/93 Analog input 2 H056 H057 d322 94/99 Analog input 3, smoothed (tension actual value from the tension transducer) H058 H059 d323 95/99 Analog input 4, smoothed H060 H061 d324 96/99 Analog input 5 (pressure actual value from dancer roll) H062 H063 Table 2-11 Terminal assignment, analog inputs, T400 module (2ms cycle time) Analog outputs Terminal voltage = ( value + offset ) scaling factor The SPW420 closed-loop control used two analog outputs. Characteristics 0 V is output in the initialization phase. Representation: 10V = 1.0 (e.g. 100% speed) Freely interconnectable Para. in T400 Term. Both analog outputs are pre-assigned. They can be freely interconnected using BICO technology. Significance (pre-assignment) Gain offset H103 97/99 Analog output 1 (torque setpoint) H102 H101 H098 98/99 Analog output 2 (diameter actual value) H100 H099 Table 2-12 Terminal assignment, analog outputs T400 module (2ms cycle time) Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 21 T400 technology module 2.2.3 Pulse encoders Pulse encoder type Pulse encoders with two tracks shifted through 90 degrees must be connected. Encoder power supply 15 V (max. 100 mA) must be available from the T400 module as encoder power supply. Screening Encoders with a 15 - 24 V supply voltage, especially: 1XP8001-1 SIEMENS pulse encoders (for 1LA5 motors, frame sizes 100K to 200L). The pulse encoder cable must be screened. The cable screen should be connected to ground through the lowest impedance, if possible using cable clamps. This must be especially observed, if these signal cables are routed close to proximity switches or switches with moving contacts. 15 V power supply units If the 100 mA of the internal 15 V power supply is not sufficient, then the following 15V power supply units are recommended: * Type CM62-PS-220 AC/ 15 DC/ 1 220 V AC to 15V DC, 1 A load capability Manufacturer, Phoenix * Type FMP 15S 500 "fast mounting" 110/220 V AC to 15V DC, 0.5 A load capability Manufacturer, Block Encoder pulse numbers When selecting the encoder pulse number, the maximum pulse frequency is 1.5 MHz. Pulse encoders 1/2 from the axle/web tachometer, are connected directly to the CU/T400. The T400 can use the shaft tachometer signals from the base drive (CU) via the backplane bus. The mode can be parameterized using parameters H217 and H218. The following should be set: * Encoder type * Filter parameterization and filter time constant of the digital filter for the signals from the two pulse tracks / zero pulse track * Source of the encoder tracks The recommended values for H217 and H218 are specified in the parameter table in Chapter 5. For more detailed information refer to Lit.[6], block NAVS, connector MOD. 22 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 T400 technology module Encoder 1 Track A+ or track A Track A- Encoder 2 HTL RS422 HTL TTL HTL 3V 81 62 62 62 62 - 86 - - - 82 63 63 63 63 - 87 - - - P15 - output to the 15 V encoder supply 80 80 80 80 80 Ground 85 66 66 66 66 Switch S1.1 ON OFF ON OFF Switch S2.2 ON OFF ON OFF Switch S2.3 ON OFF OFF ON Switch S2.4 ON OFF ON OFF Switch S2.5 ON OFF OFF ON Track B+ or track B Track B- Table 2-13 Incremental encoder inputs of the T400: Terminal assignment and switch settings for various encoder types Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 23 Function description 3 Function description Overview The standard axial winder software package was developed with the goal of being able to cover many of the known winder applications using one single software package. Using the freely configurable T400 technology module, and the CFC configuring language, universal function units were created, which can be easily adapted to the particular system configuration by parameterization. Flexible interconnection of the control signals and setpoints allows control from higher-level system as well as operator control via the technology module terminals. "Mixed operation" is also possible. Software structure The rough structure of the standard SPW420 software package is illustrated in Fig. 3-1: 1. Reading-in setpoints, sensing actual values and open-loop controls 2. Closed-loop control and computation 3. Monitoring Read-in setpoints Sense actual values Closed-loop control Open-loop control Computation Monitoring Fig. 3-1 Description 24 Rough structure of the standard axial winder software package The description of all of the functions follows the rough structure in Fig. 3-1. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.1 Reading-in setpoints 3.1.1 General information (block diagrams 11-13) The selection and interconnection of the setpoints to be processed is realized using BICO technology. Each setpoint can be freely selected from a max. of 6 sources. The following input signals are available: Source for selection * * * * * * 5 analog inputs of the T400 module 10 setpoints from PROFIBUS DP 5 setpoints from the peer to peer link 3 setpoints from the CU 2 motorized potentiometers 1 fixed setpoint as parameter In the factory setting, the setpoints are connected with a fixed setpoint, which is generally pre-assigned (default value) 0.0. 3.1.2 Speed setpoint (block diagram 5) 3.1.2.1 Main setpoint The main setpoint of the web speed for the winder drive is selected using parameter H069 (block diagram 11). The incoming web speed setpoint is normalized using parameter H139, so that the required speed ratio is obtained for the winder. The effective web speed setpoint is available as visualization parameter d301. Parameter Parameter name Explanation H069 Source, speed setpoint Freely connectable from the source, refer to Chapter 5 H127 Fixed value, ratio gearbox stage 2 Ratio between gearbox stages 1 and 2 in %, refer to Chapter 5 H138 Source ratio, gearbox stage 2 Refer to Chapter 5 H139 Normalization, web speed Refer to Chapter 5 d301 Effective web speed setpoint After normalization and taking into account a gearbox stage changeover Table 3-1 Parameters to set the speed setpoint 3.1.2.2 Stretch compensation for a speed setpoint The main web speed setpoint can be influenced to provide "stretch compensation", if the material thickness is to be reduced before winding, e.g. by stretching or expansion. To realize this, a compensation setpoint should be selected using parameter H071. A fixed value is selected via H070, presetting 0.0 with the standard H071 connection. The web speed compensation can be normalized using parameter H137. Note The web speed compensation should only be set, if a deviation has been identified between the web speed setpoint and actual value. This difference influences, among other things, the accuracy of the diameter computation and the speed of the winding shaft at the flying roll change. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 25 Function description Parameter Parameter name H070 Fixed value, web speed compensation H071 Source, web speed compensation H137 Normalized speed compensation d340 Compensated web speed Table 3-2 Explanation Freely-connectable from the source, refer to Chapter 5 Parameters to enter the web speed setpoint compensation 3.1.2.3 Speed setpoint for winder operation Prerequisite The following operator controls are required for winder operation (`system operation'): * The "Local operator control" control signal must be 0. * "System Start" = 1 (The "System Start"- command induces the operation enable. With respect of compatibility the standart connection is binary input 1 (H021=2003). A recommendation is to connect this signal fixed to 2001 (binary constant 1). The result is that the operation enable is executed when the base drive sends a checkback signal indicating that the drive is ready. * Command "Off1/On" = 1 active, the base drive is powered-on (main contactor closed). After the checkback signal indicating that the drive is ready, the operation enable is executed automatically. * The winder accelerates up to the specified setpoint. Central rampfunction generator For this `system operation`, a central ramp-function generator is effective for the speed setpoint if the winder runs as a master (H154=0). The ramp-up / ramp-down times and the ramp-up / ramp-down roundingoff functions are set using parameters H133, H134, H135 and H136. The upper and lower limits can be specified using parameters H131 and H132. The value from H130 can be entered as new setpoint using the "Accept setpoint B" command via H037. The "Accept setpoint A" command H036 switches a new selectable setpoint (block diagram 13) with H096. The ramp-function generator is held with the "Ramp-function generator on T400 stop 1" command H034 or " Ramp-function generator on T400 stop 2" H049. The speed setpoint is transferred directly to the closed-loop control without being influenced by the ramp-function generator, using H154 = 1. In this case, it is possible to use smoothing, which can be set using H155. This operating mode is practical, if the setpoint provided is already available at the ramp-function generator output (e.g. winder as slave drive, setpoint from the central machine control or from another drive). Note 26 The ramp-function generator can also be used as smoothing element, e.g. for entering a setpoint from a web velocity tachometer. The ramp-up and ramp-down times should be set somewhat lower than the web velocity changes which occur. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Using the "Input supplementary setpoint" command H025, a setpoint source, which can be selected with H073, is added directly in front of the speed controller (block diagram 5). Parameter Parameter name Explanation H021 Source, system start Command, system start, refer to Chapter 5 H025 Source, input supplementary setpoint Command, input supplementary setpoint H034 Source, velocity setpoint, set to stop Ramp-function generator on T400 stop 1 H036 Source, accept setpoint A Command, accept setpoint A H037 Source, accept setpoint B Command, accept setpoint B H045 Source, Off1/On Command, Off1/On (main contactor) H049 Source, ramp-function generator on T400 stop Ramp-function generator on T400 stop 2 H073 Source, suppl. velocity setpoint Refer to Chapter 5 H096 Source, setpoint A Selects the source for setpoint A, refer to Chapter 5 H130 Setpoint B Fixed value as velocity setpoint, is entered with the `Accept setpoint B' control signal (H037) in front of the ramp-function generator. H131 Upper limit of the RFG Limiting, maximum value H132 Lower limit of the RFG Limiting, minimum value H133 Ramp-up time H134 Ramp-down time H135 Rounding-off at ramp-up H136 Rounding-off at ramp-down H138 Source ratio, gearbox stage 2 Ratio of the gearbox stages, between stage 1 and stage 2 as a % H139 Normalization, web velocity Refer to Table 3-1 H154 Slave drive Disables the central ramp-function generator for the velocity setpoint, if the winder operates as a slave drive H155 Smoothing, web velocity setpoint Setpoint smoothing, if the ramp-function generator is switched-through with H154=1. d301 Effective web velocity setpoint Display parameter d340 Compensated web velocity Display parameter d344 Velocity setpoint Display parameter Table 3-3 Parameters for the velocity setpoint for winder operation 3.1.2.4 Velocity setpoint for local operation The standard axial winder software package has, in the local operating mode, its own setpoints system with a separate (override) ramp-function generator. Depending on the selected local operating mode, the corresponding setpoint is switched-through. The override ramp-function generator is in this case always effective after an operating mode change (block diagram 18). The ramp-up and ramp-down times are set together using H161. The presently active setpoint can be monitored using d344. It is possible to toggle between closed-loop speed / velocity control and local operation using H146 = 0/1. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 27 Function description Local operating modes The following operating modes are available: * "Local run" (H052) Setpoint selection via H075 (b.d. 11) (block diagr. 16/17) * "Local crawl" (H039) Crawl setpoint = H142 * "Local positioning"(H026) Setpoint is selected via H091 (b.d. 12), 2 3 X /X characteristic, selected using H163 * "Local inching, forwards"(H038), inching setpoint = H143 * "Local inching, backwards"(H040), inching setpoint = H144 Control signals Local operation must be enabled via the "Local operator control" control signal H027. A dedicated control signal is available for each local operating mode. The commands are "latching", i.e. they are internally saved. The commands are mutually interlocked, so that only one is effective at any one time. In order to exit the run, crawl and positioning modes, the "Local stop" command H028 or the "Local operator control" signal must be withdrawn; refer to Chapter 3.3.4. Note When setting-up a local operating mode, the base drive is powered-up (main contactor) and operation is automatically enabled after the drive ready status has been signaled back. Caution The "local operator control" control signal H027 must remain active until the basic drive shuts down. Otherwise the motor will coast down. Unless the "System start" is fixed `1' (H021=2001). Inching When inching, the pulse enable in the base drive is extended by a time which can be parameterized using H014. Before this time expires, the inching setpoints can be changed as often as required, by activating the inching commands. It is also possible to change into another local mode during this time. Mixed operation For system operation, it is possible to input the local setpoints using H166 = 1. In this case, only the appropriate setpoint is switched-through with the local control signals, and added to the velocity setpoints; refer to Chapter 3.3.4. Parameter Parameter name Explanation H014 Inching time Refer to Chapter 5 H026 Source, local positioning Command, local positioning (H091, H163) H027 Source, local operator control Command, local operator control, refer to Chapter 5 H028 Source, local stop Command, local stop H038 Source, local inching forwards Command, local inching forwards (H143) H039 Source, local crawl Command, local crawl (H142) H040 Source, local inching backwards Command, local inching backwards (H144) H052 Source, local run To power-up with the local setpoint (H075) H075 Source, setpoint local operation Refer to Chapter 5 (H052) H091 Source, positioning ref. value Refer to Chapter 5 (H026, H163) H142 Setpoint, local crawl Setpoint for the local crawl operating mode (H039) H143 Setpoint, local inching forwards Setpoint for the local inching forwards mode (H038) H144 Setpoint, local inching backwards Setpoint for the local inching backwards mode (040) 28 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description H146 Closed-loop speed control for local operation Changeover between closed-loop speed or velocity control, refer to Chapter 5 H161 Ramp-up/ramp-down time Ramp times for the override local ramp-fct. generator H163 Select positioning reference value Refer to Chapter 5 (H026, H091) H166 Enable addition of local setpoints Refer to Chapter 5 d344 Velocity setpoint This is used to calculate the speed setpoint Table 3-4 Parameters to the setpoint for the local operating modes 3.1.2.5 Limiting the velocity setpoint Effective, only for H203 < 2.0 The velocity setpoint is limited for the direct and indirect tension control (closed-loop) via the torque limits. Therefore, the following is possible: a Velocity setpoints which are not required can be suppressed (e.g. for a rewinder); b Automatic web sag protection using overcontrol. With Parameter H156 this option can be activated or deactivated. 3.1.2.6 Winder overcontrol In order to prevent that a full roll accelerates up to an inadmissible speed when the web breaks, the setpoint of the web velocity is divided by the diameter calculated when winding. This means that the speed controller is supplied the correct speed setpoint, which in turn results in the fact that the circumferential velocity of the roll coincides with the web velocity. In order to be able to develop a motor torque for operation with the closedloop torque limiting control, parameter H145 is added to the actual setpoint as saturation setpoint. Thus, it is ensured that the drive remains torque controlled, when the material web is intact (the speed controller is overcontrolled with the correct sign) . When the material web breaks, the motor only accelerates by the supplementary value of the basic speed setpoint (saturation setpoint). For most of the applications, H145 is set between 0.05 and 0.10 . Parameter Parameter name Explanation H044 Source, polarity saturation setpoint To changeover the polarity of the saturation setpoint. H145 Saturation setpoint Supplementary setpoint for the velocity setpoint for the closed-loop torque limiting control H164 Smoothing, saturation setpoint Smoothing time for the saturation setpoint d341 Actual saturation setpoint Display parameter Table 3-5 Overcontrol parameter Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 29 Function description 3.1.3 Setpoint for the closed-loop tension / position controller (block diagram 7/8) Main tension setpoint The setpoint source is selected using H081. For closed-loop position controls using a dancer roll, a fixed position reference value can be entered with the standard connection via parameter H080. Ramp-function generator The main tension setpoint can be fed through a ramp-function generator with ramp-up and ramp-down times which can be parameterized, H175 and H176. For applications using a dancer roll (H203= 2.0 or 3.0), we recommend that a ramp-function generator should be used, i.e. H284=0. Otherwise, the ramp-function generator can be disabled, i.e. H284=1. Winding hardness characteristic H206 is used to select whether the subsequent winding hardness characteristic is applied. The supplementary tension setpoint is added after the characteristic; the source is selected via H083. The resulting total setpoint can be smoothed again using H192, and is available at d304 as display parameter. Parameter Parameter name Explanation H080 Fixed value, tension setpoint Enters the fixed value via a standard connection H081 Source, tension setpoint Refer to Chapter 5 H082 Fixed value, suppl. tension setp. Enters the fixed value via a standard connection H083 Source, suppl. tension setpoint Refer to Chapter 5 H175 Ramp-up time, tension setpoint Refer to Chapter 5 H176 Ramp-down time, tension setp. Refer to Chapter 5 H192 Smoothing, tension setpoint Smoothing time constant for the total setpoint H206 Select winding hardness charact. Refer to Chapter 5 H284 De-activate ramp-function gen. Refer to Chapter 5 d304 Sum, tension setpoint/position reference value Display parameter Table 3-6 Parameters for the setpoint tension/position control 3.1.3.1 Winding hardness control (block diagram 7) Purpose The winding hardness control reduces the tension as the diameter increases. Generally, it is only used for winders to ensure that the inner layers are more tightly wound. Dancer roll For closed-loop dancer controls, the position reference value is entered as supplementary tension setpoint. The output of the characteristic, available as d328, can be output at one of the analog outputs as setpoint for the dancer roll support (H177=1), when required. Generating the characteristic The winding hardness characteristic is realized as a parameterizable polygon characteristic with 5 points. The actual diameter and the main 30 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description tension setpoint after the ramp-function generator are the input signals. The source for the maximum tension reduction, referred to the setpoint, can be freely selected using H087. The tension setpoint starts to decrease, if the diameter reaches the value set at H183. It follows the parameterized characteristic, which is set using the parameters shown in the block diagram (block diagram 7). The diameter values D and D1 - D4 for parameters H183 to H187 must be set in an increasing sequence. The tension reductions for diameters D1, D2 and D3 are specified using H180, H181 and H182; and, more precisely, as a % value of the maximum tension reduction. Example 1 Tension setpoint for D1 = main setpoint - (maximum tension reduction * main setpoint * H180) Example 2 With the standard link from H087 and H086=0.60, H086 is parameterized as fixed value for the maximum tension reduction. The main tension setpoint is 0.50. The winding hardness characteristic then has the following characteristics: Note a) If the diameter is less than or equal to the initial diameter for the start of tension reduction, set in H183, then the output of the winding hardness characteristic is 0.5. b) If the diameter is greater than or equal to the final diameter H187, then the output of the winding hardness characteristic is 0.20. c) If the diameter lies between the initial diameter H183 and the final diameter H187, then the output follows the programmed winding hardness characteristic, and has values between 0.50 and 0.20. If a decreasing winding hardness is not required, e.g. for unwinder, then parameter H206 must be set to 1. Parameter Parameter name Explanation H086 Fixed value, maximum tension reduction Fixed value is entered H087 Source, maximum tension reduction Refer to Chapter 5 H177 Inhibit tension setpoint Only for dancer rolls, refer to Chapter 5 H180 Tension reduction 1 at D1 Refer to Chapter 5 H181 Tension reduction 2 at D2 Refer to Chapter 5 H182 Tension reduction 3 at D3 Refer to Chapter 5 H183 Diameter at the start of tension reduction Refer to Chapter 5 H184 Diameter, D1 Refer to Chapter 5 H185 Diameter, D2 Refer to Chapter 5 H186 Diameter, D3 Refer to Chapter 5 H187 Diameter, D4 at the end of tension reduction Refer to Chapter 5 H192 Smoothing, tension setpoint Smoothing time for the tension setpoint H206 Select, winding hardness characteristic Refer to Chapter 5 d328 Tension setpoint after the winding hardness ch. Table 3-7 Parameters for the setpoint, tension/position controller Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 31 Function description 3.1.3.2 Standstill tension (block diagram 7) Standstill identification (block diagram 6) When the winder is at a standstill, it is possible to changeover from the standard operating tension to the standstill tension using the command "Standstill tension On" with H188. The prerequisite is that the standstill limit H157 has been fallen below and that a delay time, H159, has expired. Standstill setpoint The standstill setpoint can be selected from the following: H188 = 1 & H191 = 0 The standstill setpoint is a fixed value, which can be set with H189 H188 = 0 & H191 = 0 The standstill setpoint is a percentage value of the operating tension setpoint, and is set using H189. H188 = 1 & H191 = 1 The standstill setpoint is an operating tension setpoint, or is the fixed standstill tension setpoint, set at H189, depending on which of the two values is the lower. H188 = 0 & H191 = 1 Illegal operating status. Parameter Parameter name Explanation H157 Limit value for the standstill identification Refer to Chapter 5 H159 Delay, standstill identification Delay time before the standstill signal is issued H188 Source, standstill tension Operating status, refer above H189 Standstill tension Enter the fixed value H191 Minimum selection Refer to Chapter 5 Table 3-8 3.2 Parameters for the setpoint, tension/position controller Sensing actual values 3.2.1 Selecting the speed actual value (block diagram 13) Source The axial winder requires the speed actual value to calculate the diameter. There are five possibilities to transfer the speed actual value to the T400: * Directly via the T400 interface (pulse encoder 1) * Via the CU backplane bus * Actual value W2 received from the CU * Analog inputs of T400 * Via the T400 interface (pulse encoder 2) 32 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description The actual speed can be monitored at display parameter d307 as a percentage of the maximum motor speed. Parameterization Table 3-9 summarizes all of the parameters which have to be set for the speed actual value acquisition: Parameter Parameter name Explanation H092 Source, speed actual value Freely connectable from the source H165 Smoothing, speed act. value Smoothing time, speed actual value H212 Encoder pulse number, axle-mounted tachometer Number of pulses per revolution H214 Rated speed, winder drive 100% maximum speed at the minimum diameter and maximum web velocity, refer to Chapter 5. H217 Operating mode sensing P151(CUVC) Pulse number, shaft tachometer same as for H212, P353(CUVC) Rated speed, shaft tachometer same as for H214, refer to Table 6-1 d307 Speed actual value Display parameter 16#7FC2 encoder signals from the CU via the backplane bus (refer to Chapter 5) 16#7F02 encoder signals from terminal 72-75 of the T400 Table 3-9 refer to Table 6-1 Parameters for the speed actual value sensing Example Pulse encoder at the base drive with 1024 pulses/ revolution, speed at and core diameter: 2347RPM: H212=P151=1024, Vmax H214=P353=2347, H217=7FC2 Caution Any changes made at H212, H214 and H217 will only become effective after the system has first been powered-down and then powered-up again. Note We recommend that the speed actual value is taken directly from the CU (H092=550), as in this case, only the parameters in the CU have to be set. Otherwise, the parameters from T400 (H212, H214 and H217) and from the CU (P151 and P353 for CUVC), must be set, as long as the speed controller in CU is used, refer to Table 6-1. 3.2.2 Speed actual value calibration The speed actual value calibration for the winder must always be executed with the standard gearbox ratio: When a velocity setpoint is entered (preferably 1.0), without web velocity compensation and without saturation setpoint (closed-loop tension control disabled!), the actual value measured at the winder shaft, must correspond with the entered setpoint. The actual diameter available in the closed-loop control (d310) must be identical with the mechanically measured diameter of the winder shaft. It is practical if the core diameter is adjusted with an empty mandrel. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 33 Function description Depending on the source (CU or T400, refer to block diagram 13), of the speed actual value sensing, the appropriate parameters are set in the basic drive (Pxxx) or T400 (Hxxx). For each of the following points, check the speed actual value: Procedure * Enter the core diameter H222 * Select the core diameter as the diameter setting value, H89 = KR0222 * Issue the "Set diameter" command (activate H024=B2001 minimum pulse duration 100 ms) 1) Using a digital tachometer * Enter the number of pulses per revolution at H212 and/or the appropriate parameters in the basic drive. * Specify the rated motor speed (min. diameter, max. velocity and normal gearbox ratio: Vmax * 1000 * i / (Dcore * )) at H214 and/or Pxxx. * Select the encoder mode with H217, if H092=219. 2) Using an analog tachometer * Speed actual value from base drive converter (e.g. for CUVC P734.02=148, H092=550) * Calibrate the speed actual value at the basic drive converter with P138 (in CUVC); in case of the limited voltage ( 10V) at analog inputs of base drive, an ATI board is required. * When an analog tachometer is used (in CUVC, P130=13/14), the related parameters must be set according to the Instruction Manual. * Check, if vact (measured value from a handheld tachometer) = v * If the gearbox ratio is not precisely known, the parameter H214/Pxxx * should be so calibrated, until vact equals v (at D=Dcore). The correspondence should be checked at various web velocity setpoints up to 1.0. Note If parameters H212, H214 and H217 on the T400 are changed, they only become effective after the electronics power supply of the converter has been switched-off and -on again, refer to Chapter 3.2.1. Parameter Parameter name Explanation H022 Source, tension controller on Refer to Chapter 5 H088 Diameter setting value Fixed value, diameter setting value H089 Source, diameter setting val. Refer to Chapter 5 H222 Core diameter Dcore/Dmax. d310 Actual diameter Display parameter Table 3-10 Parameters to celebrate the speed actual value 34 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.3 Control 3.3.1 Control signals (block diagrams 16/17/22b) Control bits The source for the control commands required for the particular application can be freely selected. The individual commands can be entered from the COMBOARD, the base drive, via a peer-to-peer coupling or via the digital inputs of the T400. The individual control word bits are assigned to fixed control commands; the same is true for T400 terminals 53 to 60 (block diagram 17). For these 8 fixed control signals (refer to Table 2-8), it is possible to toggle between control via T400 terminals and input via a control word (from the COMBOARD or the peerto-peer link). Parameterization The control commands are selected via appropriate parameterization and BICO-technology or Service-IBS program. The digital inputs (terminals 53 to 60), the appropriate bit of the possible control words and fixed values 0 and 1 are available as sources. Control bits, which are not included in the control words, can be addressed as dedicated parameters. Monitoring All of the possible control commands for winders are combined, for diagnostic purposes, in 3 display parameters (d332, d333 and d334). These parameters indicate the status of the control signals directly before internal processing. 3.3.2 Winding direction Winding from "above" or "below" To change the direction of the motor rotation, the "Winding from below" command can be activated (block diagram 5/6/9b). This reverses the polarity (sign) of the speed setpoint signal for all operating modes (including reverse winding after the splice) (refer to Fig. 3-2). This change also activates the override ramp-function generator. + + + Winding from above Fig. 3-2 Note Winding from below Sketch of the winding direction The "Winding from below" command should only be activated, if both modes are really operationally required. Otherwise, "Winding from above should always be selected, independent of the web path. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 35 Function description 3.3.3 Gearbox stage changeover (block diagram 5) Several gearbox stages The configured software allows you to changeover to a second gearbox stage which has been expanded using BICO technology. This is normally used in order to achieve a higher web tension with the same motor output, but at a lower web velocity. For instance, this is required for thicker materials. H042 is used to select the changeover signal, and the ratio between the standard gearbox stage and gearbox stage 2 must be entered by selecting H138 or the fixed value of H127. Operation with gearbox stage 2, for the same motor speed, means that the winder shaft rotates at a lower speed. The influence of gearbox stage 2 on the velocity setpoint, moment of inertia, diameter computer and the inertia compensation as well as reverse winding after a splice, is automatically taken into account by the winder software. The friction torque characteristic can be adapted using parameter H229 (source) or H128 (fixed value). The influence of gearbox stage 2 on the velocity setpoint, is effective in system operation, local operation and reverse winding after a splice. Formula for H127 Example H127 = Standard gearbox ratio Gearbox ratio 2 * 100 % Speed winding motor / speed winder shaft = 5 / 1 for the standard gearbox stage Speed winding motor / speed winder shaft = 7 / 1 for gearbox stage 2 H138=KR0127; H127 = 5 / 7 * 100 % = 71.4% = 0.714 3.3.4 Two operating modes (block diagram 18) General There are two operating modes for the winder: System operation and local operation. It is not possible to toggle between the modes without shutting down. The changeover between these two modes is realised using the "Local operator control" command, either via fixed value binector (B2000/B2001) or terminal 59 or via control word 2 bit 5 from the COMBOARD; the source is selected using H027. The operating modes are mutually interlocked, i.e. if the "Local operator control" signal level changes during operation, then the system is always shutdown. System operation This mode is selected using the Off1/On = 1 (H045) control signal. The power-on command is transferred to the base drive, the main contactor is closed, and the DC link is charged. The operation enable occurs when the base drive sends a checkback signal indicating that the drive is ready, (if "System start" = 1), and, after being enabled, accelerates to the setpoint; refer to Chapter 3.1.2. The "Off1/On" = 0 control signal must be set to 0 to power-down the system. When the winder comes to a standstill (zero speed), the base drive is powered-down. If the winder is still running, the behaviour is depending on if the winder runs as a master or as a slave: If the winder is the (line-) master, the velocity setpoint is set to 0. In case of a slave the winders is still following his line velocity setpoint. The system is shutdown when the standstill limit has been fallen below. 36 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Caution The winder can only be operated in the closed-loop tension controlled mode in system operation. The "system start" control signal H0121 must remain active until the basic drive is powered-down, otherwise the motor coasts down. Local operation In order to select a local operating mode, the "Local operator control" control signal H027 must be 1. The run, crawl and positioning operating modes are activated with a positive edge of the appropriate control signal, and are internally stored. For inching, the operating mode only remains active as long as the appropriate control command is present. The operating modes are mutually interlocked, i.e. only one can be active at any one time. Override rampfunction generator When an operating mode is switched-in/out, the associated setpoint is transferred to the closed-loop control via the override ramp-function generator. At each operating mode change the ramp-function generator will first be set to the actual value. This is realized both when switching-in as well as when switching-out. For the base drive, a power-on command is generated to close the main contactor. Operation is automatically enabled when the drive signals back a ready signal. This also sets the override ramp-function generator. In the inching mode, the winder operates with the appropriate setpoint only as long as the inching command is active. After this, the drive remains powered-up for a time which can be set using H014. The drive automatically shuts down when the delay time expires. It is possible to disable all of the local operating modes with "Local stop" H028, or by withdrawing the "Local operator control" H027. The winder decelerates to a web velocity of 0.0, and after the standstill limit is fallen below, it shuts down. The local setpoints refer, as standard, to the web velocity. It is possible to changeover to the closed-loop speed control mode with H146 = 1; refer to Chapter 3.1.2.4. * "Local run" Select the source for the control command using H052. Select the source for the setpoint using H075; pre-setting H075 =KR0074= 0.0. * "Local crawl" Select the source for the control command using H039. The crawl setpoint is entered with H142, pre-setting 0.1. * "Local inching, forwards/backwards" The source of the inching forwards/backwards command is selected using H038 or H040. The setpoints are set using parameters H143 and H144, and, as standard +0.05 and -0.05. In the inching modes, the drive only moves with the selected setpoint for the time that the control command is present. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 37 Function description It is possible to changeover from the inching mode into any other local operating mode, without powering-down the drive. Note * "Local positioning" The source of the positioning command is selected using H026. The source of the positioning setpoint is selected using H091. The 2 3 setpoint is used internally as X or X characteristic, changeover using H163. For all of the local operating modes, the setpoint is changed using the internal override ramp-function generator. The ramp-up and ramp-down time is entered using H161, and refers to a 1.0 setpoint. Parameters Mixed operation Refer to Table 3-3 and Table 3-4. Using H166 = 1, it is possible, in system operation, to add the local setpoints with the tension control enabled, to the velocity setpoint. For a velocity setpoint of 0.0, for example, the appropriate inching setpoint can be entered via the override ramp-function generator, using the "Inching forwards" command. It is possible to add each individual local setpoint with the appropriate command. The same interlocking conditions apply as for the local operating modes. A change, for example, from closed-loop tension controlled inching into winding operation, can be easily realized via the "Enable setpoint" control input of the central ramp-function generator. 3.3.5 Motorized potentiometer functions (block diagram 19) Two motorized potentiometers Motorized potentiometer 1 as additional rampfunction generator H267=1 Motorized potentiometer function The winder software package has two separate motorized potentiometer functions. Their outputs can be used everywhere as setpoints. Motorized potentiometer 1 can be additionally parameterized as rampfunction generator to generate defined ramps during start-up, e.g. for inertia compensation. The ramp-function generator mode is enabled with H267 = 1, the setpoint is parameterized with H268, and the rampup/ramp-down time with H269. The ramp-function generator ramps-up to the entered setpoint with the "Raise motorized potentiometer 1" command H030; with "Lower motorized potentiometer 1" H032, it is ramped-down towards 0.0. For the motorized potentiometer function, the appropriate output can be changed with the raise or lower control inputs. It the commands are briefly activated (< 300ms), the output is changed bitwise. When it is actuated for a longer period of time, it changes with the ramp-up/ramp-down times, parameterized with H265 for motorized potentiometer 1, and with H263 for motorized potentiometer 2. If the control commands are present for longer than 4 s, the ramp-up/ramp-down ramps are changed over to H266 (Mop 1) and H264 (Mop 2). The outputs of the motorized potentiometers are available as monitoring/visualization parameters d305 and d306. Param. Parameter name Explanation H029 Source, raise motorized potentiometer 2 Command, raise motorized potentiometer 2 H030 Source, raise motorized potentiometer 1 Command, raise motorized potentiometer 1 38 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description H031 Source, lower motorized potentiometer 2 Command, lower motorized potentiometer 2 H032 Source, lower motorized potentiometer 1 Command, lower motorized potentiometer 1 H263 Motorized potentiometer 2, fast change The fast change starts, if the raise or lower control commands are present for longer than 4s. H264 Motorized pot. 2, standard change Ramp-up- and ramp-down times H265 Motorized pot. 1, fast change As for H263 H266 Motorized pot. 1, standard change As for H264 H267 Select mode, motorized potentiometer 1 0: mot. potentiometer; 1: ramp-function generator H268 Setpoint, ramp-funct. gen. operation Refer to Chapter 5 H269 Ramp time, ramp-funct. gen. operat. Refer to Chapter 5 d305 Output, motorized potentiometer 1 Display parameter d306 Output, motorized potentiometer 2 Display parameter Table 3-11 Parameters for the motorized potentiometer functions 3.3.6 Splice control (block diagram 21) Purpose The splice logic allows the drive functions to be controlled for a flying roll change. The closed-loop tension control, fast stop, reverse winding after a splice and synchronization are implemented on the T400. The sequence control for the automatic splice functions (mechanical rotation, power-up commands for synchronizing and splicing, controlling the glue roll and knife) must be realized in a PLC control. Sequence The splice control is activated via H148 (reverse winding time) as soon as a value not equal to zero is entered there. Further, the `Tension controller on' command (H022) must be set to one of the other two connections (B2011/B2012 refer to block diagram 17), dependent on whether the command to switch-in the tension controller is received from the terminal or via a control bit. When splicing, only the 'splice enable' signal is used to activate the tension controller and the 'tension controller on' command must be inactive. For the very first roll, the "tension controller on" signal is used to activate the tension controller The setpoint for the reverse winding function is entered at H149 (the value must be negative!); refer to Fig. 3-3. To sense a new diameter, a diameter must first be set (e.g. the average value from the highest- and lowest possible diameter for a splice). The new reel is then powered-up with a local operating mode and runs at a low speed. The tachometer is then applied and this is signaled using a digital signal. The diameter computer is enabled and calculates the actual diameter of the new roll. The drive is then shutdown again (powereddown). The swiveling mechanism is rotated into the changeover position for splicing, refer to Fig. 3-4. The drive with the new roll is powered-up again. If it is running in system operation, it synchronizes to the web velocity. The 'Tension controller on' signal (from the terminal or via the control bit) must be inactive. However the drive still remains in the closed-loop speed control mode until the 'Knife in the cutting position' signal becomes active. It then switches-over to closed-loop tension controller. The partner drive, which was previously in the closed-loop tension control mode, goes into a Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 39 Function description fast stop. Depending on the parameterization of H148/149, it rotates backwards for some time before it shuts down. Loading position 2 Swiveling mechanism 1 Glue roll Splice knife Tension measurement Tachometer Fig. 3-3 Loading position when splicing A connection must be established from the 'Tension controller on' output to the 'Partner drive is in the tension controlled mode' input of the partner so that the drives can be mutually interlocked. The pre-assignments of these signals refer to block diagram 17. Changeover 1 position Swiveling mechanism Glue roll 2 Splice knife Tension measurement Tachometer Fig. 3-4 Note Change position when splicing The splice functions are only provided for relatively simple requirements. The actual functions to be implemented must be precisely clarified with the manufacturers of the mechanical design of the splice mechanism. If you have any doubt, please contact your local SIEMENS office. Parameter Parameter name Explanation H022 Source, tension controller on Refer to Chapter 5 H148 Time for reverse winding after a splice Refer to Chapter 5 H149 Speed setpoint, reverse winding after a splice Refer to Chapter 5 H169 Knife in the cutting position Refer to Chapter 5 H170 Partner drive is in the closed-loop tension control mode Refer to Chapter 5 Table 3-12 Parameters for the splice control 40 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.4 Closed-loop control 3.4.1 Closed-loop control structure (block diagram 4) Control technique An overview of the complete closed-loop control structure is provided in Sheet 4 of the block diagram. The closed-loop tension control, characteristic for the winder, influences the speed controller in the converter in three different ways. A specific winding technique is defined using parameter H203. Closed-loop torque limiting control For the closed-loop torque limiting control, the higher-level tension controller acts on the speed controller limits, and thus maintains the required web tension. Compensating torques for friction and inertia compensation are generated as pre-control values which are added in front of the torque limiting, with the correct sign. With this control method, the speed controller is kept at the torque limits, by entering a saturation setpoint. Further, the velocity setpoint is limited. This means that the winder automatically goes to the saturation setpoint if the web breaks or the web sags. Closed-loop speed correction control When the closed-loop speed correction control is selected, a cascadetype structure is obtained. The tension controller influences the speed controller setpoint. The compensation torques are added as supplementary torque setpoint after the speed controller in the base drive (CU). Closed-loop constant v control For the closed-loop constant v control, the tension controller is disabled (output limiting = 0.0 using parameter H195) and the winder operates with the specified web velocity setpoint, e.g. as the master drive of a rewinder. 3.4.2 Closed-loop speed control (block diagram 6/6a) External or internal H282 Note The universal applicability of the T400 allows closed-loop speed control to be implemented in two ways. The closed-loop speed control is either externally implemented in the connected drive converter, or is internally executed on the T400 processor module for stand alone operation in the SRT400. One of these alternatives is selected using the "Speed controller changeover to CU or T400" option, which can be set using parameter H282. Parameter H282 is preset to 0, i.e. the speed control is executed in the drive converter. The standard axial winder software package specifies the speed setpoint, influences the torque limits and outputs a supplementary torque setpoint for the necessary compensation functions. 3.4.2.1 Influence of the speed controller (block diagram 6) For closed-loop tension controlled operation, either the speed controller limits (torque limiting control) are influenced, or the speed setpoint (speed correction control). It is possible to adapt the gain to the variable moment of inertia. The controller is set at start-up using automatic optimization routines. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 41 Function description 3.4.2.2 Kp adaptation (block diagram 6a) Mode of operation The controller gain is adapted to the variable moment of inertia on the T400 or in the drive converter using a polygon curve which can be parameterized. The quantity is the calculated variable moment of inertia; the output acts on the proportional gain of the controller on the T400 or in the drive converter, depending on the setting of parameter H282. The starting- and end points of the adaptation should be set together with the associated controller gains. The characteristic is linearly interpolated between these two points. Parameterization The Kp values for a full and an empty reel are required for the correct setting. These are determined at start-up (when the drive is being commissioned). Setting parameters: H151 Kp min Controller gain for an empty roll Kp max H153 Controller gain for a full roll Jv start H150 Starting point of adaptation, generally at 0.0 Jv end H152 End point of adaptation, generally at 1.0 When determining the controller gain with, as far as possible, a full reel, the associated variable moment of inertia can be read as visualization parameter d308, or can be calculated using the known diameter. The following is valid for gearbox stage 1, material density and width: Jv [%] 4 4 D [%] - Dcore [%]. The value, entered as H153, must be referred to 100% Jv, i.e. On the T400 H282=1 Kp max = determined Kp * 100% / determined Jv [%]. For the basic winder setting, with H151=H153, adaptation is disabled. The actual adaptation value is displayed using d345. For H282=0, the values must be set in the base drive as shown in Table 3-13. The speed controller optimization run of the basic drive can be used. In the converter H282=0 Parameter CUVC/CUMC Value CUD1 Explanation T400 P233 (0%) P556 (0%) H150 (0.0) Start of adaptation Jv start P234 (100%) P559(100%) H152 (1.0) End of adaptation Jv end P235 P550 H151 Kp adaptation min. P236 P225 H153 Kp adaptation max. Table 3-13 Parameters for the Kp adaptation in the drive converter Note 42 We recommend that the kp adaptation is commissioned for winding ratios >3, otherwise the basic setting should be used, H151=H153=1 and P235=P236 =100% for CUVC. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Param. Parameter name Explanation H150 Start of adaptation Jv start First point of intervention of the Kp adapt., generally 0.0 H151 Kp adaptation min. Kp for an empty reel, generally 1.0 H152 End of adaptation Jv end Last point of intervention of the Kp adaptation, generally 1.0 H153 Kp adaptation max. Kp for a full roll H162 Smoothing, speed controller output Smoothing for the visualization parameter d331 H282 Changeover to the speed controller on H282 = 0 speed controller on CU CU or T400 H282 = 1 speed controller on T400 H290 Upper speed setpoint limiting If H282=1 H291 Lower speed setpoint limiting If H282=1 H292 Ramp-up time, speed setpoint If H282=1 H293 Ramp-down time, speed setpoint If H282=1 H294 Integral action time, speed controller (H282=1) For the speed controller on T400 d308 Variable moment of inertia Display parameter d329 Torque setpoint calculated from T400 Display parameter, if H282=1 d331 Smoothed torque setpoint calculated from T400 Display parameter, if H282=1 d345 Actual Kp adaptation from T400 Display parameter Table 3-14 Parameters for the speed controller on T400 3.4.3 Closed-loop tension / dancer roll - position control (block diagram 7/8) Control methods H203 = 0.0 In order to control the material tension, for the standard axial winder software package, five different control techniques are implemented. H203 is used to select one of the following possibilities: Indirect closed-loop tension control with direct open-loop torque control via the torque limit values. This is the preferred solution for indirect closed-loop tension control. H203 = 1.0 Direct closed-loop tension control using a tension transducer, whereby the tension controller regulates the torque via the torque limit values. This is the preferred solution if a tension transducer is used. H203 = 2.0 Direct closed-loop tension control using a dancer roll potentiometer as tension actual value generator. The dancer roll closed-loop position controller regulates (open-loop) the torque via the torque limit values. This control technique is seldomly used; it may, under certain circumstances, be practical for extremely sensitive brittle or hard materials which are not very flexible, e.g. cables, textiles, paper etc. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 43 Function description H203 = 3.0 Direct closed-loop tension control using a tension transducer or a dancer roll potentiometer as tension actual value generator, whereby the tension controller acts on the speed controller via a speed correction setpoint. This control technique should be used if a dancer roll is used. If there is a tension transducer, then this control technique is occasionally used for elastic, extremely expandable materials, e.g. thin plastic foils. H203 = 4.0 Presently not used; free for making expansions. H203 = 5.0 As for H203=3.0, however the tension controller output can be multiplied by the web velocity signal. With parameter H201, the "lower limit value" is defined for the multiplying effect of the web velocity on the tension controller output. It can be normalized using parameter H202. Tension/position controller Note The tension controller is a proportional-integral differential controller (PID), whose integral action time and differentiating time constant can be set using parameters H199 and H173. With H196 = 1 and H283=0, the controller acts as a pure proportional controller or proportional-differential controller, depending on the setting H174 (inhibits the D controller). If a dancer roll is used, then the tension controller operates as dancer roll position controller. For applications with tension transducer or dancer roll in the "speed correction" mode (H203 = 3.0 or 5.0), the tension controller is operated as usual as proportional-differential controller (PD). I.e. H174=0, H196=1 and H283=0. For applications with the tension transducer via the torque limits (H203=1.0) the tension controller is normally used as proportional-integral controller (PI). Limiting the tension controller The output signal of the tension controller is limited depending on the setting of parameters H194 and H195: H194 = 1 The output signal is limited to a positive value, which is set at H195. Negative values are limited to zero. This setting is only practical when using a 1Q drive for H203 = 0.0, 1.0 and 2.0. H194 = 2 The output signal is limited to values between H195. H194 = 3 The upper limit corresponds to the absolute speed actual value or a minimum value which can be set with H193. The negative limit value is zero. H194 = 4 The upper limit value corresponds to the absolute speed actual value or a minimum value which can be set with H193; the lower limit value, corresponds to the inverted signal. 3.4.3.1 Kp adaptation Analog to the speed controller, also here, the controller proportional gain is adapted to the variable moment of inertia, which means that the influence of the diameter, material width and density as well as a possible gearbox changeover can be automatically taken into account. Parameterization 44 Setting parameters: H197 Kp min Controller gain for an empty roll Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Kp max H198 Controller gain at 1.0 Jv Jv start H207 Start of adaptation, generally at 0.0 Jv end H208 End of adaptation, generally at 1.0 When determining the controller gain with, if possible a full roll, the associated variable moment of inertia can be read as display parameter d308, or can calculated using the known diameter. The following is valid 4 for gearbox stage 1, constant material thickness and width: Jv [%] D [%] 4 - Dcore [%]. The factor, which is entered as Kp max , must be referred to 100% Jv , i.e. Kp max = determined Kp * 100% / determined Jv [%]. For the basic winder setting, with Kp min = Kp max , adaptation is not effective and the actual value of Kp is displayed using d346. Note We recommend that the kp adaptation is commissioned for winding ratios >3. 3.4.3.2 D component of the tension controller (block diagram 7) The differential component of the tension controller is used to compensate the phase rotation, which is caused by an integral loop element (dancer roll). If the tension is measured using a transducer, the differential component must be disabled (H174=1), since the control loop has PT1 characteristics. For closed-loop dancer controls (H174=0, H196=1 and H283=0), without or with a low derivative action time, the controller may oscillate. These can be effectively suppressed by increasing H173. Note The duration of an actual value oscillation period without D-component is a good approximation of the time constant of the differentiating (H173). This value should not be exceeded. Instability can result if the time constants are too high! Parameter Parameter name Explanation H173 Differentiating time constant Refer to Chapter 5 H174 Inhibit D controller 1: no D control H193 Min. value speed dependent tension controller limits Refer to Chapter 5 H194 Select tension controller limits Refer above H195 Adapt tension controller limits Refer to Chapter 5 H196 Inhibit I-component, tension controller 1: PI controller --> P controller H197 Min. Kp tension controller Kp min at H207 Controller gain for an empty roll H198 Max. Kp tension controller Kp max at H208 Controller gain at 1.0 Jv H199 Integral action time, tension controller For the tension controller I component H200 Adaptation, setpoint pre-control Refer to Chapter 5 H203 Selecting the tension control technique Refer above H207 Start of adaptation, tension controller Jv start Start of adaptation, generally 0.0 H208 End of adaptation, tension controller Jv end End of adaptation, generally 1.0 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 45 Function description H209 Droop, tension controller Refer to Chapter 5 H283 I controller enable 1: PI controller -> I controller H284 Deactivate ramp-function generator 0: for a dancer roll d308 Variable moment of inertia Display parameter d317 Sum, tension controller output Sum of the PI component on the D component d318 Tension controller, D component Display parameter d319 Tension controller output from the PI comp. Display parameter d346 Actual Kp adaptation Display parameter Table 3-15 Parameters for the tension controller 3.4.4 Generating the supplementary torque setpoint (block diagram 6/ 9b) Compensation In order to compensate for the friction losses and the torques when accelerating/braking, the appropriate compensation factors are calculated and are added to the torque setpoint with the correct polarity. The winding direction, web routing, closed-loop control type, material thickness and width as well as the gearbox stage changeover are automatically taken into account. This compensation influences the winder control in two different ways: Pre-control torque For closed-loop speed correction control, the pre-control torque is injected as supplementary torque setpoint. The speed setpoint is entered from T400, if H282= 0. Torque limit For the closed-loop torque limiting control, the compensation additionally acts, in addition to the torque controller output, on the speed controller limits. The drive converter parameterization required to realize this, is specified in Chapter 6 (block diagram 3). 3.4.4.1 Compensation calculation (block diagram 9b) Friction effect The friction losses are compensated using a parameterizable polygon characteristic with 10 points. This setting is made at start-up using parameters H230 to H235 and H900 to H903 in any speed steps (H890H899; refer to Chapter 7.2.2. The outputs of the characteristic can be monitored using d314. For gearbox stage 2, the characteristic output should be adapted by selecting H229 or the fixed value of H128. Accelerating torque In order to compensate the accelerating torque, the variable moment of inertia is calculated. In this case, diameter, material thickness (H224), width (selected using H079) and a possible gearbox changeover (selected using H138) are included. Together with the fixed moment of inertia, after the actual diameter and the internal or external (H226) acceleration signal have been taken into account, the pre-control torque for inertia compensation is obtained, which is available at d316. 46 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Note The precise setting of the compensation factors is especially important for indirect closed-loop tension control, so that the torque-generating current results in, as precisely as possible, the material tension; refer to Chapter 7.2.3. The compensation factors for friction and acceleration are also effective in the closed-loop speed controlled mode (e.g. for acceleration and braking at roll change). Param. Parameter name Explanation H077 Source, external dv/dt Refer to Chapter 5 H079 Source, web width Refer to Chapter 5 H128 Fixed value, adapt friction torque, gearbox stage 2 Refer to Chapter 5 H138 Source ratio, gearbox stage 2 Refer to Chapter 5 H224 Material density The density of the material to be wound is specified as a % of the maximum density. H225 Fine adjustment, dv/dt Refer to Chapter 5 H226 Source, dv/dt Changeover between the internal or external value H227 Adjustment, variable moment of inertia Adjustment factor H228 Constant moment of inertia Refer to Chapter 5 H229 Source adaptation, gearbox stage 2 Refer to Chapter 5 H230 Friction torque at speed point 1 to point 6 Absolute torque setpoint (d331) at n= H890 to H895. Friction torque at speed point 7 to point 10 Absolute torque setpoint at n = H896 to H899 to H235 H900 to H903 2 H237 Pre-control with n Refer to Chapter 5 d302 Actual dv/dt Display parameter d308 Variable moment of inertia Display parameter d312 Pre-control torque Sum of the friction- and acceleration effects d314 Pre-control torque, friction compensation Display parameter d316 Pre-control torque, inertia compensation Display parameter Table 3-16 Parameters for compensation 3.5 Calculation 3.5.1 Diameter computer (block diagram 9a) Principle The diameter is computed from the velocity setpoint and the actual motor speed. An integrating computation technique is used to generate the Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 47 Function description smoothest output signal possible. The time for a computation interval (time for one revolution at Dmin and Vmax) is specified using H216. Alternative technique If the velocity setpoint signal is not available, the computation function via H277 changes over to an alternative technique, which continues to calculate the diameter, taking into account the revolutions and material thickness. In this case, the thickness-diameter ratio (H286), the initial diameter (H276) and the setting pulse duration (H278) are required. For H277=1, the other technique runs in parallel in the background. The actual diameter (in front of the ramp-function generator) can be taken via connector KR0359. External Vact When an external web velocity actual value is used for the calculation, this is selected using H094 (block diagram 13) and H211 must be set to 1. Gearbox changeover is automatically taken into account. Web tachometer When a digital web tachometer is used, parameters H213, pulse number, H215, rated speed and H218 operating mode must be set for pulse sensing on the T400; refer to Fig. 2-2 for the connection configuration. When an analog web tachometer is used, an analog input is used to sense the tachometer voltage. Surface tachometer The diameter computer can also be enabled without an active tension controller, using a digital signal which can be selected with H013 (surface tachometer function b.d. 9a). The web velocity actual value which is used for the computation, can be selected using H093. This can be an external analog tachometer as well as a pulse encoder, which is connected instead of the web tachometer. Ramp-function generator In order to increase the stability of the closed-loop control, the diameter change can be limited per unit time using H238. H238 should be selected so that the maximum change is still possible (this occurs at Vmax and Dmin). The selected rate of change is automatically adapted to the actual diameter. Example Core diameter Dcore = 140 mm, Maximum diameter Dmax = 1000 mm Maximum web velocity Vmax = 200 m/min = 3333 mm/s Material thickness d=1 mm, i.e. 2 mm diameter increase / revolution Minimum time for one revolution: t = H216 = Dcore * / Vmax = 132 ms This results in a maximum diameter change = 2*d / t = 15.15 mm/s. This value is converted over the complete change (Dmax - Dcore ) and entered at H238. H238 = (Dmax - Dcore ) * t / (2 * d) 55 s is entered at H238 = 860 mm / 15.15 mm/s = 56.76 s, with a safety factor of 5%. 48 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description Additional interlocking External diameter Example a: An additional interlocking can be enabled using H236. For H236=1, the diameter of a winder can only increase, and for an unwinder, only decrease. This interlocking function is canceled when the diameter is set with "Set diameter" H024. It is possible to de-couple the winder diameter computer, and to feed in an externally calculated diameter actual value. In this case, the "Set diameter" control signal (H024) must be permanently available, and the external value entered as diameter setting value; this is selected via H089. Diameter actual value from the analog input, terminals 92/93 H089 = KR0321, set diameter from the digital input, terminal 56 H024 =B2006. 24 V must be connected to terminal 45. Example b: Diameter actual value from PROFIBUS, received word 3 H089 = KR0451 `Set diameter' from PROFIBUS, control word 1.15 H024 = B2615 The above connections are realized via BICO technology. For dancer rolls For applications with a dancer roll in "speed correction" operation (H203 = 3.0 or 5.0), the constant deviation of the dancer roll position can be taken into account in the diameter computer using parameters H254 and H255. This increases the accuracy of the diameter calculation, especially when accelerating or decelerating or if there is a constant deviation between the position setpoint and actual value. Parameter Parameter name Explanation H013 Source, surface tachometer on Command, compute diameter with surface tachometer H024 Source, set diameter Command, set diameter using terminal 56 H089 Source, diameter setting value Refer to Chapter 5 H093 Source, velocity actual value, surface tachometer Refer to Chapter 5 H094 Source, external web velocity (actual value) Refer above , only for H211=1 H210 Adjustment, web velocity Refer to Chapter 5 H211 Select web tachometer Command with/without web tachometer H213 Pulse number, web tachometer Pulse number, each revolution H215 Rated speed, measuring roll, web tachometer Rated speed for normalization H216 Computation internal, diameter computer Time for one revolution of the winder at Dmin and Vmax H218 Select mode, web tachometer 2 Refer to Chapter 5 H221 Minimum speed, diameter computer When H221 is fallen below, the diameter computation is inhibited. H222 Core diameter Diameter of the mandrel as a % of Dmax H236 Diameter change, monotone Refer to Chapter 5 H238 Minimum change time, diameter Refer to Chapter 5 or above H254 Smoothing time for v only for dancer rolls, refer to Chapter 5 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 49 Function description H255 Adaptation factor v only for dancer rolls, refer to Chapter 5 H276 Initial diameter Refer to Chapter 5 H277 Enable diameter calculation without V signal Refer to Chapter 5 H278 Setting pulse duration Refer to Chapter 5 H286 Thickness-diameter ratio = d / Dmax d310 Actual diameter Display parameter Table 3-17 Parameters to compute the diameter 3.5.2 Length measurement and length stop (block diagram 13) Principle The length measurement function is based on the availability of a digital pulse encoder at the web tachometer input (refer to Fig. 2-2, Increm_2). This can either be an actual web tachometer, or the signal of a pulse tachometer of the master machine drive. A position actual value is available after H218 (operating mode) and H213 (pulse number) and H252 (rated pulse number that decides the dimention of the measured length) have been entered. However, this must be adapted at the specified normalization H239,H240 and H541. Hinweis The length- and braking distance calculation is converted from relativ to absolut values! Recommendations and standard settings H252 should be four times the pulse number (H213). The result is that the position actual value corresponds to the number of rotations. A possible gear can be entered in H239. The circumference of the measuring roll in [mm] should be entered in H240. The result is the actual length which is converted via the division of H541 to unit [m]. This actual length can be transmitted in 16 Bit up to a maximum length of 32768m (resolution +1m). If more than 32768m is demanded either it is possible to change the scaling or the resolution of the transmission to 32 Bit. Calculating the braking distance The braking distance still has to be calculated for the length stop. This is the material length, which still runs through the machine for a standard stop, until the machine comes to a standstill. This is determined from the machine ramp-function generator data. The ramp-down time from the maximum velocity Tr (H241), the rounding-off time at ramp-down Tvr (H242) and the rated velocity [m/min] (H124) must be entered. The adaption divisor (H244) should be set during commisioning. The calculation is based on constant-velocity operation and a linear deceleration ramp for a standard stop. The braking distance can be precisely calculated; refer to Fig. 3-5. 50 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 0 t a(t) Tvr Tvr Tr Fig. 3-5 Principle of the braking distance calculation The braking distance can be monitored at d350. It is added to the already traveled length actual value, and is compared with the length setpoint (reference value) selected using H262. If the value is exceeded, the 'length stop' signal (binector B2411) becomes active, which can be connected to the limit value monitors. The standard stop can be directly initiated via a digital output, or signaled to the automation, via the status word. The 'length stop' signal is canceled, if the machine is moving at less than 4% of the rated velocity, or the drive is powered-down. Notes * The braking distance is continuously computed and displayed. However, it is only precise, if the drive is operated with v=const. When accelerating, the value is too low, when decelerating, too high. The error depends on the ratio Tvr/Tr. * The length actual value can be up to 150[km]; in this case, the resolution is 0.000024% of 75[km] or approx. 0.018[m]. The same scaling is also true for the braking distance. Parameter Parameter name Explanation H213 Pulse number, web tachometer Pulse number per revolution from the web tachometer H252 Rated pulse number Normalization of positon actual value. Position actual value = (counted impulses/H252)*4 H218 Operating mode, web tachometer (encoder 2) Operating mode, web tachometer H239 Gear Measure-roll Normalization, web length computer H240 Circumference Measure-roll Circumference Measure-roll in [mm] H124 Rated velocity Rated velocity in [m/min] H241 Ramp-down time for the braking distance computer Tr in Fig. 3-5 H242 Ramp-down rounding-off time TVT in Fig. 3-5 H244 Adaption divisor, breaking distance 1.0 for unit [m] H262 Source, length setpoint Refer to Chapter 5 d309 Actual web length in [m] d350 Braking distance in [m] H541 Adaption divisor, length calculation for scaling actual web length Table 3-18 Parameters to calculate the length and braking distance Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 51 Function description Standart-/ Empfohlene Einstellungen H252 H239 H240 H541 H262 H400 H124 H241 H242 H244 Table 3-19 4 * H213 Gear Measure-roll Circumference Measure-roll [mm] 1000.0 400 Length setpoint [m] Rated Velocity (=100%) [m/min] Ramp-down time [s] Final rounding off [s] 1.0 Parameters for length-/ braking distance calculation If the settings corresponds with this table, the actual length value, the length setpoint and the braking distance is in unit [m]. It is possible to change the unit of the actual lenght value. In this case the length setpoint and the braking distance calculation must be modified accordingly. Example 1: H541=1.0 => KR0309 in [mm] Necessary modifications: H400 in [mm] H244 = 0.001 Example 2: Normilization of actual length value: 75km = 100% H541=75000.0 => KR0309 in [100%] of 75 m H239=1000.0 => KR0309 in [100%] von 75km Necessary modifications: H400 in [100%] of 75 km H244 = 75000.0 The actual length value (and the expected braking distance) can be transfered to PLC. Function blocks for conversion are placed in the standard telegrams (automatic conversion from floating point to the 16 Bit format N2 (1.0 = 4000h = 16384)). If an other conversion is demanded the appropriate converter blocks are placed in the free function blocks (sheet 26 and 26a) 52 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.6 Monitoring and signaling 3.6.1 Web break detection (block diagram 7) The following prerequisites must be fulfilled for the identification to respond: Concept - The web break detection must be enabled, H285=1 - Closed-loop tension control must be enabled For the closed-loop torque limiting control (H203=0.0,1.0, 2.0) the difference, referred to the tension controller output, from the torque actual value minus the tension controller output must be less than the value in H275. - The limit for the torque/tension actual value, set using H204, must be fallen below, and the setpoint must be above this limit. For indirect closed-loop tension control (H203=0.0), this limit value refers to the torque actual value; for all other control types, to the tension actual value. For dancer-control the value of H204 corresponds to the dancer end-position - The time delay, set using H205 must have expired; it is essentially used to suppress incorrect signals if the actual values are not steady. - An external web break signal can be connected using parameter H253 via a digital input. The web break signal is available at terminal 46. It can be used to control a 24 V relay or contactor. Internal response H178 is used to activate the internal response of the winder software to the web break signal. For H178=1, the web break signal is saved, the diameter computer is inhibited in order to prevent incorrect values being computed. Furthermore, the tension control is disabled, and the winder continues to run with a specified web velocity. The storage must be acknowledged by withdrawing the control command "Tension controller on" H022. For H178=0, the web break is just signaled. Notes Caution If only low tension values are used (e.g. for thin foils), then the web break detection using the torque- and tension actual value signal is problematical, and it may be more practical to use an external web break detection, e.g. using optical barriers or dancer roll limit switches. The web break detection is not effective for the closed-loop v-constant control. Param. Parameter name Explanation H022 Source, tension controller on Standard connection with digital input, terminal 54 H178 Response at web break 0/1: without/with response H203 Selecting the tension control technique Selects the control technique, refer to Chapter 5 H204 Lower limit, web break detection Refer to Chapter 5 H205 Delay, web break signal Refer to Chapter 5 H253(B2253) Input, web break signal Refer to Chapter 5 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 53 Function description H275 Response threshold, web break monitoring, indirect tension control Refer to Chapter 5 H285 Enable web break detection 0: no web break detection H521(501) Digital output of the T400 Web break signal using terminal 46 Table 3-20 Parameters for web break detection 3.6.2 Freely-connectable limit value monitors (block diagram 10) 2 Limit value monitors Two freely-connectable limit value monitors are available. They have identical functions and the only difference is in the number of the parameters for setting. Input signal One of the display parameters can be selected as input signal using BICO technology. For the input signal, the absolute value generation, inversion and smoothing can be parameterized. Comparison signal One of the display parameters or one of the fixed values, available as parameter, can be selected as comparison signal. Inversion or absolute value generation are possible for adaptation purposes. Output signal For the actual limit value monitors, the interval limit (H112 H120), hysteresis (H113, H121) and the output signal to be displayed, can be selected. The outputs of the limit value monitors can be freely connected. Presently, the output of limit value monitor 1 (B2506) is pre-assigned to terminal 51, digital output 6 (H526). Parameter Parameter GWM 1 GWM 2 Parameter name Explanation H107 H115 Input value for the limit value monitor Source: d301-d350 H108 H116 Source, comparison value Source: d301-d350 H109 H117 Adaptation, input value Refer to Chapter 5 H110 H118 Smoothing, input value Smoothing time H111 H119 Adaptation, comparison value Refer to Chapter 5 H112 H120 Interval limit Refer to Chapter 5 H113 H121 Hysteresis Refer to Chapter 5 H114 H122 Select, output signal Freely connectable, e.g. terminal 51 d403 d407 Output 1 Input value > comparison value d404 d408 Output 2 Input value < comparison value d405 d409 Output 3 Input value = comparison value d406 d410 Output 4 Input value comparison value d411 Length setpoint reached (output 5) Table 3-21 Parameters for the limit value monitors 54 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.6.3 Analog outputs (block diagram 10) Freely-connectable The T400 has 2 analog outputs. These are pre-assigned but can be freely connected for display parameters and several other values using BICO technology. Pre-assignment The torque setpoint (speed controller output) is output at terminals 97/99 (H098). An offset is added using H101, and a multiplication factor applied using H102. The actual diameter is output at terminals 98/99 (H103). An offset is added using H099, and a multiplication factor applied using H100. Note All of the analog outputs are normalized as standard, so that an internal value of 1.0 represents a voltage of 10 V. Additional normalization functions are realized using parameters H099 to H102. Parameter Parameter name Explanation H098 Analog output 2, terminal 98/99 (diameter actual value) Refer to Chapter 5 H099 Analog output 2, offset Refer to Chapter 5 H100 Analog output 2, normalization 1.0 = 10 V H101 Analog output 1, offset Refer to Chapter 5 H102 Analog output 1, normalization 1.0 = 10 V H103 Analog output 1, terminal 97/99 (torque setpoint) Refer to Chapter 5 Table 3-22 Parameters for the analog outputs 3.6.4 Overspeed (block diagram 20) Undesirable operating statuses of the drive are prevented by identifying an overspeed condition. If an overspeed condition is identified, i.e. the determined speed actual value is greater than the positive limit value or less than the negative limit value, if required, the drive is shutdown with a fault message; fault number 116 or 117. Note An overspeed condition is only identified if the speed actual value sensing works correctly. Parameter Parameter name Explanation H125 Overspeed, positive Limit value referred to the rated speed H126 Overspeed, negative Limit value referred to the rated speed Table 3-23 Parameters for overspeed identification 3.6.5 Excessive torque When an excessive torque is identified, i.e. the torque actual value from the base drive is greater than the positive limit value or less than the Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 55 Function description negative limit value. If required, the drive is shutdown with a fault signal; fault number 118 or 119. Parameter Parameter name Explanation H003 Excessive torque, positive Limit value referred to the rated torque H004 Excessive torque, negative Limit value referred to the rated torque Table 3-24 Parameters for excessive torque identification 3.6.6 Stall protection This function has the task of identifying if the drive has stalled (for instance, can no longer mechanically move). The drive can be shutdown with a fault signal output. The stall signal is derived from the actual values of speed, torque and control deviation, if the following conditions are fulfilled (logical AND): - speed actual value is less than the speed actual value threshold & - torque actual value is greater than the torque actual value threshold & - control deviation is greater than the control deviation threshold If these three conditions exist simultaneously over the response time which can be parameterized, the stall protection signal is generated and, if required, can cause the drive to be shutdown; fault number 120. Parameter Parameter name Explanation H007 Speed actual value threshold Less than the rated speed (% value) H008 Torque actual value threshold Greater than the rated motor torque (% value) H009 Threshold, control deviation Greater than the rated speed (% value) H010 Response time exceeded in ms Table 3-25 Parameters for stall protection identification 3.6.7 Receiving telegrams from CU, CB and PTP (block diagram 20) CU If a telegram is not received after power-on and after the time, set using H005, has expired, the fault message is generated and causes the drive to be shutdown; fault number 121. COMBOARD Not only is the first telegram monitored, but the interval between telegram failures during communication are also monitored (refer to Chapter 2.1.2). Fault number 122. Peer-to-peer The coupling is monitored in a similar way to the COMBOARD (refer to Chapter 2.1.3). Fault number 123. 56 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Function description 3.7 Others 3.7.1 Free function blocks (block diagram 23a/23b/23c) Goal In order to permit additional customer-specific requirements, the SPW420 has some frequently used free function blocks. These free function blocks can be interconnected using simple parameterization via BICO technology. An example with free blocks is shown in Chapter 4.14. Free blocks which are available (No.) * * * * Arithmetic blocks - Multipliers (2) - Dividers (1) - Adders (1) - Subtractors (1) - Polygon characteristic with two transition points (2) Logic blocks - Numerical changeover switch (3) - Switch-on delay (1) - Switch-off delay (1) - Pulse shortener (1) - Pulse generator (1) - Inverter (1) - Logical AND (1) - Logical OR (1) - Numerical comparator (1) Closed-loop control blocks - Integrator (1) - Limiter (1) - PT1 element (1) Constant blocks - Fixed setpoint in R-type (3) - Fixed value B_W: bits aword (1) Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 57 Function description * Note Conversion - N4 -> R (4) - R -> N4 (4) - R -> DI (2) - DI -> R (2) - I -> R (2) - R -> I (2) Details on start-up, refer to Chapter 7.6. Details on the functions blocks, refer to Lit.[6] 3.7.2 Free display parameters (block diagram 25) Destination The standard software package provides freely-assignable display parameters for every data type to monitor available binectors/connectors. Using BICO technology, every binector/connector can be connected to the input of a display parameter. The value of the binector/connector can then be monitored using an operator control device, e.g. OP1S or PMU. Display parameters available Data type No. R type (for KRxxxx) 4 B type (for Bxxxx) 2 I type (for Kxxxx) 1 58 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4 Configuring instructions and examples 4.1 Some formulas for a winder drive Dcore D V J2 J1 b Mb n1 Z n2 M Gearbox (i = n1 / n2) Fig. 4-1 (1) Winding ratio: q = (2) Dmax Dcore [ mm] [ mm] Speed [RPM]: n = (3) Structure of an axial winder 1000 * V D * [m/min] [mm] Winding torque referred to the motor shaft [Nm]: MW = Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Z * D 2000 * i [N mm] 1 59 Configuring instructions and examples (4) Winding power [kW]: Z * V 60 * 103 PW = (5) Gearbox ratio, max. motor speed / max. winder speed: i= (6) 32 * 1012 [mm kg mm4] [dm3] * b * * D4 2 m 6 8 * 10 * (D4 - D4 core )= 32 * 1012 * b * * (D4 - D4 ) core Reduction of the moment of inertia through a gearbox: J2 i2 2 Fixed moment of inertia [kg m ] as a result of the winder components whose parameters do not change (motor, gearbox and winder core) referred to the motor shaft Jcore i2 2 Variable moment of inertia [kg m ] JV = 60 m * D2 = 8 * 106 JF = Jmotor + Jgear + (10) [ mm/min] [ m/min] Moment of inertia, hollow cylinder [kg m ]: J1 = (9) * Dcore * nmax 1000 * vmax 2 J = (8) n1 = n2 Moment of inertia, solid cylinder [kg m ]: J = (7) [Nm/min] 1 * b * 32 * 1012 * i 2 * (D4 - D4 ) core [mm kg mm4] [dm3] Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples (11) Accelerating torque referred to the motor shaft [Nm] for the accelerating time tb V 100 * i * (JF + JV) 3 * D tb Mb = (12) Accelerating power [kW] i * V 30 * D Pb = (13) Length of material wound for flat materials [m]: * ( D2 - D2 ) max core 4000 * d Length material which can be wound, round materials [m]: * b l= 2000 * (16) q l 1 = 1- lmax q2 (17) (Jf + JV) 9549 * PN nN l= (15) V 10 * i2 * V * 2 9 * D tb Rated motor torque [Nm] MN = (14) * Mb = * ( D2 - D2 max core 2 3* D R Relative amount of material which can wound, as a function of the winding ratio: 2 75 % 3 4 5 88.9% 93.8% 96% 6 7 97.2% 98% 8 9 10 98.4% 98.8% 99% Winding time [s]: t = 60 * Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 l V 61 Configuring instructions and examples Formula characters and dimensions used b bmax d D Dcore Dmax DR i J JF = = = = = = = = = = l lmax = Jgear = = Jcore = Jmotor = JV = m Mw Mb = = = MbF% = MbV% 62 = MN n nmax = = = nN = Pb PM PN Pw q r p t tb th V Vmax Z V = = = = = = = = = = = = = = material width [mm] maximum material width of the roll [mm], material thickness [mm] actual diameter [mm] core- or winder core diameter [mm] maximum diameter [mm] material diameter for round materials [mm] gearbox ratio (refer to equation5) 2 moment of inertia [kgm ] fixed moment of inertia as a result of the winder components (motor, gearbox + winder core) 2 referred to the motor shaft [kgm ] material length [m] maximum material length [m] (for a core diameter mm) moment of inertia of the gearbox referred to the 2 motor shaft [kgm ] 2 moment of inertia of the winder core [kgm ] 2 motor moment of inertia [kgm ] variable moment of inertia as a result of the wound 2 material referred to the motor shaft [kgm ] (refer to equation 10) weight [kg] winding torque referred to the motor shaft [Nm] accelerating torque referred to the motor shaft [Nm] percentage accelerating torque as a result of the fixed moment of inertia JF at the minimum diameter [% of MN] (refer to formula (1.2)) percentage accelerating torque as a result of the variable moment of inertia JV at the maximum diameter and maximum width [% of MN] (refer to formula (1.5)) rated motor torque [Nm] (refer to equation13) speed [RPM] maximum motor speed [RPM] (no-load speed at maximum field weakening) rated motor speed at rated voltage and rated motor field current [RPM] power required for acceleration [kW] required motor power [kW] rated motor output [kW] winding power [kW] winding ratio (refer to (1) ) 3 specific weight [kg/dm ] 3 material density [kg/m ] winding time [s] accelerating time [s] time to accelerate up to the web velocity, f. 0 to Vmax [s] web velocity [m/min] max. web velocity [m/min] tension [N] velocity difference [m/min] Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4.2 Calculating the inertia compensation When accelerating and braking, the standard axial winder software package computes the required accelerating torque Principle Mb = (1.1) 30 * J * n tb and controls it to the required torque (block diagram 9b), so that the tension torque is kept as constant as possible. The winder software can compute the acceleration dv/dt, or this can also be entered externally. The moment of inertia J is not constant due to the changing roll diameter as the material is wound, and it therefore consists of two components: a) Fixed moment of inertia JF (parameter H228) as a result of the winder components (components which do not change). b) Variable moment of inertia JV (adapted using parameter H227) as a result of the wound material. This Chapter includes instructions as to how parameters H228 for the fixed moment of inertia, and H227 for the variable moment of inertia can be calculated from the system data. The equations involve normalized value quantities. The formula characters in the equations and dimensions are listed in Chapter 4.1. 4.2.1 Determining parameter H228 for the fixed moment of inertia Fixed moment of inertia The fixed moment of inertia comprises the sum of the following moments of inertia, refer to Fig. 4-2: * Moment of inertia of the motor * Moment of inertia of the gearbox referred to the motor shaft * Moment of inertia of the winder core, also referred to the motor shaft * Remaining moments of inertia as a result of couplings, tachometers etc. Motor Winder core or mandrel Gearbox Coupling Fig. 4-2 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Coupling Coupling between the motor and winder core 63 Configuring instructions and examples The following formula is valid for the fixed moment of inertia (refer to Equation (9)): JF = JMotor + JGetr + JKern i2 The moments of inertia of the motor and gearbox can generally be taken from the rating plates or data sheets. The moment of inertia of the winder core must be calculated. If cardboard cores are used, their moments of inertia can be neglected. The higher the gearbox ratio i, the lower is the influence of the winder core and the variable moment of inertia on the total moment of inertia. The "remaining moments of inertia" are generally low with respect to the other moments of inertia and can be neglected. Determining H228 We recommend that you determine the value of H228 in two steps: Calculate the percentage accelerating torque MbF% as a result of the fixed moment of inertia JF and the accelerating time tb: 1) Prerequisite: D = Dcore and tb = th MbF% = JF * nN * i * 2.865 * Dcore * PN V tb Formula characters and dimension: Refer to Sect. 4.1 (1.2) This equation is obtained by dividing formulas (11) and (13), it calculates the accelerating torque referred to the rated torque as a %. Determining the setting value for parameter H228 2) H228= MbF% * th H220 * Dcore /Dmax Formula characters and dimensions: Refer to Sect. (1.3) The value of H220, should be the shortest ramp available, e.g. if inertia compensation is required for a fast stop. The equation is valid for an internal dv/dt calculation (H226=0) and H225=1.0. Example 64 Drive system data: fixed moment of inertia: rated motor speed: gearbox ratio nmot/nwinder shaft core diameter JF = 38.77 kg m nN = 400 RPM i = 5.8 Dcore = 508 mm 2 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples - rated motor output: max. web velocity: time to accelerate from 0 to Vmax: deceleration time for a fast stop max. diameter PN = 186 kW Vmax = 339 m/min th = 20 sec H220 = 5 sec Dmax = 1500 mm The following is obtained from equation (1.2): MbF% = 38.77 * 400 * 5.8 339 * = 5.63% 2.865 * 508 * 186 20 Formula characters and dimensions: Refer to Section 4.1 (1.4) The following is obtained equation (1.3): H228 = 5.63% * 4* 0.339 = 7.63% Formula characters and dimension: Refer to Sect. 4.1 (1.5) For H228 = 7.63% and an acceleration using a 20 sec ramp at the minimum diameter, the inertia compensation generates a torque of 5.63 %. 4.2.2 Determining parameter H227 for the variable moment of inertia Variable moment of inertia The maximum variable moment of inertia is obtained at the maximum diameter and maximum width from equation (10) as follows: J Vmax = (1.6) Determining H227 1) * bmax * 32 * 1012 * i 2 (Dmax 4 - Dmin 4 ) We recommend that the correct value of H227 is determined in two steps: Calculate the percentage accelerating torque MbV% for a full roll as a result of the maximum variable moment of inertia JVmax: Prerequisite : D = Dmax , tb = th and JF = 0 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 65 Configuring instructions and examples MbV% = bmax * r * (D4Max - D4Kern) * nN * 29.18 * 1012 * i * DMax * PN V tb Formula characters and dimensions: Refer to Sect. 4.1 (1.7) This equation is obtained, if equation (1.6) is inserted in equation (11), and the result is divided by equation (13); it calculates the accelerating torque referred to the rated torque as a %. Determining the setting value for parameter H227: 2) H227 = MbV% * th H220 * 100% Formula characters and dimension: Refer to Sect. (1.8) The equation is valid for the internal dv/dt calculation (H226=0) and H225=1.0. Example Drive system data: - specific weight of the winding material rated motor speed: gearbox ratio nmot/nwinder shaft maximum diameter core diameter rated motor output: maximum material width max. web velocity accelerating time from 0 to Vmax decelerating time for a fast stop r = 7.85 (steel) nN = 400 RPM i = 5.8 Dmax = 1500 mm Dcore = 508 mm PN = 187 kW bmax = 420 mm Vmax = 340 m/min th = 20 sec H220 = 5 sec The following is obtained from equation (1.7): MbV% = 340 420 * 7.85 * (15004 - 5084) * 400 * 29.18 1012 * 5.8 * 1500 * 187 20 = 2.36% Formula characters and dimensions: Refer to Sect. (1.9) The following is obtained from equation (1.8): 66 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples H227 = 2.36% * 4 = 9.44% Formula characters and dimension: Refer to Sect. 4.1 (1.10) For H227 = 9.44 % and an acceleration along a 20 sec ramp at the maximum diameter and maximum web width, the inertia compensation generates a torque of 2.36%. 4.3 Selecting the winding ratio (winding range) Winding operation is discussed in the following. The same is essentially true for unwinding. The winding ratio is the following quotient: Max. Wickeldurchmesser (Dmax ) Durchmesser des Wickelkerns (DKern ) ((max. winding diameter, diameter of the winder core, Dkern = Dcore)) The useful wound quantity as a % is given by equation (14) : (D 2 max - D 2 core ) 4 For a winding ratio of 6:1, the useful winding length is ~~ 97 %. 4.4 Power and torque The power required for winding is constant over the complete winding range, if, at the selected web velocity, the set winding tension is to be kept constant (also refer to equation (4)). Winding power Pw : PW = Zs b d V kW 60 103 b d V Zs = = = = working width in mm working thickness in mm web velocity in m/min 2 specific material tension in [N/(mm material cross section)] The required torque increases linearly with the diameter of the winder roll. 4.5 Defining the sign These definitions are valid, independent of the mode as either winder or unwinder Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 67 Configuring instructions and examples The values for the tension setpoint and the tension actual value must have a positive polarity (sign). The remaining polarities (signs) are then obtained according to Table 4-1 and Table 4-2 (for the velocity setpoint, if a forwards- and backwards direction is required, a negative value can be assigned for the backwards operation). Note The specified polarities apply to both the T400 module and the base drive. Caution * For an indirect tension control and tension control with tension transducer, the tension setpoint is always positive, display parameter d304. * For position control (e.g. dancer roll) the position reference value is 0.0 or positive, display parameter d304. The following winding types are possible. The definitions for the polarity of speed, torque and velocity for various operating modes are indicated in Table 4-1. The definition of the signs for each winding type are listed in Table 4-2. Operating modes Winding type A Winding type B Winding type C Winding type D Winder, winding from above Winder, winding from below Unwinder, winding from above Unwinder, winding from below v+ v+ M + v+ n + Control signal level: winder=1 winding from below=0 Table 4-1 Winder type M + n + Control signal level: winder=1 winding from below=1 M + n + Control signal level: winder=0 winding from below =0 n + Control signal level: winder=0 winding from below =1 Defining the winding types and the appropriate control signals for winders (selected using H043) and winding from below (selected with H035). Speed actual value d307, r219 for CUVC Saturation setpoint/actual value H145 / d341 1) Torque setpoint d329 r269 for CUVC Direct tension control with tension transducer indirect tension control Tension setpoint/actual value d304 / d317 Tension setpoint d304 Position control using a dancer roll Position reference value/actual value d304 / d317 A positive positive/ positive positive positive positive positive 0.0 5 ) B negative positive/negativ e negative positive positive positive 0.0 5 ) C positive negative/ negative negative 2)3) positive positive positive 0.0 5 ) D negative negative/ positive positive 2)4) positive positive positive 0.0 5 ) Table 4-2 68 M + v+ Defining the polarities (signs) Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples Explanation 1. Only set the saturation setpoint for closed-loop torque limiting controls (H203 = 0.0, 1.0, 2.0), otherwise enter 0.0. 2. The unwinder can also changeover from braking to motoring, e.g. at low diameters or at low tension 3. When inching forwards (without material), positive polarity 4. When inching backwards (without material), negative polarity 5. The tension actual value depends on the dancer roll setting Winders: Dancer roll at the top : Winder is running too fast, tension actual value > tension setpoint Dancer roll at the bottom : Winder is running too slowly, tension actual value < tension setpoint Dancer roll at the center : Winder is running with Vset, tension setpoint = tension actual value Unwinder: Dancer roll at the top : Unwinder is running too slowly, tension actual value > tension setpoint Dancer roll at the bottom : Unwinder is running too fast, tension actual value < tension setpoint Dancer roll at the center : Unwinder is running with Vset, tension setpoint = tension actual value 4.6 Selecting the closed-loop control concept Closed-loop control concept The standard SPW420 axial winder software package allows the following closed-loop control concepts to be implemented: H203 * Indirect closed-loop tension control (without tension transducer) * Direct closed-loop tension control with dancer roll or tension transducer * Closed-loop constant v control (if there is no "nip" position) These control concepts will now be explained. Chapters 4.7 to 4.13 will describe individual examples of concepts which are used. Parameter H203 is used to changeover between the various control concepts. 4.6.1 Indirect closed-loop tension control ("Open-loop tension control") Concept H203=0.0 This technique does not require a tension transducer or tension measuring device. The tension controller is not used, but instead, the tension setpoint is multiplied by the diameter, and the result is directly precontrolled as torque setpoint, so that the motor current linearly increases with increasing diameter and the tension is kept constant. For this control type, the speed controller is kept at its limit by entering an saturation setpoint (refer to the configuring examples, Chapters 4.7 and 4.8). Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 69 Configuring instructions and examples Note Caution It is important that the friction- and accelerating torques are precisely compensated so that the pre-controlled torque setpoint results in a material web tension which is as close as possible to that required. For this control type, it must be ensured that the mechanical losses are kept as low as possible, i.e. no worm gears, no open intermediate ratios, for herring bone teeth, direction of rotation in the direction of the arrow, the lowest possible loss differences between warm and cold gears. 4.6.2 Direct closed-loop tension control with dancer roll Tension measurement The material web is routed over a dancer roll. The dancer roll tries to move the material web with a defined force. This deflection of the dancer roll is sensed using a potentiometer (e.g. field plate potentiometer), and is used as a measure for the material tension. The material tension depends on the return force of the dancer roll suspension. Often, due to the geometry of the arrangement (distance to possibly existing guide rolls) and the weight of the dancer roll, additional effect on the tension actual value. Using a good mechanical design, the effects can be eliminated or adequately minimized. Concept H203=3.0 or 5.0 The higher-level controller to the speed controller (designated as "tension controller") is used as the closed-loop dancer roll position controller and corrects the position actual value of the dancer roll to track the position reference value (e.g. dancer roll center position). Generally, the position controller outputs a velocity correction setpoint to the speed controller. Generally, the position reference value is not externally entered, but is parameterized as a fixed value, i.e. standard connection of H081, position reference value entered via H080. For dancer rolls using pneumatic or hydraulically controllable support force, it is possible to implement a decreasing winding hardness via the winding hardness characteristic of the T400 module. To realize this, the output signal d328 of the characteristic block is output at an analog output and is used as setpoint for the dancer roll support (refer to the configuring examples, Chapters 4.9 and 4.10). Note Advantage Note H203=2.0 is a non-typical behavior for the direct tension control using a dancer roll and the torque limits. When the dancer roll is used as actual value transmitter, this has the advantage that the dancer roll can simultaneously act as material storage device (when the selected stroke has been selected high enough). This means that in this case it is already a 'tension controller'. Although dancer-roll controls are complex, they offer unsurpassed control behavior and characteristics The material storage function also has a damping effect on - off-center material reels - layer jumps, e.g. when winding cables 70 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples - roll changes 4.6.3 Direct closed-loop tension control with a tension transducer Tension measurement A tension transducer directly measures the material tension (e.g. a tension transducer from FAG Kugelfischer or Philips). The output signal of the tension transducer is proportional to the tension, and is fed to the tension controller as actual value signal. Concept When appropriately controlling the torque limits, the tension controller specifies the torque setpoint. For normal winding operation, the secondary speed controller is not effective as a result of the overcontrol. If the web breaks or the material sags, the winder speed is controlled by the speed controller. (Closed-loop torque limiting control, refer to the configuring examples, Chapters 4.11 and 4.12). H203 = 1.0 The tension setpoint can either be entered internally or externally. 4.6.4 Closed-loop constant v control Secondary condition The closed-loop control techniques which have been discussed up now, using either indirect or direct tension control assume that the velocity is kept constant at a "nip position" outside the winder. instance, this can be using two rolls which are pressed together driven at an appropriate speed through which the web material is fed. until web For and If there is no nip position, then a tension control cannot be realized, and the winder is normally just controlled to keep the circumferential velocity constant. Concept H203=3.0 & H195=0 With this control concept, the material web velocity must be detected using a web tachometer so that the diameter can be computed. The speed controller regulates the current controller in the drive. The precontrol torque is added as a supplementary torque setpoint after the speed controller. The closed-loop constant v control is explained in more detail in Chapter 4.13 using a configuring example. Caution The web break detection is not effective for the closed-loop v-constant control. 4.6.5 Selecting a suitable control concept The most important criteria to select a suitable control concept are summarized in Table 4-3: Control concept Information on the tension actual value sensing Indirect tension control Direct tension control with dancer roll Direct tension control with tension transducer Constant v control Tension actual value sensing not required Intervenes in the web routing, material storage capability Sensitive to overload, generally does not intervene in the web routing - Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 71 Configuring instructions and examples Up to approx. 10:1, good dv/dt and friction compensation required Winding ratio Dmax / Dcore Tension range Zmax/Zmin Winding ratio x tension range Dmax Zmax ----- x ----- Dcore Zmin Friction force/ tension force which cannot be compensated Web velocity Control concept preferably used for Nip position required 4.7 Up to approx. 15:1 Up to approx. 6:1 for good compensation of friction and dv/dt Can only be changed for adjustable dancer roll support Up to approx. 20:1 for precise dv/dt compensation - Depends heavily on the dancer roll support design, up to approx. 40:1 Up to 100:1, depends essentially on the tension actual value signal - Generally up to 40:1 From experience, over the compl. tension range <1 - - - Up to 600 m/min for good compensation Up to above 1000 m/min Up to 2000 m/min for a precise dv/dt compensation - Sheet steel, textile, paper Rubber, cable, wire, textiles, foils, paper Paper, thin foils Sorting winder Yes Yes Yes - - - - Yes Web tachometer required Table 4-3 From experience, up to From experience, up to approx. 15:1 approx. 15:1, precise dv/dt compensation required Comparing various control concepts Configuring example: Winder with indirect tension control Note <1> Fig. 4-4 show, shows as an example how a winder can be configured with indirect tension control. Tension setpoint and web velocity setpoint ("Machine velocity") is entered as analog signal, from the automation or as parameter. <2> A pulse encoder as shaft tachometer is used to sense the speed actual value. <3> The diameter computer continually computes the diameter corresponding to the formula: diameter <4> 72 web velocity speed The speed controller receives a speed setpoint, which corresponds to the actual web velocity plus the saturation setpoint H145 <6> (set H145 to approx. 0.05 ... 0.1). Overcontrol means that the speed controller is overcontrolled when the material web is present <7>, i.e. it goes to its positive output limit. When an attempt is made to increase the shaft speed by the saturation setpoint, the speed controller output reaches the specified torque limit B+ <8> due to the selected tension setpoint. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples <8> <9> Thus, the tension setpoint specifies the torque setpoint for the current controller by appropriately controlling torque limit B+. The core function of the indirect tension control is that the tension setpoint multiplied with the normalized diameter D is entered as torque (max. diameter and max. tension setpoint results in the max. torque). <10> In order that the entered torque results in, as far as possible, the required material tension, it is necessary to precisely compensate the friction- and accelerating torques, which must be additionally overcome. The friction torque always acts in the direction of rotation and the inertia compensation has a braking effective when decelerating and an accelerating effect when accelerating. <11> When the material web breaks or the web sags, the speed controller intervenes and prevents the winder drive from accelerating up to an inadmissible speed, by controlling the circumferential velocity to the sum of the web velocity + saturation setpoint (overspeed protection). Refer to Chapter 3.6.1 for web break. The drive can also be shutdown by appropriately parameterizing the web break detection and evaluating the web break signal; refer to Chapter 3.6.1. Threading the material web There is an automatic changeover from closed-loop speed- to tension control when the material web is threaded in system operation. In this case, the tension setpoint should be run-up and the tension controller enabled, whereby the torque limit is set corresponding to the required tension <9>. When the tension is established, the torque limit automatically takes-over the drive control. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 73 Configuring instructions and examples Torque characteristic MI Dmax Dcore + + Wind direction Acceleration (tension already established) Web break H145 Fig. 4-3 Caution 74 n Torque/speed characteristic The tension setpoint becomes effective when the tension controller is enabled. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples Nip position <7 > + Zset <1 > M n + Vset <1 > (MI) M Tachometer <2 > Vset [7] [5] D nact Width Compensation nact H092 (550) Diametercomputer [9a] <3 > [9b] + <6 > + H200=1.0 H145 = 0.0 5 H203=0.0 [8] <11 > T400 Vsoll n D= [5] Saturation setpoint D [5] D + Variable moment of inertia <9 > nset = <10 > + Vset D Speed setpoint P443=3002 Torque actual value P734.06=24 Monitoring <4 > P734.02=148 Kp adaption Speed controller P232=3008 1.0 B+ [6] -1 -1.0 Positive torque limit P493=3006 <8 > B- Negative torque limit P499=3007 Winder from above, or unwinder from below CUVC Fig. 4-4 Current controller Example for a winder with indirect tension control [3] = refer to 3 in the block diagram <2> = Information in the text Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 75 Configuring instructions and examples 4.8 Configuring example: Unwinder with indirect tension control Note An example is shown in Fig. 4-6, as to how an unwinder with indirect tension control can be configured <1> Tension setpoint and web velocity setpoint ("Machine velocity") are entered as analog signals, from the automation or as parameter. <2> A pulse encoder as shaft tachometer is used for the speed actual value sensing. <3> The diameter computer continually computes the diameter corresponding to the above formula diameter web velocity speed <4> While unwinding, the speed controller is overcontrolled, by entering into it a low, negative saturation setpoint H145 (H145=0...- 0.05). This causes the speed controller, when material is present, to go to its negative output limit. If an attempt is made to re-wind the material which has just been unwound, the speed controller goes to the entered torque limit B - due to the selected tension setpoint. <8> The tension setpoint therefore specifies the torque setpoint by appropriately controlling torque limit B- (braking in the clockwise direction of rotation). <9> The core function of the indirect tension control is that the torque is entered as tension setpoint multiplied by diameter D (max. diameter and max. tension setpoint result in max. torque). <10> In order that the entered torque results in the best approximation to the required material tension, it is necessary to precisely compensate the friction- and accelerating torque. <12> When the web breaks or the material web sags, if the unwinder was to continue to rotate or even accelerate, this could result in an uncontrolled "material rejection". This is prevented by the fact that the speed controller intervenes and approaches the saturation setpoint set using H145. The drive then rotates at a low speed in the wind direction, and winds-up residual material web which may be in the machine; refer to Chapter 3.6.1. Threading the material web The material web is threaded in the standard system operation. The velocity setpoint limiting function automatically ensures this, refer to Chapter 3.1.2.5. The tension in the material web can establish itself after the tension control has been switched-in. 76 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples Note An unwinder might have to go into the motoring mode, if the accelerating torque when braking is greater than the tension torque. Torque characteristic Dmax Dcore MII Unwinding n Web break H145 Fig. 4-5 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Torque / speed characteristic 77 Configuring instructions and examples Nip position + M n - Zset <1 > (MII) Vset <1 > M Tachometer <2 > Vset [7] [5] nact H092(550) Diameter computer [9a] <3 > Vset D= H200=1.0 D + nact Width H145 = -0.03 H203=0.0 [7] Compensations <12 > [9b] T400 n + [5] Saturation setpoint D [5] D + Variable moment of inertia <9 > nset = Vset D <10 > + Speed setpoint P443=3002 Torque actual value P734.06=24 Monitoring Kp adaption <4 > P734.02=148 Speed controller P232=3008 1.0 B+ [6] -1 -1.0 Positive torque limit P493=3006 <8 > B- Negative torquelimit P499=3007 Winder from above or unwinder from below CUVC Current controller Fig. 4-6 Example for an unwind stand with indirect tension control [3] = Page 3 in the block diagram <2> = Information in the text 78 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4.9 Configuring example: Winder with dancer roll, speed correction Note An example of a winder with dancer roll is shown in Fig. 4-8. <1> The web velocity setpoint is entered here at terminals 90/91 as analog signal. <2> An analog tachometer is used for the speed actual value sensing. The signal is connected at the base drive and the actual value is transferred to T400 via the dual port RAM. <3> The diameter computer continually computes the diameter corresponding to the following formula diameter web velocity speed <4> The analog dancer roll position actual value is connected at terminals 96/99. <6> The dancer roll position setpoint is permanently entered via parameter H082 with the standard connection of H083; normally, the voltage is set at the dancer roll center position. The tension setpoint channel is interrupted with H177 = 1 and the winding hardness characteristic can then be used to control the dancer roll support. <7> The "tension controller" operates as dancer roll position controller, and normally generates a supplementary velocity setpoint, which is input into the speed controller with a positive polarity (sign) which means that the dancer roll actual value tracks the entered position reference value. The D controller is used to dampen the dancer roll and prevents oscillation between the dancer roll and winder; the following parameters should be set: H174=0, H196=1 and H283=0. <8> The speed setpoint is obtained from the total velocity setpoint divided by the diameter. <9> Generally, the position controller output has a relatively low effect of approx. 0.02...0.1 on the speed controller. The tension controller output can be limited using H195; the influence on the velocity setpoint can be normalized using H141. When the web breaks, the dancer roll falls to its lower end stop, and the position controller goes to its output limit, as it can no longer maintain the reference position. This means that the speed increases by the value set at H195; refer to Chapter 3.6.1. <10> The compensation torques for friction and acceleration are added as supplementary torque setpoints after the speed controller. Generally, for the dancer roll position control, friction compensation is not required and normally, inertia compensation is not required. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 79 Configuring instructions and examples <13> For a winder with dancer roll, there is normally no external tension setpoint. For a dancer roll with a selectable support force, as shown in Fig. 4-8, a tension setpoint can be entered at the T400 technology module, in order to be able to use its winding hardness control (open-loop) (H206=0 ). The tension setpoint can be still controlled using a ramp-function generator with H284=0. The output of the winding hardness characteristic can then be output, for example, at terminals 97/99, and they can then serve as setpoint for the pneumatic adjustable dancer roll support. Threading the web The normal web velocity setpoint input (in this case, terminals 90/91) can be used to thread the material web. After the web has been thread, the parameterized tension is established by switching-in the tension control. Torque characteristic Dcore Dmax MI Winding Web break n H145 Fig. 4-7 80 Speed/torque characteristic with web break Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples Nip position n + Vset <1 > Dancer roll + + M <4 > Position actual value Term. 96/99 H097(324 P Zset <13 > <1 > Vset + (MI) P - <4 > M <13 > U 0 - 10 V Term. 92/93 H081(321) Term. 90/91 H069(320) [10] T <2 > Term. 97/99 H103(328) D Position reference value T400 H082 = 0 H083(82) D [7] <6 > Winding hardness characteristic [7] H206 = 0; H177=1 + - Position controller ("Tension controller") nact H092(219) Diameter computer [9a] <3 > H174=0 H196=1 H283=0 [8] <7 > Limiting H194 =2 H195 =0.1 Vset n D= <9 > [8] D + H203=3.0 H141=1.0 nset = + Vset D <8 > [5] Speed setpoint P443=3002 Speed actual value + Variable moment [9b] of inertia Kp adaption D nact Width Speed controller Compensations P232=3008 [9b] Torque setpoint P734.05=165 Supplementary setpoint Monitoring + + <10 > [20] Torque act. value P734.06=24 CUVC Current controller Fig. 4-8 Winder with dancer roll, closed-loop speed correction control [3] = Page 3 in the block diagram <2> = Information in the text Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 81 Configuring instructions and examples 4.10 Configuring example: Unwinder with dancer roll, speed correction Note An example is shown in Fig. 4-10 as to how an unwinder with dancer roll can be configured. <1> In this case, the web velocity setpoint is entered at terminals 90/91 as analog signal. <2> An analog tachometer is used for speed actual value sensing. The connection is made at the base drive and the actual value is transferred to the T400 via the dual port RAM. <3> The diameter computer corresponding to the formula diameter continuously computes the diameter web velocity speed <4> The analog dancer roll position actual value is connected at terminals 96/99. <6> The dancer roll position reference value is entered as fixed value via parameter H082 with the standard connection from H083; generally, the voltage is set at the dancer roll center position. For H177 = 1, the tension setpoint channel is interrupted and the winding hardness characteristic can then be used to control (open-loop) the dancer roll support. <7> The "tension controller" operates as dancer roll position controller, and normally generates a supplementary velocity setpoint, which is input into the speed controller with a negative polarity. This means that the dancer roll actual value tracks the entered position reference value. The D controller is used to dampen the dancer roll and this prevents oscillation between the dancer roll and winder; the following parameters should be set: H174=0, H196=1 and H283=0. <8> The speed setpoint is obtained from the total velocity setpoint divided by the diameter. <9> Generally, the position controller output has a relatively low effect of approx. 0.02...0.1 on the speed controller. The tension controller output can be limited using H195; the influence on the velocity setpoint can be normalized using H141. When the web breaks, the dancer roll falls to its lower end stop, and the position controller goes to its output limit, as it can no longer maintain the reference position. This means that the speed increases by the value set at H195. The drive can be shutdown by appropriately parameterizing the web break detection and evaluating the web break signal; refer to Chapter 3.6.1. <10> 82 The compensation torques for friction and acceleration are added as supplementary torque setpoints after the speed controller. Generally, for the dancer roll position control, friction compensation is not required and normally, inertia compensation is not required. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples <13> Threading the web For a winder with dancer roll, there is normally no external tension setpoint. For a dancer roll with selectable support force, as shown in Fig. 4-10 a tension setpoint can be entered at the T400 technology module, in order to be able to use its winding hardness control (open-loop) (H206=0). The tension setpoint can be still controlled using a ramp-function generator with H284=0. The output of the winding hardness characteristic can then be output, for example, at terminals 97/99, and they can then serve as setpoint for the pneumatic adjustable dancer roll support. The normal web velocity setpoint input (in this case, terminals 90/91) can be used to thread the material web. After the web has been thread, the parameterized tension is established by switching-in the tension control. Torque characteristic Dcore Dmax MII Unwinding Web break n H145 Fig. 4-9 Speed/torque characteristic with web break Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 83 Configuring instructions and examples Nip position + M n - + Vset <1 > (MII) Dancer + P - M <4 > Pos. act. value Term. 96/99 H097(324) P Zset <13 > <1 > Vset <4 > <13 > U 0 - 10 V Term. 92/93 H081(321) Term. 90/91 H069(320) [10] T <2 > Term. 97/99 H103(328) D Pos. ref. value T400 H082= 0 H083(82) [7] D <6 > Winding hardness characteristic [7] H177 = 1 H206 = 0 + Position controller ("tension contr.") [8] H174 = 0 H196=1 H283=0 <7 > Vset n D= Limit H194 =2 H195 =0.1 <9 > [8] D - H203=3.0 H141=1.0 nset = + nact Vset D <8 > [5] Variable moment [9b] of inertia D nact H092(219) Diameter computer [9a] <3 > Speed setpoint P443=3002 Speed act. value + Kp adaption - Width Speed controller Compensations P232=3008 [9b] Torque setpoint P734.05=165 Suppl. torque setpoint P506=3005 Monitoring + + <10 > [20] Torque actual value P734.06=24 CUVC Current controller Fig. 4-10 Unwinder with dancer roll, speed correction control [3] = Page 3 in the block diagram <2> = Information in the text 84 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4.11 Configuring example: Winder with tension transducer Note An example for a winder with tension transducer and closed-loop torque limiting control is shown in Fig. 4-12. <1> Tension setpoint and web velocity setpoint ("Machine velocity") are entered at terminals 90/91 and 92/93 as analog signals. <2> A pulse encoder as shaft tachometer is used for speed actual value sensing; this is connected at the basic drive. <3> The diameter computer continuously computes the diameter according to the following formula diameter <4> web velocity speed A speed setpoint is entered into the speed controller, which corresponds to the actual web velocity plus the saturation setpoint H145 (set H145 to approx. 0.05...0.1). The saturation setpoint means that the speed controller, when web material is present, goes into saturation, i.e. up to its positive output limit. When an attempt is made to increase the speed by the saturation setpoint, the speed controller output goes to the entered torque limit that results from the tension setpoint. <5> The tension actual value is available as analog signal at terminals 94/99. In this case, under certain circumstances, external smoothing may be required; refer to Fig. 4-12. <6> If the web breaks or the web sags, the speed controller intervenes, and the prevents the winder drive from further accelerating, by controlling the circumferential velocity to the sum of the web velocity and the saturation setpoint (overspeed protection). The drive can also be shutdown by appropriately parameterizing the web break detection and evaluating the web break signal; refer to Chapter 3.6.1. <9> The tension setpoint is controlled via the winding hardness characteristic (H206=0). This allows a reduced tension to be set for an increasing diameter. The characteristic output is the setpoint input for the tension controller and the tension pre-control. The tension- and torque setpoints can be adjusted for pre-control using H200. <11> The tension controller compares the tension actual value (under certain circumstances, smoothed using a filter) with the tension setpoint and outputs an appropriate correction signal. <14> The tension controller output signal and the parameterized pre-control value are added, and after been multiplied by the actual diameter, is Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 85 Configuring instructions and examples used to limit the speed controller output. (max. diameter and max. tension setpoint results in the max. torque). <15> The tension controller output is limited via H195 (typical value: 0.1). <16> The compensation torque comprises the friction torque and accelerating torque, and must be additionally overcome. Therefore, it is input and added to the tension torque. Threading the material web When the material web is threaded, it is possible that the drive automatically changes over from closed-loop speed- to closed-loop tension control. In this case, when accelerating, the threading setpoints should be entered at the standard web velocity setpoint input. The torque limit is enabled when a tension setpoint is entered. When the tension is established, the torque limit automatically takes over the drive control. Torque characteristic Dcore Dmax MI Winding direction Accelerating (tension already established) Web break H145 Fig. 4-11 86 n Speed/torque characteristic with web break Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples Nip position <7 > Tension transducer M n + Vset + (MI) <1 > M Zset <1 > Tension setpoint Term. 90/91 H081(320) Tachometer Vset Tension act. value Term. 94/99 Zact<5 > H085(322) <2 > Term. 92/93 H069(321) Filter [7] [7] D <9 > + [9a] <3 > - D= Tension controller Limiting H194 =2 H195 =0.1 <15 > [8] + [9b] Variable moment ov inertia D [8] D nact With + [5] <4 > <6 > H145 = 0.1 Satuation setpoint [5] D nset = Monitoring [20] Torque actual value P734.06=24 Vset D Speed setpoint P443=3002 Speed act.value + H203 =1.0 Compen stations [9b] + <16 > T400 <11 > + <14 > Vset n [8] H200 <9 > [8] + nact H092(219) Diameter computer H172=32ms + Kp adaption Speed controller P226=3008 1.0 [6] -1 Positive torque limit 493=3006 Negative torque limit P499=3007 -1.0 Winder from above or unwind stand from below CUVC Fig. 4-12 Current controller Winder with tension transducer, torque limiting control [3] = Page 3 in the block diagram <2> = Information in the text Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 87 Configuring instructions and examples 4.12 Configuring example: Unwinder with tension transducer Note An example for an unwinder with tension transducer and closed-loop torque limiting control is shown in Fig. 4-14. <1> Tension setpoint and web velocity setpoint ("Machine velocity") are entered at terminals 90/91 and 92/93 as analog signals. <2> A pulse encoder as shaft tachometer is used for actual speed sensing; this is connected at the base drive. <3> The diameter computer continuously computes the diameter according to the following formula diameter <4> web velocity speed A speed setpoint is input into the speed controller, which corresponds to the actual web velocity plus the saturation setpoint H145 (set H145 to approx. 0.05...-0.1). The velocity setpoint limiting and the saturation provide automatic protection against web sag. The saturation setpoint means that the speed controller goes into saturation when the material web is present, i.e. it goes to its negative output limit. When an attempt is made to increase the speed by the saturation setpoint, the speed controller output goes to the entered torque limit due to the selected tension setpoint. <5> The tension actual value is entered as an analog signal at terminals 94/99. Under certain circumstances, it may be necessary to provide external smoothing; refer to Fig. 4-14. <6> When the web breaks or the material web sags, the speed controller automatically takes over drive control, and moves away from the negative torque limit. The winder is braked, and rotates with the velocity, parameterized at H145, in the opposite direction to the winding direction. The drive can also be shutdown and the diameter computer inhibited by appropriately parameterizing the web break detection and evaluating the web break signal; also refer to Chapter 3.6.1. 88 <9> The tension setpoint is connected to the setpoint input of the tension controller and simultaneously controls the torque setpoint (pre-control). The tension- and torque setpoints can be adjusted for the pre-control using H200. Normally, decreasing winding hardness for unwinder is not required and the characteristic can be disabled with H206=1. <11> The tension controller compares the tension actual value (under certain circumstances, smoothed through a filter) with the tension setpoint and outputs an appropriate correction signal. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples <14> The tension controller output signal and the parameterized pre-controlled value are added, and after multiplication with the actual diameter, used to limit the speed controller output. (max. diameter and max. tension setpoint result in max. torque). <15> The tension controller output is limited via H195 (typical value: 0.1). <16> The compensation torque comprises friction- and accelerating torque and is subtracted from the tension torque; it helps to brake the unwinder. Threading the material web When the material web is threaded, the standard system operation is used. The velocity setpoint limiting function executes this automatically, refer to Chapter 3.1.2.5. After the material web has been threaded, the tension control can establish the material tension. Dmax Torque characteristic Dcore MII Unwinding n Web break H145 Fig. 4-13 Speed/torque characteristic with web break Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 89 Configuring instructions and examples Nip position + Tension transducer M n - Vset (MII) <1 > M Zset <1 > Tension setpoint Term. 90/91 H081(320) Tachometer Vset Tension actual value Term. 94/99 Zist <5 > H085(322) <2 > Term. 92/93 H069 (321) Filter [7] + [9a] <3 > - [8] + + <4 > <6 > + H145= -0.05 <15 > [8] Saturation setpoint [5] D + [9b] <14 > Variable moment of inertia D [8] D nist Breite T400 [5] <11 > Limiting H194 =2 H195=0.1 H092(219) Vset n D= <4 > Tension controller H200 <9 > [8] nact Diameter computer H172=32ms Monitoring [20] Vset nset = D Torque actual value P734.06=24 Speed setpoint P443=3002 Speed act. value + H203 =1.0 Compensations [9b] + <16 > - Kp adaption Speed controller P232=3008 1.0 [6] -1 Positive torque limit P493=3006 Negative torque limit P499=3007 -1.0 Winder from above or unwinder from below CUVC Current controller Fig. 4-16 Unwinder with tension transducer, closed-loop torque limiting control [3] = Page 3 in the block diagram <2> = Information in the text 90 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4.13 Configuring example: Winder with closed-loop constant v control Applications If there is no "nip position" between an unwinder and a winder, which then keeps the web velocity constant (e.g. for an "inspection machine"), then the winder must be operated in the pure closed-loop velocity controlled mode. For closed-loop velocity controlled winders, a web tachometer is always required for the diameter computation. Note An example for a winder with closed-loop constant v control is shown in Fig. 4-15. <1> The tension controller has no effect and its input is disabled with H195=0.0. For H203 = 3.0, the closed-loop speed correction control is selected as control type and the correction setpoint is now 0.0. <2> For the diameter computer, instead of the velocity setpoint, the web velocity actual value from the web tachometer is used. The closed-loop tension control must be enabled in order to enable the diameter computer. <3> The diameter is calculated from the measured web velocity actual value and the speed actual value of the shaft tachometer. The quotient of the velocity setpoint and the actual diameter then provides the speed setpoint for the winder. <5> The friction- and acceleration compensation are supplementary torque setpoint after the speed controller. <6> A pulse encoder should always be used as web tachometer. <7> When the web breaks, the web tachometer signal goes to zero. In accordance with the ramp-up/ramp-down time, parameterized using H238, the diameter goes toward Dmin, and the winder speed increases. entered as For H236=1, the diameter for winders only increases, i.e. when the web breaks, the winder would continue to run at the same speed. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 91 Configuring instructions and examples n + M + Tachometer <6 > Velocity setpoint M Vset Vact Term. 90/91 H069 Axis tachometer Term. 92/93 H094(321) T400 H211=1 Tension setpoint H081=80 H080=0.0 nact H092(550) Diameter computer<2 > Tension controller [9a] [8] D= Limiting Vact n H195 =0.0 D <1 > H203=3.0 + + H141=1.0 <3 > nset = Vset D Speed setpoint P443=3002 <7 > Speed act. value P734.02=148 + Variable moment [9b] of inertia - Kp adaption D nact Width Speed P232=3008 Compensations [9b] Torque setpoint P734.05=165 Supplementary torque setpoint P506=3005 Monitoring + + <5 > [20] Torque actual value P694.006=264 CUVC Current controller Fig. 4-15 Winder with closed-loop constant v control [3] = Page 3 in the block diagram <2> = Information in the text 92 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Configuring instructions and examples 4.14 Configuring example: Cut tension with freely-assignable blocks Freely-assignable blocks Frequently used freely-assignable function blocks are shown in block diagram 23a/23b. These are used to implement customized requirements; also refer to Chapter 7.6. Application profile A winder with tension transducer is controlled using closed-loop torque limiting control (refer to Chapter 4.12). The autonomous splice control is realized using a higher-level PLC system, and allows a flying roll change. Shortly before the roll change, the tension transducer should be changed over from roll 1 to roll 2, although roll 1 should move with the last torque. As soon as the knife has been positioned at the cutting location, roll 1 should be tensioned to a very high value for cutting. This tension depends 2 on the material weight per square meter (g/m ). Solution The following solution is implemented using the freely-assignable blocks in SPW420; refer to Fig. 4-16 and block diagram 24. - The last torque of roll 1 before the tension transducer changeover is stored, and is still used as long as the knife has still not reached the cutting position. The `tension transducer change' signal activates the changeover from direct tension control to indirect one. The winder operates with the saved torque. - A characteristic, dependent on the weight per square meter 2 (g/m ) is introduced, in order to calculate the tension for cutting. The changeover is made using the `knife in cutting position' command. Char_1 Mb Brake characteristic End, point Y2 W(g/m**2) Receive word 6 from CB [15.3] 0.5 MUL_1 H803 KR0453 H814 H801 0.0 Start, point Y1 0.001 n H800 Start, point X1 H802 Fixed setpoint_1 2.0 1.0 End, point X2 UMS_1 UMS_2 Torque limit [6.3] KR0351 KR0825 Output (UMS_2) at H610 and H611 [6.4] Tension transducer change Control word 2.8 from CB [15.4, 22a.8] Fig. 4-16 Caution B2628 Knife in cutting position Control word 2.15 from CB [15.4, 22a.8] B2635 Block diagram to implement the cut tension function Observe the sequence in which the freely-assignable blocks are executed. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 93 Parameters 5 Parameters 5.1 Parameter handling Parameter designation All of the parameters which are implemented on the technology module, are called technology parameters. In the software configured with CFC, these parameters are always designated with TP_xxx (xxx stands for the parameter number). Quantities which can be changed are displayed as Hxxx, and others which cannot be changed (display quantities) as dxxx at the drive converter operator panel and SIMOVIS. The technology parameters can be read and changed from several locations: - device operator panel (PMU or OP1) - SST1 serial interface (RS232) or SST2 (RS485) from the base drive - CBP/CB1 interface module (if available) - Parameterization 94 SIMADYN D monitor, which can be addressed with CFC, IBS (startup)- or SIMOVIS program via the serial interface X01 of the technology module. The parameterization of the axial winder is realized, as standard using SIMOVIS or via the drive operator panel (PMU or OP1S). The parameter changes are automatically saved in the EEPROM in a non-volatile fashion. Refer to Chapter 7.1 for the various parameterization resources Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters 5.2 Parameter lists Value range The parameters can only be changed within a specific value range. The value range normally depends on the data type of the parameter, and, in addition, for several parameters, is also restricted to a narrower specified range (MIN/MAX limits). If no information is provided in the value range column in the parameter lists, then the value range is specified by its data type. Parameter list All of the parameters used in the standard SPW420 axial winder software package are listed on the following pages. The list is realized in the general form: Parameter Description Data Hxxx Parameter name Value: Explanation and, if required information on the parameter Min: Max: Unit: b.d. n CFC chart.block.connection Type: dxxx Parameter name Value: Explanation and, if required information on the parameter Min: Max: Unit: b.d. n Table 5-1 Type: CFC chart.block.connection Parameter list layout Note Hxxx dxxx b.d. n Value Min. /max. Unit Type Parameter number xxx which can be changed Parameter number xxx which can be displayed Block diagrams, Page n Factory setting of the parameter or connection default Value range for the setting Units Data type, refer to Table 5-2 Data type Explanation Value range Resolution B Boolean quantity Logical 0 or 1 1 I DI Integer Double Integer -32768 .. 0 .. 32767 1 2147483648..0..2147483647 1 R Floating-point number (real) -1.7E38 .. 0 .. 1.7 E38 23 positions + exponent Status word 0000H .. FFFFH 1 W Table 5-2 Data types and value range Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 95 Parameters Parameter H000 Description Data Language selection Value: Selecting the text on the HMI display Type: I 0: German 0 1: English Caution: It is necessary to initialize after the change! b.d. 4 IF_CU.@DRIVE.PLA d001 ID standard software package Value: 420 The value is 420 for the standard software package on T400 for axial winder SPW420. Type: I b.d. 4 PARAMZ_01.MODTYP.Y d002 Software version, axial winder Value: 2.2 Type: R b.d. 4 PARAMZ_01.VER.Y H003 Overtorque limit, positive Value: 1.2 Upper torque actual value limit as a % of the rated torque, fault signal and shutdown at Iact > H003 Min: 0.0 Max: 2.0 Prerequisite: The fault is not suppressed. Type: R b.d. 20 CONTZ_01.SU040.LU H004 Overtorque limit, negative Value: -1.2 Lower torque actual value limit as a % of the rated torque, fault signal and shutdown at Iact < H004 Min: Max: 0.0 Prerequisite: The fault is not suppressed. Type: R -2.0 b.d. 20 CONTZ_01.SU040.LL H005 Initialization time for CU couplings Value: 20000.0 Delay, after the T400 has been powered-up (voltage on or reset) and before the coupling monitoring functions to the CU interface are activated. Min: Unit: ms Type: b.d. 20 0.0 R CONTZ_01.SU130.T H007 Stall protection, threshold nact Value: 0.02 Absolute speed actual value, which must be exceeded for the "stall protection" fault message. Min: Max: 2.0 Condition 1 for the stall protection message: |nact| < H007 Type: R 0.0 Prerequisite: The fault is not suppressed. b.d. 20 CONTZ_01.SU080.L H008 Stall protection, threshold Iact Value: 0.10 Absolute torque actual value which must be exceeded for the "stall protection" fault message. Min: Max: 2.0 Condition 2 for the stall protection message: |Mact| > H008 Type: R 0.0 Prerequisite: The fault is not suppressed. b.d. 20 CONTZ_01.SU090.L 96 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H009 Stall protection threshold, control deviation Value: 0.50 Absolute control error YE of the speed controller, which must be exceeded for the fault message "stall protection". Min: 0.0 Max: 2.0 Condition 3 for the stall protection message: |YE| > H009 Type: R Prerequisite: The fault is not suppressed. b.d. 20 H010 b.d. 20 H011 CONTZ_01.SU100.L Stall protection, response time Value: 500.0 Time during which conditions 1-3 must simultaneously be present for the "stall protection" fault message = condition 4 for the stall protection message. Min: Unit: ms Prerequisite: The fault is not suppressed. Type: R 0.0 CONTZ_01.SU120.T Alarm mask Value: 0 Bitwise coding of the faults/errors which should result in an alarm, (a bit which is set, enables the appropriate alarm; also refer to Chapter 8.2): Min: Max: FF Bit 0 1 2 3 4 5 6 7 Type: W alarm A097 A098 A099 A100 A101 A102 A103 A104 significance overspeed, positive overspeed, negative overtorque, positive overtorque, negative stall protection data receive from CU faulted data receive from CB faulted data receive from PTP faulted 0 b.d. 20 IF_CU.SE030.I2 H012 Fault mask Value: 0 Bitwise coding of the faults/errors which should result in a fault message, (a bit which is set, enables the appropriate fault; also refer to Chapter 8.2): Min: Max: FF Bit fault significance Type: W 0 1 2 3 4 5 6 7 F116 F117 F118 F119 F120 F121 F122 F123 overspeed, positive overspeed, negative overtorque, positive overtorque, negative stall protection data receive from CU faulted data receive from CB faulted data receive from PTP faulted 0 b.d. 20 IF_CU.SE040.I2 H013 Input, connection tachometer on Value: B2634 Input for the compute diameter command with tachometer must be connected with the applicationspecific source. Type: 0: tachometer off B 1: Tachometer on Default: B2634 (control word 2.14 from CB) b.d. 17 IQ1Z_07.B207A.I H014 Inching time Value: 10000.0 Delay, after an inching command is inactive and before the base drive is shutdown. Min: Type: b.d. 18 0.0 Unit: ms R CONTZ_07.C2736.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 97 Parameters H015 Status word 1 PtP Value: K4335 Input for status word 1 from the peer-to-peer interface must be connected with the applicationspecific source. Type: I Default: K4335 (status word 1 from T400) b.d. 2/14 IF_PEER.Zustandswort..X H016 Source for Conversion R->N2 Value: KR0310 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 2 for PtP Default: KR0310 (actual diameter) b.d. 2/14 IF_PEER.Istwert_W2 .X H017 Source for Conversion R->N2 Value: KR0344 Input must be connected with the application-specific source. Type: R Type: R Type: R Standard setting is the transmitted word 3 for PtP Default: KR0344 (sum of the velocity setpoint) b.d. 2/14 IF_PEER.Istwert_W3 .X d018 Setpoint W2 (PtP) Receive word 2 from the peer-to-peer protocol (KR0018) can be connected with an applicationspecific destination. b.d. 2/14 IF_PEER.Sollwert_W2 .Y d019 Setpoint W3 (PtP) Receive word 3 from the peer-to-peer protocol (KR0019) can be connected with an applicationspecific destination. b.d. 2/14 IF_PEER.Sollwert_W3 .Y H021 Input, system start Value: B2003 The "system start" control command is used to enable operation (b.d. 18) for standard "system operation". This signal must remain active until the basic drive is shut down. Otherwise the motor would coast down. Type: B The input for the system start command must be connected to the applicationspecific source. 0: no `system operation' mode 1: in `system operation' mode Default: B2003 (digital input 1, terminal 53) It is recommended to connect this input to fixed-binektor 2001. With respect to compatibility a different default setting is not possible. b.d. 17 IQ1Z_01.B10.I H022 Input, tension controller on Value: B2004 The input for the tension controller on command must be connected with the applicationspecific source. Type: 0: tension controller off B 1: tension controller on Default: B2004 (digital input 2, terminal 54) Alternatively: * B2011 for digital input or splice (B2004 OR splice enable) * B2012 for PROFIBUS or splice (splice enable OR B2611) b.d. 17 IQ1Z_01.B11.I 98 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H023 Input, inhibit tension controller Value: B2005 The input for the inhibit tension controller command must be connected with the applicationspecific source. Type: 0: enable tension controller B 1: inhibit tension controller Default: B2005 (digital input 3, terminal 55) Alternatively: * B2612 for PROFIBUS (control word 1.12 from CB) * B2652 for peer-to-peer (control word 1.12 from PTP) b.d. 17 IQ1Z_01.B12.I H024 Input, set diameter Value: B2006 The input for the set diameter command must be connected to the applicationspecific source. Type: 0: no diameter setting B 1: set diameter Default: B2006 (digital input 4, terminal 56) Alternatively: * B2614 for PROFIBUS (control word 1.14 from CB) * B2654 for peer-to-peer (control word 1.14 from CB) b.d. 17 IQ1Z_01.B13.I H025 Input, enter supplementary setpoint Value: B2007 The input for the enter supplementary setpoint command must be connected to the applicationspecific source. Type: 0: without supplementary setpoint B 1: with supplementary setpoint Default: B2007 (digital input 5, terminal 57) Alternatively: B2620 (control word 2.0 from CB ) b.d. 17 IQ1Z_01.B14.I H026 Input, local positioning Value: B2008 The input for the local positioning command must be connected to the application-specific source. To stop this mode by using `local stop' (H028). Type: 0: local positioning off B 1: local positioning on Default: B2008 (digital input 6, terminal 58) Alternatively: B2621 for PROFIBUS (control word 2.1 from CB ) b.d. 17 IQ1Z_01.B15.I H027 Input, local operator control Value: B2009 The "local operator control" control signal is the prerequisite for local operation. In every local mode, this signal must remain active until the basic drive is shut down. Otherwise the motor would coast down. Type: B The input for the local operator control command must be connected to the applicationspecific source. 0: no local operator control 1: in local operator control mode Default: B2009 (digital input 7, terminal 59) Alternatively: B2624 for PROFIBUS (control word 2.4 from CB) Caution: The `local operator control' mode and `system operation' mode could not be running at the same time. b.d. 17 IQ1Z_01.B16.I Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 99 Parameters H028 Input, local stop Value: B2010 The input for the local stop command must be connected to the applicationspecific source. This signal can be used to stop each local mode (crawl, run, positioning and inching) Type: 0: no local stop B 1: to stop local mode Default: B2010 (digital input 8, terminal 60) Alternatively: B2625 for PROFIBUS (control word 2.5 from CB) b.d. 17 H029 IQ1Z_01.B17.I Input, raise motorized potentiometer 2 Value: B2622 The input for the raise motorized potentiometer 2 command must be connected with the applicationspecific source. Type: B Default: B2622 (control word 2.2 from CB) b.d. 16 IQ1Z_01.B20.I H030 Input, raise motorized potentiometer 1 Value: B2630 The input for the raise motorized potentiometer 1 command must be connected with the applicationspecific source. Type: B Default: B2630 (control word 2.10 from CB) b.d. 16 IQ1Z_01.B40.I H031 Input, lower motorized potentiometer 2 Value: B2623 The input for the lower motorized potentiometer 2 command must be connected with the applicationspecific source. Type: B Default: B2623 (control word 2.3 from CB) b.d. 16 IQ1Z_01.B30.I H032 Input, lower motorized potentiometer 1 Value: B2631 The input for the lower motorized potentiometer 1 command must be connected with the applicationspecific source. Type: B Default: B2631 (control word 2.11 from CB) b.d. 16 IQ1Z_01.B50.I H033 Input, hold diameter Value: B2615 The input for the hold diameter command must be connected with the application-specific source. Type: 0: no stop for diameter calculation B 1: hold diameter calculator Default: B2615 (control word 2.2 from CB) Alternatively: B2655 for peer-to-peer (control word 1.15 from PTP) b.d. 16 H034 IQ1Z_07.B60.I Ramp-function generator on T400 stop 1 Value: B2629 The input for the set velocity setpoint command must be connected with the applicationspecific source. With high-level the output of the ramp-function generator is hold on actual value. Type: B Default: B2629 (control word 2.9 from CB) b.d. 16 IQ1Z_07.B80.I 100 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H035 Input, winding from below Value: B2633 The input for the winding from below command must be connected with the applicationspecific source. Type: 0: winding from above B 1: winding from below Default: B2633 (control word 2.2 from CB) b.d. 16 IQ1Z_07.B70.I H036 Input, accept setpoint A Value: B2000 The input for the accept setpoint A command must be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output =0) b.d. 16 IQ1Z_07.B90.I H037 Input, accept setpoint B Value: B2000 The input for the accept setpoint B command must be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output =0) b.d. 16 IQ1Z_07.B100.I H038 Input, local inching forwards Value: B2608 The input for the local inching forwards command must be connected with the applicationspecific source. Type: 0: no inching mode B 1: inching forwards Default: B2608 (control word 1.8 from CB) Alternatively: B2648 from peer-to-peer (control word 1.8 from PTP) b.d. 16 IQ1Z_07.B120.I H039 Input, local crawl Value: B2627 The input for the local crawl command must be connected with the applicationspecific source. To stop this mode by using `local stop' (H028). Type: 0: local crawl off B 1: local crawl on Default: B2627 (control word 2.7 from CB) b.d. 16 IQ1Z_07.B110.I H040 Input, local inching backwards Value: B2609 The input for the local inching backwards command must be connected with the applicationspecific source. Type: 0: no inching mode B 1: inching backwards Default: B2609 (control word 1.9 from CB) Alternatively: B2649 for peer-to-peer (control word 1.9 from PTP) b.d. 16 IQ1Z_07.B130.I H041 Input, fault acknoledge Value: B2607 The input for the fault acknowledge must be connected with the application specific source. Type: 0: no acknowledge B 1: acknowledge Default:t: B2607 (control word 1.7 from CB) b.d. 17 IQ1Z_07.B140.I Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 101 Parameters H042 Input, gearbox stage 2 Value: B2000 The input for the changeover to gearbox stage 2 must be connected with the applicationspecific source. Type: 0: gearbox stage 1 B 1: gearbox stage 2 Default: B2000 (constant digital output = 0) b.d. 16 IQ1Z_07.B160.I H043 Input, winder Value: B2000 The input for the winder command must be connected with the applicationspecific source. Type: 0: unwinder B 1: winder Default: B2000 (constant digital output = 0) b.d. 16 IQ1Z_07.B150.I H044 Input, saturation setpoint polarity Value: B2000 The input to changeover the polarity of the saturation setpoint must be connected with the applicationspecific source. Type: 0: keeping the sign of H145 B 1: inverting the sign of H145 Default: B2000 (constant digital output = 0) b.d. 16 IQ1Z_07.B170.I H045 Input, Off1/On Value: B2600 The input for the power-on command for system operation must be connected with the applicationspecific source. Type: 0: `system operatopn' off B 1: `system operation' on Default: B2600 (control word 1.0 from CB) Alternatively: B2640 for peer-to-peer (control word 1.0 from PTP) b.d. 16 IQ1Z_07.B180.I H046 Input, inhibit ramp-function generator on T400 Value: B2604 The input for the inhibit ramp-function generator command must be connected with the applicationspecific source. Type: B 0: enable ramp-function generator on T400 1: inhibit ramp-function generator on T400 Default: B2604 (control word 1.4 from CB) Alternatively: B2644 for peer-to-peer (control word 1.4 from PTP) b.d. 17 IQ1Z_07.B201.I H047 Input, No Off2 Value: B2001 The input for the Off2 command must be connected with the applicationspecific source. This command is also effective from every other source; it is low active. Type: 0: Off2 active B 1: No Off2 Default: B2001 (constant digital output) b.d. 17 IQ1Z_07.B190.I 102 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H048 Input, No Off3 Value: B2001 The input for the Off3 (fast stop) command must be connected with the application-specific source. This command is also effective from every other source; it is low active. Type: 0: Off3 active B 1: No Off3 Default: B2001 (constant digital output) b.d. 17 H049 IQ1Z_07.B200.I Ramp-function generator on T400 Stop 2 Value: B2605 The input for the ramp-function generator stop must be connected with the applicationspecific source. With high-level the output of the ramp-function generator is hold on actual value. Type: B Default: B2605 (control word 1.5 from CB) Alternatively: B2645 for peer-to-peer (control word 1.5 from PTP) b.d. 17 H050 IQ1Z_07.B202.I Input, enable setpoint Value: B2606 The input for the enable web velocity setpoint must be connected with the applicationspecific source. Type: 0: inhibit setpoint B 1: enable setpoint Default: B2606 (control word 1.6 from CB) Alternatively: B2646 for peer-to-peer (control word 1.6 from PTP) b.d. 17 IQ1Z_07.B203.I H051 Input, standstill tension on Value: B2613 The input to switch-in the standstill tension must be connected with the application-specific source. Type: 0: standstill tension off B 1: standstill tension on Default: B2613 (control word 1.13 from CB) Alternatively: B2653 for peer-to-peer (control word 1.13 from PTP) b.d. 17 IQ1Z_07.B204.I H052 Input, local run Value: B2626 The input to power-up with a local setpoint must be connected with the application-specific source. To stop this mode by using `local stop' (H028). Type: 0: no local run B 1: in `local run' mode Default: B2626 (control word 2.6 from CB) b.d. 17 IQ1Z_07.B205.I H053 Input, reset length computer Value: B2632 Input to reset the web length computer must be connected with the applicationspecific source. Type: B Adaptation, analog input 1 Value: 1.0 Adaptation factor for analog input 1, terminals 90/91, input range 10V, corresponds to 1.0. Min: -2.0 Default: B2632 (control word 2.12 from CB) b.d. 17 IQ1Z_07.B206.I H054 b.d. 10 IF_CU.AI10A.X1 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Max: 2.0 Type: R 103 Parameters H055 b.d. 10 H056 b.d. 10 H057 b.d. 10 H058 b.d. 10 H059 b.d. 10 H060 b.d. 10 H061 b.d. 10 H062 b.d. 10 H063 b.d. 10 H064 Offset, analog input 1 Value: 0.0 Offset for analog input 1, terminals 90/91, the offset is subtracted after the adaptation. Min: -2.0 Max: 2.0 Type: R Adaptation, analog input 2 Value: 1.0 Adaptation factor for analog input 2, terminals 92/93, input range 10V, corresponds to 1.0. Min: -2.0 IF_CU.AI10.OFF Max: 2.0 Type: R Offset, analog input 2 Value: 0.0 Offset for analog input 2, terminals 92/93, the offset is substracted after adaptation. Min: -2.0 IF_CU.AI25A.X1 Max: 2.0 Type: R Adaptation, analog input 3 Value: 1.0 Adaptation factor for analog input 3, terminals 94/99 input range 10V, corresponds to 1.0. Min: -2.0 IF_CU.AI25.OFF Max: 2.0 Type: R Offset, analog input 3 Value: 0.0 Offset for analog input 3, terminals 94/99, the offset is substracted after adaptation. Min: -2.0 IF_CU.AI40A.X1 Max: 2.0 Type: R Adaptation, analog input 4 Value: 1.0 Adaptation factor for analog input 4, terminals 95/99, input range 10V, corresponds to 1.0. Min: -2.0 IF_CU.AI40.OFF Max: 2.0 Type: R Offset, analog input 4 Value: 0.0 Offset for analog input 4, terminals 95/99, the offset is substracted after adaptation. Min: -2.0 IF_CU.AI55A.X1 Max: 2.0 Type: R Adaptation, analog input 5 Value: 1.0 Adaptation factor for analog input 5, terminals 96/99, input range 10V, corresponds to 1.0. Min: -2.0 IF_CU.AI55.OFF Max: 2.0 Type: R Offset, analog input 5 Value: 0.0 Offset for analog input 5, terminals 96/99, the offset is substracted after adaptation. Min: -2.0 IF_CU.AI70A.X1 IF_CU.AI70.OFF Max: 2.0 Type: R Source for Conversion R->N2 Value: KR0000 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 4 for PtP Default: KR0000 (constant output Y=0.0) b.d. 2/14 IF_PEER.Istwert_W4 .X 104 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H065 Actual word W5, PtP Value: KR0000 Input must be connected with the application-specific source. Type: R Type: R Type: R Fixed value, velocity setpoint Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Standard setting is the transmitted word 5 for PtP Default: KR0000 (constant output Y=0.0) b.d. 2/14 IF_PEER.Istwert_W5 .X d066 Setpoint W4 (PtP) Receive word 4 from the peer-to-peer protocol (KR0066) can be connected with the applicationspecific destination. b.d. 2/14 IF_PEER.Sollwert_W4 .Y d067 Setpoint W5 (PtP) Receive word 5 from peer-to-peer protocol (KR0067) can be connected with the applicationspecific destination. b.d. 2 IF_PEER.Sollwert_W5 .Y H068 Max: 2.0 R b.d. 11 IQ1Z_01.AI200A.X Type: H069 Input, velocity setpoint Value: The input for the velocity setpoint must be connected with the applicationspecific Type: source. KR0068 R Default: KR0068 (output from H068, fixed value) b.d. 11 IQ1Z_01.AI200.X H070 Fixed value, web velocity compensation Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Max: 2.0 b.d. 11 IQ1Z_01.AI210A.X Type: R H071 Input, web velocity compensation Value: KR0070 The input for the compensation setpoint must be connected with the applicationspecific source. Type: R Fixed value supplementary velocity setpoint Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Max: 2.0 b.d. 11 IQ1Z_01.AI220A.X Type: R H073 Input, supplementary velocity setpoint Value: KR0072 The input for the supplementary velocity setpoint must be connected with the applicationspecific source. Type: R Fixed value setpoint, local operation Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0068 (output from H070, fixed value) b.d. 11 IQ1Z_01.AI210.X H072 Default: KR0072 (output from H072, fixed value) b.d. 11 IQ1Z_01.AI220.X H074 b.d. 11 IQ1Z_01.AI230A.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Max: 2.0 Type: R 105 Parameters H075 Input, setpoint local operation Value: The input for the setpoint in local operation must be connected with the application-specific source. Type: KR0074 R Fixed value, external dv/dt Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Max: 2.0 Default: KR0074 (output from H074, fixed value) b.d. 11 IQ1Z_01.AI230.X H076 b.d. 11 IQ1Z_01.AI240A.X Type: H077 Input, external dv/dt Value: Input for the external acceleration value must be connected with the applicationspecific source. Type: R Fixed value web width Value: 1.0 Enters a fixed value as technology parameter. Min: -2.0 R KR0076 Default: KR0076 (output from H076, fixed value) b.d. 11 IQ1Z_01.AI240.X H078 Max: 2.0 R b.d. 11 IQ1Z_01.AI250A.X Type: H079 Input, web width Value: KR0078 The input for the web width must be connected with the applicationspecific source. Type: R Fixed value tension setpoint Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0078 (output from H078, fixed value) b.d. 11 IQ1Z_01.AI250.X H080 Max: 2.0 b.d. 12 IQ1Z_01.AI260A.X Type: R H081 Input, tension setpoint Value: KR0080 The input for the tension/position reference value must be connected with the applicationspecific source. Type: R Fixed value supplementary tension setpoint Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0080 (output from H080, fixed value) b.d. 12 IQ1Z_01.AI260.X H082 Max: 2.0 R b.d. 12 IQ1Z_01.AI270A.X Type: H083 Input, supplementary tension setpoint Value: KR0082 The input for the tension/supplementary position reference value must be connected with the applicationspecific source. Type: R Fixed value tension actual value Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0082 (output from H082, fixed value) b.d. 12 IQ1Z_01.AI270.X H084 b.d. 12 106 IQ1Z_01.AI280A.X Max: 2.0 Type: R Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H085 Input, tension actual value Value: KR0322 The input for the tension/position actual value must be connected with the applicationspecific source. Type: R Fixed value maximum tension reduction Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0322 (analog input 3, smoothed, terminals 94/99) Alternative: KR0084 (fixed value, tension actual value) b.d. 12 IQ1Z_01.AI280.X H086 Max: 2.0 b.d. 12 IQ1Z_01.AI290A.X Type: R H087 Input, maximum tension reduction Value: KR0086 The input for the tension/supplementary position reference value must be connected with the applicationspecific source. Type: R Fixed value diameter setting value Value: 0.1 Enters a fixed value as technology parameter. Min: -2.0 Max: 2.0 R Default: KR0086 (output from H086, fixed value) b.d. 12 IQ1Z_01.AI290.X H088 b.d. 12 IQ1Z_01.AI300A.X Type: H089 Input, diameter setting value Value: KR0088 The input for the diameter setting value must be connected with the applicationspecific source. Type: R Fixed value positioning setpoint Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0088 (output from H088, fixed value) Alternatively: * KR0222 (output from H222, core diameter) b.d. 12 IQ1Z_01.AI300.X H090 Max: 2.0 b.d. 12 IQ1Z_01.AI310A.X Type: R H091 Input, positioning setpoint Value: KR0090 The input for the setpoint for the local positioning mode must be connected with the applicationspecific source. Type: R Default: KR0090 (output from H090, fixed value) b.d. 12 IQ1Z_01.AI310.X H092 Input, speed actual value Value: KR0550 The input for the speed actual value must be connected with the applicationspecific source. Type: R Default: KR0550 (n_act from CU) b.d. 13 IQ1Z_01.AI320.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 107 Parameters H093 Input, velocity actual value connection tachometer Value: KR0401 The input for a connection tachometer velocity actual value must be connected with the applicationspecific source. This input can be active with the bit selected using H013 and can be effective for the diameter computation instead of the value selected from H094. Type: R Default: KR0401 (output from H401, fixed value) b.d. 13 IQ1Z_01.AI329.X H094 Input, external web velocity actual value Value: KR0402 The input for an external web velocity actual value must be activated with H211=1. The input must be connected with the applicationspecific source. Type: R Fixed value setpoint A Value: 0.0 Enters a fixed value as technology parameter. Min: -2.0 Default: KR0402 (output from H402, fixed value) b.d. 13 IQ1Z_01.AI330.X H095 Max: 2.0 R b.d. 13 IQ1Z_01.AI340A.X Type: H096 Input, setpoint A Value: KR0095 The input for setpoint A must be connected with the applicationspecific source. Type: R Default: KR0095 (output from H095, fixed value) b.d. 13 IQ1Z_01.AI340.X H097 Input, pressure actual value, dancer roll Value: KR0324 The input for the measured value from the dancer roll can be connected with the applicationspecific source. Type: R Default: KR0324 (analog input 5) b.d. 13 TENSZ_07.T1937.X2 H098 Analog output 2 (diameter actual value), terminals 98/99 Value: KR0310 Analog output 2 can be connected with the applicationspecific source. Type: R Default: KR0310 (actual diameter) b.d. 10 IF_CU.AQ80.X H099 Analog output 2, offset Value: 0.0 Offset analog output 2, terminals 97/99 = diameter actual value. The parameter value is subtracted. Min: -2.0 Max: 2.0 Type: R b.d. 10 H100 IF_CU.AQ80.OFF Analog output 2, normalization Value: 1.0 Gain after subtracting the offset, 1.0 corresponds to 10V Min: 0.0 Max: 1.0 b.d. 10 IF_CU.AQ80A.X1 Type: R H101 Analog output 1, offset Value: 0.0 Offset analog output 3, terminals 98/99. The parameter value is subtracted. Min: -2.0 Max: 2.0 IF_CU.AQ110.OFF Type: R Analog output 1, normalization Value: 1.0 Gain after subtracting the offset, 1.0 corresponds to 10V Min: 0.0 . Max: 1.0 IF_CU.AQ110A.X1 Type: R b.d. 10 H102 b.d. 10 108 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H103 Analog output 1 (torque setpoint), terminals 97/99 Value: Analog output 1 can be connected with the applicationspecific source. Type: KR0329 R Default: KR0329 (torque setpoint) b.d. 10 IF_CU.AQ110.X H107 Input value for limit value monitor 1 (GWM 1) Value: KR0307 The input of the input signal for limit value monitor 1 can be connected with the applicationspecific source. Type: R Default: KR0307 (speed actual value) b.d. 10 IQ2Z_01.G10.X H108 Input, comparison value GWM 1 Value: KR0303 The input of the comparison value for limit value monitor 1 can be connected with the applicationspecific source. Type: R Default: KR0303 (speed setpoint) b.d. 10 IQ2Z_01.G70.X H109 Adaptation, input value GWM 1 Value: Adapts the input signal for limit value monitor 1. 1 = no adaptation 2 = absolute value generation 3 = sign reversal Min: 1 1 Max: 3 Type: I b.d. 10 IQ2Z_01.G40.XCS H110 Smoothing, input value GWM 1 Value: 500.0 Smoothes the input signal for limit value monitor 1. Min: 0.0 Unit: ms b.d. 10 IQ2Z_01.G60.T Type: R H111 Adaptation, comparison value GWM 1 Value: Adapts the comparison value for limit value monitor 1: 1 = no adaptation 2 = absolute value generation 3 = sign reversal Min: 1 Max: 3 Type: 1 I b.d. 10 IQ2Z_01.G100.XCS H112 Interval limit GWM 1 Value: 0.0 Enters the interval limits for the limit value monitor 1. Min: 0.0 Max: 1.0 b.d. 10 IQ2Z_01.G110.L Type: R H113 Hysteresis, GWM 1 Value: Enters the hysteresis for limit value monitor 1. Min: b.d. 10 IQ2Z_01.G110.HY Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 0.0 0.0 Max: 1.0 Type: R 109 Parameters H114 Output signal from GWM 1 (terminal 52) Value:B2403 The output signal for limit value monitor 1 can be connected with: Type: * KR0403 = input value > comparison value * KR0404 = input value < comparison value * KR0405 = input value = comparison value * KR0406 = input value comparison value * KR0411 = length setpoint reached B Default: KR0403 (input signal> comparison value ) b.d. 10 IQ2Z_01.G130.I H115 Input, input value for limit value monitor 2 (GWM 2) Value: KR0311 The selection of the input signal for limit value monitor 2 can be connected with the applicationspecific source. Type: R Default: KR0311 (tension actual value smoothed) b.d. 10 IQ2Z_01.G200.X H116 Input, comparison value GWM 2 Value: KR0304 The selection of the comparison value for limit value monitor 2 can be connected with the applicationspecific source. Type: R Default: KR0304 (sum, tension/position reference value) b.d. 10 IQ2Z_01.G270.X H117 Adaptation, input value GWM 2 Value: Adapts the input signal for limit value monitor 2: 1 = no adaptation 2 = absolute value generation 3 = sign reversal Min: 1 1 Max: 3 Type: I b.d. 10 IQ2Z_01.G240.XCS H118 Smoothing, input value GWM 2 Value: 500.0 Smoothes the input signal for limit value monitor 2. Min: 0.0 Unit: ms R b.d. 10 IQ2Z_01.G260.T Type: H119 Adaptation, comparison value GWM 2 Value: Adapts the comparison value for limit value monitor 2: 1 = no adaptation 2 = absolute value generation 3 = sign reversal Min: 1 Max: 3 1 Type: I b.d. 10 IQ2Z_01.G300.XCS H120 Interval limit, GWM 2 Value: 0.0 Enters the interval limits for the limit value monitor 2. Min: 0.0 Max: 1.0 b.d. 10 IQ2Z_01.G310.L Type: R H121 Hysteresis Value: 0.0 Enters the hysteresis for limit value monitor 2. Min: b.d. 10 110 IQ2Z_01.G310.HY 0.0 Max: 1.0 Type: R Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H122 Select output signal from limit value monitor 2 Value: The output signal for limit value monitor 2 can be connected with the application- Type: specific source: * KR0407 = input value > comparison value * KR0408 = input value < comparison value * KR0409 = input value = comparison value * KR0410 = input value comparison value * KR0411 = length setpoint reached B2407 B Default: KR0407 (input signal > comparison value ) b.d. 10 IQ2Z_01.G330.I H124 Rated velocity Value: 0.0 Rated web-velocity in [m/min] Unit: m/min This velocity corresponds to 100% of velocity setpoint Type: b.d. 13 DIAMZ_07.W55.X1 H125 Overspeed, positive limit Value: 1.20 Upper limit, speed actual value as a % of the rated speed fault signal and -trip at Min: nact > H125 Max: Prerequisite: The fault is not suppressed. Type: b.d. 20 H126 R 0.0 2.0 R CONTZ_01.SU010.LU Overspeed,-negative limit Value: -1.20 Lower limit speed actual value as a % of the rated speed fault signal and -trip at nact < H126 Min: -2.0 Max: 0.0 Prerequisite: The fault is not suppressed. Type: R b.d. 20 CONTZ_01.SU010.LL H127 Fixed value ratio, gearbox stage 2 Value: 1.0 Ratio between gearbox stages 1 and 2 as a % e.g. gearbox stage 1 = 5:1; gearbox stage 2 = 7:1 H127 = Stage1 / stage2 = 5 / 7 = 71.428% = 0.714 Type: R b.d. 11 IQ1Z_01.A350.X H128 Fixed value, friction torque adaptation factor on gearbox 2 Value: 1.0 Adaptation factor for the friction torque characteristic, gearbox stage 2 should be Type: adapted for the friction characteristic measurement, for the same points in gearbox stage 1 (if available). b.d. 11 H129 R IQ1Z_01.A360.X Input, alternative On command Value: B2000 The command selection to power-on the equipment can be connected with the applicationspecific source. Generally, this is the availability of a specific operating mode. However, one of the digital select inputs can be used. Type: B Default: B2000 (constant digital output Y=0) b.d. 18 H130 b.d. 5 IQ1Z_01.SELMX.I Setpoint B Value: The fixed value as velocity setpoint is entered with the control signal, accept setpoint B in front of the ramp-function generator. Min: -2.0 Max: 2.0 Type: R SREFZ_01.S25.X2 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 0.0 111 Parameters H131 Upper limit Value: Maximum limit for the central ramp-function generator Min: 0.0 1.10 Max: 2.0 b.d. 5 SREFZ_01.S50.LU Type: R H132 Lower limit Value: -1.1 Minimum limit for the central ramp-function generator Min: -2.0 Max: 1.0 b.d. 5 SREFZ_01.S50.LL Type: R H133 Ramp-up time Value: 30000.0 For the central velocity ramp-function generator. Unit: ms Type: R b.d. 5 SREFZ_01.S50.TU H134 Ramp-down time Value: 30000.0 For the central velocity ramp-function generator. Unit: ms Type: R b.d. 5 SREFZ_01.S50.TD H135 Rounding-off at acceleration Value: 3000.0 For the central velocity ramp-function generator. Unit: ms Type: R b.d. 5 SREFZ_01.S50.TRU H136 Rounding-off at deceleration Value: 3000.0 For the central velocity ramp-function generator. Unit: ms Type: R b.d. 5 SREFZ_01.S50.TRD H137 Normalization, web velocity compensation Value: Normalization factor for the influence of the compensation signal. Min: -2.0 1.0 Max: 2.0 b.d. 5 SREFZ_01.S120.X2 Type: R H138 Input, ratio, gearbox stage 2 Value: KR0127 The input for the ratio, gearbox stage 2 can be connected with an applicationspecific source. Min: -2.0 Max: 2.0 Default: KR0127 (output of H127, fixed value) Type: R Normalization, web velocity Value: 1.0 Normalization factor for the web velocity setpoint. Min: -2.0 Max: 2.0 b.d. 11 SREFZ_01.S140.X2 H139 b.d. 5 SREFZ_01.S150.X1 Type: R H140 Normalization, acceleration Value: 1.0 Normalization factor for acceleration (dv/dt) calculated by the central rampfunction generator (b.d. 5). Type: R A value should be set at H140 which, for the actual dv/dt (d302) for the set ramp-up time (H133), should then supply 1.0. This means, H140 * b = 1.0 if external dv/dt selected: H226=1 and H077 = KR0140 b.d. 11 SREFZ_01.S51.X2 112 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H141 b.d. 5 H142 Influence, tension control Value: Normalization factor for the influence of the web velocity setpoint by the tension control for closed-loop speed correction control. (H203 = 3.0, 5.0) Min: -2.0 Max: 2.0 Type: R Setpoint, local crawl Value: 0.1 Setpoint for the local crawl operating mode. Min: -2.0 Max: 2.0 R SREFZ_01.S200.X2 1.0 b.d. 5 SREFZ_01.S300.X2 Type: H143 Setpoint, local inching forwards Value: Setpoint for the local inching backwards operating mode. Min: -2.0 Max: 2.0 0.05 b.d. 5 SREFZ_01.S310.X2 Type: R H144 Setpoint, local inching backwards Value: -0.05 Setpoint for the local inching backwards operating mode. Min: -2.0 Max: 2.0 R b.d. 5 SREFZ_01.S320.X2 Type: H145 Saturation setpoint Value: Supplementary setpoint for the velocity setpoint for the closed-loop torque limiting control to take the speed controller to its limit (saturation). Min: -2.0 Max: 2.0 Only set H145 for the closed-loop torque limiting control (H203=0.0, 1.0, 2.0) Type: R 0.10 For an winder this value must be positiv- for an unwinder this value must be negativ. b.d. 5 SREFZ_01.S360.X H146 Closed-loop speed control for local operation Value: 0 0 1 Type: B Torque limit for closed-loop speed control Value: 0.20 Enters the limits for the speed controller in local operation and for closed-loop speed correction control. Min: -2.0 Max: 2.0 Type: R b.d. 5 H147 = = velocity controlled local operation speed controlled local operation SREFZ_01.NC112.I2 b.d. 6 SREFZ_07.C56.X H148 Time for reverse winding after a splice Value: 10000.0 This is the time which the drive should wind in reverse after the splice to take-up material web. Unit: ms Type: R b.d. 21 CONTZ_07.SL70.T H149 Speed setpoint, reverse winding after the splice Value: The setpoint to establish the web after the splice with negative polarity (sign) Min: -2.0 0.0 Max: 2.0 b.d. 6 SREFZ_07.RW100.X Type: R H150 Start of adaptation Value: 0.0 The speed controller gain is adapted to the variable moment of inertia; the intervention of Kp adaptation is defined using H150. Min. Max: 1.0 Note: Parameterization only if the speed controller is operational on the T400, i.e. H282 = 1. Type: R b.d. 6a 0.0 SREFZ_07.NC035.A1 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 113 Parameters H151 b.d. 6a Kp adaptation min. Value: 0.1 Gain for the speed controller on the T400 at the start of adaptation. Type: R End of adaptation Value: 1.0 End point of Kp adaptation for the speed controller. Min: Note: Parameterization only if the speed controller is operational on the T400, i.e. H282 = 1. Max: 1.0 Type: R Kp adaptation max. Value: 0.1 Gain of the speed controller on the T400 at the end of adaptation, i.e. when the maximum moment of inertia occurs. This setting must be determined at start-up using speed controller optimization runs with the roll as full as possible. . Type: R Slave drive Value: 0 Disables the central ramp-function generator for the velocity setpoint if the winder operates as a slave drive, and the setpoint is already available as rampfunction generator output. 0 = ramp-function generator effective 1 = ramp-function generator not effective Type: B Note: Parameterization only if the speed controller is operational on the T400, i.e. H282 = 1. SREFZ_07.NC035.B1 H152 b.d. 6a 0.0 SREFZ_07.NC035.A2 H153 b.d. 6a Note: Parameterization only if the speed controller is operational on the T400, i.e. H282 = 1. SREFZ_07.NC035.B2 H154 b.d. 5 H155 b.d. 5 H156 SREFZ_01.S47.I Smoothing, web velocity setpoint Value: 8.0 Smoothes the setpoint if the ramp-function generator is switched-through with H154=1. Unit: ms Type: R No web speed limiting Value: 0 The limiting of web speed provides an automatic protection to web sag, only for winding methodes H203 2,0. Type: I Limit value for standstill identification Value: 0.01 Threshold for the standstill identification; 25% of the threshold is used as hysteresis. The speed- or velocity actual value are used for the signal, depending on H146. Min: -2.0 Max: 2.0 Type: R SREFZ_01.S10.T 0: with web speed limiting 1: no web speed limiting b.d. 5 SREFZ_01.GB2a.I H157 b.d. 6 SREFZ_07.S810.X H158 Hysteresis for min. speed, diameter computor Value: 0.001 Hysteresis for minimal speed of diameter calculation (H221) Type: R b.d. 9a DIAMZ_01.D1026.X H159 Delay, standstill identification Value: Delay time for the standstill signal. Unit: Type: b.d. 6 0.0 ms R SREFZ_07.S840.T 114 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H160 Erase EEROM Value: 0 A positive edge at H160 deletes the EEPROM, and therefore re-establishes the initialization status for all of the parameters. The key parameter H250 must be set to 165. Note, observe 7.1.2! Type: B b.d. 4 CONTZ_01.URLAD.ERA H161 b.d. 5 H162 Ramp-up/ramp-down time, override ramp-function generator Value: 20000.0 Ramp times for the local ramp-function generator; it is set to the corresponding actual value at each operating mode change, when operation is enabled and when the winding direction changes. Unit: ms Type: R SREFZ_07.S457.X Smoothing, speed controller output Value: 500.0 Smoothing for display parameter d331, smoothed torque setpoint . Unit: ms Type: R Select, positioning setpoint Value: 0 Selects from either x2 or x3 characteristic for the positioning reference value. 0 = x2 characteristic 1 = x3 characteristic Type: B b.d. 6a SREFZ_07.NT130.T H163 b.d. 12 SREFZ_01.S328.I H164 Smoothing, saturation setpoint Value: Smoothing time for the saturation setpoint. Unit: ms Type: R Smoothing, speed actual value Value: 20.0 Smoothing time, speed actual value for the diameter computer, compensation torques and monitoring functions Unit: ms Type: R Enable, addition of local setpoints Value: 0 H166 =1 allows a local setpoint to be added in system operation. When a local operated mode is selected, then only the appropriate local setpoint is switchedthrough. This is added to the velocity setpoint; the override ramp-function generator is in this case effective. 0 = addition inhibited 1 = addition released Type: B Density correction limiting Value: 0.0 This is the value by which the density correction factor can deviate from a maximum of 1.0. Min: 0.0 Max: 0.70 Type: R b.d. 5 8.0 SREFZ_01.S395.T H165 b.d. 13 H166 b.d. 5 H167 IQIZ_01.AI325.T CONTZ_01.C22.I3 b.d. 9b DIAMZ_07.DC1000.X H168 b.d. 9b Integrating time, density correction Value: 200000 The time where the correction factor for the material density changes by 1.0, if the tension controller output and acceleration actual value are 1.0. This should be a minimum of 10x greater than the tension controller integral action time. Unit: Type: ms R DIAMZ_07.DC70.TI Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 115 Parameters H169 Knife in the cutting position Value: B2000 The input for the knife in cutting position command must be connected with the applicationspecific source. Type: B 0: Knife not in the cutting position 1: Knife in the cutting position Default: B2000 (constant digital output 0) b.d. 17 IQ1Z_01.B52.I H170 Partner drive is in tension control Value: B2000 Input for the `Partner drive is in tension control` command must be connected with the applicationspecific source. Type: B 0: Partner drive is not in tention control 1: Partner drive is in tention control Default: B2000 (constant digital output 0) b.d. 17 IQ1Z_01.B53.I H171 Source Kp-adaption of tension controller Value: KR0308 b.d. 8 TENSZ_01.T1770.C H172 Smoothing, tension actual value Value: Time constant for the actual value smoothing. Unit: ms Type: R Type: b.d. 7 R 150.0 TENSZ_01.T641.T H173 b.d. 8 Differentiating time constant Value: Sets the D component of the tension controller, if H174 = 0, refer to Chapter 3.4.3.2. Unit: ms 800.0 Type: R Inhibit D controller Value: 1 Generally, the addition of the D component for tension control is only used for closed-loop dancer roll position controls, otherwise the D component remains inhibited. 0 = D controller enabled for dancer rolls Type: B Note: Only used for closed-loop dancer roll position controls. TENSZ_01.T1796.TD H174 1 = D controller inhibited b.d. 8 TENSZ_01.T643.I H175 Ramp-up time, tension setpoint Value: 10000.0 Ramp-up time for the main tension/position reference value. Unit: ms Type: R b.d. 7 TENSZ_01.T1350.TU H176 Ramp-down time, tension setpoint Value: 10000.0 Ramp-down time for the main tension/position reference value. Unit: ms Type: R Value: 0 b.d. 7 TENSZ_01.T1350.TD H177 Inhibit tension setpoint Type: When the winding hardness characteristic is used for dancer roll support, the tension setpoint must be disconnected. In this case, the position reference value is entered via the supplementary tension setpoint. 0 = normal operation 1 = tension setpoint inhibited b.d. 8 116 B TENSZ_01.T1485.I Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H178 b.d. 7 Response at web break Value: 0 0 = none, only the message/signal is displayed 1 = closed-loop tension control is switched-out, and the diameter computer is inhibited Type: B TENSZ_07.T2110.I2 H179 Enable tension offset compensation Value: 0 Type: B b.d. 7 The hold diameter control signal can be used, when the tension control is switched-out, to automatically adjust an offset of the tension actual value sensing. 0 = adjustment inhibited 1 = adjustment enabled Tension reduction 1 Value: 1.0 Tension reduction 1 for diameter D1 as a % of the maximum tension reduction. Min: TENSZ_01.T603.I4 H180 0.0 Max: 1.0 R b.d. 7 TENSZ_01.T1435.X2 Type: H181 Tension reduction 2 Value: Tension reduction 2 for diameter D2 as a % of the maximum tension reduction. Min: 0.0 Max: 1.0 1.0 b.d. 7 TENSZ_01.T1445.X2 Type: R H182 Tension reduction 3 Value: 1.0 Tension reduction 3 for diameter D3 as a % of the maximum tension reduction. Min: 0.0 Max: 1.0 R b.d. 7 TENSZ_01.T1455.X2 Type: H183 Diameter, start of tension reduction Value: 1.0 Diameter for the start of tension reduction. Min: 0.0 Max: 1.0 b.d. 7 TENSZ_01.T1470.A1 Type: R H184 Diameter D1 Value: Diameter D1 for tension reduction 1. Min: 0.0 Max: 1.0 R 1.0 b.d. 7 TENSZ_01.T1470.A2 Type: H185 Diameter D2 Value: Diameter D2 for tension reduction 2. Min: 0.0 1.0 Max: 1.0 b.d. 7 TENSZ_01.T1470.A3 Type: R H186 Diameter D3 Value: Diameter D2 for tension reduction 3. Min: 0.0 Max: 1.0 1.0 b.d. 7 TENSZ_01.T1470.A4 Type: R H187 Diameter D4, end of tension reduction Value: 1.0 Diameter D4 for the end of tension reduction. Min: b.d. 7 TENSZ_01.T1466.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 0.0 Max: 1.0 Type: R 117 Parameters H188 Input, standstill tension Value: 0 The standstill tension is either entered as parameter value or is parameterized as part of the tension setpoint. 0 = standstill tension is obtained from H189 * tension setpoint 1 = standstill tension is entered using H189 Type: B b.d. 7 TENSZ_01.T1500.I H189 Standstill tension Value: Enters a fixed value or a multiplication factor for the tension setpoint . Min: -2.0 1.0 Max: 2.0 b.d. 7 TENSZ_01.T1505.X2 Type: R H190 Tension pre-control, dancer roll Value: Factor for the tension pre-control for closed-loop dancer roll control (H203=2.0). Min: -2.0 0.0...2.0: The main tension setpoint before inhibit is multiplied by this Max: 2.0 and is added as supplementary torque to the controller output. Analog input 5 (pressure actual value of the dancer roll) Type: R 0.0...-2.0: 0.0 is multiplied by the absolute value of the factor, and is added as supplementary torque to the controller output. b.d. 8 TENSZ_07.T1936.X H191 Minimum selection Value: 0 Type: B b.d. 7 Using H191=1, a minimum selection between the operating tension and standstill tension is activated, and the lower of the values is used as standstill setpoint. 0 = no minimum evaluation 1 = minimum evaluation activated Smoothing, tension setpoint Value: 300.0 Smoothing time constant for the total setpoint after the additional setpoint is added. Unit: ms Type: R Minimum value, speed-dependent tension controller limits Value: 0.0 Lower limit value for a speed-dependent input of the output limiting of the tension controller. Min: -2.0 Max: 2.0 Type: R Select tension controller limits Value: 2 Setting for the operating mode for the tension controller output limiting: 1 = the tension controller output is limited to (0, H195) 2 = the tension controller output is limited to H195 3 = limiting to (0, H195 * absolute speed actual value) 4 = limiting to H195 * absolute speed actual value Min: 0 Max: 4 TENSZ_01.T1515.I H192 b.d. 8 TENSZ_01.T1525.T H193 b.d. 8 H194 TENSZ_01.T1710.X2 Type: I Adaptation, tension controller limits Value: 1.0 The maximum influence of the tension controller is defined using H195; it acts as multiplying factor for the limits selected using H194. Min: b.d. 8 TENSZ_01.T1715.X H195 b.d. 8 0.0 Max: 2.0 Type: R TENSZ_01.T1745.X 118 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H196 Inhibit I component, tension controller Value: 0 Changeover from PI- to P-Controller Type: B Minimum Kp, tension controller Value: 0.3 Gain at the start of adaptation to the variable moment of inertia, generally for Jv=0.0. Min: 0 1 = = PI controller P controller H196=0 and H283=0 for Closed-loop tension control with load-cell (tension transducer) H196=1 and H283=0 for Dancer roll Caution: The tension controller must be inhibited when changing-over this parameter! b.d. 8 H197 b.d. 8 H198 TENSZ_01.T1790.HI 0.0 Type: R Maximum Kp, tension controller Value: 0.3 Gain at the end of adaptation, normally at Jv=1.0. Min: 0.0 Type: R TENSZ_01.T1770.B1 b.d. 8 TENSZ_01.T1770.B2 H199 Integral action time, tension controller Value: 1000.0 Parameter which influences the I controller (current controller). Unit: ms Type: R Adaptation, setpoint pre-control Value: 0.0 Multiplication factor for the pre-control of the tension control using the tension setpoint. Min: -2.0 Max: 2.0 Type: R Lower limit, web velocity Value: 1.0 Lower limit for the multiplicative influence of the web velocity for control type H203=5.0. Min: -2.0 Max: 2.0 Type: R b.d. 8 TENSZ_01.T1790.TN H200 b.d. 8 H201 TENSZ_07.T1800.X1 b.d. 8 TENSZ_07.T1900.X2 H202 Influence, web velocity Value: Factor with which the web velocity is multiplied for control type H203=5.0. Min: -2.0 1.0 Max: 2.0 b.d. 8 TENSZ_07.T1920.X2 Type: R H203 Selecting the tension control technique Value: 0.0 Selecting the control technique 0.0 = indirect tension control via the torque limits 1.0 = direct tension control with tension transducer via the torque limits 2.0 = direct tension control with dancer roll via the torque limits 3.0 = direct tension control with dancer roll/tension transducer via the speed correction control (closed-loop) 4.0 = reserved for expanded functionality 5.0 = as for 3, tension controller output multiplied by Vset Min: 0.0 Max: 5.0 Type: R b.d. 8 TENSZ_07.T1945.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 119 Parameters H204 Lower limit, web break detection Value: Limit value for the web break detection. For indirect tension control, the torque actual value and for direct tension control, the tension actual value, is compared with this limit; the web break signal is activated when this limit is fallen below. Min: -2.0 0.05 Max: 2.0 Type: R b.d. 7 TENSZ_07.T2015.X2 H205 Delay, web break signal Value: 3000.0 Delay time before the web break signal is activated; this is mainly used to suppress erroneous signals. Unit: ms Type: R Select winding hardness characteristic Value: 0 0 1 Type: B Start of adaptation, tension controller Value: 0.0 Start of Kp adaptation for the tension controller Min: 0.0 Max: 2.0 R b.d. 7 H206 b.d. 7 H207 TENSZ_07.T2100.T = winding hardness characteristic active = winding hardness characteristic inactive TENSZ_01.T1475.I b.d. 8 TENSZ_01.T1770.A1 Type: H208 End of adaptation, tension controller Value: 1.0 End of Kp adaptation for the tension controller Min: 0.0 Max: 2.0 b.d. 8 TENSZ_01.T1770.A2 Type: R H209 Droop, tension controller Value: 0.0 Multiplication factor to parameterize droop with the I component of the tension controller output, if a steady-state deviation is required between Zset and Zact. Min: -2.0 Max: 2.0 Type: R Adjustment, web velocity Value: 1.0 Normalization factor to finely adjust the web velocity actual value. Min: -2.0 Max: 2.0 b.d. 8 H210 TENSZ_01.T1795.X1 b.d. 9a DIAMZ_01.D910.X2 Type: R H211 Select, web tachometer Value: 0 When the web velocity is sensed using a web tachometer, the actual value must be parameterized as source for the diameter computer. 0 = web tachometer not used Type: B 1024 1 = web tachometer used b.d. 9a DIAMZ_01.D1105.I H212 Pulse number, shaft tachometer Value: Specifies the pulses per revolution when using the digital speed actual value sensing on the T400. Caution: Initialization required Unit: Pulse Type: I b.d. 13 H213 IF_CU.D900.PR Pulse number, web tachometer Value: 600 Specifies the number of pulses per revolution when using a web tachometer. Unit: Pulse Type: I b.d. 13 IF_CU.D901.PR 120 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H214 b.d. 13 Rated speed, shaft tachometer Value: Maximum speed 1.0 at the minimum diameter and maximum web velocity. This means H214 = Vmax * 1000 * i / (Dcore * ) whereby V(m/min), Dk (mm) and i=nmotor/nwinder Unit: 1500.0 RPM Type: R Rated speed measuring roll, web tachometer Value: 1000.0 Maximum speed of the measuring roll 1.0 at the maximum web velocity. Unit: RPM Caution: Initialization required Type: R 320.0 Caution: Initialization required IF_CU.D900.RS H215 b.d. 13 IF_CU.D901.RS H216 Computation interval, diameter computer Value: Time for one revolution of the winder at minimum diameter and maximum web velocity, i.e. Unit: ms Type: R H216 = Dcore * * 60 / Vmax (ms) where D(mm) and V(m/min) b.d. 9a Note: The diameter computer operates in the sampling time of T3(16ms). the minimal value of H216 (32ms) will ensure a correct calculation of diameter. H217 Selecting the shaft tachometer operating mode Value: 16#7FC2 Using this parameter, the operating mode of the speed sensing block for the winder drive is selected, especially the digital filter, the encoder type and the coarse signal type selection as well as the source of the encoder pulses. Only the factory selected operating mode is described from all of the possible operating modes in the following text. For more detailed explanation, refer to Lit. [1], function block NAV, connection MOD. Type: DIAMZ_01.D1140.X W - - - X: last digit = 2: Digital filter with time constant/limiting frequency 500 ms / 2 MHz Encoder type : Pulse encoder with 2 tracks displaced through 90 degrees - - X -: last but one digit = C: Setting mode S=0 : Set YP to SV Zero- and incremental pulses from the base drive via backplane bus to the T400 b.d. 13 XX - -:the two highest digits = 7F: Corrects the standstill limit by 127 pulses Caution: Initialization required IF_CU.D900.MOD Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 121 Parameters H218 Select operating mode, web tachometer Value: 16#7F02 For this software package, the only difference between H217 and H218 is at the last but one digit (refer below). Type: W Using this parameter, the operating mode of the speed sensing block for the web tachometer is set, especially the digital filter, the encoder type and the coarse signal type selection as well as the source of the encoder pulses. Only the factory selected operating mode is described from all of the possible operating modes in the following text. For more detailed explanation, refer to Lit. [1], function block NAV, connection MOD. - - - X: last digit = 2: Digital filter with time constant/limiting frequency 500 ms / 2 MHz Encoder type : Pulse encoder with 2 tracks displacing through 90 degrees - - X -: last but one digit = 0: Zero- and incremental pulses from terminal, encoder 2 of the T400 Setting mode S=0 : Set YP to SV XX - -: the two highest digits = 7F: Corrects the standstill limit by 127 pulses Caution: Initialization required b.d. 13 IF_CU.D901.MOD H220 Scaling, dv/dt Value: Normalization factor for the dv/dt signal. Unit: ms 1000.0 The shortest ramp time (e.g. ramp-down time for a fast stop) should be set at H220, where the result of the dv/dt calculation should be 1.0. Type: R Minimum speed, diameter computer Value: 0.01 When the limit value is fallen below, the diameter computation is inhibited. Min: -2.0 Max: 2.0 This means, H220 = ramp time Other inaccuracies can be compensated using H225 (fine adjustment). For inertia compensation, generally a dv/dt signal, normalized to10.0, is sufficient and parameters H227 and H228 must then be increased by a factor of 10. In this case, the tenth part of the ramp time can be entered at H220 which significantly improves the resolution. b.d. 9b H221 DIAMZ_01.P148.X2 b.d. 9a DIAMZ_01.D1030.M Type: R H222 Core diameter Value: 0.2 Diameter of the mandrel as a % of the maximum diameter. Min: 0.0 Max: 1.0 b.d. 9a/12 DIAMZ_01.P100.X Type: R H223 Smoothing, setpoint for dv/dt computation Value: Smoothing for display parameter d331. Unit: ms Type: R b.d. 9b 32.0 DIAMZ_01.P142.T H224 Material density Value: KR0279 Input must be connected with the application-specific source. Type: R Default: KR0279 (output from H279, fixed value) b.d. 9b DIAMZ_07.P295.X1 122 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H225 Fine adjustment, dv/dt Value: If the normalization factor H220 for the dv/dt signal is not be able to be precisely set as a result of longer ramp-up times, this inaccuracy is compensated with the fine adjustment. For example, with a 50s up-ramp, possible setting at H220 = 52.42s with Min: 1.0 0.0 Max: 2.0 Type: R H225=50s * 100% / H220 = 95.38% the dv/dt output is 100% for a 50s ramp. b.d. 9b DIAMZ_01.P500.X2 H226 Input, dv/dt Value: 0 0 1 Type: B Variable moment of inertia Value: 0.0 Adjustment factor to compensate the variable moment of inertia when accelerating. Min: 0.0 Max: 2.0 Type: R = the internally computed value is used =the external value is used b.d. 9b DIAMZ_01.P160.I H227 b.d. 9b DIAMZ_01.P332.X1 H228 Constant moment of inertia Value: Enters the computed moment of inertia for the motor, gearbox and mandrel. Min: 0.0 0.0 Max: 2.0 b.d. 9b DIAMZ_01.P340.X1 Type: R H229 Input, friction torque adaptation factor, gearbox stage 2 Value: KR0128 Input for the friction torque adaptation factor, gearbox 2 must be connected with the applicationspecific source. Type: R Default: KR0128 (fixed value adaptation factor) b.d. 11 DIAMZ_07.P915.X2 H230 Friction torque, point 1 Value: Absolute torque setpoint (d331) for friction torque characteristic at speed point 1. Min: Caution: If not all of the 10 points are required, then the rest points must be Max: assigned with the same values as the last required point. Type: b.d. 9b H231 b.d. 9b H232 0.0 0.0 2.0 R DIAMZ_07.P910.B1 Friction torque, point 2 Value: Absolute torque setpoint (d331) at speed point 2. Min: 0.0 0.0 Max: 2.0 DIAMZ_07.P910.B2 Type: R Friction torque, point 3 Value: 0.0 Absolute torque setpoint (d331) at speed point 3. Min: 0.0 Max: 2.0 R b.d. 9b DIAMZ_07.P910.B3 Type: H233 Friction torque, point 4 Value: Absolute torque setpoint (d331) at speed point 4. Min: 0.0 0.0 Max: 2.0 b.d. 9b DIAMZ_07.P910.B4 Type: R H234 Friction torque, point 5 Value: 0.0 Absolute torque setpoint (d331) at speed point 5. Min: 0.0 Max: 2.0 Type: R b.d. 9b DIAMZ_07.P910.B5 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 123 Parameters H235 Friction torque, point 6 Value: Absolute torque setpoint (d331) at speed point 6. Min: 0.0 0.0 Max: 2.0 b.d. 9b DIAMZ_07.P910.B6 Type: R H236 Diameter change, monotone Value: 0 For H236=1, only monotone diameter changes are permitted. The diameter for winders can only increase, for unwinders, only decrease. 0 = standard operation 1 = only monotone changes permitted Type: B Pre-control with n2 Value: 0.0 Compensation with the square of the speed actual value; this is occasionally used for thick material webs, if the diameter quickly changes at high motor speeds. Min: -1.0 Max: 1.0 Type: R b.d. 9a DIAMZ_01.D1704.I H237 b.d. 9b DIAMZ_07.P940.X2 H238 Minimum diameter change time Value: 50.0 Time for winding/unwinding at maximum material increase/decrease, i.e. at Dmin and Vmax . H238 = H216 * (Dmax - Dmin) / (2*d) (ms) Unit: s Type: R Gear, measure-roll Value: 1.0 refer chapter 3.5.2 and b.d. 13 Type: R where D (mm), d(mm) and V(m/min.), refer to Chapter 4.1 Example, refer to Chapter 3.5.1 b.d. 9a H239 DIAMZ_01.D1670.X2 b.d. 13 DIAMZ_07.W10.X2 H240 Circumference, measure-roll Value: 1.0 Recommendation setting: Type: R H240=Circumference of measure-roll in [mm] refer chapter 3.5.2 and b.d. 13 b.d. 13 DIAMZ_07.W20.X2 H241 Ramp-down time for braking distance computer Value: 60.0 Scaling factor = 600 s; i.e. the value used in the processor = H241/600 Unit: s Type: R b.d. 13 DIAMZ_07.W30.X1 H242 Ramp-down rounding-off time for the braking distance computer Value: 6.0 Scaling factor = 600 s; i.e. the value used in the processor = H242/600 Unit: s Type: R 1000.0 b.d. 13 DIAMZ_07.W40.X1 H243 Smoothing, web width Value: Smoothing time constant when the web width changes Unit: ms Type: R b.d. 9b DIAMZ_01.P150.T H244 Adaption divisor for braking-distance computer Value: 1,0 Divisor must be adapted to unit of KR0309 ! Type: R Default correspond to unit [m] refer chapter 3.5.2 and b.d. 13 b.d. 13 124 DIAMZ_07.W75.X2 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H245 Baud rate PtP protocol Value: 19200 Sets the baud rate for the peer-to-peer protocol Min: 9600 9600, 19200, 38400, 93750, 187500 baud Max: 187500 Initialization is required after the change has been made! Unit: Type: Baud DI b.d. 14 IF_PEER.PtP_Zentr.BDR H246 Upper limit (PtP monitoring) Value: 10000.0 Maximum tolerance (time) before starting telegram receive monitoring Min: 0.0 Unit: ms b.d. 14 IF_PEER.Ueberwa.LU Type: R H247 Setting value (PtP monitoring) Value: 9920.0 H247 = H246 - max. time (tolerance) for telegram failure (default 80ms) Min: 0.0 Unit: ms b.d. 14 IF_PEER.Ueberwa.SV Type: R d248 Status display (PTP receive) Value: 0 Status display of receive block CRV as indication for the fault message `F123' or Type: `A104'. W b.d. 14 IF_PEER.Empf_PEER.YTS H249 Input, length measured value Value: KR0229 The input for the length measured value must be connected with the applicationspecific source. Type: R Default: KR0229 (web length actual value from the web tachometer, encoder 2) b.d. 13 DIAMZ_07.W10.X1 H250 b.d. 4 H251 EEPROM key Value: 0 In order to establish the initialization status of all of the parameters with a rising edge, key parameter H250 must be set 165 at H160. Observe the information/instructions in 7.1.2.! Type: I Rated pulses, shaft tachometer Value: 4096 For incremental encoders with two encoder tracks offset through 90 degrees. Type: DI CONTZ_01.URLAD.KEY * H251 = 4 * H 212 a Position actual value = 1.0 /revolution * H251 = 1 a Position actual value = 4 * H212 pulses/rev. b.d. 13 IF_CU.D900.RP H252 Rated pulses, web tachometer Value: 1 For incremental encoders with two encoder tracks offset through 90 degrees. Type: DI Recommended setting: H252 = 4 * H 213 => KR0229=Number of rotations of web-tacho refer chapter 3.5.2 and b.d. 13 b.d. 13 IF_CU.D901.RP H253 Input, web break inputs Input for the web break pulse must be connected with the applicationspecific source. Value: B2253 Type: B Default: B2253 (internal web break signal) b.d. 7 TENSZ_07.T2100.I Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 125 Parameters H254 Smoothing time for v Value: Smoothing time constant for speed correction v, which for a speed correction control H203 = 3.0 corresponds to the tension control output. Min.: 0.0 Units: ms Type: R 0.0 300.0 b.d. 9a DIAMZ_01.D940.T H255 Adaptation factor v Value: This adaptation factor allows a higher accuracy for the diameter calculation when using dancer rolls, as the speed correction v from the closed-loop position control is taken into account into the diameter computer. Min: 0.0 Max: 1.0 Type: R Braking characteristic, speed point 1 Value: 0.01 Speed below which the reduced braking torque acts. Scaling factor = 10.0 Min: Max: 1.0 i.e. the value used in the processor = H256 / scaling factor Type: R b.d. 9a H256 for dancer roll: 0.0 - 1.0 for others: 0.0 DIAMZ_01.D945.X2 0.0 b.d. 6 SREFZ_07.BD10.A1 H257 Reduced braking torque Value: Braking torque for a fast stop and at a low speed. Min: 0.0 Max: 1.0 b.d. 6 H258 0.0 SREFZ_07.BD10.B1 Type: R Braking characteristic, speed point 2 Value: 0.02 Speed, above which the maximum braking torque acts. Scaling factor = 10.0; Min: 0.0 Max: 1.0 i.e. the value used in the processor = H258 / scaling factor Type: R 2.0 b.d. 6 SREFZ_07.BD10.A2 H259 Maximum braking torque Value: Braking torque for a fast stop and at a high speed. Min: 0.0 Max: 1.0 R b.d. 6 SREFZ_07.BD10.B2 Type: H260 Input, length computer Stop Value: B2000 Input can be connected with the applicationspecific source. Type: B 1: Length computer Stop Default: B2000 (constant digital output = 0) b.d. 12 IQ1Z_07.B175.X H262 Input, length setpoint Value: KR0400 Input for the length setpoint with 1.0 = rated length (H541), can be connected with the applicationspecific source. Type: R Default: KR0400 (output from H400, fixed value) b.d. 12 IQ1Z_01.AI328.X H263 Motorized potentiometer 2, fast rate-of-change Value: 25000.0 Unit: Ramp-up and ramp-down times are parameterized together; the fast rate of change starts, if the raise or lower control commands are present for longer than Type: 4s. ms R b.d. 19 IQ2Z_01.M590.X2 126 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H264 Motorized potentiometer 2, standard rate-of-change Value: 100000.0 Ramp-up- and ramp-down times are parameterized together. Unit: Type: b.d. 19 IQ2Z_01.M590.X1 H265 Motorized potentiometer 1, fast rate-of-change ms R Value: 25000.0 Unit: Ramp-up and ramp-down times are parameterized together; the fast rate-ofchange starts, if the raise or lower control commands are present for longer than Type: 4s. ms R b.d. 19 IQ2Z_01.M390.X2 H266 Motorized potentiometer 1, standard rate-of-change Value: 100000.0 Ramp-up- and ramp-down times are parameterized together. Unit: ms Type: R Select operating mode, motorized potentiometer 1 Value: 0 Motorized potentiometer 1 can be parameterized as a basic ramp-function generator. 0 = motorized potentiometer 1 = ramp-function generator Type: B b.d. 19 IQ2Z_01.M390.X1 H267 b.d. 19 IQ2Z_01.M100.I1 H268 b.d. 19 H269 Setpoint, ramp-function generator operation Value: Setpoint for H267=1, i.e. motorized potentiometer 1 is used as ramp-function generator Min: -2.0 Max: 2.0 Type: R IQ2Z_01.M120.X2 1.0 Ramp time, ramp-function generator operation Value: 10000.0 For H267 = 1, ramp-up- and ramp-down times are parameterized together. Unit: ms Type: R Smoothing, analog input 3 Value: 8.0 Smoothing time constant, analog input 3 Unit: b.d. 19 IQ2Z_01.M130.X2 H270 Type: b.d. 10 ms R IF_CU.AI51.T H271 Smoothing, analog input 4 Value: Smoothing time constant, analog input 4 Unit: Type: b.d. 10 8.0 ms R IF_CU.AI66.T H272 Dead zone for dv/dt computation Value: Dead zone to calculate the dv/dt value. All acceleration signals, which are less than this limit, are suppressed. The slowest velocity ramp sometimes generates an unnecessary value as acceleration signal. The limit value should lie below this. Example: H220=100[s], slowest ramp = 500[s] H272=0.2 * (100[s]/500[s])*1.0 = 4% = 0.04 Min: -2.0 0.01 Max: 2.0 Type: R b.d. 9b DIAMZ_01.P147Z.TH Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 127 Parameters H273 Normalization, torque setpoint from CU on T400 Value: CUVC, CUMC and CUD1: H273 = 1.0: The values of the torque setpoint at r269 (CUVC, CUMC) and d330 (T400) are the same. Min: 1.0 Max: 1.0 CU2: H273=0.25 The values of the torque setpoint at r246 (CU2) and d329 (T400) are the same. Type: R Normalization, torque actual value from CU on T400 Value: 1.0 CUMC, CUVC and CUD1: H274 = 1.0: The values of the torque actual value at K184, connected to a display parameter (CUMC) and d330 (T400) are the same. Min: 0.0 Max: 1.0 Type: R Response threshold web break monitoring, indirect tension control Value: 0.25 H275 = 1- {(tension controller output-torque actual value)/ tension controller output} Min: 0.0 CU3: A torque setpoint is not output. b.d. 3 H274 IQ1Z_01.AI21.X2 CU2, CU3: H274=25%: The values of the torque actual value at r007 (CU2, CU3) and d330 (T400) are the same. b.d. 3 IQ1Z_01.AI21A.X2 H275 0.0 Max: 1.0 Type: R Initial diameter Value: 0.4 The initial diameter for winders/unwinders when calculating the diameter without web speed signal. Min: b.d. 7 TENSZ_07.T2060.M H276 0.0 Max: 1.0 Type: R Enable diameter calculation without V signal Value: 0 To change over to the diameter calculation technique without web speed signal: 0: with V signal; 1: without V signal Type: B b.d 9a DIAMZ_07.D_Anfang.X H277 If H277=1, both techniques run in parallel: - KR0358: output Dact (without V signal, in front of the ramp-function generator) - d310 indicates Dact after the ramp-function generator and check - KR0359: output Dact (with V signal, in front of the ramp-function generator). The value can be monitored using the freely-assignable connector display H560-H566. b.d. 9a DIAMZ_07.DOV_Freigabe.I H278 Setting pulse duration Value: 10000.0 The pulse duration to set the initial diameter : Min: 0.0 at the first start of the diameter calculation, set H278 > the time for one Units: ms revolution, to correctly set Dact to D_start (H276). Type: R Fixed value material density Value: 1.0 Specifies the density of the winder material as a 100% of the maximum density. Min: 0.0 Max: 1.0 Type: R - For an intermediate start, H278 < the time for one revolution, in order to reset the diameter not to D_start (H276), but to continue to calculate. b.d. 9a DIAMZ_07.DOV2.T H279 b.d. 12 128 IQ1Z_01.AI245.X Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H281 Alternative On command Value: 0 To activate the alternative Power-on_command Type: B Changing over the speed controller to CU or T400 Value: 0 The speed controller is switched-through (bypassed) if an external speed controller is to be used. Type: B b.d. 18 IQ1Z_01.SELACT.1 H282 1 = yes, this means, that the controller on the T400 operates as speed controller and transfers the torque setpoint 0 = no, i.e. T400 transfers the speed setpoint to CU taking into account the limits. Further, the speed controller block processing is disabled, in order to minimize CPU utilization. b.d. 6a IQ1Z_07.B51.I H283 I controller enable Value: 0 Changeover from PI- to P-controller Type: B Tension setpoint, inhibit ramp-function generator Value: 1 0: For dancer roll Type: B 0: PI-Controller 1: I-Controller H283=0 and H196=0 for Closed-loop tension control with load-cell (tension transducer) H283=0 and H196=1 for Dancer roll b.d. 8 TENSZ_01.T1790.IC H284 1: For others b.d. 7 TENSZ_01.T1320.I2 H285 Enable web break detection Value: 1 0: Without web break detection; the web break detection blocks are also disabled to minimize CPU utilization. Type: B 1: With web break detection b.d. 7 TENSZ_07.Bahnrisserken.I H286 Thickness-diameter ratio Value: 0.0 The relative ratio between the material thickness and maximum diameter, i.e. H286 = material thickness/max. diameter. Min: 0.0 b.d. 9a Max: 1.0 Type: R Value: 0 DIAMZ_07.OV6.X1 H288 Enable PROFIBUS Enables the PROFIBUS communications interface and its monitoring, in order to Type: reduce CPU utilization if PROFIBUS is not available. B 0: The complete PROFIBUS module is inhibited 1: PROFIBUS interface is enabled b.d. 15, 22a IQ1Z_01.B01.I Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 129 Parameters H289 Enable peer-to-peer Value: 0 Enables the communications interface peer-to-peer and its monitoring, in order to reduce CPU utilization if peer-to-peer is not available. Type: B 0: The complete peer-to-peer module is inhibited 1: Peer-to-peer interface is enabled b.d. 14/22a IQ1Z_01.B02.I H290 Upper speed setpoint limiting Value: Upper limit for the speed setpoint in the ramp-function generator, if H282 = 1. Min: -2.0 1.0 Max: 2.0 b.d. 6a SREFZ_07.S1000.LU Type: R H291 Lower speed setpoint limiting Value: Lower limit for the speed setpoint in the ramp-function generator, if H282 = 1. Min: -2.0 Max: 2.0 -1.0 b.d. 6a SREFZ_07.S1000.LL Type: R H292 Ramp-up time, speed setpoint Value: 1000.0 For the speed setpoint in the ramp-function generator, if H282 = 1. Unit: ms Type: R b.d. 6a SREFZ_07.S1000.TU H293 Ramp-down time, speed setpoint Value: For the speed setpoint in the ramp-function generator, if H282 = 1. Unit: ms Type: R 1000.0 b.d. 6a SREFZ_07.S1000.TD H294 Integral action time, speed controller Value: 300.0 Integral action time for the speed controller on T400, if 282 = 1 Unit: ms Type: R b.d. 6a SREFZ_07.S1100.TN H295 Invert_mask Value: 0 Digital inputs can be inverted using the appropriate bit in parameter H295. Type: W Example: to invert digital input 2 H295= 16#2 digital input: 8 7 6 5 4 3 2 1 bit in H295: 0 0 0 0 0 0 1 0 b.d. 13a IF_CU.Bit_Invert .I2 d296 Velocity setpoint before ramp-function generator Min: -2.0 Max: 2.0 R b.d. 5 SREFZ_01.S30.Y Type: d297 Velocity setpoint after ramp-function generator Min: -2.0 Max: 2.0 b.d. 5 SREFZ_01.GB7.Y Type: d298 Supplementary velocity setpoint tension controller Min: -2.0 R Supplementary velocity setpoint from tension controller Max: 2.0 b.d. 5 SREFZ_01.S200.Y Type: R d299 Supplementary velocity setpoint Min: -2.0 Free parameterizable supplementary velocity setpoint Max: 2.0 b.d. 5 SREFZ_01.S225.Y Type: R d300 Complete velocity setpoint Min: -2.0 Complete velocity setpoint Max: 2.0 SREFZ_01.S230.Y Type: R b.d. 5 130 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters d301 Effective web velocity setpoint Min: -2.0 Max: 2.0 R b.d. 5 SREFZ_01.S160.Y Type: d302 Actual dv/dt Min: -2.0 Max: 2.0 R b.d. 9b DIAMZ_01.P500.Y Type: d303 Speed setpoint Min: -2.0 Max: 2.0 b.d. 6 SREFZ_07.NC122.Y Type: d304 Sum, tension/position reference value Min: -2.0 Max: 2.0 R TENSZ_01.T1525.Y Type: d305 Output, motorized potentiometer 1 Min: -2.0 Max: 2.0 b.d. 19 IQ2Z_01.M450.Y Type: R d306 Output, motorized potentiometer 2 Min: -2.0 Max: 2.0 R b.d. 8 R b.d. 19 IQ2Z_01.M650.Y Type: d307 Speed actual value Min: -2.0 Max: 2.0 R b.d. 13 IQ1Z_01.AI325.Y Type: d308 Variable moment of inertia Min: -2.0 Max: 2.0 b.d. 9b DIAMZ_01.P320.Y Type: d309 Actual web length Min: 1.0=the rated length (H541) Type: b.d. 13 DIAMZ_01.W21.Y d310 Actual diameter R 0.0 R Min: -2.0 Max: 2.0 R b.d. 9a DIAMZ_01.D1706.Y Type: d311 Tension actual value smoothed Min: -2.0 Max: 2.0 b.d. 7 TENSZ_01.T641.Y Type: d312 Pre-control torque Min: -2.0 R Sum of the friction- and acceleration effects Max: 2.0 Type: R b.d. 9b DIAMZ_07.P1060.Y d313 Output, closed-loop tension control Min: -2.0 Sum of the tension controller output and pre-control, if H203 = 0.0, 1.0, 2.0, tension controller output, if H203 = 3.0, 5.0 Max: 2.0 Type: R b.d. 8 TENSZ_07.T1960.Y d314 Pre-control torque, friction compensation Min: -2.0 Max: 2.0 R b.d. 9b DIAMZ_07.P920.Y Type: d316 Pre-control torque, inertia compensation Min: -2.0 Max: 2.0 Type: R b.d. 9b DIAMZ_01.P530.Y Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 131 Parameters d317 Sum, tension controller output Min: -2.0 Sum of the tension controller from the PI component and D component (PID controller). Max: 2.0 Type: R b.d. 8 TENSZ_01.T1798.Y d318 Tension controller, D component Min: -2.0 Max: 2.0 R b.d. 8 TENSZ_01.T1796.Y Type: d319 Tension controller output from the PI component Min: -2.0 Max: 2.0 b.d. 8 TENSZ_01.T1790.Y Type: d320 Analog input 1, terminals 90/91 Min: -2.0 Max: 2.0 R IF_CU.AI10.Y Type: d321 Analog input 2, terminals 92/93 Min: -2.0 Max: 2.0 b.d. 10 IF_CU.AI25.Y Type: R d322 Analog input 3 (tension actual value), smoothed, terminals 94/99 Min: -2.0 Max: 2.0 R b.d. 10 R b.d. 10 IF_CU.AI51.Y Type: d323 Analog input 4, smoothed, terminals 95/99 Min: -2.0 Max: 2.0 b.d. 10 IF_CU.AI66.Y d324 Analog input 5 (pressure actual value from the dancer roll), terminals 96/99 Min: Type: R Max: 2.0 b.d. 10 IF_CU.AI70.Y Type: R d325 Compensated velocity setpoint without gear Min: -2.0 Max: 2.0 R -2.0 b.d. 5 SREFZ_01.S175.Y Type: d327 External web velocity actual value Min: -2.0 Max: 2.0 b.d. 13 IQ1Z_01.AI330.Y Type: d328 Tension setpoint after the winding hardness characteristic Min: -2.0 Max: 2.0 b.d. 7 TENSZ_01.T1470.Y Type: R d329 Torque setpoint Min: -2.0 Receive torque setpoint from CU or computed on T400. Max: 2.0 Type: R b.d. 6a R SREFZ_07.NT119.Y d330 Torque actual value b.d. 20 IQ1Z_01.AI21A.Y d331 Smoothed torque setpoint Min: -2.0 Max: 2.0 Type: R b.d. 6a 132 SREFZ_07.NT130.Y Min: -2.0 Max: 2.0 Type: R Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters d332 Control word 1 Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit b.d. 22b d333 0: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: On /OFF2 (voltage-free) /OFF3 (fast stop) System start Ramp-function generator inhibit Ramp-function generator stop Enable setpoint Acknowledge fault Inching, forwards Inching, backwards Control from CS Tension controller on Inhibit tension controller Standstill tension on Set diameter Hold diameter Type: W Type: W Type: W 1 = active 0 = active 0 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active IQ1Z_07.B210.QS Control word 2 Bit 0: Input supplementary setpoint Bit 1: Local positioning Bit 2: Motorized potentiometer 2, raise Bit 3: Motorized potentiometer 2, lower Bit 4: Local operator control Bit 5: Local stop Bit 6: Local run Bit 7: Local crawl Bit 8: =0 Bit 9: Set Vset to stop Bit 10: Motorized potentiometer 1, raise Bit 11: Motorized potentiometer 1, lower Bit 12: Reset length computer Bit 13: Winding from below Bit 14: Connection tachometer Bit 15 =0 b.d. 22b IQ1Z_07.B220.QS d334 Control word 3 Bit 0: =0 Bit 1: Polarity, saturation setpoint Bit 2: Winder Bit 3: Gearbox stage 2 Bit 4: Accept setpoint A Bit 5: Accept setpoint B Bit 6 - 15 = 0 1 = active 1= active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active not used 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active not used not used 1= active 1 = active 1 = active 1 = active 1 = active not used b.d. 22b IQ1Z_07.B230.QS Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 133 Parameters d335 b.d. 22 Status word 1 Bit 0: Ready to power-on 1 = active Bit 1: Ready 1 = active Bit 2: Operation enabled 1= active Bit 3: Fault 1 = active Bit 4: OFF2 0 = active Bit 5: OFF3 0 = active Bit 6: Power-on inhibit 1 = active Bit 7: Alarm 1 = active Bit 8: Setpoint/actual value difference within tolerance 1= active Bit 9: Control requested 1 = active Bit 10: f/n limit reached 1 = active Bit 11: Device-specific, refer to Ref. (2-4), also b.d. 22 1 = active Bit 12: Speed controller at its limit 1 = active Bit 13: Tension controller at its limit 1 = active Bit 14: Device-specific 1 = active Bit 15: Device-specific 1 = active * Type: W Type: W Type: W Type: W refer to block diagram 22 and Lit.[2-4] CONTZ_01.SE120.QS d336 Status word 2 Bit 0: System start Bit 1: Local stop Bit 2: OFF3 Bit 3: Local run mode Bit 4: Local crawl mode Bit 5: Local inching forwards mode. Bit 6: Local inching backwards mode Bit 7: Local positioning mode Bit 8: Speed setpoint is zero Bit 9: Web break Bit 10: Tension control on Bit 11: System operation mode Bit 12: Standstill Bit 13: Limit value monitor 1 output Bit 14: Limit value monitor 2 output Bit 15: Local operator control 1 = active 1 = active 0 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active 1 = active b.d. 22 CONTZ_01.C245.QS d337 b.d. 20 d338 Alarms from T400 Bit 0: Overspeed, positive Bit 1: Overspeed, negative Bit 2: Overtorque, positive Bit 3: Overtorque, negative Bit 4: Drive stalled Bit 5: Receive CU faulted Bit 6: Receive CB faulted Bit 7: Receive PTP faulted Bit 8 - 15 = 0 1 = active 1 = active A098 1= active A099 1 = active A100 1 = active 1 = active 1 = active A103 1 = active A097 1 = active 1 = active 1 = active 1 = active F119 1 = active 1 = active F121 1 = active F122 1 = active F123 F116 F117 F118 A101 A102 A104 IF_CU.SU150.QS Faults from T400 Bit 0: Overspeed, positive Bit 1: Overspeed, negative Bit 2: Overtorque, positive Bit 3: Overtorque, negative Bit 4: Drive stalled Bit 5: Receive CU faulted Bit 6: Receive CB faulted Bit 7: Receive PTP faulted Bit 8 - 15 = 0 F120 b.d. 20 IF_CU.SU170.QS 134 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters d339 b.d. 9b d340 Correction factor, material density DIAMZ_07.P290.Y Compensated web velocity Min: -1.0 Max: 1.0 Type: R Min: -2.0 Max: 2.0 b.d. 5 SREFZ_01.S170.Y Type: d341 Actual saturation setpoint Min: -1.0 Max: 1.0 Type: R b.d. 5 d342 SREFZ_01.S397.Y Positive torque limit R Min: -2.0 Max: 2.0 b.d. 6 SREFZ_07.NC005.Y Type: d343 Negative torque limit Min: -2.0 Max: 2.0 b.d. 6 SREFZ_07.NC006.Y Type: d344 Velocity setpoint Min: -2.0 Max: 2.0 Type: R Min: 0.0 b.d. 5 d345 SREFZ_07.S490.Y Actual Kp speed controller from T400 Type: b.d. 6a SREFZ_07.NC035.Y d346 Actual Kp tension controller b.d. 8 Min: Type: R R R 0.0 R TENSZ_01.T1770.Y Min: d347 Tension setpoint before ramp-function generator b.d. 7 TENSZ_01.T1520.Y Type: d348 Tension setpoint after ramp-function generator Min: Max: Max: b.d. 7 TENSZ_01.T1350.Y Type: d349 Velocity actual value connection tachometer Min: Max: b.d. 13 d350 b.d. 13 0.0 2.0 R 0.0 2.0 R 0.0 2.0 IQ1Z_01.AI329.Y Type: R Braking distance Min: 0.0 Output in % of the rated Length through adaption factor H244 Type: R DIAMZ_07.W75.Y Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 135 Parameters d352 to d356 CPU utilization T1 to T5 Min. 0.0 Processor utilization of the standard software, sub-divided according to time sectors. T1 is the fastest (highest priority), T5 the slowest time sector. It is important that no time sector is utilized more than 100% (corresponding to 1.0), as otherwise it will not be processed in the configured time intervals. Type R Min. 0.0 Type R Min. 0.0 Type R d352 CPU utilization of T1 (2ms) d353 CPU utilization of T2 (8ms) d354 CPU utilization of T3 (16ms) d355 CPU utilization of T4 (32ms) d356 CPU utilization of T5 (128ms) b.d. 4 IF_CU.CPU-Auslast.Y1, ... IF_CU.CPU-Auslast.Y5 d358 act. diameter without V*-signal (before ramp-function generator) b.d. 9a DIAMZ_07.OV9.Y d359 act. diameter with V*-signal (before ramp-function generator) b.d. 9a DIAMZ_01.D1535.Y H364 Length buffer Value: Length of Trace-buffer (in double words) for offline-trace with "symTrace-D7" Min. Max. d365 2048 0 256000 TRACE.Trace_Kopplung.TBL Type I Coupling Trace Typ: B Typ: W 0: No interconnection to the trace blocks 1: Interconnection to the trace blocks is activ. TRACE.Trace_Kopplung.QTS d366 Status Trace Status-word of trace. Description in "symTrace-D7" (Help-> Help subjects>Function blocks error messages) TRACE.Trace_Kopplung.YTS H400 Fixed value, length setpoint Value: 2.0 Enters the length setpoint, a relative value based on the rated length (H541) Min: 0.0 Type: R 0.0 b.d. 12 IQ1Z_01.AI328A.X H401 Velocity actual value, connection tachometer Value: Enters the velocity actual value, connection tachometer. Min: 0.0 Max: 2.0 b.d. 13 IQ1Z_01.AI329A.X Type: H402 Fixed value, external web velocity actual value Value: 0.0 Enters the external web velocity actual value. Min: 0.0 Max: R 2.0 b.d. 13 IQ1Z_01.AI330A.X Type: R d403 Output 1 from limit value monitor 1 Type: B Type: B Input value > comparison value b.d. 10 IQ2Z_01.G130A.Q1 d404 Output 2 from limit value monitor 1 Input value < comparison value b.d. 10 136 IQ2Z_01.G130A.Q2 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters d405 Output 3 from limit value monitor 1 Type: B Type: B Type: B Type: B Type: B Type: B Type: B Input value = comparison value b.d. 10 IQ2Z_01.G130A.Q3 d406 Output 4 from limit value monitor 1 Input value comparison value b.d. 10 IQ2Z_01.G130A.Q4 d407 Output 1 from limit value monitor 2 Input value > comparison value b.d. 10 IQ2Z_01.G330A.Q1 d408 Output 2 from limit value monitor 2 Input value < comparison value b.d. 10 IQ2Z_01.G330A.Q2 d409 Output 3 from limit value monitor 2 Input value = comparison value b.d. 10 IQ2Z_01.G330A.Q3 d410 Output 4 from limit value monitor 2 Input value comparison value b.d. 10 IQ2Z_01.G330A.Q4 d411 Length setpoint reached Signal when the length setpoint has been reached. b.d. 10 IQ2Z_01.G130A.Q5 d412 Act. velocity setpoint before override ramp-function generator Min.: -2.0 Max.: 2.0 b.d. 5 SREFZ_01.S420.Y Type: R d415 Lower limit, web brake detection Type: B Type: B Type: B Type: B Type: B Lower limit of web brake detection unterschritten has fallen below b.d. 7 TENSZ_07.T2020.QL d416 Iact < 75% Isetp The response threshold of the web brake detection has fallen below b.d. 7 TENSZ_07.T2060.QU d417 Diameter computer is stopped b.d. 9a DIAMZ_01.D1180.Q d418 Operation modes reseted Binary signal for reset the operation modes is set b.d. 18 CONTZ_01.C210.Q d419 Switchover pre-controlled torque The response threshold of the web brake detection has fallen below b.d. 7 SREFZ_07.C60.Q Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 137 Parameters d420 Minimum one operation mode is aktiv Type: B b.d. 18 CONTZ_07.S410.Q H440 Source for conversion R->N2 Value: KR0310 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 2 at CB Default: KR0310 (actual diameter) b.d. 15a IF_COM.Istwert_W2 .X H441 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 3 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W3 .X H442 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 5 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W5 .X H443 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 6 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W6 .X H444 Status word 1 at CB Value: K4335 Send word 1 at the CB module must be connected with the applicationspecific source. Type: I Default: K4335 (status word 1 from T400) b.d. 15a IF_COM.send_ZW1.X H445 Status word 2 at CB Value: K4336 Send word 4 at the CB module must be connected with the applicationspecific source. Type: I Default: K4336 (status word 2 from T400) b.d. 15a IF_COM.send_ZW2.X H446 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 7 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a 138 IF_COM.Istwert_W7 .X Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H447 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 8 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W8 .X H448 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 9 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W9 .X H449 Source for conversion R->N2 Value: KR0000 Input can be connected with the applicationspecific source. Type: R Standard setting is the transmitted word 10 at CB Default: KR0000 (constant output, real type, Y=0.0) b.d. 15a IF_COM.Istwert_W10 .X d450 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 2 IF_COM.Sollwert_W2 .Y Type: R d451 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 15 IF_COM.Sollwert_W3 .Y Type: d452 Output of conversion N2->R Min: -2.0 R Max: 2.0 b.d. 15 IF_COM.Sollwert_W5 .Y Type: d453 Output of conversion N2->R Min: -2.0 Max: 2.0 R b.d. 15 IF_COM.Sollwert_W6 .Y Type: R d454 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 15 IF_COM.Sollwert_W7 .Y Type: R d455 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 15 IF_COM.Sollwert_W8 .Y Type: d456 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 15 IF_COM.Sollwert_W9 .Y Type: d457 Output of conversion N2->R Min: -2.0 Max: 2.0 b.d. 15 IF_COM.Sollwert_W10 .Y Type: H495 Upper limit (monitoring CB) Value: 20000.0 Maximum tolerance time before the start of telegram receive monitoring Min: Unit: b.d. 20/22a IF_COM.Ueberwa.LU Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 Type: R R R 0.0 ms R 139 Parameters H496 Setting value (monitoring CB) Value: 19920.0 H496 = H246 - max. time (tolerance) for telegram failure (default 80ms) Min: Unit: 0.0 ms b.d. 20/22a IF_COM.Ueberwa.SV Type: R d497 Status display (CB receive) Type: W Status display of the CRV receive block as indication/information for the fault message `F122' or `A103'. b.d. 20 IF_COM.Empf_COM.YTS H499 ext. status word Value: K4549 The external status word is used to generate status word 1 from T400. Chapter: Type: * K 4549 (status word 1 from CU) if T400 is inserted in the drive converter * K 4498 (fixed status word) for SRT400 solution W Default : K4549 (status word 1 from CU) b.d. 12 CONTZ_01.SE110.I1 H500 Source for Conversion R->N2 Value: KR0303 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 2 at CU Default: KR0303 (speed setpoint) b.d. 15b IF_CU.Sollwert_W2 .X H501 Source for Conversion R->N2 Value: KR0558 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 5 at CU Default: KR0558 (torque supplementary setpoint). b.d. 15b IF_CU.Sollwert_W5 .X H502 Source for Conversion R->N2 Value: KR0556 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 6 at CU Default: KR0556 (positive torque limit). b.d. 15b IF_CU.Sollwert_W6 .X H503 Source for Conversion R->N2 Value: KR0557 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 7 at CU Default: KR0557 (negative torque limit). b.d. 15b IF_CU.Sollwert_W7 .X H504 Source for Conversion R->N2 Value: KR0308 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 8 at CU Default: KR0308 (variable moment of inertia). b.d. 15b 140 IF_CU.Sollwert_W8 .X Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H505 Source for Conversion R->N2 Value: KR0000 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 9 at CU Default: KR0000 (constant output, Y= 0.0) b.d. 15b IF_CU.Sollwert_W9 .X H506 Source for Conversion R->N2 Value: KR0000 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 10 at CU Default: KR0000 (constant output, Y= 0.0) b.d. 15b IF_CU.Sollwert_W10 .X H507 Source for Conversion R->N2 Value: KR0000 Input must be connected with the application-specific source. Type: R Standard setting is the transmitted word 3 at CU Default: KR0000 (constant output, Y= 0.0) b.d. 15b IF_CU.Sollwert_W3 .X H510 Control word 2.0 at CU Value: B2000 Control word 2.0 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I1 H511 Control word 2.1 at CU Value: B2000 Control word 2.1 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I2 H512 Control word 2.2 at CU Value: B2000 Control word 2.2 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I3 H513 Control word 2.3 at CU Value: B2000 Control word 2.3 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I4 H514 Control word 2.4 at CU Value: B2000 Control word 2.4 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I5 H515 Control word 2.5 at CU Value: B2000 Control word 2.5 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I6 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 141 Parameters H516 Control word 2.6 at CU Value: B2000 Control word 2.6 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I7 H517 Control word 2.7 at CU Value: B2000 Control word 2.7 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I8 H518 Control word 2.8 at CU Value: B2000 Control word 2.8 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I9 H519 Enable for speed controller in CU Value: B2508 Enable command for the speed controller in the CU, setting for control word 2.9 at CU. Type: B Default: B2508 (operating enable) b.d. 15b IF_CU.Steuerwort_2 .I10 H520 Control word 2.10 at CU Value: B2000 Control word 2.10 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I11 H521 Digital output 1, terminal 46 (web break) Value: The output can be connected with the applicationspecific source. Type: B B2501 Default: B2501 (web break signal) b.d. 13a IF_CU.BinOut .I1 H522 Digital output 2, terminal 47 (Vact=0 standstill) Value: B2502 Digital output 2 can be connected with the applicationspecific source. Type: B Default: B2502 (standstill signal) b.d. 13a IF_CU.BinOut .I2 H523 Digital output 3, terminal 48 (tension controller on) Value: B2503 Digital output 3 can be connected with the applicationspecific source. Type: B Default: B2503 (tension controller on signal) b.d. 13a IF_CU.BinOut .I3 H524 Digital output 4, terminal 49 (base drive operational) Value: B2504 Digital output 4 can be connected with the applicationspecific source. Type: B Default: B2504 (signal that operation has been enabled) b.d. 13a 142 IF_CU.BinOut .I4 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H525 Digital output 5, terminal 52 (speed setpoint=0) Value: B2505 Digital output 5 can be connected with the applicationspecific source. Type: B Default: B2505 (signal for speed setpoint =0) b.d. 13a IF_CU.BinOut .I5 H526 Digital output 6, terminal 51 (limit value monitor 1) Value: B2114 Digital output 6 can be connected with the applicationspecific source. Type: B Default: B2506 (signal for limit value monitor 1) b.d. 13a IF_CU.BinOut .I6 H531 Control word 2.11 at CU Value: B2000 Control word 2.11 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I12 H532 Control word 2.12 at CU Value: B2000 Control word 2.12 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I13 H533 Control word 2.13 at CU Value: B2000 Control word 2.13 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I14 H534 Control word 2.14 at CU Value: B2000 Control word 2.14 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I15 H535 Control word 2.15 at CU Value: B2000 Control word 2.15 at CU can be connected with the applicationspecific source. Type: B Default: B2000 (constant digital output) b.d. 15b IF_CU.Steuerwort_2 .I16 H537 Select digital input/output, B2527/H521 Value: Mode for the bidirectional inputs/outputs Type: 0: Digital input a B2527 1: Digital output a H521 (default) 1 B b.d. 13a IF_CU.BinOut.DI1 H538 Select digital input/output, B2528/H522 Value: Mode for the bidirectional inputs/outputs Type: 0: Digital input a B2528 1: Digital output a H522 (default) 1 B b.d. 13a IF_CU.BinOut.DI2 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 143 Parameters H539 Select digital input/output, B2529/H523 Value: Mode for the bidirectional inputs/outputs Type: 0: Digital input a B2529 1: Digital output a H523 (default) 1 B b.d. 13a IF_CU.BinOut.DI3 H540 Select digital input/output, B2530/H524 Value: Mode for the bidirectional inputs/outputs Type: 0: Digital input a B2530 1: Digital output a H524 (default) 1 B b.d. 13a IF_CU.BinOut.DI4 H541 Rated web length Wert: 1000.0 For scaling the web length and length setpoint. The dimention can be defined by users. Typ: R Recommended setting: H541=1000.0 => KR0309=web length in [m] refer chapter 3.5.2 and b.d. 13 b.d. 13 DIAMZ_07.W21.X2 d549 Type: Status word 1 from CU W Receive word 1 from CU can be connected with the applicationspecific destination. b.d. 15a IF_CU.Verteilung.Y1 d550 Actual value W2 from CU Min: -2.0 Receive word 2 from CU can be connected to the applicationspecific destination. Max: 2.0 Type: R b.d. 15c IF_CU.Istwert_W2 .Y d551 Actual value W3 Min: -2.0 Receive word 3 from CU can be connected to the applicationspecific destination. Max: 2.0 Type: R b.d. 15c IF_CU.Istwert_W3 .Y d552 Actual value W5 (torque setpoint) Min: -2.0 Receive word 5 from the CU is connected to the fixed connector (torque setpoint) in the CU. Max: 2.0 Type: R b.d. 15c IF_CU.Istwert_W5 .Y d553 Actual value W6 (torque actual value) Min: -2.0 Receive word 6 from the CU is connected to the fixed connector (torque actual value) in the CU. Max: 2.0 Type: R b.d. 15c IF_CU.Istwert_W6 .Y d554 Actual value W7 Min: -2.0 Receive word 7 from the CU can be connected with the applicationspecific destination. Max: 2.0 Type: R b.d. 15c IF_CU.Istwert_W7 .Y 144 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters d555 Actual value W8 Min: -2.0 Receive word 8 from the CU can be connected with the applicationspecific destination. Max: 2.0 Type: R Type: W b.d. 15c IF_CU.Istwert_W8 .Y d559 Status word 2 from CU Receive word 4 from CU can be connected with the applicationspecific destination. b.d. 15c IF_CU.Verteilung.Y4 H560 Input (Anz_R1) Value: KR0000 Input for the free KR connector display 1 can be connected with the applicationspecific source Type: R Type: R Default: KR0000 (constant R_output) b.d. 25 IQ2Z_01.Anz_R1.X d561 Output (Anz_R1) Display parameter from H560 b.d. 25 IQ2Z_01.Anz_R1.Y H562 Input (Anz_R2) Value: KR0000 Input for the free KR connector display 2 can be connected with the applicationspecific source Type: R Type: R Default: KR0000 (constant R_output) b.d. 25 IQ2Z_01.Anz_R2.X d563 Output (Anz_R2) Display parameter from H562 b.d. 25 IQ2Z_01.Anz_R2.Y H564 Input (Anz_R3) Value: KR0000 Input for the free KR connector display 3 can be connected with the applicationspecific source Type: R Type: R Default: KR0000 (constant R_output) b.d. 25 IQ2Z_01.Anz_R3.X d565 Output (Anz_R3) Display parameter from H564 b.d. 25 IQ2Z_01.Anz_R3.Y H566 Input (Anz_R4) Value: KR0000 Input for the free KR connector display 4 can be connected with the applicationspecific source Type: R Type: R Default: KR0000 (constant R_output) b.d. 25 IQ2Z_01.Anz_R4.X d567 Output (Anz_R4) Display parameter from H566 b.d. 25 IQ2Z_01.Anz_R4.Y Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 145 Parameters H570 Input (Anz_B1) Value: B2000 Input for the free binector display 1 can be connected with the applicationspecific source Type: B Default: B2000 (constant digital output) b.d. 25 IQ2Z_01.Anz_B1.I d571 Type: Output (Anz_B1) B Display parameter from H570 b.d. 25 IQ2Z_01.Anz_B1.Q H572 Input (Anz_B2) Value: B2000 Input for the free binector display 2 can be connected with the applicationspecific source Type: B Default: B2000 (constant digital output) b.d. 25 IQ2Z_01.Anz_B2.I d573 Type: Output (Anz_B2) B Display parameter from H572 b.d. 25 IQ2Z_01.Anz_B2.Q H580 Input (Anz_I1) Value: K4000 Input for the free KR connector display 1 can be connected with the applicationspecific source Type: I Default: K4000 (constant I_output) b.d. 25 IQ2Z_01.Anz_I1.X d581 Type: Output (Anz_I1) I Display parameter from H580 b.d. 25 IQ2Z_01.Anz_I1.Y H600 Enable USS BUS Value: 1 Enable signal for the USS interface on serial interface X01. An OP1S MASTERDRIVES operator control device or SIMOVIS, e.g. SRT400 solution, can be connected to this USS interface. The USS station address was defined as 0`. The baud rate was set to 9600. Type: B USS data transfer line Value: 0 Set the data transfer line at connector X01: Type: B Please observe the following - the hardware switches S1/1, S1/2 and S1/8 are in the `ON` setting - the setting of H601 b.d. 14a H601 IQ1Z_01.B03 .I 0: RS485/2-wire 1: RS232 b.d. 14a IF_USS.Slave_ZB .WI4 146 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H602 Command to re-configure CB Value: 1 For an SRT400 solution, T400 configures a COMBOARD. For each online configuration, a positive edge is required at H602 (01). Type: B CB station address Value: 3 Only enter the address if there is a communications board (CBx) in the subrack SRT400, e.g. for PROFIBUS DP: 3,..125. Type: I b.d. 15, 22a IF_COM.CB_SRT400 .SET H603 b.d. 15 IF_COM.CB_SRT400 .MAA H604 PPO type (PROFIBUS) Value: 5 Enters the telegram structure only for the SRT400 solution. This configuring permits the following telegram structure: Type: I - PPO type 5 (10 PZD + 4 PKW) b.d. 15 IF_COM.CB_SRT400 .P02 H610 Input, positive torque limit Value: KR0351 Input, positive torque limit can be connected with the applicationspecific source. Type: R Default: KR0351 (torque limit) b.d. 6 SREFZ_07.NC005.X2 H611 Input, negative torque limit Value: KR0351 Input, negative torque limit can be connected with the applicationspecific source. Type: R Default: KR0351 (torque limit) b.d. 6 SREFZ_07.NC004 .X H612 Input, torque limit Value: KR0313 Input, torque limit can be connected with the applicationspecific source. Type: R Default: KR0313 (output, tension control) b.d. 6 SREFZ_07.NC003.X2 H650 Enable, freely-assignable_blocks Value: 0 Enable for all freely-assignable blocks, which are configured in two cycle groups (T1 = 2ms or T5 = 128ms). Type: B Fixed value Bit 0 - Bit 15 Value: B2000 Inputs of the freely-assignable block for B_W (Bits a word) can be connected with the applicationspecific source. The output of this block is defined as a connector K4700. Type: B Start, point X1 Value: 0.0 Characteristic 1, abscissa value, point 1 Type: R b.d. 23a/23b IQ1Z_01.B04.I H700 - H715 Default: B2000 (constant B_output, Y=0) b.d. 23c H800 FREI_BST.Fest_B_W.I1 ... FREI_BST.Fest_B_W.I16 b.d. 23a FREI_BST.Kenn_1.A1 H801 Start, point Y1 Value: 0.0 Characteristic 1, ordinate value, point 1 Type: R b.d. 23a FREI_BST.Kenn_1.B1 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 147 Parameters H802 End, point X2 Value: 1.0 Characteristic 1, abscissa value, point 2 Type: R b.d. 23a FREI_BST.Kenn_1.A2 H803 End, point Y2 Value: 0.0 Characteristic 1, ordinate value, point 2 Type: R b.d. 23a FREI_BST.Kenn_1.B2 H804 Input quantity (char_1) Value: KR0000 Characteristic 1, input variable can be connected with the applicationspecific source. Type: R Start, point X1 Value: 0.0 Characteristic 2, abscissa value, point 1 Type: R Default: KR0000 (constant R_output, Y=0.0) b.d. 23a FREI_BST.Kenn_1.X H805 b.d. 23a FREI_BST.Kenn_2.A1 H806 Start, point Y1 Value: 0.0 Characteristic 2, ordinate value, point 1 Type: R b.d. 23a FREI_BST.Kenn_2.B1 H807 End, point X2 Value: 1.0 Characteristic 2, abscissa value, point 2 Type: R b.d. 23a FREI_BST.Kenn_2 .A2 H808 End, point Y2 Value: 0.0 Characteristic 2, ordinate value, point 2 Type: R b.d. 23a FREI_BST.Kenn_2.B2 H809 Input quantity (char_2) Value: KR0000 Characteristic 2, input variable can be connected with the applicationspecific source. Type: R Input 1 (MUL_1) Value: KR0000 Input 1 for multiplier 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.Kenn_2.X H810 Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.MUL_1.X1 H811 Input 2 (MUL_1) Value: KR0000 Input 2 for multiplier 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a 148 FREI_BST.MUL_1.X2 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H812 Input 1 (MUL_2) Value: KR0000 Input 1 for multiplier 2 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.MUL_2.X1 H813 Input 2 (MUL_2) Value: KR0000 Input 2 for multiplier 2 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.MUL_2.X2 H814 Fixed setpoint_1 Value: 0.0 Freely-assignable block for applicationspecific fixed setpoint Type: R b.d. 23c FREI_BST.Fest_SW_1.X H815 Fixed setpoint_2 Value: 0.0 Freely-assignable block for applicationspecific fixed setpoint Type: R b.d. 23c FREI_BST.Fest_SW_2.X H816 Fixed setpoint_3 Value: 0.0 Freely-assignable block for applicationspecific fixed setpoint Type: R b.d. 23c FREI_BST.Fest_SW_3 .X H817 Input 1 (DIV_1) Value: KR0000 Input 1 for divider 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.DIV_1.X1 H818 Input 2 (DIV_1) Value: KR0003 Input 2 for divider 1 can be connected with the applicationspecific source. Type: R Default: KR0003 (constant R_output, Y = 1.0) b.d. 23a FREI_BST.DIV_1.X2 H820 Input 1 (UMS_1) Value: KR0000 Input 1 for numerical changeover switch 1 can be connected with the application-specific source. Type: R Input 2 (UMS_1) Value: KR0000 Input 2 for numerical changeover switch 1 can be connected with the application-specific source. Type: R Switch signal (UMS_1) Value: B2000 The input switch signal for numerical changeover switch 1 can be connected with the applicationspecific source. Type: B Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.UMS_1.X1 H821 Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.UMS_1.X2 H822 Default: B2000 (constant B_output, Y = 0) b.d. 23a FREI_BST.UMS_1.I Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 149 Parameters H823 Input 1 (UMS_2) Value: KR0000 Input 1 for numerical changeover switch 2 can be connected with the application-specific source. Type: R Input 2 (UMS_2) Value: KR0000 Input 2 for numerical changeover switch 2 can be connected with the application-specific source. Type: R Switch signal (UMS_2) Value: B2000 The input switch signal for numerical changeover switch 2 can be connected with the applicationspecific source. Type: B Input 1 (UMS_3) Value: KR0000 Input 1 for numerical changeover switch 3 can be connected with the application-specific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.UMS_2.X1 H824 Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.UMS_2.X2 H825 Default: B2000 (constant B_output, Y = 0) b.d. 23a FREI_BST.UMS_2.I H826 Default: KR0000 (constant R_output, Y=0,0) b.d. 23a FREI_BST.UMS_3.X1 H827 Input 2 (UMS_3) Value: KR0000 Input 2 for numerical changeover switch 3 can be connected with the application-specific source. Type: R Switch signal (UMS_3) Value: B2000 The input switch signal for numerical changeover switch 3 can be connected with the applicationspecific source. Type: B Default: KR0000 (constant R_output, Y=0,0) b.d. 23a FREI_BST.UMS_3.X2 H828 Default: B2000 (constant B_output, Y=0) b.d. 23a FREI_BST.UMS_3.I H840 Input 1 (ADD_1) Value: KR0000 Input 1 for adder 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.ADD_1.X1 H841 Input 2 (ADD_1) Value: KR0000 Input 2 for adder 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a 150 FREI_BST.ADD_1.X2 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H845 Input 1 (SUB_1) Value: KR0000 Input 1 for subtractor 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.SUB_1.X1 H846 Input 2 (SUB_1) Value: KR0000 Input 2 for multiplier 1 can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y = 0.0) b.d. 23a FREI_BST.SUB_1.X2 H850 Input (INT) Value: 0.0 Input quantity for the integrator can be an applicationspecific constant value Type: R b.d. 23b FREI_BST.INT.X H851 Upper limit value (INT) Value: 0.0 Upper limit of the integrator Type: R b.d. 23b FREI_BST.INT.LU H852 Lower limit value (INT) Value: 0.0 Lower limit of the integrator Type: R b.d. 23b FREI_BST.INT.LL H853 Integrating time (INT) Value: Integrating time constant of the integrator Unit.: ms Type: R 0.0 b.d. 23b FREI_BST.INT.TI H854 Setting value (INT) Value: KR0000 The setting value input for the integrator can be connected to the applicationspecific source. Type: R Set (INT) Value: B2000 The set input for the integrator can be connected to the applicationspecific source. Type: B Input (LIM) Value: KR0000 The input for the limiter can be connected to the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y=0,0) b.d. 23b FREI_BST.INT.SV H855 Default: B2000 (constant B_output, Y=0,0) b.d. 23a FREI_BST.INT.S H856 Default: KR0000 (constant R_output, Y=0,0) b.d. 23b FREI_BST.LIM.X H857 Upper limit value (LIM) Value: KR0000 The "upper limit value" for the limiter can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output, Y=0,0) b.d. 23b FREI_BST.LIM.LU Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 151 Parameters H858 Lower limit value (LIM) Value: KR0000 The "lower limit value" for the limiter can be connected with the applicationspecific source. Type: R Input (EinV) Value: B2000 The input for the switch-on delay stage can be connected with the applicationspecific source. Type: B Default: KR0000 (constant R_output, Y=0,0) b.d. 23b FREI_BST.LIM.LL H860 Default: B2000 (constant B_output, Y=0) b.d. 23b FREI_BST.EinV.I H861 Delay time (EinV) Value: Pulse delay time for the switch-on delay stage Unit.: ms 0.0 Type: R b.d. 23b FREI_BST.EinV.T H862 Input (AusV) Value: B2000 The input for the switch-off delay stage can be connected with the applicationspecific source. Type: B Delay time (AusV) Value: 0.0 Pulse delay time for the switch-off delay stage Unit: Default: B2000 (constant B_output, Y=0) b.d. 23b FREI_BST.AusV.I H863 ms Type: R b.d. 23b FREI_BST.AusV.T H864 Input (ImpV) Value: B2000 The input for the pulse shortening stage can be connected with the applicationspecific source. Type: B Default: B2000 (constant B_output, Y=0) b.d. 23b FREI_BST.ImpV.I H865 Delay time (ImpV) Value: Pulse delay time for the pulse shortener stage Unit: 0.0 ms Type: R Input (ImpB) Value: B2000 The input for the pulse generator can be connected to the applicationspecific source. Type: B b.d. 23b FREI_BST.ImpV.T H866 Default: B2000 (constant B_output, Y=0) b.d. 23b FREI_BST.ImpB.I H867 Pulse duration (ImpB) Value: Pulse duration for the pulse generator Unit: Type: b.d. 23b 152 0.0 ms R FREI_BST.ImpB.T Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H868 Input (Inv) Value: B2000 The input for the pulse inverter can be connected to the applicationspecific source. Type: B Value: B2001 Default: B2000 (constant B_output, Y=0) b.d. 23b FREI_BST.Invt.I H870 Input 1 (AND_1) Input 1 for the logical AND can be connected with the applicationspecific source. Type: B Default: B2001 (constant B_output) b.d. 23b FREI_BST.AND_1.I1 H871 Input 2 (AND_1) Value: Input 2 for the logical AND can be connected with the applicationspecific source. Type: B2001 B Default: B2001 (constant B_output) b.d. 23b FREI_BST.AND_1.I2 H876 Input 1 (OR_1) Value: B2000 Input 1 for the logical OR can be connected with the applicationspecific source Type: B Default: B2000 (constant B_output) b.d. 23b FREI_BST.OR_1.I1 H877 Input 2 (OR_1) Value: B2000 Input 2 for the logical OR can be connected with the applicationspecific source. Type: B Default: B2000 (constant B_output) b.d. 23b FREI_BST.OR_1.I2 H880 Input 1 (comp.) Value: KR0000 Input 1 (H880) is compared with input 2 (H881). Type: R Input 1 for the numerical comparator can be connected with the applicationspecific source. b.d. 23b Default: KR0000 (constant R_output) FREI_BST.Vergl.X1 H881 Input 2 (comp.) Value: KR0000 Input 2 for the numerical comparator can be connected with the applicationspecific source. Type: R Default: KR0000 (constant R_output) b.d. 23b FREI_BST.Vergl.X2 H883 Input (smooth) Value: KR0000 Input for the PT1 element (smoothing block) can be connected with the application-specific source. Type: R Smoothing time (smooth) Value: 0.0 Time constant for the smoothing block (PT1 element) Units. Type: ms R Default: KR0000 (constant R_output) b.d. 23b FREI_BST.Glaet.X H884 b.d. 23b FREI_BST.Glaet.T Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 153 Parameters H885 Value: KR0000 Setting value (smooth) Type: The setting value is output at the smoothing block if the setting (H886) is a logical 1, i.e. for H886=1, KR0883 = H885. The input for the setting value can be connected with the applicationspecific source. R Default: KR0000 (constant R_output) b.d. 23b H886 FREI_BST.Glaet.SV Setting (smooth) Value: B2000 The input for setting can be connected with the applicationspecific source. Type: B Default: B2000 (constant B_output) b.d. 23b FREI_BST.Glaet.S H887 No control word from PROFIBUS Value: 0 Bypass for the interface PROFIBUS DP Type: B 0: If control word 1 from PROFIBUS DP available 1: if no control word 1 from PROFIBUS DP b.d. 17 IQ1Z_07.Bypass_DP.I H888 No control word from PtP Value: 0 Bypass for the interface Peer-to-Peer Type: B 0: If control word 1 from Peer to Peer available 1: if no control word 1 from Peer to Peer b.d. 17 IQ1Z_07.Bypass_PtP.I H890 Speed, point 1 Value: 0.0 Abscissa value for the friction torque characteristic, point 1. Type: R Caution: The values of H890 to H899 must be sorted increasingly. If not all of the 10 points are required, then the rest points must be assigned with the same values as the last required point. b.d. 9b H891 DIAMZ_07.P910.A1 Speed, point 2 Value: 0.2 Abscissa value for the friction torque characteristic, point 2. Type: R b.d. 9b DIAMZ_07.P910.A2 H892 Speed, point 3 Value: 0.4 Abscissa value for the friction torque characteristic, point 3. Type: R b.d. 9b DIAMZ_07.P910.A3 H893 Speed, point 4 Value: 0.6 Abscissa value for the friction torque characteristic, point 4. Type: R b.d. 9b DIAMZ_07.P910.A4 H894 Speed, point 5 Value: 0.8 Abscissa value for the friction torque characteristic, point 5. Type: R b.d. 9b 154 DIAMZ_07.P910.A5 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H895 Speed, point 6 Value: 1.0 Abscissa value for the friction torque characteristic, point 6. Type: R b.d. 9b DIAMZ_07.P910.A6 H896 Speed, point 7 Value: 1.0 Abscissa value for the friction torque characteristic, point 7. Type: R b.d. 9b DIAMZ_07.P910.A7 H897 Speed, point 8 Value: 1.0 Abscissa value for the friction torque characteristic, point 8. Type: R b.d. 9b DIAMZ_07.P910.A8 H898 Speed, point 9 Value: 1.0 Abscissa value for the friction torque characteristic, point 9. Type: R b.d. 9b DIAMZ_07.P910.A9 H899 Speed, point 10 Value: 1.0 Abscissa value for the friction torque characteristic, point 10. Type: R b.d. 9b DIAMZ_07.P910.A10 H900 Friction torque, point 7 Value: Absolute torque setpoint (d331) at speed point 7. Min: 0.0 Max: 2.0 R 0.0 b.d. 9b DIAMZ_07.P910.B7 Type: H901 Friction torque, point 8 Value: Absolute torque setpoint (d331) at speed point 8. Min: 0.0 b.d. 9b H902 0.0 Max: 2.0 DIAMZ_07.P910.B8 Type: R Friction torque, point 9 Value: 0.0 Absolute torque setpoint (d331) at speed point 9. Min: 0.0 Max: 2.0 R b.d. 9b DIAMZ_07.P910.B9 Type: H903 Friction torque, point 10 Value: Absolute torque setpoint (d331) at speed point 10. Min: 0.0 b.d. 9b H910 0.0 Max: 2.0 DIAMZ_07.P910.B10 Type: R Source for conversion N2->R Wert: K4910 Standart setting is the recieved word 2 from CB Typ: I Up 15 IF_COM.Sollwert_W2.X H911 Source for conversion N2->R Wert: K4911 Standart setting is the recieved word 3 from CB Typ: I Up 15 IF_COM.Sollwert_W3.X H912 Source for conversion N2->R Wert: K4912 Standart setting is the recieved word 5 from CB Typ: Up 15 I IF_COM.Sollwert_W5.X Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 155 Parameters H913 Source for conversion N2->R Wert: K4913 Standart setting is the recieved word 6 from CB Typ: I Up 15 IF_COM.Sollwert_W6.X H914 Source for conversion N2->R Wert: K4914 Standart setting is the recieved word 7 from CB Typ: I Up 15 IF_COM.Sollwert_W7.X H915 Source for conversion N2->R Wert: K4915 Standart setting is the recieved word 8 from CB Typ: I Up 15 IF_COM.Sollwert_W8.X H916 Source for conversion N2->R Wert: K4916 Standart setting is the recieved word 9 from CB Typ: I Up 15 IF_COM.Sollwert_W9.X H917 Source for conversion N2->R Wert: K4917 Standart setting is the recieved word 10 from CB Typ: Up 15 IF_COM.Sollwert_W10.X H920 Source transmitted word 2 at CB Up 15a IF_COM.Sammeln.X1 H921 Source transmitted word 3 at CB Up 15a IF_COM.Sammeln.X2 H922 Source transmitted word 5 at CB Wert: K4920 Typ: IF_COM.Sammeln.X3 Source transmitted word 6 at CB Up 15a IF_COM.Sammeln.X4 H924 Source transmitted word 7 at CB Up 15a IF_COM.Sammeln.X5 H925 Source transmitted word 8 at CB Source transmitted word 9 at CB I Wert: K4925 Typ: IF_COM.Sammeln.X6 I Wert: K4924 Typ: H926 I Wert: K4923 Typ: Up 15a I Wert: K4922 Typ: H923 I Wert: K4921 Typ: Up 15a I I Wert: K4926 Typ: I Up 15a IF_COM.Sammeln.X7 H927 Source transmitted word 10 at CB Up 15a IF_COM.Sammeln.X8 H930 Source for conversion N2->R Wert: K4930 Standart setting is the recieved word 2 from CU Typ: Wert: K4927 Typ: Up 15c 156 I I IF_CU.Istwert_W2.X Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H931 Source for conversion N2->R Wert: K4931 Standart setting is the recieved word 3 from CU Typ: I Up 15c IF_CU.Istwert_W3.X H932 Source for conversion N2->R Wert: K4932 Standart setting is the recieved word 5 from CU Typ: I Up 15c IF_CU.Istwert_W5.X H933 Source for conversion N2->R Wert: K4933 Standart setting is the recieved word 6 from CU Typ: I Up 15c IF_CU.Istwert_W6.X H934 Source for conversion N2->R Wert: K4934 Standart setting is the recieved word 7 from CU Typ: I Up 15c IF_CU.Istwert_W7.X H935 Source for conversion N2->R Wert: K4935 Standart setting is the recieved word 8 from CU Typ: Up 15c IF_CU.Istwert_W8.X H940 Transmitted word 2 at CU Up 15b IF_CU.Sammeln.X1 H941 Transmitted word 3 at CU Up 15b IF_CU.Sammeln.X2 H942 Transmitted word 5 at CU Wert: K4940 Typ: IF_CU.Sammeln.X3 Transmitted word 6 at CU Up 15b IF_CU.Sammeln.X4 H944 Transmitted word 7 at CU Up 15b IF_CU.Sammeln.X5 H945 Transmitted word 8 at CU Transmitted word 9 at CU IF_CU.Sammeln.X7 H947 Transmitted word 10 at CU Up 15b IF_CU.Sammeln.X8 H950 Input high word for conversion N4 -> R Up 26 FREI_BST.W->DW_1.XWH I Wert: K4947 Typ: I Wert: K4000 Typ: Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 I Wert: K4946 Typ: Up 15b I Wert: K4945 Typ: IF_CU.Sammeln.X6 I Wert: K4944 Typ: H946 I Wert: K4943 Typ: Up 15b I Wert: K4942 Typ: H943 I Wert: K4941 Typ: Up 15b I I 157 Parameters H951 Input low word for conversion N4 -> R Up 26 FREI_BST.W->DW_1.XWL H952 Input high word for conversion N4 -> R Wert: K4000 Typ: Wert: K4000 Typ: Up 26 FREI_BST.W->DW_2.XWH H953 Input low word for conversion N4 -> R FREI_BST.W->DW_2.XWL H954 Input for conversion R -> N4 Up 26 FREI_BST.R->DW_1.X H956 Input for conversion R -> N4 Up 26 FREI_BST.R->DW_2.X H958 Input for conversion R -> I Input for conversion R -> I FREI_BST.R->I_2.X H960 Input for conversion R -> DI Up 26a FREI_BST.R->D_1.X H962 Input for conversion R -> DI Up 26a FREI_BST.R->D_2.X H964 Input for conversion I -> R Input for conversion I -> R FREI_BST.I->R_2.X H966 Input high word for conversion DI -> R Up 26a FREI_BST.W->DW_3.XWH H967 Input low word for conversion DI -> R Up 26a FREI_BST.W->DW_3.XWL H968 Input high word for conversion DI -> R Input low word for conversion DI -> R FREI_BST.W->DW_4.XWL H970 Transmitted word 2 PtP Up 14 IF_PEER.Sammeln1.X1 I Wert: K4970 Typ: 158 I Wert: K4000 Typ: Up 26a I Wert: K4000 Typ: FREI_BST.W->DW_4.XWH I Wert: K4000 Typ: H969 I Wert: K4000 Typ: Up 26a I Wert: K4000 Typ: Up 26a R Wert: K4000 Typ: FREI_BST.I->R_1.X R Wert: KR0000 Typ: H965 R Wert: KR0000 Typ: Up 26a R Wert: KR0000 Typ: Up 26a R Wert: KR0000 Typ: FREI_BST.R->I_1.X R Wert: KR0000 Typ: H959 I Wert: KR0000 Typ: Up 26a I Wert: K4000 Typ: Up 26 I I Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Parameters H971 Transmitted word 3 PtP Up 14 IF_PEER.Sammeln1.X2 H972 Transmitted word 4 PtP Wert: K4971 Typ: Wert: K4972 Typ: Up 14 IF_PEER.Sammeln1.X3 H973 Transmitted word 5 PtP I I Wert: K4973 Typ: I Up 14 IF_PEER.Sammeln1.X4 H974 Source for conversion N2->R Wert: K4974 Standard setting is the recieved word 2 from PtP Typ: I Up 15c IF_PEER.Sollwert_W2.X H975 Source for conversion N2->R Wert: K4975 Standard setting is the recieved word 3 from PtP Typ: I Up 15c IF_PEER.Sollwert_W3.X H976 Source for conversion N2->R Wert: K4976 Standard setting is the recieved word 4 from PtP Typ: I Up 15c IF_PEER.Sollwert_W4.X H977 Source for conversion N2->R Wert: K4977 Standard setting is the recieved word 5 from PtP Typ: Up 15c IF_PEER.Sollwert_W5.X H980 Input high word for conversion N4-> R Up 26 FREI_BST.W->DW_5.XWH H981 Input low word for conversion N4 -> R Wert: K4000 Typ: FREI_BST.W->DW_5.XWL H982 Input high word for conversion N4 -> R Up 26 FREI_BST.W->DW_6.XWH H983 Input low word for conversion N4 -> R Up 26 FREI_BST.W->DW_6.XWL H984 Input for conversion R -> N4 Up 26 FREI_BST.R->DW_3.X H986 Input for conversion R -> N4 Up 23c FREI_BST.Flip1.S R Wert: B2000 Typ: Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 R Wert: KR0000 Typ: Set-input RS-Flip-Flop I Wert: KR0000 Typ: FREI_BST.R->DW_4.X I Wert: K4000 Typ: H990 I Wert: K4000 Typ: Up 26 I Wert: K4000 Typ: Up 26 I B 159 Parameters H991 Reset-input RS-Flip-Flop Up 23c FREI_BST.Flip1.R H992 Set-input RS-Flip-Flop Wert: B2000 Typ: Wert: B2000 Typ: Up 23c FREI_BST.Flip2.S H993 Reset-input RS-Flip-Flop B B Wert: B2000 Typ: B Up 23c FREI_BST.Flip2.R H997 Drive number Value: 0 Drive ID for documentation purposes Type: I SIMADYN D Value: 134 Reserved for automatic identification of a T400 module Type: I b.d. 4 PARAMZ_01.DRNR.X d998 b.d. 4 PARAMZ_01.Simadyn.Y d999 ID for Simovis Value: 221 Reserved for automatic identification of the axial winder software Type: I b.d. 4 160 PARAMZ_01.ID-SIMOVIS.Y Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning 6 Commissioning Information and instructions are provided in this Chapter, which should allow the axial winder to be started up as quickly as possible. Warning Only start to commission the system, if adequate and effective measures have been made to safely operate the system and the drive both electrically and mechanically. Carefully check that all of the safety- and EMERGENCY OFF signals are connected and are effective, so that the drive can be shutdown at any time. 6.1 Commissioning the base drive Prerequisite H282 = 0 Advantages For parameter H282=0, the closed-loop speed- and torque control are computed on the base drive. The sum of the speed setpoints is entered directly in front of the speed controller; the ramp-function generator on the T400 technology module is used, and the torques are entered as supplementary signal or as limits. n The best configuration from the dynamic performance standpoint, lowest deadtimes; n The speed controller optimization routine of the base drive can be used; n Start-up can initially be made without the T400. Procedure * The drive converters are always operated in the closed-loop speed controlled mode (e.g. for CUVC P100=4); the speed is sensed at the base drive. The pulse encoder is connected to the base drive and the pulse signals are transferred to the T400 via the backplane bus (H217=7FC2). * For the axial winder, two optimization runs should be made for the speed controller (one only with the mandrel and the other, as far as possible, with a full roll), before the drive converter is reparameterized for the standard software package (SPW420). * Parameterize the drive converter, refer to Table 6-1. Caution It is only possible to commission the winder, after the base drive has been correctly commissioned. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 161 Commissioning CU VC CU MC CU D1 Word. Bit Explanation Param. Value Param. Value Param. Value P100 4 Selects the control type P290 0 P169/P170 0/1 Selects the torque/current control P648 9 Source for control word 1 P649 9 Source for control word 2 P554 3100 P554 3100 P654 3100 Word 1.0 On command (main contactor) P555 3101 P555 3101 P655 3101 Word 1.2 Off2 P558 P561 Note 3102 P558 3103 P561 Note 3102 P658 3102 Word 1.2 Off3 3103 P661 3103 Word 1.3 Pulse enable, refer to Note P562 3104 P562 3104 P662 3104 Word 1.4 Enable ramp funct. generator P563 3105 P563 3105 P663 3105 Word 1.5 Start ramp function generator 3106 P564 3106 P664 3106 Word1.6 Enable setpoint P565 3107 P565 3107 P665 3107 Word 1.7 Acknowledge fault P575 3115 P575 3115 P675 3115 Word 1.15 External fault P443 3002 P443 3002 P625 3002 Word 2 Speed setpoint P585 3409 P585 3409 P685 3409 Word 4.9 Speed controller enable P506 3005 P262 3005 P501 3005 Word 5 Supplementary torque setpoint P493 3006 P265 3006 P605 3006 Word 6 Positive torque limit P564 Hinw. Hinw. P499 3007 P266 3007 P606 3007 Word 7 Negative torque limit P232 3008 P232 3008 P553 3008 Word 8 Variable moment of inertia P734.01 32 P734.01 32 U734.01 32 Word 1 Status word 1 (b.d. 22) P734.02 148 P734.02 91 U734.02 167 Word 2 Receive word 2 (free) P734.03 0 P734.03 0 U734.03 0 Word 3 Receive word 3 (free) P734.04 P734.05 P734.06 Table 6-1 Word 4 Status word 2 (not used) 165 P734.04 P734.05 165 U734.04 U734.05 141 Word 5 Torque setpoint 24 P734.06 241 U734.06 142 Word 6 Torque actual value, smoothed Parameter settings The communication to the base drive does not need to be modified (except in special cases). Furthermore, the speed controller in the base drive (P-parameters) or in the T400 (H-parameters) should be optimized (table 6-2). With the following settings a Kp-adaption refering to the variable moment of inertia is present. CU VC CU MC CU D1 Word. Bit Explanation Param. Value Param. Value Param. Value P233 H150 P233 H150 P556 H150 Start of adaptation Jv start P234 H152 P234 H152 P559 H152 End point of adaptation Jv end P235 H151 P235 H151 P550 H151 Kp adapt. min., speed controller P236 H153 P236 H153 P225 H153 Kp adapt. max., speed controller Table 6-2 162 Parameter settings Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning The next parameters are for entering the rated pulses and the rated speed (P-parameter if encoder in base drive, H-parameter if encoder in T400) CU VC CU MC CU D1 Word. Bit Explanation Param. Value Param. Value Param. Value P151 P353 1 Table 6-3 H212 P151 H212 P141 H212 Pulse No. axial tach., speed act.val. H214 P353 H214 P143 H214 Rated speed, shaft tachom. for nact Parameter settings 1 Calculated value: The rated speed corresponds to 100% web velocity with minimum diameter. That is the V [m / min] i maximum speed. nB [min -1 ] = max DKern [m] with: nB=rated speed Vmax=maximum web velocity ( = 100%) i=gear DKern=minimum diameter Note If the open-loop brake control function of CUVC/MC is used, the following parameter settings are required: H510 = B2509 (no operating enable) H519 = B2001 (constant digital output) P561 = 278 (inverter enable from the brake) P564 = 277 (setpoint enable from the brake) P614 = 3400 (no operating enable) 6.2 Commissioning the winder Procedure n Commission the base drive and install the supplementary modules used according to the appropriate Instruction Manuals. n Setting the parameters Caution It is only possible to commission the winder, after the base drive has been correctly commissioned. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 163 Commissioning 6.3 Information on commissioning All of the settings to parameterize this standard software package, are made via the technology parameters "Hxxx". The standard software package monitors the communications to CUxy, CBx and to its own serial peer to peer interface. Errors which occur, are always signaled as alarm and fault messages; they can be suppressed using H011 and H012. 6.3.1 Resources used for adaptation and commissioning Various resources are available to adapt the standard software package to the particular application. Tools Name Explanation PMU Input field for all MASTERDRIVES- and DC Master units (with 4-digit display) OP1S Operator control device with numerical keypad and 4-line text display; this can be directly connected to the PMU. SIMOVIS Commissioning and parameterizing software for the PC (Windows). It also offers an oscilloscope function for MASTERDRIVES MC/VC and DC-MASTER. CFC Graphic configuring/engineering tool which was used to generate the standard software package. This is connected to the service interface of the T400. Prerequisite: STEP 7; D7-SYS Service-IBS Basic commissioning- and diagnostics tool for PC (DOS). It is also available as Telemaster for remote diagnostics. Table 6-4 Adaptation- and commissioning tools Comparison The resources essentially differ by the intervention possibilities which are shown in the following table. Intervention PMU OP1S Any Parameter Parameter Parameter Any Change value Any Parameter Parameter Parameter Any Change connection Any BICO (with BICO BICO Any View value CFC SIMOVIS Service-IBS restrictions) Insert block Yes No No No No Delete block yes No No No No Change execution sequence Yes No No No No Change cycle time for processing Yes No No No No Duplicate software Yes No No No No Duplicate complete parameter set No No No Yes (Macro) 164 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning Documentation Table 6-5 Charts No No Parameter lists No Comparison of the adaptation- and commissioning tools 6.3.2 Specification of the parameter numbers In addition to the technology parameters, for the drive converters used, there are so-called basic drive parameters. These should be taken from the associated function charts of the documentation of the drive converter used. Note It should be observed that parameters are selected by entering the number (e.g. at the drive converter operator panel). When displayed, the most significant position is replaced by a letter, which indicates whether it involves a quantity which can be changed or not changed. Example In order to select technology parameter "H956","1956" is entered. Value- Significance range Parameter display (example) can be changed cannot be changed Lower parameter range of the drive converter P123 r123 1000 ... 1999 Lower parameter range of the T400 H123 d123 2000 ... 2999 Upper parameter range of the drive converter U123 n123 3000 ... 3999 Upper parameter range of the T400 L123 c123 0 ... 999 Table 6-6 Parameter number specification 6.3.3 BICO technology BICO parameters Caution This standard software package is extremely flexible when it comes to the freely connectable input- and output signals using BICO technology. Contrary to (value) parameters, BICO parameters define connections. This means that parameters specify a fixed value at an input, whereby BICO parameters select the signal source, which is connected with the input. This signal source must be defined in the (Fig. 6-) The source and destination of a BICO connection must have the same data type. Thus, there are different symbols for connectors and BICO inputs in the function charts for each data type used. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 165 Commissioning Connector name Connector number BICO parameter S. enable Connection from BOOLean values B0123 H681 (0123) B (120,3) Status bit_XY Data type symbol 16-bit values Name of the BICO input K2541 S. control word L430 (2541) K (200,8) PZD_123 Number of the connected connectors (factory setting) Diagram,sector of the source for the factory setting S. double word 32-bit values KK5021 P501 (5021) KK (60,2) CU_DoubleXY S. Speed actual vaue Floating point values KR3155 Speed Connectors Fig. 6-7 L321 (3155) KR (330,1) BICO inputs Symbols for connectors and BICO inputs 6.3.4 Establishing the factory setting "Establish factory setting" is not required for a "standard" start-up, as the SPW420 is shipped on the T400 with the factory setting. The factory setting can be re-established, if there is, for example, uncertainty about the parameterization, or it is not possible to change any more parameters. All of the parameters are reset to the factory setting. The T400 must be appropriately parameterized for the new plant/system or a parameter set must be read-in (e.g. using SIMOVIS). Parameterization The factory setting is established as follows, whereby the memory type (RAM or EEPROM, this only involves SIMOVIS) is of no significance: H250=165 set H160 from 0 to 1 power-down the drive converter Note The factory setting only becomes effective after the equipment has been powered-up again (with the exception of H160). We recommend that H160 is power-up again. Measures for a full EEPROM (parameter changes are no longer possible): 1) A PC with SIMOVIS is required. 2) SIMOVIS: Changeover the SIMOVIS memory type from EEPROM to RAM by clicking on the RAM symbol in the main menu. 3) "Establish factory setting" (as described above; after powering-up again, H160 is now 0). 4) Then changeover the SIMOVIS memory type back to EEPROM. 166 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning 6.4 Commissioning the winder functions 6.4.1 Checking the speed actual value calibration The maximum speed is obtained at the maximum web velocity and the minimum diameter (also refer to Chapter 3.2.2). Principle n = nmax, if Procedure web velocity = 1.0 and diameter = Dcore = H222 - closed-loop velocity controlled operation of the winder, e.g. by selecting local operation and local inching forwards. The required inching setpoint is entered with H143. Local, closed-loop velocity controlled operation is selected with H146=0. - enter the actual diameter as setting value and select via H089, activate the setting command, check via d310. For winding, generally the core diameter H222 (empty mandrel) is used as reference and then H089 should be set to connector KR0222. - ramp-up the web velocity setpoints to a defined low value, e.g. 0.10 (check at d344). - check the circumferential velocity at the roll using the handheld tachometer. - if required, correct the speed calibration (H214 on the T400 or Pxxx in the basic drive, refer to Table 6-1) (refer to Chapter 3.2.2) Caution After each significant change in the speed actual value calibration, the speed controller must be re-optimized with an empty roll. - check the polarity of the speed actual value and if required change. - check the torque direction. When the winder is rotating in the direction of the material web and "winding from above", the speed actual value and torque setpoint must be positive; refer to Chapt. 4.5. 6.4.2 Compensation, friction torque (block diagram 9b) Note Principle Generally, the friction component is dependent on the shaft speed of the winder. For most winder designs, the weight of the wound material only has a low influence. The friction compensation can only compensate for friction values, which are speed-dependent, but which otherwise do not change. Frequently, especially for high gearbox ratios, the friction torque is strongly dependent on the gearbox temperature. This can mean that friction compensation is either difficult or is just not practical. For some gearbox designs, high mandrel speeds cause the gearbox temperature to increase to some extent. This temperature rise results in a significantly different friction torque. We recommend that the measuring Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 167 Commissioning time when plotting the friction characteristic is kept as short as possible - later, when winding, high shaft speeds only occur briefly. Under certain circumstances, after the first commissioning, it may be necessary to post-optimize the friction characteristic (from experience winders are "run-in" after between 2 and 30 operating hours). When using gearbox stage 2, the friction characteristic output, based on gearbox stage 1, should be adapted using H229 or H128. A friction compensation should be set, especially for indirect tension control techniques. The winder is operated without any material when plotting the friction characteristic. Applications When using the direct tension control with a tension transducer or dancer roll, frequently, it is not necessary to parameterize the friction characteristic. However, it makes it easier to set the inertia compensation and tension pre-control. Caution If the friction compensation has been set too high, the winder can start to run, and, when unwinding using indirect tension control, can result in slack in the material web. 6.4.2.1 Friction characteristic - closed-loop speed controlled operation of the winder, e.g. local operation and local inching forwards mode are selected. The required inching setpoint is entered using H143. Local, closed-loop speed controlled operation is selected with H146=1. Procedure - check the setpoint entered at d307 (n_act). - read the torque setpoint at d331; the measurement result should be evaluated only after 10-20 seconds. The torque setpoint is smoothed using H162, basic setting 0.5 s. - the pre-control for inertia compensation is disabled with H227=0.0 and H228=0.0 (pre-settings). - measurement and reading-out as in the following table H143 speed d307 Input H890 to H899 e.g. H143=0.0 H890=0.0 H143=0.2 H891=0.2 Select H230, so that the winder is just about to run, or comes to a standstill at a low speed. Then enter the value read at d331 into H230 Enter the value read at d331 into H231 H143=0.4 H892=0.4 Enter the value read at d331 into H232 H143=0.6 H893=0.6 Enter the value read at d331 into H233 H143=0.8 H894=0.8 Enter the value read at d331 into H234 H143=1.0 H895 to Enter the value read at d331 into H235 as well as H900 to H903 H899 =1.0 Table 6-8 168 Setting H230-H235 and H900-H903 read d331 Generating the friction characteristic Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning - after the points for the friction characteristic have been entered, the calibration should be checked at various speeds. After the acceleration sequence has decayed, the torque setpoint, monitored at d331, should be 2%. - if gearbox stage 2 is used, a minimum of the 2 above mentioned points should be used in order to define adaptation factor H229 or H128. Caution For the friction torque characteristic, the values of H890 to H899 must be sorted increasingly. If not all of the 10 points are required, then the rest points must be assigned with the same values as the last required point, example refers to . 6.4.3 Compensating the accelerating torque (block diagram 9b) Applications The inertia compensation should be set for winders with indirect tension control, and for direct tension control, with tension transducer, if the accelerating torque cannot be neglected with respect to the other torque. For closed-loop dancer roll controls, generally it is not necessary to compensate the accelerating torque. Prerequisite If the compensation friction torque is required, the friction characteristic must be carefully commissioned, refer to Section 7.2.2. Procedure General procedure for inertia compensation: - system operation of the winder, e.g. by connecting H069 to connector KR0068. The required velocity setpoint is entered using H068. - enter the actual diameter as setting value and select via H089, activate the setting command, check using d310. - enter a ramp-up/ramp-down time at H133/H134, corresponds to the system acceleration time. which - select H220 so that it also corresponds to the system acceleration time - when the on command ("OFF1" and "system start") is activated, an up ramp is started, the I component of the speed controller in the basic drive is monitored when accelerating, e.g. for CUVC via r033 (P032.01=155). The average value of R033 is generated in the interval between 0.1 and 0.9 of the specified speed setpoint. - the winder is then operated without "material web" with respect to the remaining machine. - gearbox stage 1 is always used. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 169 Commissioning 6.4.3.1 Constant moment of inertia, H228 Principle We recommend that the fixed moment of inertia is calculated according to Chapter 4.2.1. Procedure Determine H228 by accelerating along a defined ramp: - disable the variable moment of inertia with H227=0.0. - insert the mandrel with core, set the core diameter and check at d310. - enter a setpoint with H068 and activate the "OFF1" and "System start" commands. - read-out r033 (for CUVC, P032.01=155) in the range from 10-90% of the speed setpoint. - enter the monitored average value of r33, multiplied by Dcore/Dmax in parameter H228. Or, parameter H228 is adjusted until the I component of the speed control r033 (for CUVC) goes to 0%. - repeat the measurement; the value displayed at r033 must now be extremely low ( 2%). Note Different values at d331 for ramp-up and ramp-down signify that the friction component has not been precisely compensated. 6.4.3.2 Variable moment of inertia, H227 Principle Also here, we recommend that parameter H227 is first calculated corresponding to Chapter 4.2.2. For gearboxes with a high ratio, frequently the component of the variable moment of inertia can be neglected. Procedure Determine H227 by accelerating along a defined ramp: - insert a roll which is as full as possible, set the diameter to the actual value and check at d310. Enter the web width (H079, possibly 1.0) and the material density (H224, possibly 1.0). - enter a setpoint using H068, and activate the command "OFF1" and "System start". - read-out r033 (for CUVC, P032.01 = 155) in the range 10-90% of the speed setpoint. - enter the monitored average value (in the floating point format) at H227. Or, parameter H227 is adjusted until the I component of the speed controller r033 goes to 0% (for CUVC). - repeat the measurement, the value displayed at r033, must now be extremely low ( 2%). Note 170 A changeover to gearbox stage 2 is taken into account when computing the variable moment of inertia. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning 6.4.4 Setting the Kp adaptation for the speed control Measure required The proportional gain of the speed controller should generally be adapted to the variable moment of inertia. For a ratio of Dmax/Dmin > 3 to 4, it is absolutely necessary to optimize the kp adaptation in order to achieve good winding characteristics and fast commissioning. Procedure Using the "Set diameter" and the "Diameter setting value" commands, refer to Sheet 9a of the block diagram, enter the diameter which corresponds to the diameter of the roll at the machine, and that value for which the speed controller should be optimized. Generally, this is the core diameter and the maximum diameter (the largest possible diameter). Always check the entered diameter using d310! Adaptation is carried-out using a polygon characteristic with 2 points, which can be parameterized. The variable moment of inertia is the input variable of the characteristic. The starting and end points of the appropriate adaptation should be determined. Selection: T400 or CU H282 can be used to select whether the speed controller is used on the T400 or in the base drive. In this case, set the Kp adaptation on the appropriate module (T400 or CU), refer to Chapter 3.4.2.2. 6.4.4.1 Setting on the T400 H282 = 1 Determining H153 Characteristic parameters which should be set: Kp min H151 controller gain for an empty roll Jv=0.0 Kp max H153 controller gain for a full roll Jv start H150 starting point of the adaptation, generally at 0.0 Jv end H152 end point of the adaptation, generally at 1.0 Use a roll which is as full as possible, with the full width and maximum specific weight, set the diameter and check at d310. Carry-out the optimization routine for the speed controller. H153 = determined Kp * 1.0 / d308 The value for the variable moment of inertia can then also be determined 4 via the measured diameter. Jv[%] D [%] - Dcore[%]. 6.4.4.2 Setting for CUVC or CUMC Procedure Refer to the block diagram of CUVC or CUMC, (Sheet 360 in Lit. [2-3] and Table 3-13 or Table 6-1 in this Manual: - P233=0%; P234=100% (corresponding to H152 = 1.0) - for an empty (smallest) mandrel, the speed controller kp is optimized as usual using parameter P235. Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 171 Commissioning - optimize the speed controller again using P236 with the largest possible diameter, web width and specific weight. The effective kp can be read at parameter r237 of the base drive. 6.4.5 Setting the tension or dancer roll controller (block diagram 7/8) For tension transducer When the tension is measured using a tension transducer: - check the control sense corresponding to the recommended configuring. If the polarity (sign) is incorrect, either re-connect at the analog input, or invert the polarity using a multiplier function. - a possible tension transducer offset can be compensated using H179=1. The instantaneous tension actual value is saved and can be subsequently subtracted as offset by activating the control signal "Hold diameter" when the tension controller is inactive. - the maximum input voltage at the analog input for the tension actual value should not exceed 9 V. The input must be calibrated, using the appropriate multiplier, so that the maximum value of 1.0 corresponds, display parameter d311. - select the tension setpoint using H081, calibrate to 1.0 for the maximum tension setpoint. A supplementary tension setpoint can be selected using H083 and this is added after the ramp-function generator for the main setpoint. Display parameter for the total setpoint d304. - parameterize the ramp-function generator for the tension setpoint using H175 and H176. Example Tension actual value at terminals 94/99, maximum value 9 V Calibration: For dancer roll 9V corresponds to 1.0 H054 = 10V / 9V = 1.11 For dancer roll control: - enter a fixed position reference value at H080 with the standard connection from KR0081; the setpoint corresponds to the center dancer roll position. When the winding hardness characteristic is used as output signal for dancer roll support, the main setpoint is disconnected with H177=1, and the position reference value is entered via supplementary setpoint with H082 and H083. - the range for the analog dancer roll position input voltage is normalized to 1.0 at maximum voltage. Example 10V voltage range, 5V dancer roll center voltage, actual value at terminals 94/99 =0V when the dancer is at the bottom and 10V when the dancer roll is at the top. A winder runs too quickly if the actual value > 5V and too slowly for actual values < 5V; for unwinder, this is the other way round. The position 172 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning reference value H080 is set to 0.5, the normalization of the analog input with H058 to 1.0. - the winding hardness characteristic should be disabled using H206=1. - for the dancer roll control, H190 can be used to realize tension precontrol via the torque limits (H203=2.0). The main tension setpoint is multiplied by the diameter and H190, and added to the controller output. - alternatively, pre-control can also be realized, if the web tension is not available, or is not known. In this case, it is necessary that a pressure actual value is received from the dancer roll which is read-in via analog input 5. In this case a negative adaptation factor H190 must be entered. - the D controller for the position controller must enabled with H174=0; this is generally always required for dancer roll position controls, in order to prevent the dancer roll oscillating. When optimizing the D controller, starting from the pre-setting, it is preferable change H173; for the correct setting, the dancer roll must remain steady, with the exception of mechanical influences. - system operation with low web velocity. Checking the control sense - set the correct diameter and enable the tension control. - check the control sense according to the following table Tension transducer Dancer roll Winder Unwinder Actual value > setpoint - Too fast Too slow Actual value < setpoint - Too slow Too fast - Above, ref. to Too fast Too slow - Below, ref. to Too slow Too fast Table 6-9 Checking the control sense Dancer roll at the top Winder Dancer roll Center position P Dancer roll at the bottom M P Fig 6-10 U T Dancer roll position for dancer roll position controls Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 173 Commissioning 6.4.6 Setting the tension controller, Kp adaptation Required for H203=1.0, 2.0 Adaptation to the variable moment of inertia is required for torque limiting controls with direct tension measurement, operating modes H203=1.0, 2.0. The indirect tension control (H203=0.0) requires no adaptation and no tension controller setting. For the speed correction control (H203=3.0, 5.0) it is not permissible that the adaptation is set, in this case the Kp value from H197 is valid for the complete range. Note Optimizing the tension controller When parameterizing the Kp-characteristic, essentially proceed as described in Chapter 7.2.4. Then tension controller is optimized using the usual technique, e.g. by entering a small supplementary tension setpoint and monitoring the speed actual value. A damped oscillation must always be observed. When entering a step function of a setpoint for other quantities, e.g. the speed setpoint, the same results must be obtained. Optimization should be carried-out for various diameters. Experience values for the controller setting: Kp for the speed correction control: Kp for torque limiting control and Dmin: TN for torque limiting control: Note 0.1 - 0.3 0.1 - 0.3 0.5 - 1 s For speed correction control, the tension controller output (d313) in standard operation 0.0 (web stretch); for torque limiting control, the output moves between the torque setpoint and 0.0, dependent on the friction compensation. 6.4.7 Setting the saturation setpoint H145 Note - for speed correction control, H145=0.0 - for torque limiting control H145=0.03 ... 0.10. The value should be selected so that the speed controller is always at its limit under normal operating conditions. The speed controller only leaves its limit when the web breaks, thus preventing the winder from accelerating to inadmissible high speeds. - for unwinder, it is practical if a low overcontrol value is selected. This means that the tension controller can then always be directly switchedin, even if there is slack in the material web. The drive slowly rotates backwards, tensioning the material web. 6.4.8 Setting the braking characteristic H256-259 Braking characteristic 174 The braking characteristic is used to shutdown the drive, without any overshoot, for fast stop (OFF3). In this case, the braking torque is limited to a maximum value (H259). If the drive falls below a specific speed Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning (H258), the braking torque is reduced, until it has reached a lower value (H257) at an additional speed (H256). This measure means that a high braking torque can be achieved, and also a clean shutdown in the vicinity of zero speed. Effectiveness Variable moments of inertia for winder drives are handled by setting the fast stop ramp-down time (P466 in the base drive, CUVC), so that the drive still does not reach the torque limit, at approximately half the diameter and is cleanly shutdown using the closed-loop speed control. For higher diameters and moments of inertia, the braking characteristic becomes effective and the braking time is appropriately extended. If this function is not required, then 2.0 can be entered in H257 and H259. 6.5 Operation with the communications module (CBP/CB1) Factory setting The factory setting assumes no communication module which is at slot 3 (center!), i.e. PROFIBUS communications is not enabled and alarm / fault messages are suppressed. Enable If there is a communications module, then this must be taken into account with the following parameters Suppression - H288 =1: PROFIBUS enable, - H011: Enable alarm suppression (bit6=1) - H012: Enable fault suppression (bit6=1) - H495-H496 telegram monitoring time Suppresses this alarm and fault (all others are effective): - H011= BF - H012= BF Otherwise, a message will occur on PMU - Note T400 in the SRT400 6.6 alarm A103 fault F122 Refer to Chapter 8.2 In addition to setting parameters H288, H495 and H496, other parameters H602-H604 are required to initialize the COMBOARD, also refer to Chapter 2.1.2. Operation with peer-to-peer Factory setting The factory setting assumes that data is not received via peer-to-peer. Enable If a peer-to-peer link is required, the following parameters must be adapted: Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 175 Commissioning Suppression - H289 =1: Peer-to-peer enable, - H011: Enable alarm suppression (bit7=1) - H012: Enable fault suppression (bit8=1) - H246-H247 telegram monitoring time Suppresses this alarm and fault (or others are effective) with bit7=0 in H011 and H012: - H011= 7F - H012= 7F Otherwise, the following message is displayed on the PMU in the drive converter: - alarm A104 and - fault F123 Note 6.7 Refer to Chapter 8.2 Operation with USS slave T400 in the SRT400 The factory setting assumes one USS slave connection. This interface is only used for parameterization in special cases where the T400 is used in the SRT400 subrack. In this case, the following setting is required (refer to Table 2-7 in Chapter 2.1.4): - H600 =1: USS slave enable - H 601=0: RS485/2 wire - S1/8 on T400 into the `ON` position Fixed setting in the software package: 6.8 - baud rate: 9600 - station address: 0 Operation with free function blocks Factory setting The factory setting assumes that non of the free blocks are being used. Enable The following points must be observed if a customer-specific function is also to be implemented using free function blocks: 176 - H650 =1: Enable free function blocks - all of the free blocks are shown in block diagram 23a/b/c. This is subdivided into two cycle times (T1=2ms and T5=128ms). All of the parameter- and binector/connector numbers are listed in Chapter 5 and summarized in Table 9-2 and Table 9-3. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Commissioning - 6.9 when parameterizing, please observe the run sequence (e.g. T1(3) in block diagram 23a/b/c of the free blocks. Trace function with "symTrace-D7" With "symTrace-D7", a product from the company "sympat", it is possible to establish a connection to an application based on D7-SYS (e.g. the axial winder SPW420). With "symTrace-D7" you are able to trace every value in your CFC-application.The trace offers you two different options: online and offline trace. With the online trace you can trace values in intervals of a few ten-milliseconds. This is only practical for slowly changing values, e.g. the diameter actual value. If you want to trace quickly-changing values you need the offline trace. With this option you can trace values within the shortest cycle-time. Therefore the values must be saved in a buffer. Some special function blocks have been placed in the project for that reason. You will find them in the plan "TRACE". With the parameter H364 you are able to change the length of the tracebuffer. The standard setting is 2048 (double words). Furtheron with the d365 and d366 two display parameters show you the state of the trace coupling (-> see parameter list). For more information please read the online help in "symTrace-D7". Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 177 Diagnostic LEDs, alarms, faults 7 Diagnostic LEDs, alarms, faults 7.1 Diagnostic LEDs on the T400 LED on the T400 The T400 has 3 LEDs: red, yellow and green. The red LED flashes if the T400 software is being processed. This LED must always flash, even if the T400 has not logged-on with the CU in the drive. Red LED T400 status Flash type Flash frequency (Hz) RUN Slow 1.25 Fault/error Medium 2.5 Initialization error Fast 5 System error Steady User stop Communications error Computation time overflow Hardware monitoring error Table 7-1 Diagnostics using the red LED Yellow LED The yellow LED flashes if the T400 communicates with the base drive (CU). Error, if only the red LED flashes, but not the yellow LED. Slot Explanation Flash frequency (Hz) In the CU - flashes Corresponds to the sampling time - data transfer to the base drive O.K. - controlled using function block @DRIVE In the SRT400 - always off At the left slot - controlled using function block @DRIVE In the SRT400 - flashes At the right slot - data transfer to T400 at the lefthand slot O.K. Corresponds to the sampling time - controlled using function block @DRIVE Table 7-2 Green LED 178 Diagnostics using the yellow LED This flashes if the T400 is communicating with the communications module (CBP/CB1, SCB1/SCB2). Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Diagnostic LEDs, alarms, faults The green LED does not flash, if in order to operate the axial winder, a communications module is either not required or is not available. Slot Explanation Flash frequency (Hz) In the CU - flashes Corresponds to the sampling time - data transfer to COMBOARD O.K. - controlled using function block @DRIVE In the SRT400 - data transfer to T400 at the righthand slot O.K. At the left slot - controlled using function block @DRIVE In the SRT400 - constant off At the right slot - controlled using function block @DRIVE Table 7-3 7.2 Corresponds to the sampling time Diagnostics using the green LED Alarms and faults of the axial winder The alarms (A097 - A104) and faults (F116 - F123) generated by the SPW420 are described in the following Table 7-4. Messages on CUx Alarm No. Fault No. Significance Suppression bit H011 and H012 A097 F116 Overspeed, positive 0 A098 F117 Overspeed, negative 1 A099 F118 Overtorque, positive 2 A100 F119 Overtorque, negative 3 A101 F120 Stall protection 4 A102 F121 Data receive from CU faulted 5 A103 F122 Data receive from PROFIBUS faulted 6 A104 F123 Data receive from peer-to-peer faulted 7 Table 7-4 Alarms and faults from SPW420 Suppression Example The alarms and faults are, as described in H011 and H012, coded bitwise. By setting the associated bit (=1), the associated alarm or fault is enabled and by deleting (=0) inhibited. Operation without communications module and peer-to-peer link: In H011, H012 bits 6 and 7 must be set to 0: Bit: Value: thus, for Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 76543210 00111111 H011=H012= 3F 179 Literature 8 Literature 1. SIMADYN D T400 technology module, Brief Description, 1998. 2. SIMOVERT MASTERDRIVES Guidelines for changing over from control module CU2 to CUVC, Order No. E20125-J0006-V021-A1, 1998. 3. SIMOVERT MASTERDRIVES Motion Control Compendium, Order No. 6SE7080-0QX50, 1998. 4. 6RA70 SIMOREG DC MASTER, Description, Order No. C98130A1256-A1-02-7447, 1998. 5. Hardware - SIMADYN D Manual, Order No. 6DD1987-1BA1, 1997. 6. SIMADYN D, Function Block Library, Reference Manual, Order No. 6DD1987-1CA1, Oct. 1997. 180 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix 9 Appendix 9.1 Version changes Version 2.0 First edition, 07.99: The standard SPW420 software package functions correspond to those of the standard MS320 software package, Version 1.3 for 6SE70/71. Adaptation Expansion The following adaptations have been made: - conversion to CFC V4.0 - use of the T400 module New or improved functions: - - Version 2.1 introduction of the BICO technology automatic protection against material sagging for the torque limiting control D controller for the dancer control diameter calculation without Vset signal acceleration calculation enable for web break detection enable for communications (PROFIBUS, peer-to-peer and USS) monitoring receive telegrams in the communications adapting friction torques for gearbox stage 2 parameterizing possibility via USS interface for T400 in the SRT400 (standalone solution) communication possibilities via PROFIBUS for standalone solutions in the SRT400 free function blocks for additional customer-specific requirements free display parameters for the binectors/connectors expansion of gearbox stage 2 Edition, 02.2000 The following changes/expanded functionality were made: - Introducing of the new technology connector B2510 and adaption of the fixed status word K4498 for SRT400-solution (b.d. 18); - New parameters H887-H888 for bypass of the interfaces PROFIBUS and Peer-to-Peer, separately(b.d. 17); - New free function blocks: one fixed value block (bitsa word: H700H715 and K4700, b.d. 23c) and a divider (H817-H818, KR0817, b.d. 23a); - The sign of precontrolled torque is corrected in tension control case (winder type B & C) (b.d. 9b); Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 181 Appendix Version 2.2 - All command signals were described in more details (Chapt. 5); - The friction torque characteristic was expanded to 10 points, which can be free parameterized (H890-H899, H900-H903, b.d. 9b); - Expanding the scaling possibility in web length- and break distance computer with new parameter H541 and new definition of H239H240, H244 (b.d. 13); - Improvement of the function of velocity setpoint limit, new parameter H156 for de-/activate the limits (b.d. 5); - New parameter H041 for acknowlede fault; - New display parameters d412 (b.d. 5), d358-d359 (b.d. 9a); - New parameter H158, hysterisis for diameter computer (b.d. 9a); - New connector KR0003 for constant output in R-type (b.d. 25); Edition 10.00 The following changes/expanded functionality were made: Version 2.21 182 - Improvement of the web-brake detection - Length- and braking distance calculation were adapted to absolut values. New parameter (H124) for entering the rated velocity. Default settings were modified so that this function is not compatible to last versions. - Input of web density is now free connectible. - Improvement of the switch-on/switch-off logic - Input of Kp-adaption is now free connectible - New parameter (H260) to stop the length computer via free binary signal - Telegrams to CU, CB and PtP (both directions) now after the N2-R (R>N2) conversion free connectible. Therefore other conversions are now possible. - New free function blocks for conversion of normalized and not normalized values. Therefore a higher resolution and the communication of absolut values are possible. - New display parameters - Adaption to D7-SYS 5.2 - New function blocks for offline trace with "symTrace-D7" from the "sympat lim." Company. Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix 9.2 Definition of the 5 cycle times Cycle T1 T2 T3 T4 T5 Sampling time 2 ms 8 ms 16 ms 32 ms 128 ms Table 9-1 9.3 Definition of the cycle times List of block I/O (connectors and parameters) 9.3.1 List of parameters and connections which can be changed Paramet Significance er No. Chart.block.connection(I/O) Pre assignment Type Hxxx xxxx.yyyy.zz Value / connector Parameter which can be changed B/I/R/W Para. Significance Chart.block.connection(I/O) Pre-assignment Type H000 Language selection IF_CU.@DRIVE.PLA 0 I H003 Overtorque limit, positive CONTZ_01.SU040.LU 1.20 R H004 Overtorque limit, negative CONTZ_01.SU040.LL -1.20 R H005 Initialization time for CU couplings CONTZ_01.SU130.T 20000 ms R H007 Stall protection, threshold nact CONTZ_01.SU080.L 0.02 R H008 Stall protection, threshold Iact CONTZ_01.SU090.L 0.1 R H009 Stall protection, threshold control deviation CONTZ_01.SU100.L 0.5 R H010 Stall protection, response time CONTZ_01.SU120.T 500 ms R H011 Alarm mask IF_CU.SE030.I2 16#0 W H012 Fault mask IF_CU.SE040.I2 16#0 W H013 Input, connection tachometer on IQ1Z_07.B207A.I B2634 B H014 Inching time CONTZ_07.C2736.X 10000 ms R H015 Status word 1 PtP IF_PEER.Zustandswort.X K4335 I H016 Source for conversion R->N2 IF_PEER.Istwert_W2.X KR0310 R H017 Source for conversion R->N2 IF_PEER.Istwert_W3.X KR0344 R H021 Input, system start IQ1Z_01.B10.I B2003 B H022 Input, tension controller on IQ1Z_01.B11.I B2004 B H023 Input, inhibit tension controller IQ1Z_01.B12.I B2005 B H024 Input, set diameter IQ1Z_01.B13.I B2006 B H025 Input, enter supplementary setpoint IQ1Z_01.B14.I B2007 B H026 Input, local positioning IQ1Z_01.B15.I B2008 B H027 Input, local operator control IQ1Z_01.B16.I B2009 B H028 Input, local stop IQ1Z_01.B17.I B2010 B H029 Input, motorized potentiometer 2 raise IQ1Z_01.B20.I B2622 B H030 Input, motorized potentiometer 1 raise IQ1Z_01.B40.I B2630 B H031 Input, motorized potentiometer 2 lower IQ1Z_01.B30.I B2623 B H032 Input, motorized potentiometer 1 lower IQ1Z_01.B50.I B2631 B H033 Input, hold diameter IQ1Z_07.B60.I B2615 B H034 Input, ramp-function generator T400 Stop 1 IQ1Z_07.B80.I B2629 B H035 Input, winding from below IQ1Z_07.B70.I B2633 B Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 183 Appendix H036 Input, accept setpoint A IQ1Z_07.B90.I B2000 H037 Input, accept setpoint B IQ1Z_07.B100.I B2000 B B H038 Input, local inching forwards IQ1Z_07.B120.I B2608 B H039 Input, local crawl IQ1Z_07.B110.I B2627 B H040 Input, local inching backwards IQ1Z_07.B130.I B2609 B H041 Input, fault acknowledge IQ1Z_07.B140.I B2607 B H042 Input, gearbox stage 2 IQ1Z_07.B160.I B2000 B H043 Input, winder IQ1Z_07.B150.I B2000 B H044 Input, polarity saturation setpoint IQ1Z_07.B170.I B2000 B H045 Input, Off1/on IQ1Z_07.B180.I B2600 B H046 Input, inhibit ramp-function generator on T400 IQ1Z_07.B201.I B2604 B H047 Input, Off2 IQ1Z_07.B190.I B2001 B H048 Input, Off3 IQ1Z_07.B200.I B2001 B H049 Input, ramp-function generator T400 Stop 2 IQ1Z_07.B202.I B2605 B H050 Input, enable setpoint IQ1Z_07.B203.I B2606 B H051 Input, standstill tension on IQ1Z_07.B204.I B2613 B H052 Input, local run IQ1Z_07.B205.I B2626 B H053 Input, reset length computer IQ1Z_07.B206.I B2632 B H054 Adaptation, analog input 1 IF_CU.AI10A.X1 1.0 R H055 Offset, analog input 1 IF_CU.AI10.OFF 0.0 R H056 Adaptation, analog input 2 IF_CU.AI25A.X1 1.0 R H057 Offset, analog input 2 IF_CU.AI25.OFF 0.0 R H058 Adaptation, analog input 3 IF_CU.AI40A.X1 1.0 R H059 Offset, analog input 3 IF_CU.AI40.OFF 0.0 R H060 Adaptation, analog input 4 IF_CU.AI55A.X1 1.0 R H061 Offset, analog input 4 IF_CU.AI55.OFF 0.0 R H062 Adaptation, analog input 5 IF_CU.AI70A.X1 1.0 R H063 Offset, analog input 5 IF_CU.AI70.OFF 0.0 R H064 Source for conversion R->N2 IF_PEER.Istwert_W4.X KR0000 R H065 Source for conversion R->N2 IF_PEER.Istwert_W5.X KR0000 R H068 Fixed value, velocity setpoint IQ1Z_01.AI200A.X 0.0 R H069 Input, velocity setpoint IQ1Z_01.AI200.X KR0068 R H070 Fixed value, web velocity compensation IQ1Z_01.AI210A.X 0.0 R H071 Input, web velocity compensation IQ1Z_01.AI210.X KR0070 R H072 Fixed value, suppl. velocity setpoint IQ1Z_01.AI220A.X 0.0 R H073 Input, supplementary velocity setpoint IQ1Z_01.AI220.X KR0072 R H074 Fixed value, setpoint, local operation IQ1Z_01.AI230A.X 0.0 R H075 Input, setpoint local operation IQ1Z_01.AI230.X KR0074 R H076 Fixed value, external dv/dt IQ1Z_01.AI240A.X 0.0 R H077 Input, external dv/dt IQ1Z_01.AI240.X KR0076 R H078 Fixed value, web width IQ1Z_01.AI250A.X 1.0 R H079 Input, web width IQ1Z_01.AI250.X KR0078 R H080 Tension setpoint IQ1Z_01.AI260A.X 0.0 R H081 Input, tension setpoint IQ1Z_01.AI260.X KR0080 R H082 Fixed value, supplementary tension setpoint IQ1Z_01.AI270A.X 0.0 R H083 Input, supplementary tension setpoint IQ1Z_01.AI270.X KR0082 R H084 Tension actual value IQ1Z_01.AI280A.X 0.0 R H085 Input, tension actual value IQ1Z_01.AI280.X KR0322 R H086 Maximum tension reduction IQ1Z_01.AI290A.X 0.0 R H087 Input, maximum tension reduction IQ1Z_01.AI290.X KR0086 R H088 Diameter setting value IQ1Z_01.AI300A.X 0.1 R 184 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix H089 Input, diameter setting value IQ1Z_01.AI300.X KR0088 H090 Fixed value, setpoint, positioning IQ1Z_01.AI310A.X 0.0 R R H091 Input, setpoint positioning IQ1Z_01.AI310.X KR0090 R H092 Input, speed actual value IQ1Z_01.AI320.X KR0550 R H093 Input, V_act connection tachometer IQ1Z_01.AI329.X KR0401 R H094 Input, ext. web velocity actual value IQ1Z_01.AI330.X KR0402 R H095 Fixed value setpoint A IQ1Z_01.AI340A.X 0.0 R H096 Input, setpoint A IQ1Z_01.AI340.X KR0095 R H097 Input, pressure actual value, dancer roll TENSZ_07.T1937.X2 KR0324 R H098 Analog output 2 (diameter act.val.) term. 98/99 IF_CU.AQ80.X KR0310 R H099 Analog output 2, offset IF_CU.AQ80.OFF 0.0 R H100 Analog output 2, normalization IF_CU.AQ80A.X1 1.0 R H101 Analog output 1, offset IF_CU.AQ110.OFF 0.0 R H102 Analog output 1, normalization IF_CU.AQ110A.X1 1.0 R H103 Analog output 1 (torque setpoint) term.97/99 IF_CU.AQ110.X KR0329 R H107 Input, input value for limit value monitor 1 IQ2Z_01.G10.X KR0307 R H108 Input, comparison value IQ2Z_01.G70.X KR0303 R H109 Adaptation, input value IQ2Z_01.G40. XCS 1 I H110 Smoothing, input value IQ2Z_01.G60.T 500 ms R H111 Adaptation, comparison value IQ2Z_01.G100.XCS 1 I H112 Interval limit IQ2Z_01.G110.L 0.0 R H113 Hysteresis IQ2Z_01.G110.HY 0.0 R H114 Select output signal (terminal 52) IQ2Z_01.G130.I B2403 B H115 Input, input value for limit value monitor 2 IQ2Z_01.G200.X KR0311 R H116 Input, comparison value GWM 2 IQ2Z_01.G270.X KR0304 R H117 Adaptation, input value IQ2Z_01.G240.XCS 1 I H118 Smoothing, input value IQ2Z_01.G260.T 500 ms R H119 Adaptation, comparison value IQ2Z_01.G300.XCS 1 I H120 Interval limit IQ2Z_01.G310.L 0.0 R H121 Hysteresis IQ2Z_01.G310.HY 0.0 R H122 Select, output signal IQ2Z_01.G330.I B2407 B H124 Rated velocity DIAMZ_07.W55.X1 0.0 R H125 Overspeed limit, positive CONTZ_01.SU010.LU 1.20 R H126 Overspeed limit, negative CONTZ_01.SU010.LL -1.20 R H127 Fixed value ratio, gearbox stage 2 IQ1Z_01.A350.X 1.0 R H128 Fixed value adapt.friction torq. gearbox stage 2 IQ1Z_01.A360.X 1.0 R H129 Input, alternative on command IQ1Z_01.SELMX.I B2000 B H130 Setpoint B SREFZ_01.S25.X2 0.0 R H131 Upper limit SREFZ_01.S50.LU 1.1 R H132 Lower limit SREFZ_01.S50.LL -1.1 R H133 Ramp-up time SREFZ_01.S50.TU 30000 ms R H134 Ramp-down time SREFZ_01.S50.TD 30000 ms R H135 Rounding-off at ramp-up SREFZ_01.S50.TRU 3000 ms R H136 Rounding-off at ramp-down SREFZ_01.S50.TRD 3000 ms R H137 Normalized web velocity compensation SREFZ_01.S120.X2 1.0 R H138 Input ratio, gearbox stage 2 SREFZ_01.S140.X2 KR0127 R H139 Normalization, web velocity SREFZ_01.S150.X1 1.0 R H140 Normalization, acceleration SREFZ_01.S51.X2 1.0 R H141 Influence, closed-loop tension control SREFZ_01.S200.X2 1.0 R H142 Setpoint, local crawl SREFZ_01.S300.X2 0.1 R H143 Setpoint, local inching forwards SREFZ_01.S310.X2 0.05 R Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 185 Appendix H144 Setpoint, local inching backwards SREFZ_01.S320.X2 -0.05 H145 Saturation setpoint SREFZ_01.S360.X 0.1 R R H146 Speed control for local operation SREFZ_01.NC112.I2 0 B H147 Torque limit for speed control SREFZ_07.C56.X 0.2 R H148 Time for reverse winding after splice CONTZ_07.SL70.T 10000 ms R H149 n_set reverse winding after splice SREFZ_07.RW100.X 0.0 R H150 Start of adaptation SREFZ_07.NC035.A1 0.0 R H151 Kp adaptation min. SREFZ_07.NC035.B1 0.1 R H152 End of adaptation SREFZ_07.NC035.A2 1.0 R H153 Kp adaptation max. SREFZ_07.NC035.B2 0.1 R H154 Slave drive SREFZ_01.S47.I 0 B H155 Smoothing, web velocity setpoint SREFZ_01.S10.T 8 ms R H156 No web speed limiting SREFZ_01.GB2a.I 0 I H157 Limit value for standstill identification SREFZ_07.S810.X 0.01 R H158 Hysteresis for min. speed, D-computer DIAMZ_01.D1026.X 0.001 R H159 Delay, standstill identification SREFZ_07.S840.T 0 ms R H160 Erase EEPROM CONTZ_01.URLAD.ERA 0 B H161 Ramp-up/ramp-down time, replacing ramp-f.g. SREFZ_07.S457.X 20000 ms R H162 Smoothing, speed controller output SREFZ_07.NT130.T 500 ms R H163 Selection, positioning setpoint SREFZ_01.S328.I 0 B H164 Smoothing, saturation setpoint SREFZ_01.S395.T 8 ms R H165 Smoothing, speed actual value IQIZ_01.AI325.T 20 ms R H166 Enable addition, local setpoints CONTZ_01.C22.I3 0 B H167 Limiting, density correction DIAMZ_07.DC1000.X 0.0 R H168 Integrating time, density correction DIAMZ_07.DC70.TI 200000 ms R H169 Knife in the cutting position IQIZ_01.B52.I B2000 B H170 Partner drive is closed-loop tension controlled IQIZ_01.B53.I B2000 B H171 Source, Kp adaption tension controller TENSZ_01.T1770.C KR0308 R H172 Smoothing, tension actual value TENSZ_01.T641.T 150 ms R H173 Differentiating time constant TENSZ_01.T1796.TD 800 ms R H174 Inhibit D controller TENSZ_01.T643.I 1 B H175 Ramp-up time, tension setpoint TENSZ_01.T1350.TU 10000 ms R H176 Ramp-down time, tension setpoint TENSZ_01.T1350.TD 10000 ms R H177 Inhibit tension setpoint TENSZ_01.T1485.I 0 B H178 Response for web break TENSZ_07.T2110.I2 0 B H179 Enable tension offset compensation TENSZ_01.T603.I4 0 B H180 Tension reduction 1 TENSZ_01.T1435.X2 1.0 R H181 Tension reduction 2 TENSZ_01.T1445.X2 1.0 R H182 Tension reduction 3 TENSZ_01.T1455.X2 1.0 R H183 Diameter at the start of tension reduction TENSZ_01.T1470.A1 1.0 R H184 Diameter D1 TENSZ_01.T1470.A2 1.0 R H185 Diameter D2 TENSZ_01.T1470.A3 1.0 R H186 Diameter D3 TENSZ_01.T1470.A4 1.0 R H187 Diameter D4 end of tension reduction TENSZ_01.T1466.X 1.0 R H188 Input, standstill tension TENSZ_01.T1500.I 0 B H189 Standstill tension TENSZ_01.T1505.X2 1.0 R H190 Tension pre-control, dancer roll TENSZ_07.T1936.X 0.0 R H191 Minimum selection TENSZ_01.T1515.I 0 B H192 Smoothing, tension setpoint TENSZ_01.T1525.T 300 ms R H193 Minimum value, speed-dependent tension controller limits TENSZ_01.T1710.X2 0.0 R H194 Select tension controller limits TENSZ_01.T1715.X 2 I 186 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix H195 Adapt tension controller limits TENSZ_01.T1745.X 1.0 H196 Inhibit I component tension controller TENSZ_01.T1790.HI 0 R B H197 Minimum Kp tension controller TENSZ_01.T1770.B1 0.3 R H198 Maximum Kp tension controller TENSZ_01.T1770.B2 0.3 R H199 Integral action time, tension controller TENSZ_01.T1790.TN 1000 ms R H200 Adapt setpoint pre-control TENSZ_07.T1800.X1 0.0 R H201 Lower limit, web velocity TENSZ_07.T1900.X2 1.0 R H202 Influence, web velocity TENSZ_07.T1920.X2 1.0 R H203 Select the tension control technique TENSZ_07.T1945.X 0.0 R H204 Lower limit, web break detection TENSZ_07.T2015.X2 0.05 R H205 Delay, web break signal TENSZ_07.T2100.T 3000 ms R H206 Select winding hardness characteristic TENSZ_01.T1475.I 0 B H207 Start of adaptation, tension controller TENSZ_01.T1770.A1 0.0 R H208 End of adaptation, tension controller TENSZ_01.T1770.A2 1.0 R H209 Droop, tension controller TENSZ_01.T1795.X1 0.0 R H210 Calibration, web velocity DIAMZ_01.D910.X2 1.0 R B H211 Select, web tachometer DIAMZ_01.D1105.I 0 H212 Pulse number, shaft tachometer IF_CU.D900.PR 1024 pulse I H213 Pulse number, web tachometer IF_CU.D901.PR 600 pulse I H214 Rated speed, shaft tachometer IF_CU.D900.RS 1500 RPM R H215 Rated speed, measuring roll web tachometer IF_CU.D901.RS 1000 RPM R H216 Calculation interval, diameter computer DIAMZ_01.D1140.X 320 ms R H217 Select, operating mode shaft tachometer IF_CU.D900.MOD 16#7FC2 W H218 Select, operating mode web tachometer IF_CU.D901.MOD 16#7F02 W H220 Scaling, dv/dt DIAMZ_01.P148.X2 1000 ms R H221 Minimum speed, diameter computer DIAMZ_01.D1030.M 0.01 R H222 Core diameter DIAMZ_01.P100.X 0.2 R H223 Smoothing, setpoint for dv/dt computation DIAMZ_01.P142.T 32 ms R H224 Input, Material density DIAMZ_07.P295.X1 KR0279 R H225 Fine calibration, dv/dt DIAMZ_01.P500.X2 1.0 R H226 Input dv/dt DIAMZ_01.P160.I 0 B H227 Variable moment of inertia DIAMZ_01.P332.X1 0.0 R H228 Constant moment of inertia DIAMZ_01.P340.X1 0.0 R H229 Input adaptation factor, friction torque gearbox stage 2 DIAMZ_07.P915.X2 KR0128 R H230 Friction torque, point 1 DIAMZ_07.P910.B1 0.0 R H231 Friction torque, point 2 DIAMZ_07.P910.B2 0.0 R H232 Friction torque, point 3 DIAMZ_07.P910.B3 0.0 R H233 Friction torque, point 4 DIAMZ_07.P910.B4 0.0 R H234 Friction torque, point 5 DIAMZ_07.P910.B5 0.0 R H235 Friction torque, point 6 DIAMZ_07.P910.B6 0.0 R H236 Diameter change, monotone DIAMZ_01.D1704.I 0 B H237 Pre-control with n2 DIAMZ_07.P940.X2 0.0 R H238 Minimum change time, diameter DIAMZ_01.D1670.X2 50 s R H239 Gear, web tacho DIAMZ_07.W10.X2 1.0 R H240 Circumference, measure roll DIAMZ_07.W20.X2 1.0 R H241 Ramp-down time for braking distance computer DIAMZ_07.W30.X1 60 s R H242 Ramp-down rounding-off time for braking distance computer DIAMZ_07.W40.X1 6s R H243 Smoothing, web width DIAMZ_01.P150.T 1000 ms R H244 Adaption divisor for braking distance computer DIAMZ_07.W75.X2 1.0 R H245 Baud rate PtP protocol IF_PEER.PtP_Zentr.BDR 19200 baud DI Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 187 Appendix H246 Upper limit (monitoring PtP) IF_PEER.Ueberwa.LU 10000 ms R H247 Setting value (monitoring PtP) IF_PEER.Ueberwa.SV 9920 ms R H249 Input, length measured value DIAMZ_07.W10.X1 KR0229 R H250 EEPROM key CONTZ_01.URLAD.KEY 0 I H251 Rated pulses, shaft tachometer IF_CU.D900.RP 4096 DI H252 Rated pulses, web tachometer IF_CU.D901.RP 1 DI H253 Input web break pulse TENSZ_07.T2100.I B2253 B H254 Smoothing time for v DIAMZ_01.D940.T 300ms R H255 Adaptation factor v DIAMZ_01.D945.X2 0.0 R H256 Braking characteristic, speed, point 1 SREFZ_07.BD10.A1 0.01 R H257 Reduced braking torque SREFZ_07.BD10.B1 0.0 R H258 Braking characteristic, speed, point 2 SREFZ_07.BD10.A2 0.2 R H259 Maximum braking torque SREFZ_07.BD10.B2 2.0 R H260 Input, length computer hold IQ1Z_07.B175.X B2000 B H262 Input, length setpoint IQ!Z_01.AI328.X KR0400 R H263 Motorized potentiometer 2, fast rate of change IQ2Z_01.M590.X2 25000 ms R H264 Motorized potentiometer 2, standard rate of c. IQ2Z_01.M590.X1 100000 ms R H265 Motorized potentiometer 1, fast rate of change IQ2Z_01.M390.X2 25000 ms R H266 Motorized potentiometer 1, standard rate of c. IQ2Z_01.M390.X1 100000 ms R H267 Select, operating mode, mot. potentiometer 1 IQ2Z_01.M100.I1 0 B H268 Setpoint, ramp-function generator operation IQ2Z_01.M120.X2 1.0 R H269 Ramp time, ramp-function generator operation IQ2Z_01.M130.X2 10000 ms R H270 Smoothing, analog input 3 IF_CU.AI51.T 8 ms R H271 Smoothing, analog input 4 IF_CU.AI66.T 8 ms R H272 Dead zone for dv/dt computation DIAMZ_01.P147Z.TH 0.01 R H273 Normalization, torque setpoint on T400 IQ1Z_01.AI21.X2 1.0 R H274 Normalization, torque actual value on T400 IQ1Z_01.AI21A.X2 1.0 R R H275 Response threshold, web break monitoring TENSZ_07.T2060.M 0.25 H276 Initial diameter DIAMZ_07.D_Anfang.X 0.4 R H277 Enable D calculation without V* signal DIAMZ_07.DOV_Freigabe.I 0 B H278 Setting pulse duration DIAMZ_07.DOV2.T 10000ms R H279 Fixed value, material density IQ1Z_01.AI245.X 1.0 R H281 Alternative On command IQ1Z_01.SELACT.I 0 B H282 Changeover, speed controller to CU or T400 IQ1Z_07.B51.I 0 B H283 I controller enable TENSZ_01.T1790.IC 0 B H284 Tension setpoint, inhibit ramp-fct. generator TENSZ_01.T1320.I2 1 B H285 Enable web break detection TENSZ_07. Bahnrisserken.I 1 B H286 Thickness-diameter ratio DIAMZ_07.OV6.X1 0.0 R H288 Enable PROFIBUS IQ1Z_01.B01.I 0 B H289 Enable peer-to-peer IQ1Z_01.B02.I 0 B H290 Upper speed setpoint limiting SREFZ_07.S1000.LU 1.0 R H291 Lower speed setpoint limiting SREFZ_07.S1000.LL -1.0 R H292 Ramp-up time, speed setpoint SREFZ_07.S1000.TU 1000 ms R H293 Ramp-down time, speed setpoint SREFZ_07.S1000.TD 1000 ms R H294 Integral action time, speed controller SREFZ_07.S1100.TN 300 ms R H295 Invert_mask IF_CU.Bit_Invert.I2 16#0 W H400 Fixed value, length setpoint IQ1Z_01.AI328A.X 2.0 R H401 Velocity actual value, connection tachometer IQ1Z_01.AI329A.X 0.0 R H402 Fixed value, ext. web velocity actual value IQ1Z_01.AI330A.X 0.0 R H440 Source for conversion R->N2 IF_COM.Istwert_W2.X KR0310 R H441 Source for conversion R->N2 IF_COM.Istwert_W3.X KR0000 R 188 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix H442 Source for conversion R->N2 IF_COM.Istwert_W5.X KR0000 R H443 Source for conversion R->N2 IF_COM.Istwert_W6.X KR0000 R H444 Status word 1 at CB IF_COM.Send_ZW1.X K4335 I H445 Status word 2 at CB IF_COM.Send_ZW2.X K0336 I H446 Source for conversion R->N2 IF_COM.Istwert_W7.X KR0000 R H447 Source for conversion R->N2 IF_COM.Istwert_W8.X KR0000 R H448 Source for conversion R->N2 IF_COM.Istwert_W9.X KR0000 R H449 Source for conversion R->N2 IF_COM.Istwert_W10.X KR0000 R H495 Upper limit (monitoring CB) IF_COM.Ueberwa.LU 20000 ms R H496 Setting value (monitoring CB) IF_COM.Ueberwa.SV 19920 ms R H499 Ext. status word CONTZ_01.SE110.I1 K4549 W H500 Source for Conversion R->N2 IF_CU.Sollwert_W2.X KR0303 R H501 Source for Conversion R->N2 IF_CU.Sollwert_W5.X KR0558 R H502 Source for Conversion R->N2 IF_CU.Sollwert_W6.X KR0556 R H503 Source for Conversion R->N2 IF_CU.Sollwert_W7.X KR0557 R H504 Source for Conversion R->N2 IF_CU.Sollwert_W8.X KR0308 R H505 Source for Conversion R->N2 IF_CU.Sollwert_W9.X KR0000 R H506 Source for Conversion R->N2 IF_CU.Sollwert_W10.X KR0000 R H507 Source for Conversion R->N2 IF_CU.Sollwert_W3.X KR0000 R H510 Control word 2.0 at CU IF_CU.Steuerwort_2.I1 B2000 B H511 Control word 2.1 at CU IF_CU.Steuerwort_2.I2 B2000 B H512 Control word 2.2 at CU IF_CU.Steuerwort_2.I3 B2000 B H513 Control word 2.3 at CU IF_CU.Steuerwort_2.I4 B2000 B H514 Control word 2.4 at CU IF_CU.Steuerwort_2.I5 B2000 B H515 Control word 2.5 at CU IF_CU.Steuerwort_2.I6 B2000 B H516 Control word 2.6 at CU IF_CU.Steuerwort_2.I7 B2000 B H517 Control word 2.7 at CU IF_CU.Steuerwort_2.I8 B2000 B H518 Control word 2.8 at CU IF_CU.Steuerwort_2.I9 B2000 B H519 Enable for speed controller in CU IF_CU.Steuerwort_2.I10 B2508 B H520 Control word 2.10 at CU IF_CU.Steuerwort_2.I11 B2000 B H521 Digital output 1 (web break), terminal 46 IF_CU.BinOut.I1 B2501 B H522 Digital output 2 (standstill), terminal 47 IF_CU.BinOut.I2 B2502 B H523 Digital output 3 (tension controller on), term. 48 IF_CU.BinOut.I3 B2503 B H524 Digital output 4 (CU operational), terminal 49 IF_CU.BinOut.I4 B2504 B H525 Digital output 5 (n*=0), terminal 52 IF_CU.BinOut.I5 B2505 B H526 Digital output 6 (limit value monitor 1) term. 51 IF_CU.BinOut.I6 B2114 B H531 Control word 2.11 at CU IF_CU.Steuerwort_2.I12 B2000 B H532 Control word 2.12 at CU IF_CU.Steuerwort_2.I13 B2000 B H533 Control word 2.13 at CU IF_CU.Steuerwort_2.I14 B2000 B H534 Control word 2.14 at CU IF_CU.Steuerwort_2.I15 B2000 B H535 Control word 2.15 at CU IF_CU.Steuerwort_2.I16 B0000 B H537 Select digital input/output, B2527/H521 IF_CU.BinOut.DI1 1 B H538 Select digital input/output, B2528/H522 IF_CU.BinOut.DI2 1 B H539 Select digital input/output, B2529/H523 IF_CU.BinOut.DI3 1 B H540 Select H digital input/output, B2530/H524 IF_CU.BinOut.DI4 1 B H541 Rated web length DIAMZ_07.W21.X2 1000.0 R H560 Input (Anz_R1) IQ2Z_01.Anz_R1.X KR0000 R H562 Input (Anz_R2) IQ2Z_01.Anz_R2.X KR0000 R H564 Input (Anz_R3) IQ2Z_01.Anz_R3.X KR0000 R H566 Input (Anz_R4) IQ2Z_01.Anz_R4.X KR0000 R H570 Input (Anz_B1) IQ2Z_01.Anz_B1.I B2000 B Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 189 Appendix H572 Input (Anz_B2) IQ2Z_01.Anz_B2.I B2000 B H580 Input (Anz_I1) IQ2Z_01.Anz_I1.X K4000 I H600 Enable USS protocol IQ1Z_01.B03.I 1 B H601 USS data transfer line IF_USS.Slave_ZB.WI4 0 B H602 Command to new CB configuration IF_COM.CB_SRT400.SET 1 B H603 CB station address IF_COM. CB_SRT400.MAA 3 I H604 PPO type (PROFIBUS) IF_COM. CB_SRT400.P02 5 I H610 Input, pos. torque limit SREFZ_07.NC005.X2 KR0351 R H611 Input, neg. torque limit SREFZ_07.NC004.X KR0351 R H612 Input, torque limit SREFZ_07.NC003.X2 KR0313 R H650 Enable, free_blocks IQ1Z_01.B04.I 0 B H700 Fixed value Bit_0 FREI_BST.Fest_B_W.I1 B2000 B H701 Fixed value Bit_1 FREI_BST.Fest_B_W.I2 B2000 B H702 Fixed value Bit_2 FREI_BST.Fest_B_W.I3 B2000 B H703 Fixed value Bit_3 FREI_BST.Fest_B_W.I4 B2000 B H704 Fixed value Bit_4 FREI_BST.Fest_B_W.I5 B2000 B H705 Fixed value Bit_5 FREI_BST.Fest_B_W.I6 B2000 B H706 Fixed value Bit_6 FREI_BST.Fest_B_W.I7 B2000 B H707 Fixed value Bit_7 FREI_BST.Fest_B_W.I8 B2000 B H708 Fixed value Bit_8 FREI_BST.Fest_B_W.I9 B2000 B H709 Fixed value Bit_9 FREI_BST.Fest_B_W.I10 B2000 B H710 Fixed value Bit_10 FREI_BST.Fest_B_W.I11 B2000 B H711 Fixed value Bit_11 FREI_BST.Fest_B_W.I12 B2000 B H712 Fixed value Bit_12 FREI_BST.Fest_B_W.I13 B2000 B H713 Fixed value Bit_13 FREI_BST.Fest_B_W.I14 B2000 B H714 Fixed value Bit_14 FREI_BST.Fest_B_W.I15 B2000 B H715 Fixed value Bit_15 FREI_BST.Fest_B_W.I16 B2000 B H800 Start, point X1 FREI_BST.Kenn_1.A1 0.0 R H801 Start, point Y1 FREI_BST.Kenn_1.B1 0.0 R H802 End, point X2 FREI_BST.Kenn_1.A2 1.0 R H803 End, point Y2 FREI_BST.Kenn_1.B2 0.0 R H804 Input quantity (char_1) FREI_BST.Kenn_1.X KR0000 R H805 Start, point X1 FREI_BST.Kenn_2.A1 0.0 R H806 Start, point Y1 FREI_BST.Kenn_2.B1 0.0 R H807 End, point X2 FREI_BST.Kenn_2.A2 1.0 R H808 End, point Y2 FREI_BST.Kenn_2.B2 0.0 R H809 Input quantity (char_2) FREI_BST.Kenn_2.X KR0000 R H810 Input 1 (MUL_1) FREI_BST.MUL_1.X1 KR0000 R H811 Input 2 (MUL_1) FREI_BST.MUL_1.X2 KR0000 R H812 Input 1 (MUL_2) FREI_BST.MUL_2.X1 KR0000 R H813 Input 2 (MUL_2) FREI_BST.MUL_2.X2 KR0000 R H814 Fixed setpoint_1 FREI_BST.Fest_SW_1.X 0.0 R H815 Fixed setpoint_2 FREI_BST.Fest_SW_2.X 0.0 R H816 Fixed setpoint_3 FREI_BST.Fest_SW_3.X 0.0 R H817 Input 1 (DIV_1) FREI_BST.DIV_1.X1 KR0000 R H818 Input 2 (DIV_1) FREI_BST.DIV_1.X2 KR0003 R H820 Input 1 (UMS_1) FREI_BST.UMS_1.X1 KR0000 R H821 Input 2 (UMS_1) FREI_BST.UMS_1.X2 KR0000 R H822 Switch signal (UMS_1) FREI_BST.UMS_1.I B2000 B H823 Input 1 (UMS_2) FREI_BST.UMS_2.X1 KR0000 R H824 Input 2 (UMS_2) FREI_BST.UMS_2.X2 KR0000 R 190 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix H825 Switch signal (UMS_2) FREI_BST.UMS_2.I B2000 B H826 Input 1 (UMS_3) FREI_BST.UMS_3.X1 KR0000 R H827 Input 2 (UMS_3) FREI_BST.UMS_3.X2 KR0000 R H828 Switch signal (UMS_3) FREI_BST.UMS_3.I B2000 B H840 Input 1 (ADD_1) FREI_BST.ADD_1.X1 KR0000 R H841 Input 2 (ADD_1) FREI_BST.ADD_1.X2 KR0000 R H845 Minuend (SUB_1) FREI_BST.SUB_1.X1 KR0000 R H846 Subtrahend (SUB_1) FREI_BST.SUB_1.X2 KR0000 R H850 Input (INT) FREI_BST.INT.X 0.0 R H851 Upper limit value (INT) FREI_BST.INT.LU 0.0 R H852 Lower limit value (INT) FREI_BST.INT.LL 0.0 R H853 Integration time (INT) FREI_BST.INT.TI 0ms R H854 Setting value (INT) FREI_BST.INT.SV KR0000 R H855 Set (INT) FREI_BST.INT.S B2000 B H856 Input (LIM) FREI_BST.LIM.X KR0000 R H857 Upper limit value (LIM) FREI_BST.LIM.LU KR0000 R H858 Lower limit value (LIM) FREI_BST.LIM.LL KR0000 R H860 Input (EinV) FREI_BST.EinV.I B2000 B H861 Delay time (EinV) FREI_BST.EinV.T 0ms B H862 Input (AusV) FREI_BST.AusV.I B2000 B H863 Delay time (AusV) FREI_BST.AusV.T 0ms B H864 Input (ImpV) FREI_BST.ImpV.I B2000 B H865 Pulse duration (ImpV) FREI_BST.ImpV.T 0ms B H866 Input (ImpB) FREI_BST.ImpB.I B2000 B H867 Pulse duration (ImpB) FREI_BST.ImpB.T 0ms B H868 Input (Inv) FREI_BST.Invt.I B2000 B H870 Input 1 (AND_1) FREI_BST.AND_1.I1 B2001 B H871 Input 2 (AND_1) FREI_BST.AND_1.I2 B2001 B H876 Input 1 (OR_1) FREI_BST.OR_1.I1 B2000 B H877 Input 2 (OR_1) FREI_BST.OR_1.I2 B2000 B H880 Input 1 (comp.) FREI_BST.Vergl.X1 KR0000 R H881 Input 2 (comp.) FREI_BST.Vergl.X2 KR0000 R H883 Input (smooth) FREI_BST.Glaet.X KR0000 R H884 Smoothing time (smooth) FREI_BST.Glaet.T 0ms R H885 Setting value (smooth) FREI_BST.Glaet.SV KR0000 R H886 Set (smooth) FREI_BST.Glaet.S B2000 B H887 No control word from PROFIBUS IQ1Z_07.Bypass_DP.I 0 B H888 No control word from Peer to Peer IQ1Z_07.Bypass_PtP.I 0 B H890 Speed, point 1 DIAMZ_07.P910.A1 0.0 R H891 Speed, point 2 DIAMZ_07.P910.A2 0.2 R H892 Speed, point 3 DIAMZ_07.P910.A3 0.4 R H893 Speed, point 4 DIAMZ_07.P910.A4 0.6 R H894 Speed, point 5 DIAMZ_07.P910.A5 0.8 R H895 Speed, point 6 DIAMZ_07.P910.A6 1.0 R H896 Speed, point 7 DIAMZ_07.P910.A7 1.0 R H897 Speed, point 8 DIAMZ_07.P910.A8 1.0 R H898 Speed, point 9 DIAMZ_07.P910.A9 1.0 R H899 Speed, point 10 DIAMZ_07.P910.A10 1.0 R H900 Friction torque, point 7 DIAMZ_07.P910.B7 0.0 R H901 Friction torque, point 8 DIAMZ_07.P910.B8 0.0 R H902 Friction torque, point 9 DIAMZ_07.P910.B9 0.0 R Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 191 Appendix H903 Friction torque, point 10 DIAMZ_07.P910.B10 0.0 H910 Source for conversion N2->R IF_COM.Sollwert_W2.X K4910 R I H911 Source for conversion N2->R IF_COM.Sollwert_W3.X K4911 I H912 Source for conversion N2->R IF_COM.Sollwert_W5.X K4912 I H913 Source for conversion N2->R IF_COM.Sollwert_W6.X K4913 I H914 Source for conversion N2->R IF_COM.Sollwert_W7.X K4914 I H915 Source for conversion N2->R IF_COM.Sollwert_W8.X K4915 I H916 Source for conversion N2->R IF_COM.Sollwert_W9.X K4916 I H917 Source for conversion N2->R IF_COM.Sollwert_W10.X K4917 I H920 Source transmitted word 2 at CB IF_COM.Sammeln.X1 K4920 I H921 Source transmitted word 3 at CB IF_COM.Sammeln.X2 K4921 I H922 Source transmitted word 5 at CB IF_COM.Sammeln.X3 K4922 I H923 Source transmitted word 6 at CB IF_COM.Sammeln.X4 K4923 I H924 Source transmitted word 7 at CB IF_COM.Sammeln.X5 K4924 I H925 Source transmitted word 8 at CB IF_COM.Sammeln.X6 K4925 I H926 Source transmitted word 9 at CB IF_COM.Sammeln.X7 K4926 I H927 Source transmitted word 10 at CB IF_COM.Sammeln.X8 K4927 I H930 Source for conversion N2->R IF_CU.Istwert_W2.X K4930 I H931 Source for conversion N2->R IF_CU.Istwert_W3.X K4931 I H932 Source for conversion N2->R IF_CU.Istwert_W5.X K4932 I H933 Source for conversion N2->R IF_CU.Istwert_W6.X K4933 I H934 Source for conversion N2->R IF_CU.Istwert_W7.X K4934 I H935 Source for conversion N2->R IF_CU.Istwert_W8.X K4935 I H940 Transmitted word2 at CU IF_CU.Sammeln.X1 K4940 I H941 Transmitted word3 at CU IF_CU.Sammeln.X2 K4941 I H942 Transmitted word5 at CU IF_CU.Sammeln.X3 K4942 I H943 Transmitted word6 at CU IF_CU.Sammeln.X4 K4943 I H944 Transmitted word7 at CU IF_CU.Sammeln.X5 K4944 I H945 Transmitted word8 at CU IF_CU.Sammeln.X6 K4945 I H946 Transmitted word9 at CU IF_CU.Sammeln.X7 K4946 I H947 Transmitted word10 at CU IF_CU.Sammeln.X8 K4947 I H950 Input high word for conversion N4->R FREI_BST.W->DW_1.XWH K4000 I H951 Input low word for conversion N4->R FREI_BST.W->DW_1.XWL K4000 I H952 Input high word for conversion N4->R FREI_BST.W->DW_2.XWH K4000 I H953 Input low word for conversion N4->R FREI_BST.W->DW_2.XWL K4000 I H954 Input for conversion R->N4 FREI_BST.R->DW_1.X KR0000 R H956 Input for conversion R->N4 FREI_BST.R->DW_2.X KR0000 R H958 Input for conversion R->I FREI_BST.R->I_1.X KR0000 R H959 Input for conversion R->I FREI_BST.R->I_2.X KR0000 R H960 Input for conversion R->DI FREI_BST.R->D_1.X KR0000 R H962 Input for conversion R->DI FREI_BST.R->D_2.X KR0000 R H964 Input for conversion I->R FREI_BST.I->R_1.X K4000 I H965 Input for conversion I->R FREI_BST.I->R_2.X K4000 I H966 Input high word for conversion DI->R FREI_BST.W->DW_3.XWH K4000 I H967 Input low word for conversion DI->R FREI_BST.W->DW_3.XWL K4000 I H968 Input high word for conversion DI->R FREI_BST.W->DW_4.XWH K4000 I H969 Input low word for conversion DI->R FREI_BST.W->DW_4.XWL K4000 I H970 Transmitted word 2 PtP IF_PEER.Sammeln1.X1 K4970 I 192 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix H971 Transmitted word 3 PtP IF_PEER.Sammeln1.X2 K4971 I H972 Transmitted word 4 PtP IF_PEER.Sammeln1.X3 K4972 I H973 Transmitted word 5 PtP IF_PEER.Sammeln1.X4 K4973 I H974 Source for conversion N2->R IF_PEER.Sollwert_W2.X K4974 I H975 Source for conversion N2->R IF_PEER.Sollwert_W3.X K4975 I H976 Source for conversion N2->R IF_PEER.Sollwert_W4.X K4976 I H977 Source for conversion N2->R IF_PEER.Sollwert_W5.X K4977 I H980 Input high word for conversion N4->R FREI_BST.W->DW_5.XWH K4000 I H981 Input low word for conversion N4->R FREI_BST.W->DW_5.XWL K4000 I H982 Input high word for conversion N4->R FREI_BST.W->DW_6.XWH K4000 I H983 Input low word for conversion N4->R FREI_BST.W->DW_6.XWL K4000 I H984 Input for conversion R->N4 FREI_BST.R->DW_3.X KR0000 R H986 Input for conversion R->N4 FREI_BST.R->DW_4.X KR0000 R H990 Set-input RS-Flip-Flop FREI_BST.Flip1.S B2000 B H991 Reset-input RS-Flip-Flop FREI_BST.Flip1.R B2000 B H992 Set-input RS-Flip-Flop FREI_BST.Flip2.S B2000 B H993 Reset-input RS-Flip-Flop FREI_BST.Flip2.R B2000 B H997 Drive number PARAMZ_01.DRNR.X 0 I Table 9-2 List of parameters and connections which can be changed 9.3.2 List of block I/O (connectors and binectors) Connect Display Significance or No. para. Chart.block. connection Pre-assignment / value KRxxxx dxxx Connector, real type xxxx.yyyy.zz Hxxx if available Bxxxx dxxx Connector, Boolean type xxxx.yyyy.zz Hxxx if available Kxxxx dxxx Connector, I- or W type xxxx.yyyy.zz Hxxx if available Connect Displ. or No. para. Significance Chart.block. connection Pre-assignment KR0000 Constant output, real type Y=0.0 IQ1Z_01.0_R_Ausgang.Y H441,... d001 ID, standard software package PARAMZ_01.MODTYP.Y 420 d002 Software version, axial winder PARAMZ_01.VER.Y 2.0 Constant output, real type Y=1,0 IQ1Z_01.1_R_Ausgang.Y H818 KR0018 d018 Setpoint W2 (PtP) IF_PEER.Sollwert_W2.Y KR0019 d019 Setpoint W3 (PtP) IF_PEER.Sollwert_W3.Y KR0066 d066 Setpoint W4 (PtP) IF_PEER.Sollwert_W4.Y KR0067 d067 Setpoint W5 (PtP) IF_PEER.Sollwert_W5.Y KR0068 Output from H068, fixed value V_set IQ1Z_01.AI200A.Y H069 KR0070 Output from H070, fixed value V_compensation IQ1Z_01.AI210A.Y H070 KR0072 Output from H072, fixed value V_suppl._set IQ1Z_01.AI220A.Y H073 KR0074 Output from H074, fixed value V_set, local op. IQ1Z_01.AI230A.Y H075 KR0076 Output from H076, fixed value external dv/dt IQ1Z_01.AI240A.Y H077 KR0078 Output from H078, fixed value web width IQ1Z_01.AI250A.Y H079 KR0080 Output from H080, fixed value Z_set IQ1Z_01.AI260A.Y H081 KR0082 Output from H082, fixed value Z_suppl._set IQ1Z_01.AI270A.Y H083 KR0084 Output from H084, fixed value Z_act IQ1Z_01.AI280A.Y KR0086 Output from H086, fixed value max. Z_deviation IQ1Z_01.AI290A.Y KR0003 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 H087 193 Appendix KR0088 Output from H088, fixed value D_set KR0090 Output f. H090, fixed value positioning ref. value IQ1Z_01.AI310A.Y IQ1Z_01.AI300A.Y H089 H091 KR0095 Output from H095, fixed value setpoint A IQ1Z_01.AI340A.Y H096 KR0127 Output from H127, fixed val. gearbox stage 1/2 IQ1Z_01.A350.Y H138 KR0128 Output from H128 fixed value adapt. friction torque gearbox stage 2 IQ1Z_01.A360.Y H229 KR0140 dv/dt from the central ramp-function generator SREFZ_01.S51.Y KR0219 nact from shaft tachometer or CU backplane bus IF_CU.D900.Y KR0222 Output from H222, core diameter KR0228 Web velocity actual value, web tacho(encoder 2) IF_CU.D901.Y KR0229 Web length actual value from the web tachometer (encoder 2) IF_CU.D901.YP H249 H224 (encoder 1) KR0279 DIAMZ_01.P100.Y Fixed value, material density IQ1Z_01.AI245.Y KR0301 d301 Effective web velocity setpoint SREFZ_01.S160.Y KR0302 d302 Actual dv/dt DIAMZ_01.P500.Y KR0303 d303 Speed setpoint SREFZ_07.NC122.Y H108,H500 KR0304 d304 Sum, tension/position reference value TENSZ_01.T1525.Y H116 KR0305 d305 Output, motorized potentiometer 1 IQ2Z_01.M450.Y KR0306 d306 Output, motorized potentiometer 2 IQ2Z_01.M650.Y KR0307 d307 Speed actual value IQ1Z_01.AI325.Y H107 KR0308 d308 Variable moment of inertia DIAMZ_01.P320.Y H504 KR0309 d309 Actual web length DIAMZ_07.W21.Y KR0310 d310 Actual diameter DIAMZ_01.D1706.Y H016,H098,H440 H115 KR0311 d311 Tension actual value, smoothed TENSZ_01.T641.Y KR0312 d312 Pre-control torque DIAMZ_07.P1060.Y KR0313 d313 Output, closed-loop tension control TENSZ_07.T1960.Y KR0314 d314 Pre-control torque, friction compensation DIAMZ_07.P920.Y KR0316 d316 Pre-control torque, inertia compensation DIAMZ_01.P530.Y KR0317 d317 Sum, tension controller output TENSZ_01.T1798.Y KR0318 d318 Tension controller, D component TENSZ_01.T1796.Y KR0319 d319 Tension controller output from PI component TENSZ_01.T1790.Y KR0320 d320 Analog input 1, terminals 90/91 IF_CU.AI10.Y KR0321 d321 Analog input 2, terminals 92/93 IF_CU.AI25.Y KR0322 d322 Analog input 3,smoothed, terminals 94/99 IF_CU.AI51.Y KR0323 d323 Analog input 4, smoothed, terminals 95/99 IF_CU.AI66.Y KR0324 d324 Analog input 5, terminals 96/99 IF_CU.AI70.Y KR0327 d327 External web velocity actual value IQ1Z_01.AI330.Y KR0328 d328 Tension setpoint after the winding hardness ch. TENSZ_01.T1470.Y KR0329 d329 Torque setpoint SREFZ_07.NT119.Y KR0330 d330 M_actual value IQ1Z_01.AI21A.Y KR0331 d331 Smoothed torque setpoint SREFZ_07.NT130.Y KR0339 d339 Correction factor, material thickness DIAMZ_07.P290.Y KR0340 d340 Compensated web velocity SREFZ_01.S170.Y KR0341 d341 Actual saturation setpoint SREFZ_01.S397.Y KR0342 d342 Positive torque limit SREFZ_07.NC005.Y KR0343 d343 Negative torque limit SREFZ_07.NC006.Y H085 H097 KR0344 d344 Velocity setpoint SREFZ_07.S490.Y KR0345 d345 Actual Kp speed controller from T400 SREFZ_07.NC035.Y KR0346 d346 Actual Kp tension controller TENSZ_01.T1770.Y KR0349 d349 Velocity actual value, connection tachometer IQ1Z_01.AI329.Y KR0350 d350 Braking distance DIAMZ_07.W75.Y 194 H612 H017 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix KR0351 Torque limit SREFZ_07.NC003.Y KR0352 d352 CPU utilization T1 IF_CU.CPU-Auslast.Y1 KR0353 d353 CPU utilization T2 IF_CU.CPU-Auslast.Y2 KR0354 d354 CPU utilization T3 IF_CU.CPU-Auslast.Y3 KR0355 d355 CPU utilization T4 IF_CU.CPU-Auslast.Y4 KR0356 d356 CPU utilization T5 IF_CU.CPU-Auslast.Y5 KR0358 d358 Actual diameter OV (in front of the RFG) DIAMZ_07.OV9.Y KR0359 d359 H610, H611 Actual diameter MV (in front of the RFG) DIAMZ_01.D1535.Y KR0400 Output from H400 fixed value, length setpoint IQ1Z_01.AI328A.Y H262 KR0401 Output from H401, fixed value V_connection tachometer IQ1Z_01.AI329A.Y H093 KR0402 Output from H402 fixed value V_web_act H094 IQ1Z_01.AI330A.Y KR0412 d412 Act. velocity setpoint before override RFG SREFZ_01.S520.Y KR0450 d450 Setpoint W2 from CB IF_COM.Sollwert_W2.Y KR0451 d451 Setpoint W3 from CB IF_COM.Sollwert_W3.Y KR0452 d452 Setpoint W5 from CB IF_COM.Sollwert_W5.Y KR0453 d453 Setpoint W6 from CB IF_COM.Sollwert_W6.Y KR0454 d454 Setpoint W7 from CB IF_COM.Sollwert_W7.Y KR0455 d455 Setpoint W8 from CB IF_COM.Sollwert_W8.Y KR0456 d456 Setpoint W9 from CB IF_COM.Sollwert_W9.Y KR0457 d457 Setpoint W10 from CB IF_COM.Sollwert_W10.Y KR0550 d550 Actual value W2 from CU IF_CU.Istwert_W2.Y KR0551 d551 Actual value W3 from CU IF_CU.Istwert_W3.Y H092 KR0552 d552 Actual value W5 from CU IF_CU.Istwert_W5.Y M_set from CU KR0553 d553 Actual value W6 from CU IF_CU.Istwert_W6.Y M_act from CU KR0554 d554 Actual value W7 from CU IF_CU.Istwert_W7.Y KR0555 d555 Actual value W8 from CU IF_CU.Istwert_W8.Y KR0556 Output from the positive torque limit SREFZ_07.MGPOS.Y H502 KR0557 Output from the negative torque limit SREFZ_07.MGNEG.Y H503 H501 KR0558 Supplementary torque setpoint SREFZ_07.NT065.Y d561 Output (Anz_R1) IQ2Z_01.Anz_R1.Y d563 Output (Anz_R2) IQ2Z_01.Anz_R2.Y d565 Output (Anz_R3) IQ2Z_01.Anz_R3.Y d567 Output (Anz_R4) IQ2Z_01.Anz_R4.Y KR0804 Output (char_1) FREI_BST.Kenn_1.Y KR0809 Output (char_2) FREI_BST.Kenn_2.Y KR0810 Output (MUL_1) FREI_BST.MUL_1.Y KR0812 Output (MUL_2) FREI_BST.MUL_2.Y KR0814 Output from H814 FREI_BST.Fest_SW_1.Y KR0815 Output from H815 FREI_BST.Fest_SW_2.Y KR0816 Output from H816 FREI_BST.Fest_SW_3.Y KR0817 Output (DIV_1) FREI_BST.DIV_1.Y KR0822 Output (UMS_1) FREI_BST.UMS_1.Y KR0825 Output (UMS_2) FREI_BST.UMS_2.Y KR0828 Output (UMS_3) FREI_BST.UMS_3.Y KR0840 Output (ADD_1) FREI_BST.ADD_1.Y KR0845 Output (SUB_1) FREI_BST.SUB_1.Y KR0850 Output (INT) FREI_BST.INT.Y KR0856 Output (LIM) FREI_BST.LIM.Y KR0883 Output (smooth) FREI_BST.Glaet.Y KR0950 Output, conversion N4->R FREI_BST.DW->R_1.Y KR0952 Output, conversion N4->R FREI_BST.DW->R_2.Y Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 195 Appendix KR0964 Output, conversion I->R FREI_BST.I->R_1.Y KR0965 Output, conversion I->R FREI_BST.I->R_2.Y KR0966 Output, conversion DI->R FREI_BST.DI->R_1.Y KR0968 Output, conversion DI->R FREI_BST.DI->R_2.Y B2000 Constant digital output = 0 IQ1Z_01.0_B_Ausgang.Q H036... B2001 Constant digital output = 1 IQ1Z_01.1_B_Ausgang.Q H047... B2003 Digital input 1, terminal 53 IF_CU.X6A01.Q1 H021 B2004 Digital input 2, terminal 54 IF_CU.X6A01.Q2 H022 B2005 Digital input 3, terminal 55 IF_CU.X6A01.Q3 H023 B2006 Digital input 4, terminal 56 IF_CU.X6A01.Q4 H024 B2007 Digital input 5, terminal 57 IF_CU.X6A01.Q5 H025 B2008 Digital input 6, terminal 58 IF_CU.X6A01.Q6 H026 B2009 Digital input 7, terminal 59 IF_CU.X6A01.Q7 H027 B2010 Digital input 8, terminal 60 IF_CU.X6A01.Q8 H028 B2011 Alternative 1 tension controller on 1Q1Z_01.B98.Q B2012 Alternative 2 tension controller on 1Q1Z_01.B99.Q B2013 Digital input 13 terminal 84 IF_CU.BinOut.Q7 B2014 Digital input 14 terminal 65 IF_CU.BinOut.Q8 B2114 Output, limit value monitor 1 IQ2Z_01.G130.Q B2122 Output, limit value monitor 2 IQ2Z_01.G330.Q B2253 Int. web break signal H526 TENSZ_07.T2090.Q H253 B2403 d403 Output 1, from limit value monitor 1 IQ2Z_01.G130A.Q1 H114 B2404 d404 Output 2, from limit value monitor 1 IQ2Z_01.G130A.Q2 B2405 d405 Output 3, from limit value monitor 1 IQ2Z_01.G130A.Q3 B2406 d406 Output 4, from limit value monitor 1 IQ2Z_01.G130A.Q4 B2407 d407 Output 1 from limit value monitor 2 IQ2Z_01.G330A.Q1 B2408 d408 Output 2, from limit value monitor 2 IQ2Z_01.G330A.Q2 B2409 d409 Output 3, from limit value monitor 2 IQ2Z_01.G330A.Q3 B2410 d410 Output 4, from limit value monitor 2 IQ2Z_01.G330A.Q4 B2411 d411 Length setpoint reached IQ2Z_01.G130A.Q5 Web break signal TENSZ_07.T2130.Q H521 B2502 Standstill signal v_act = 0 SREFZ_07.S840.Q H522 B2503 Tension control on TENSZ_01.T1000.Q H523 B2504 CU operational IF_CU.Zustandswort1.Q3 H524 B2505 Speed setpoint = 0 IQ2Z_01.G400.QM H525 B2508 Operating enable CONTZ_07.S120.Q H519 B2509 No operating enable CONTZ_07.C2735.Q B2501 H122 B2510 Main contactor ON CONTZ_07.S460.Q B2527 Digital input 9 terminal 46 (H537=0) IF_CU.BinOut.Q1 B2528 Digital input 10 terminal 47 (H538=0) IF_CU.BinOut.Q2 B2529 Digital input 11 terminal 48 (H539=0) IF_CU.BinOut.Q3 B2530 Digital input 12 terminal 49 (H540=0) IF_CU.BinOut.Q4 d571 Output (Anz_B1) IQ2Z_01.Anz_B1.Q d573 Output (Anz_B2) IQ2Z_01.Anz_B2.Q B2600 Control word 1.0 from CB IF_COM.B07.Q1 H045 B2601 Control word 1.1 from CB IF_COM.B07.Q2 H047 B2602 Control word 1.2 from CB IF_COM.B07.Q3 H048 B2603 Control word 1.3 from CB IF_COM.B07.Q4 Inverter enable B2604 Control word 1.4 from CB IF_COM.B07.Q5 H046 B2605 Control word 1.5 from CB IF_COM.B07.Q6 H049 B2606 Control word 1.6 from CB IF_COM.B07.Q7 H050 196 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix B2607 Control word 1.7 from CB IF_COM.B07.Q8 B2608 Control word 1.8 from CB IF_COM.B07.Q9 H041 H038 B2609 Control word 1.9 from CB IF_COM.B07.Q10 H040 B2610 Control word 1.10 from CB IF_COM.B07.Q11 Control from PLC B2611 Control word 1.11 from CB IF_COM.B07.Q12 Tension control. on B2612 Control word 1.12 from CB IF_COM.B07.Q13 Tens. control. inhibit B2613 Control word 1.13 from CB IF_COM.B07.Q14 H051 B2614 Control word 1.14 from CB IF_COM.B07.Q15 Set diameter B2615 Control word 1.15 from CB IF_COM.B07.Q16 H033 B2620 Control word 2.0 from CB IF_COM.B09.Q1 Enter v_suppl._set B2621 Control word 2.1 from CB IF_COM.B09.Q2 Local positioning B2622 Control word 2.2 from CB IF_COM.B09.Q3 H029 B2623 Control word 2.3 from CB IF_COM.B09.Q4 H031 B2624 Control word 2.4 from CB IF_COM.B09.Q5 Local op. control B2625 Control word 2.5 from CB IF_COM.B09.Q6 Local stop B2626 Control word 2.6 from CB IF_COM.B09.Q7 H052 B2627 Control word 2.7 from CB IF_COM.B09.Q8 H039 B2628 Control word 2.8 from CB IF_COM.B09.Q9 B2629 Control word 2.9 from CB IF_COM.B09.Q10 H034 B2630 Control word 2.10 from CB IF_COM.B09.Q11 H030 B2631 Control word 2.11 from CB IF_COM.B09.Q12 H032 B2632 Control word 2.12 from CB IF_COM.B09.Q13 H053 B2633 Control word 2.13 from CB IF_COM.B09.Q14 H035 B2634 Control word 2.14 from CB IF_COM.B09.Q15 Connection tachom. B2635 Control word 2.15 from CB IF_COM.B09.Q16 B2640 Control word 1.0 from peer-to-peer IF_PEER.B04.Q1 Main contactor in B2641 Control word 1.1 from peer-to-peer IF_PEER.B04.Q2 No Off 2 B2642 Control word 1.2 from peer-to-peer IF_PEER.B04.Q3 No Off 3 B2643 Control word 1.3 from peer-to-peer IF_PEER.B04.Q4 Inverter enable B2644 Control word 1.4 from peer-to-peer IF_PEER.B04.Q5 RFG enable B2645 Control word 1.5 from peer-to-peer IF_PEER.B04.Q6 RFG start B2646 Control word 1.6 from peer-to-peer IF_PEER.B04.Q7 RFG setpoint enable B2647 Control word 1.7 from peer-to-peer IF_PEER.B04.Q8 Acknowledge fault B2649 Control word 1.9 from peer-to-peer IF_PEER.B04.Q10 Local inching backw. B2651 Control word 1.11 from peer-to-peer IF_PEER.B04.Q12 Tension control. on B2652 Control word 1.12 from peer-to-peer IF_PEER.B04.Q13 Tens. control. inhibit B2653 Control word 1.13 from peer-to-peer IF_PEER.B04.Q14 Standstill tension on B2654 Control word 1.14 from peer-to-peer IF_PEER.B04.Q15 Set diameter B2655 Control word 1.15 from peer-to-peer IF_PEER.B04.Q16 Hold diameter B2660 Status word 2.0 from CU IF_CU.Zustandswort2.Q1 B2661 Status word 2.1 from CU IF_CU.Zustandswort2.Q2 B2662 Status word 2.3 from CU IF_CU.Zustandswort2.Q3 B2663 Status word 2.4 from CU IF_CU.Zustandswort2.Q4 B2664 Status word 2.5 from CU IF_CU.Zustandswort2.Q5 B2665 Status word 2.6 from CU IF_CU.Zustandswort2.Q6 B2666 Status word 2.7 from CU IF_CU.Zustandswort2.Q7 B2667 Status word 2.8 from CU IF_CU.Zustandswort2.Q8 B2668 Status word 2.9 from CU IF_CU.Zustandswort2.Q9 B2669 Status word 2.10 from CU IF_CU.Zustandswort2.Q10 B2670 Status word 2.11 from CU IF_CU.Zustandswort2.Q11 Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 197 Appendix B2671 Status word 2.12 from CU IF_CU.Zustandswort2.Q12 B2672 Status word 2.13 from CU IF_CU.Zustandswort2.Q13 B2673 Status word 2.14 from CU IF_CU.Zustandswort2.Q14 B2674 Status word 2.15 from CU IF_CU.Zustandswort2.Q15 B2675 Status word 2.16 from CU IF_CU.Zustandswort2.Q16 B2860 Output (EinV) FREI_BST.EinV.Q B2862 Output (AusV) FREI_BST.AusV.Q B2864 Output (ImpV) FREI_BST.ImpV.Q B2866 Output (ImpB) FREI_BST.ImpB.Q B2868 Output (Inv) FREI_BST.Invt.Q B2870 Output (AND_1) FREI_BST.AND_1.Q B2876 Output (OR_1) FREI_BST.OR_1.Q B2880 Output 1 (comp.) FREI_BST.Vergl.QU B2881 Output 2 (comp.) FREI_BST.Vergl.QE B2882 Output 3 (comp.) FREI_BST.Vergl.QL K4000 Constant output in I type Y=0 IQ1Z_01.0_I_Ausgang.Y K4248 d248 Status display (PTP receive) IF_PEER.Empf_PEER.YTS K4332 d332 Control word 1 from T400 IQ1Z_07.B210.QS K4333 d333 Control word 2 from T400 IQ1Z_07.B220.QS K4334 d334 Control word 3 from T400 IQ1Z_07.B230.QS K4335 d335 Status word 1 from T400 CONTZ_01.SE120.QS H015, H444 K4336 d336 Status word 2 from T400 CONTZ_01.C245.QS H445 K4337 d337 Alarm message from T400 IF_CU.SU150.QS K4338 d338 Faults from T400 IF_CU.SU170.QS K4497 d497 Status display (CB receive) IF_COM.Empf_COM.YTS K4498 Fixed status word CONTZ_01.R140.QS K4549 d549 Status word 1 from CU IF_CU.Verteilung.Y1 K4559 d559 Status word 2 from CU IF_CU.Verteilung.Y4 d581 Output (Anz_I1) IQ2Z_01.Anz_I1.Y K4700 Output fixed value B_W FREI_BST.Fest_B_W.QS K4910 Recieved word 2 fromCB IF_COM.Verteilung.Y1 K4911 Recieved word 3 from CB IF_COM.Verteilung.Y2 K4912 Recieved word 5 from CB IF_COM.Verteilung.Y3 K4913 Recieved word 6 from CB IF_COM.Verteilung.Y4 K4914 Recieved word 7 from CB IF_COM.Verteilung.Y5 K4915 Recieved word 8 from CB IF_COM.Verteilung.Y6 K4916 Recieved word 9 from CB IF_COM.Verteilung.Y7 K4917 Recieved word 10 from CB IF_COM.Verteilung.Y8 K4920 Transmitted word 2 at CB IF_COM.Istwert_W2.Y K4921 Transmitted word 3 at CB IF_COM.Istwert_W3.Y K4922 Transmitted word 5 at CB IF_COM.Istwert_W5.Y K4923 Transmitted word 6 at CB IF_COM.Istwert_W6.Y K4924 Transmitted word 7 at CB IF_COM.Istwert_W7.Y K4925 Transmitted word 8 at CB IF_COM.Istwert_W8.Y K4926 Transmitted word 9 at CB IF_COM.Istwert_W9.Y K4927 Transmitted word 10 at CB IF_COM.Istwert_W10.Y K4930 Recieved word 2 from CU IF_CU.Verteilung.Y2 K4931 Recieved word 3 from CU IF_CU.Verteilung.Y3 K4932 Recieved word 5 from CU IF_CU.Verteilung.Y5 K4933 Recieved word 6 from CU IF_CU.Verteilung.Y6 K4934 Recieved word 7 from CU IF_CU.Verteilung.Y7 198 H499 Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 Appendix K4935 Recieved word 8 from CU IF_CU.Verteilung.Y8 K4940 Transmitted word 2 at CU IF_CU.Sollwert_W2.Y K4941 Transmitted word 3 at CU IF_CU.Sollwert_W3.Y K4942 Transmitted word 5 at CU IF_CU.Sollwert_W5.Y K4943 Transmitted word 6 at CU IF_CU.Sollwert_W6.Y K4944 Transmitted word 7 at CU IF_CU.Sollwert_W7.Y K4945 Transmitted word 8 at CU IF_CU.Sollwert_W8.Y K4946 Transmitted word 9 at CU IF_CU.Sollwert_W9.Y K4947 Transmitted word 10 at CU IF_CU.Sollwert_W10.Y K4954 Output high word conversion R->N4 FREI_BST.DW->W_1.YWH K4955 Output low word conversion R->N4 FREI_BST.DW->W_1.YWL K4956 Output high word conversion R->N4 FREI_BST.DW->W_2.YWH K4957 Output low word conversion R->N4 FREI_BST.DW->W_2.YWL K4958 Output conversion R->I FREI_BST.R->I_1.Y K4959 Output conversion R->I FREI_BST.R->I_2.Y K4960 Output high word conversion R->DI FREI_BST.DW->W_3.YWH K4961 Output low word conversion R->DI FREI_BST.DW->W_3.YWL K4962 Output high word conversion R->DI FREI_BST.DW->W_4.YWH K4963 Output low word conversion R->DI FREI_BST.DW->W_4.YWL K4970 Transmitted word 2 at PtP IF_PEER.Istwert_W2.Y K4971 Transmitted word 3 at PtP IF_PEER.Istwert_W3.Y K4972 Transmitted word 4 at PtP IF_PEER.Istwert_W4.Y K4973 Transmitted word 5 at PtP IF_PEER.Istwert_W5.Y K4974 Recieved word 2 from PtP IF_PEER.Sammeln2.Y1 K4975 Recieved word 3 from PtP IF_PEER.Sammeln2.Y2 K4976 Recieved word 4 from PtP IF_PEER.Sammeln2.Y3 K4977 Recieved word 5 from PtP IF_PEER.Sammeln2.Y4 K4984 Output high word conversion R->N4 FREI_BST.DW->W_5.YWH K4985 Output low word conversion R->N4 FREI_BST.DW->W_5.YWL K4986 Output high word conversion R->N4 FREI_BST.DW->W_6.YWH K4987 Output low word conversion R->N4 FREI_BST.DW->W_6.YWL Table 9-3 List of block I/O (connectors and binectors) Axial winder SPW420- SIMADYN D -Manual 6DD1903-0AB0 Edition 05.01 199 Appendix 9.4 200 Block diagram Axial winder SPW420- SIMADYN D - Manual 6DD1903-0AB0 Edition 05.01 1 2 A 3 4 L is t o f c o n te n ts , b lo c k d ia g r a m A B 5 S h e e t C E x p la n a tio n o f th e a b b r e v S ig n a l- flo w o v e r v ie w ( te r m s e r ia l in te r fa c e s , d a ta tra n s fe r a t a n e x a m p O v e r v ie w , s tr u c tu r e s fo r c p o s itio n c o n tr o l, e r a s e E E C O v e r v ie w D E E F F In p u ts / o u tp u ts A n a lo g in p u ts / o u tp In p u ts fo r c o n tro l c o D ig ita l in p u ts / o u tp u In p u ts fo r c o n tro l c o p r e - a s s ig n e d d ig ita l M o to r iz e d p o te n tio m F r e e d is p la y p a r a m e 8 C o n te n ts S h e e t ia tio n s a n d s y m b o ls in a ls , D P R A M S , le T 4 0 0 < - - > C U V C ) lo s e d - lo o p s p e e d - a n d te n s io n / P R O M u ts m m ts m m in p e te te r 0 a /b 1 2 3 4 , c a lc u la tio n s e tp o in t, 5 9 b 6 c o n d itio n in g , e te c tio n 7 e r, 1 1 -1 2 1 3 , lim it v a lu e m o n ito r s 1 a n d 2 a n d s a n u ts rs s a d s , , te r m in a ls 5 3 - 6 0 1 a n d 2 n d c o n s ta n t b in - /c o n n e c to r s B S p e e d c o n tr o lle r o n th e T 4 0 0 T e n s io n c o n tr o lle r C o m m u n ic a tio n C U P R P e U S - In te rfa O F IB U S e r to P e e S _ S la v e 8 c e D P - In te rfa c e r - In te rfa c e - In te rfa c e 2 4 1 5 c 5 a 4 a P o w e r - o n c o n tr o l ( o p e n - lo o p ) S p lic e c o n tr o l ( o p e n - lo o p ) M o n ito r in g d r iv e , fa u lt- a n d a la r m 1 8 2 1 2 0 m e s s a g e 4 D C o n tr o l w o r d , s ta tu s w o r d 9 a 1 0 1 6 1 3 a 1 7 F r e e fu n c A r ith m e tic C o n tro l a n C o n s ta n t v E x a m p le w tio n b lo c k s a n d c h a n g e o v e r d L o g ic a lu e ith fr e e b lo c k s : C u t te n s io n fo r s p lic e 2 2 2 2 a 2 2 b E 2 3 a 2 3 b 2 3 c 2 4 C o n v e r s io n o f n o r m a liz e d v a lu e s 2 6 C o n v e r s io n o f n o t n o r m a liz e d v a lu e s 2 6 a E d it io n 2 3 .1 0 .0 0 S h e e t A 3 C O p e n -c o n tr o l a n d m o n ito r in g C o n tr o l- a n d s ta tu s w o r d s to /fr o m C U , s ta tu s w o r d s fr o m T 4 0 0 P r e - a s s ig n m e n t o f c o n tr o l w o r d s fr o m C B a n d P e e r - to - P e e r C o n tro l w o rd s fro m T 4 0 0 1 9 2 5 6 a 1 5 b , 1 5 , 1 1 1 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e L is t o f c o n te n ts 1 A C o n tr o lle r S e tp o in t / a c tu a l v a lu e s c o n d itio n in g S p e e d s e tp o in t c o n d itio n in g P re -c o n tro l T o r q u e lim itin g , s u p p le m e n ta r y to r q u e s ta n d s till id e n tific a tio n T e n s io n s e tp o in t / te n s io n a c tu a l v a lu e w in d in g h a r d n e s s c o n tr o l, w e b b r e a k d In p u ts fo r s e tp o in ts In p u ts fo r s e tp o in ts , in c r e m e n ta l e n c o d le n g th c o m p u te r D ia m e te r c o m p u te r D 7 " S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e p a c k a g e " fo r S IM O V E R T /S IM O R E G C o n te n ts B 6 5 6 7 8 F 1 2 3 4 5 6 7 8 E x p la n a tio n o f th e a b b r e v ia tio n s a n d s y m b o ls in th e b lo c k d ia g r a m A = M U X = B C F E N H Y K P L L L U = = = = = = M = P T P = Q L Q U C = S S V = X F E Y Y A Y E Y I H I IC D n = = = = = v e r s w itc h = = = = = 1 l = = T E x c lu s iv e o r 0 C h a n g e o v e r s w itc h (q u ie s c e n t p o s itio n (I= O ) s h o w n ) S w itc h -o n d e la y , r e tr ig g e r a b le = X 1 Y X 2 X 1 X 2 M A X S u b tra c to r (Y = X 1 -X 2 ) = M a x im u m v a lu e = g e n e ra to r (Y = m a x im u m o f X 1 a n d X 2 ) 0 Y T 2 C C o n v e r s io n , = b in a r y q u a n tity in to b y te s /w o r d q u a n tity 0 1 ... 7 /1 5 S w itc h -o ff d e la y , r e tr ig g e r a b le = # D = A b s o lu te v a lu e g e n e ra to r = S ig n r e v e r s a l 1 1 -1 = T = X S A V E Y = B lo c k to s a v e X a t p o w e r fa ilu r e E = P T 1 e le m e n t S M o n o flo p R D iffe r e n tia tin g e le m e n t = F lip -F lo p = A /D S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e E x p la n a tio n o f a b b r e v ia tio n s a n d s y m b o ls 1 B ig n a l R a m p -d o w n , r o u n d in g -o ff tim e R a m p -u p tim e M a in in p u t q u a n tity , a c tu a l v a lu e M a in o u tp u t q u a n tity , a c tu a tin g q u a n tity A c c e le r a tio n , d v /d t C o n tro l e rro r I c o m p o n e n t In h ib it I c o m p o n e n t In h ib it P c o m p o n e n t D ia m e te r S p e e d = = D iv id e r (Y = X 1 /X 2 ) Y R a m p -u p , r o u n d in g -o ff tim e = L L A L im ite r (L L < = Y < = L U ) Y I In te g r a l a c tio n tim e = X R a m p -fu n c tio n g e n e ra to r = X 2 = = L U Y X 1 = = T R D T U X S a m p lin g tim e R a m p -d o w n tim e o r d iffe r e n tia tin g tim e c o n s ta n t In te g r a tin g tim e c o n s ta n t = T N T R U p u t" c o m m a n d " A t th e u p p e r lim it" s ig n a l " S e t" c o m m a n d S e ttin g v a lu e = T a T D T I D " O u tp u t = s e tp o in t in C o n tr o lle r e n a b le H y s te r e s is P r o p o r tio n a l g a in L o w e r lim it U p p e r lim it T h r e s h o ld M u ltip le x e r , c h a n g e o P e e r-to -p e e r p ro to c o " A t th e lo w e r lim it" s c o n v e rte r F 3 E d it io n 2 0 .1 0 .0 0 S h e e t 0 a 4 5 6 7 8 1 2 3 4 5 6 7 8 E x p la n a tio n o f th e p a r a m e te r , b in -/c o n n e c to r a n d s ig n a l in th e b lo c k d ia g r a m A A T e c h n o lo g y -p a r a m e te r B N a m e V a lu e H 2 9 5 N a m e C d 3 3 0 B in n e c to r a n d c o n n e c to r C h a n g e a b le p a r a m e t e r K R 0 8 0 0 N a m e C o n n e c t a b le c o n n e c t o r in R - t y p e D is p la y p a r a m e te r K 4 2 4 8 N a m e C o n n e c t a b le c o n n e c t o r in I - t y p e B 2 0 0 1 N a m e N a m e B C o n n e c ta b le b in n e c to r in B - ty p e C H 1 2 3 (d e f) K R C o n n e c ta b le p a r a m e te r in R - ty p e N a m e K R 0 8 5 0 C o n n e c te d c o n n e c to r in R - ty p e N a m e K 4 2 4 8 C o n n e c te d c o n n e c to r in I- ty p e N a m e B 2 5 2 8 C o n n e c te d b in n e c to r in B - ty p e N a m e C o n n e c ta b le p a r a m e te r in I- ty p e H 1 2 5 (d e f) K D D N a m e H 1 2 3 (d e f) B C o n n e c ta b le p a r a m e te r in B - ty p e E E S ig n a l S ig n a l t o ( S h e e t . c o lu m n ) F S ig n a l fr o m F ( S h e e t.c o lu m n ) S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e E x p la n a tio n o f p a r a m e te r , b in -/c o n n e c to r a n d s ig n a l in th e b lo c k d ia g r a m 1 2 3 4 5 E d it io n 2 0 .1 0 .0 0 S h e e t 0 b 6 7 8 1 2 3 4 5 6 7 8 A S e n d d a ta A R e c e iv e d a ta A In te r fa c e m o d u le C B P /C B 1 B D U A L -P O R T -R A M B S e n d S e n d c o m m m o d u C B P a ra m e te r _ C O M d a ta to th e u n ic a tio n s le E m p f_ C O M R e c e iv e d a ta fr o m in te r fa c e m o d u le th e T e r m in a ls 4 5 -6 6 , 8 0 -9 9 : C T e r m in a ls 6 7 -7 5 D 2 p u ls e e n c o d e r in p u t s S e r ia l in te r fa c e 1 X 0 1 5 a n a lo g in p u ts 2 a n a lo g o u tp u ts T e c h n o lo g y m o d u le C - p r o g r a m d o w n lo a d - C F C o n lin e - U S S (S IM O V IS ) T 4 0 0 8 d ig ita l in p u ts D E D 4 b id ir e c tio n a l, d ig ita l in p u ts /o u tp u ts X 0 2 S e r ia l in te r fa c e 2 - P e e r-to -p e e r - U S S 2 d ig ita l o u tp u ts D U A L -P O R T -R A M E E m p f_ B A S E R e c e iv e d a ta fr o m th e b a s e d r iv e F B a s e d r iv e P a ra m e te r E S e n d _ B A S E S e n d d a ta to th e b a s e d r iv e C U V C /C U M C /C U D 1 O p e ra to r p a n e l P M U , O P 1 S F E d it io n 2 0 .1 0 .0 0 S h e e t 1 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e O v e r v ie w (te r m in a ls D P R A M S ) 1 2 F 3 4 5 6 7 8 1 2 3 4 5 6 7 P e e r-to -p e e r p ro to c o l A A W o rd N o . r e c e iv e B P a r a m e te r id e n t if ic a t io n 2 In d e x 3 P a r a m e te r v a lu e [1 5 ,1 7 , 2 2 a ] S e t p o in t 2 f r o m C B [1 5 ] C B [1 5 ] R e c e iv e d a ta D 1 7 S e t p o in t 3 f r o m 8 C o n tro l w o rd 2 fro m B it 1 .0 to 1 .1 5 [1 5 ,1 7 , 2 2 a ] 9 S e t p o in t 5 f r o m C B [1 5 ] 1 0 S e t p o in t 6 f r o m C B [1 5 ] D 1 1 S e t p o in t 5 f r o m C B [1 5 ] 1 2 S e t p o in t 6 f r o m C B [1 5 ] A 1 3 S e t p o in t 5 f r o m C B [1 5 ] 1 4 S e t p o in t 6 f r o m C B [1 5 ] C C N o . C B B it 1 .0 to 1 .1 5 6 S e n d _ P E E R : S e n d d a ta v ia P T P E n a b le H 2 8 9 in 4 b y te s C o n tro l w o rd 1 fro m 5 S e n d d a ta L In d e x [1 4 ] 4 A c tu a l v a lu e 4 [1 4 ] 5 A c tu a l v a lu e 5 [1 4 ] A c tu a l v a lu e 2 A c tu a l v a lu e 3 B .. 1 0 B A I D R A U N L L U N C 1 2 S e tp o in t 2 3 4 5 1 0 A c tu a l v a lu e 6 [1 5 ] 1 1 A c tu a l v a lu e 5 [1 5 ] 1 2 A c tu a l v a lu e 6 [1 5 ] 1 3 A c tu a l v a lu e 5 [1 5 ] 1 4 A c tu a l v a lu e 6 [1 5 ] R P N A M E : P a r a m e te r b lo c k T I P T P O M f o r te c h n o lo g ic a l p a r a m e t e r s d x x x a n d H x x x N 2 E A C U D [1 6 , 1 7 , 2 2 a ] [1 4 ] S e tp o in t 3 [1 4 ] S e tp o in t 4 [1 4 ] S e tp o in t 5 [1 4 ] E m p f_ B A S E : R e c e iv e d a ta fr o m C U E N o . S ig n if ic a n c e 1 .. R e fe r to S h e e t 3 .. 8 S e n d _ C O M : S e n d d a ta to C B E n a b le H 2 8 8 T e c h n o lo g y m o d u le T 4 0 0 F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e O v e r v ie w (s e r ia l in te r fa c e s ) 1 V S C o n tro l w o rd 1 I T A N o . S ig n if ic a n c e R O R S ta tu s w o rd 2 to C B B it 2 .0 to 2 .1 5 [1 5 ] [1 5 ] D P P a ra m e te r F E m p f _ P E E R : R e c e iv e d a ta v ia E n a b le H 2 8 9 C E E A [1 5 ] A c tu a l v a lu e 5 S T C B O [1 5 ] 9 R e fe r to S h e e t 3 .. E n a b le H 2 8 8 P a r a m e te r v a lu e in 4 b y t e s 8 F S ig n if ic a n c e 2 7 F [1 4 ] A c tu a l v a lu e 3 E m p f_ C O M : R e c e iv e d a ta fr o m P M P a r a m e te r id e n t if ic a t io n 6 A c tu a l v a lu e 2 3 N S ta tu s w o rd 1 to C B B its 1 .0 to 1 .1 5 [1 5 ] E 2 C U S ig n if ic a n c e 1 R 1 5 [1 4 ] T W o rd N o . s e n d 3 N o . U P a ra m e te r E A S e n d _ B A S E : S e n d d a ta to S ig n if ic a n c e S ta tu s w o rd 1 C B R D X 0 1 S ig n if ic a n c e 1 B S IM A D Y N D -M o n ito r X 0 2 P R O F IB U S D B p r o to c o l (P P O = 5 ) 8 3 E d it io n 2 0 .1 0 .0 0 S h e e t 2 4 5 6 7 8 1 2 3 4 5 6 7 8 A A A B S o u r c e s e le c tio n s C o n tro l w o rd 1 : S e n d d a ta T 4 0 0 to C U B C o n tro l w o rd 1 C [2 2 .5 ] S p e e d s e tp o in t [6 .8 ] P 5 5 P 5 5 P 5 5 P . . 5 . . 6. P 5 7 4 .x 5 .x 8 .x 1 .x 5 .x = 3 = 3 = 3 = 3 = 3 1 0 0 1 0 1 1 0 2 1 0 3 1 1 5 P 4 4 3 = 3 0 0 2 0 % , n o t u s e d C D C o n tro l w o rd 2 D (1 5 a .2 ] S u p p l. to r q u e s e tp o in t [6 .8 ] P o s itiv e to r q u e lim it [6 .8 ] N e g a tiv e to r q u e lim it [6 .8 ] V a r ia b le m o m . o f in e r tia [9 b .8 ] E S e tp o in t W 9 to C U [1 5 a .7 ] S e tp o in t W 1 0 to C U [1 5 a .7 ] P 5 8 5 .x = 3 2 0 9 P 1 0 0 = 4 S p e e d - c o n tr o lle d o p e r a tio n S p e e d a c q u is it io n P 1 3 0 /1 5 1 S p e e d c o n tro l o n C U V C /C U M C C U V C r5 5 0 /9 6 7 P 7 3 4 .0 1 = 3 2 O p e n - lo o p c o n t r o l/ m o n it o r in g r4 4 7 r2 1 8 - r4 9 6 + P 5 0 6 = 3 0 0 5 F ie ld - o r ie n t e d c o n tro l r5 0 2 P 4 9 3 = 3 0 0 6 x /y x P 4 9 9 = 3 0 0 7 K P 1 .0 P 2 3 4 P 7 3 4 .0 5 = 1 6 5 T o r q u e s e tp o in t P 7 3 4 .0 6 = 2 4 T o r q u e a c tu a l v a lu e [2 0 .1 , 7 .4 ] P 7 3 4 .0 7 = 0 [6 a .1 ] R e c e iv e w o r d 7 (fr e e ) P 7 3 4 .0 8 = 0 **) C S ta tu s w o rd 2 (fre e ) H 2 7 4 P 2 3 3 P x x x = 3 0 0 9 y r2 3 7 P 2 3 6 P 2 3 5 P 2 3 2 = 3 0 0 8 x /y [1 3 .4 ] R e c e iv e w o r d 3 (fr e e ) P 7 3 4 .0 4 = 0 y x R e c e iv e w o r d 2 P 7 3 4 .0 3 = 0 1 .0 * * ) H 2 7 3 B S ta tu s w o r d 1 [1 5 a .6 , 1 2 .6 ] P 7 3 4 .0 2 = 1 4 8 S p e e d a c tu a l v a lu e S p e e d c o n tr o lle r r5 5 1 R e c e iv e d a ta T 4 0 0 fro m C U D a d a p t io n R e c e iv e w o r d 8 (fr e e ) P x x x = 3 0 1 0 E E F * * ) T e c h n o lo g y -p a r a m e te r o n T 4 0 0 F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e O v e r v ie w (D a ta tr a n s fe r a t a n e x a m p le : T 4 0 0 F 1 2 E d it io n 2 0 .1 0 .0 0 S h e e t 3 3 C U V C ) 4 5 6 7 8 1 2 3 4 5 6 C lo s e d -lo o p te n s io n /p o s itio n c o n tr o l 7 A 8 C o m p e n s a tio n w e b v e lo c ity T e n s io n c o n tr o lle r A A c tu a l d ia m e te r W in d in g h a r d n e s s c o n tr o l + T D K P D ia m e te r S V 2 S T e n s io n /p o s itio n a c tu a l v a lu e B T e n s io n c o n tr o lle r o u tp u t 0 ,1 T N S u p p le m e n ta r y s e tp o in t B A 5 T e n s io n /p o s itio n r e fe r e n c e v a lu e B D ia m e te r K p a d a p tio n 3 ,4 R is in g e d g e , te n s io n c o n tr o l o n S e le c t te n s io n c o n tr o l te c h n iq u e C 0 H 0 0 0 L a n g u a g e s e le c tio n C lo s e d -lo o p s p e e d c o n tr o l Id e n t if ic a tio n , s ta n d a r d s o ft w a r e p a c k a g e C 4 2 0 d 0 0 1 S o ftw a r e r e le a s e , s ta n d a r d s o ftw a r e p a c k a g e D C P U S a tu r a tio n 0 .0 0 .0 S u p p le m e n ta r y s e tp o in t T e n s io n c o n tr o l o n In p u t & C u r r e n t lim itin g c o n tr o l M o d e D L o In C ra P o s itio n V e lo c ity lim itin g c a l c h in g w l in g E H 9 9 7 Id e n t if ic a tio n 1 3 4 d 9 9 8 Id e n t if ic a tio n fo r S im o v is 2 2 1 d 9 9 9 S IM A D Y N D + T e n s io n c o n tr o lle r o u tp u t T e n s io n c o n tr o l o n S p e e d c o r r e c tio n c o n tr o l D ia m e te r W e b v e lo c ity V a r ia b le m o m e n t o f in e r tia a s K p a d a p ta tio n in p u t E d v d t S u p p le m e n ta r y to r q u e s e tp o in t 0 .0 + C o m p e n s a tio n fr ic tio n F T e n s io n c o n tr o l o n C u r r e n t lim itin g c o n tr o l 1 .0 + T e n s io n c o n tr o lle r o u tp u t T o r q u e lim its F & S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ft w a r e O v e r v ie w , s tr u c tu r e s fo r c lo s e d -lo o p s p e e d - a n d te n s io n /p o s itio n c o n tr o l 1 D S p e e d s e tp o in t O v e r r id e r a m p - fu n c tio n g e n e r a to r C o m p e n s a tio n in e r tia 0 .0 1 0 S p e e d a c tu a l v a lu e F C o d e 1 6 5 in itia liz . 0 D r iv e n u m b e r E V e lo c ity s e tp o in t H 2 5 0 H 1 6 0 C d 0 0 2 ... d 3 5 6 d 3 5 2 u t iliz a t io n T 1 t o T 5 E ra s e E E P R O M r e fe r to S e c tio n 7 .1 .2 S a tu r a tio n s e tp o in t 2 .0 2 3 4 5 E d it io n 2 0 .1 0 .0 0 S h e e t 4 6 7 8 1 2 3 4 S e tp o in t A A A c c e p t s e tp o in t A A A c c e p t s e tp o in t B [1 3 .3 ] 0 .0 o p e r a tio n R a s to S e s to t. g e n . o n T 4 0 0 .4 ] c it y s e t p o in t t o .4 ] p -fc [1 6 e lo [1 7 > 1 7 1 .1 0 H 1 3 1 L o w e r lim it -1 .1 0 H 1 3 2 R a m p -u p tim e 3 0 0 0 0 m s H 1 3 3 R a m p -d o w n t im e 3 0 0 0 0 m s H 1 3 4 In itia l r o u n d in g -o ff 3 0 0 0 m s H 1 3 5 F in a l r o u n d in g -o ff 3 0 0 0 m s H 1 3 6 1 .0 Y L U 8 N o r m a liz a tio n , w e b v e lo c it y K R 0 3 0 1 Y A L L 0 T U S la v e d r iv e = 1 H 1 5 4 V e lo s e tp A c tiv r a tio 1 .0 T D R a tio , g e a r b o x s ta g e 2 [1 1 .3 ] T R U 8 m s H 1 5 5 W e b v e lo c ity c o m p e n s a tio n [1 1 .3 ] A d a p ta tio n g e a r b o x s ta g e 2 [1 6 .8 ] C F d 3 4 0 d 3 2 5 C o m p e n s a te d v e lo c ity w ith o u t g e a r b o x [9 a .1 ] d 3 0 0 1 .0 H 1 3 7 1 .0 C X 0 .0 -1 [8 .7 ] H 1 5 6 S e tp o in t, lo c a l c r a w l d 2 9 8 H 1 4 1 V -C o r r e c tio n [9 a .1 ] In p u t, s u p p le m e n ta r y s e tp o in t [1 7 .8 ] A c tu a l d ia m e te r [9 a .8 ] C o r e d ia m e te r [9 a .3 ] E F 0 .1 S e tp ., lo c a l in c h in g fo r w a r d s . 0 .0 5 H 1 4 3 4 H 1 4 4 5 - 0 .0 5 O n ly f o r lo c a l o p e r a tio n m o d e s 6 S p e e d a c tu a l v a lu e , s m o o th e d [1 3 .6 ] V e lo c ity a c t u a l v a lu e [6 .5 ] K R 0 3 0 7 1 .1 L U -1 .1 L L W in d in g fr o m b e lo w [1 6 .4 ] S e tp o in t s e le c tio n a fte r th e o p e r a t in g m o d e [ 1 8 .4 ] Y X K R 0 4 1 2 L U L L S V D d 4 1 2 X T I 1 .0 a c t. v e lo c ity s e tp o in t b e fo r e o v e r r id e R F G d 3 4 4 S K R 0 3 4 4 V e lo c it y s e tp o in t & N s e t [6 .1 ] E 0 .0 H 1 4 5 H 1 6 4 -1 R a m p -u p /r a m p -d o w n tim e 2 0 0 0 0 m s W in d in g f r o m b e lo w [1 6 .4 ] O p e ra to r m o d e c h a n g e P o la r ity , s a t u r a tio n s e tp o in t [ 1 6 .8 ] O p e r a tin g e n a b le [ 1 8 .8 ] B 2 5 0 8 K R 0 3 4 1 A c tu a l s a t u r a tio n s e tp o in t Y -1 .0 -1 S m o o th in g , s a tu r a tio n s e tp o in t 8 m s C h a n g e o v e r p re c o n tro l to r q u e [6 .2 ] X 1 .1 L U -1 .1 L L d 3 4 1 T I H 1 6 1 S V O v e r r id e r a m p -f u n c t io n g e n e r a to r , o n ly e ffe c tiv e o n c e fo r a n o p e r a tin g m o d e c h a n g e o r fo r o p e r a t io n e n a b le o r fo r w in d in g fr o m b e lo w S > 1 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e S p e e d s e tp o in t c o n d itio n in g 1 -1 V * S e tp o in t [9 b .1 ] 1 .0 C H 1 6 6 = 1 a llo w s a lo c a l s e tp o in t to b e a d d e d in th e s y s te m 0 0 H 1 4 6 S p e e d c o n tro l fo r lo c a l o p e r a t io n S a tu r a tio n s e tp o in t F 3 H 1 6 6 H 1 4 2 S e tp ., lo c a l in c h in g b a c k w a r d s S e tp o in t, p o s itio n in g [1 2 .8 ] 0 .0 2 0 .1 0 0 .0 S u p p le m e n t a r y v e lo c ity s e t p o in t [1 1 .3 ] L o c a l o p e ra to r c o n tr o l [1 7 .8 ] 1 H 2 0 3 > = 3 ,0 W in d e r [1 6 .8 ] E d 2 9 9 in flu n e c e , te n s io n c o n tr o l M U X [1 1 .5 ] S e t p o in t, lo c a l o p e r a tio n L L 1 .0 0 S e t p o in t, lo c a l s t o p 0 .0 L U 0 M U X d 2 9 7 D D B K R 0 3 4 0 C o m p e n s a tio n , w e b v e lo c ity [8 .1 , 9 b .1 ] S m o o th in g te n s io n c o n t r o n lle r o n [1 7 .8 ] C o n tr o l te c h n iq u e H 2 0 3 < = 2 .0 [ 6 .1 ] N o w e b s p e e d lim it in g O u tp u t, te n s io n c o n tr o l w it h o u t p re -c o n t. to rq u e A c ity o in t [1 3 .6 ] e g e a rb o x [ 6 .1 , 9 a .1 , 9 b .1 ] T R D V e lo c ity s e tp o in t [1 1 .3 ] C E ffe c tiv e w e b v e lo c ity s e tp o in t d 3 0 1 H 1 3 9 E N In h ib it r a m p -fc t. g e n e r a to r o n T 4 0 0 [1 7 .2 ] B U p p e r lim it & [1 8 .4 ] 6 a lte r n . d v /d t [1 1 .5 ] X [1 6 .6 ] S y s te m m p t v p d 2 9 6 H 1 3 0 S e tp o in t B [1 6 .4 ] E n a b le s e tp o in t [1 7 .4 ] B 5 R a m p -fu n c tio n g e n e r a to r f o r th e v e lo c ity s e tp o in t 0 .0 2 F 3 E d it io n 0 6 .0 3 .0 1 S h e e t 5 4 5 6 7 8 1 N s e t A 2 3 B -1 R e v e r s e w in d in g a fte r s p lic e [ 2 1 .8 ] 8 d 3 0 3 O u tp u t, te n s io n c o n tr o l [ 8 .8 ] H 6 1 1 (3 5 1 ) B 2 5 0 3 L o c a l o p e r a to r c o n t r o l [1 7 .8 ] C u r r e n t lim it in g c o n tr o l H 2 0 3 < = 2 .0 K R 0 3 5 1 d 4 1 9 & K R W in d e r [1 6 .8 ] = 1 W in d in g fr o m b e lo w [1 6 .4 ] K R 0 5 5 8 S u p p le m e n t a r y to r q u e s e t p o in t [ 3 .2 , 6 a .3 , 1 5 b .4 ] K R 0 5 5 6 K R P o s itiv e to r q u e lim it [3 .2 , 6 a .3 , 1 5 b .5 ] -1 -1 N e g a tiv e to r q u e lim it [3 .2 , 6 a .3 , 1 5 b .5 ] d 3 4 3 n e g . to rq u e lim it W in d e r a n d w in d in g fr o m th e to p o r u n w in d s ta n d a n d w in d in g fr o m B K R 0 5 5 7 K R 0 3 4 3 -1 C h a n g e o v e r p re c o n tr o l to r q u e [5 .3 , 9 .7 ] A [1 3 a .5 , 2 2 .4 ] 0 .0 H Y p o s . to r q u e lim it In p u t, n e g a t iv e to r q u e lim it K R n *= 0 B 2 5 0 5 L K R 0 3 4 2 H 6 1 0 (3 5 1 ) K R 0 3 5 1 H 6 1 2 (3 1 3 ) K R 0 3 1 3 d 3 4 2 In p u t p o s . to r q u e lim it H 1 4 7 0 .2 M 0 .0 0 1 0 ,0 0 0 5 T o r q u e lim it [2 4 .3 ] T e n s io n c o n tr o l o n [8 .2 ] K R 0 3 0 3 S p e e d s e tp o in t [3 .2 , 6 a .1 , 1 5 b .4 , 2 0 .1 ] X 0 .0 0 .0 T o r q u e lim it C 7 H 1 4 9 P r e -c o n tr o lto r q u e [9 b .8 ] C 6 0 .0 0 .0 A c tiv e g e a r b o x r a tio [ 5 .8 ] B 5 [ 5 .8 ] S e tp ., r e v e r s e w in d in g A 4 N o O F F 3 [1 7 .3 ] C b e lo w D M a x im u m S p e e d a c tu a l v a lu e [1 3 .6 ] B r a k in g c h a r a c te r is tic H 2 5 9 2 .0 D M b b r a k in g to r q u e D K R 0 3 0 7 E H 2 5 7 0 .0 n R e d u c e d b r a k in g to r q u e 0 .0 1 H 2 5 6 S ta r t o f a d a p tio n H 2 5 8 2 .0 E n d o f a d a p tio n S ta n d s till id e n t ific a t io n E E F V e lo c ity a c tu a l v a lu e 0 .0 1 X = M X L H 1 5 7 -L L im it v a lu e fo r s ta n d s till id e n t. F L /4 X [ 5 .4 ] 0 .0 H y s te r e s is 0 .2 5 0 L M X = M H Y T 0 0 m s H 1 5 9 D e la y . s ta n d s t ill id e n tific a tio n E d it io n 1 5 .0 1 .0 1 S h e e t 6 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e T o r q u e lim itin g , s u p p le m e n ta r y to r q u e s e tp o in t, s ta n d s till id e n tific a tio n 1 2 3 4 B 2 5 0 2 S ta n d s till [7 .5 , 1 3 a .5 , 1 8 .6 ] 5 6 7 8 F 1 2 3 4 5 6 7 8 d 3 2 9 K R 0 3 2 9 T o r q u e s e tp o in t [ 1 0 .5 ] S m o o th in g 5 0 0 m s A H 1 6 2 0 T o r q u e s e t p o in t [ 3 .8 , 1 5 c .7 ] A K R 0 3 3 1 d 3 3 1 T o rq u e s e tp o in t s m o o th e d N o O F F 3 [1 7 .4 ] B S p e e d a c tu a l v a lu e , s m o o th e d [ 1 3 .6 ] R a m p -fc t . g e n ., s p e e d c o n tr . B S p e e d c o n tr o lle r K R 0 3 0 73 K p .T n C S p e e d s e tp o in t [6 .8 ] K R 0 3 0 3 0 .0 X Y S V U p p e r lim it 1 .0 H 2 9 0 L o w e r lim it -1 .0 H 2 9 1 R a m p -U p tim e 1 0 0 0 m s L L H 2 9 2 R a m p -D o w n tim e 1 0 0 0 m s T U H 2 9 3 + Y A P o s itiv e t o r q u e lim it [6 .8 ] N e g a tiv e to r q u e lim it [6 .8 ] L U 1 K R 0 5 5 7 S u p p l. to r q u e s e tp o in t [6 .8 ] Y S V L U L L K R 0 5 5 6 3 0 0 m s T D 0 X T N H 2 9 4 C W P K P K R 0 53 50 83 S E N C F 0 H I 0 S D D K P K P - a d a p ta t io n m a x V a r ia b le m o m e n t o f in e r tia [ 9 b .8 ] 0 .1 K P a d a p t io n d 3 4 5 H 1 5 3 K R 0 3 4 5 K R 0 3 0 8 K P a d a p ta tio n m in 0 .1 E K p a d a p ta tio n o n T 4 0 0 H 1 5 1 J V 0 .0 H 1 5 0 S ta r t o f a d a p tio n O p e r a tio n e n a b le [1 8 .8 ] S p e e d c o n tr o lle r c h a n g e o v e r to C U o r T 4 0 0 B 2 5 0 8 0 H 1 5 2 E 1 .0 E n d o f a d a p tio n & H 2 8 2 F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e S p e e d c o n tr o lle r o n th e T 4 0 0 1 2 3 E d it io n 1 5 .0 1 .0 1 S h e e t 6 a 4 5 6 7 8 1 2 3 4 5 6 7 8 R a m p -fc t . g e n ., t e n s io n s e tp . d 3 4 7 A d 3 4 8 A T e n s io n s e tp o in t [1 2 .3 ] T e n s io n a c t. K R 0 3 1 1 v a lu e [7 .8 ] U p p e r lim it 1 .1 S ta n d s t ill [6 .8 ] B 2 5 0 2 1 .0 B 1 .0 H 1 8 9 S ta n d s till te n s io n H 1 8 8 S o u r c e , s ta n d s till te n s io n C 1 .0 H 1 8 0 1 R a m p -u p tim e 1 0 0 0 0 m s R a m p -d o w n t im e T e n s io n r e d u c tio n 1 .0 H 1 8 1 T e n s io n c o n tr o l o n [8 .2 ] H 1 9 1 0 M in im u m s e le c tio n M IN T e n s io n r e d u c tio n L o w e r lim it 1 0 0 0 0 m s 2 T e n s io n r e d u c tio n 1 .0 H 1 8 2 M a x im u m te n s io n r e d u c tio n [1 2 .3 ] S V L U 0 T U H 1 7 6 T D 1 B H 2 8 4 F o r d a n c e r r o ll 0 d 3 2 8 3 In h a b it te n s io n c o n tr o lle r [1 7 .8 ] A c tu a l d ia m e te r [9 a .8 ] 3 0 0 0 m s S ta r t o f te n s io n r e d u c tio n D ia m e te r D H 1 8 3 1 .0 D ia m e te r D 1 H 1 8 4 1 .0 D ia m e te r D 2 H 1 8 5 1 .0 D ia m e te r D 3 H 1 8 6 1 .0 D 1 D 2 D 3 D 4 L o w e r lim it w e b b re a k id e n tific a tio n D ia m e te r < 1 > E n d o f te n s io n r e d u c tio n , d ia m e te r D 4 T o rq u e a c t. v a lu e [3 .8 , 1 5 c .7 ] O u tp u t, te n s io n c o n tr o l [ 8 .8 ] H 1 8 7 X 2 X 1 X M 0 .0 0 5 H Y X 1 K R 0 3 1 3 d 4 S p c o c o 1 6 e e rre n tr H 2 0 3 X 2 1 .0 0 .2 5 X 1 X 2 > H 2 5 3 (2 2 5 3 ) B & X < = M X 1 -X 2 T e n s io n a c t. v a lu e [1 2 .3 ] T 0 & d B 2 2 5 3 in te r n . W e b b r e a k s ig n . S A V E c tio n o l > 2 .0 H 1 7 8 0 H 1 7 9 1 5 0 m s W e b b re a k 1 [8 .1 , 9 a .1 , 1 3 .6 ] R In h ib it te n s io n c o n tr o lle r a n d d ia m e te r c o m p u te r if w e b b r e a k 1 = 1 0 X 1 > X 2 H 2 7 5 E d 3 1 1 K R 0 3 1 1 T e n s io n a c tu a l v a lu e s m o o th e d H 1 7 2 T im e c o n s ta n ts & < 1 > 2 3 4 D T e n s io n c o n tr o lle r o n [1 7 .8 ] 1 F o r w e b b re a k : T e n s io n c o n tr o lle r o u tp u t > to r q u e a c tu a l v a lu e S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e T e n s io n s e tp o in t/te n s io n a c tu a l v a lu e c o n d itio n in g , w in d in g h a r d n e s s c o n tr o l, w e b b r e a k d e te c tio n 1 C B 2 5 0 1 W e b b re a k [1 3 a .5 , 2 2 .5 ] S 0 = w e b b r e a k o n ly a s s ig n a l T o r q u e a c tu a l v a lu e < 7 5 % o f th e te n s io n c o n tr o lle r o u tp u t F F 0 3 2 8 s e tp o in t w in d in g h a r d n e s s r is tic In p . W e b b r e a k s ig n a l D ir . te n s io n c o n t r . H 2 0 3 > 0 .0 0 .0 5 H 2 0 4 D E n a b le , te n s io n o ffs e t c o m p e n s a tio n H o ld d ia m e te r [1 6 .4 ] T e n s io n c o n tr o lle r [1 7 .8 ] H 2 0 5 d 4 1 5 K R 0 3 1 0 D E > 1 D e la y o f W e b b r e a k s ig n a l T e n s io n W in d in g h a r d n e s s c h a r . E K R T e n s io n a fte r th e c h a ra c te W e b b re a k d e te c tio n E n a b le H 2 8 5 = 1 T e n s io n r e d u c tio n m a x . T e n s io n s e tp . H 2 0 6 0 w ith /w ith o u t w in d in g h a r d n e s s c h a r a c te r is tic L L H 1 7 5 A Y A & B 2 5 0 3 C D T e n s io n s e tp o in t a fte r th e ra m p -fc t. g e n e ra to r [8 .1 ] Y S 0 B & S ta n d s t ill te n s io n o n [1 7 .2 ] X 5 6 E d it io n 1 5 .0 1 .0 1 S h e e t 7 7 8 F 1 2 4 5 6 7 8 S e ttin g th e c o n tr o l te c h n iq u e v ia H 2 0 3 : T e n s io n s e tp o in t a f te r th e r a m p -f c t . g e n e r a to r [7 .8 ] A 3 H 2 H 2 H 2 H 2 H 2 H 2 0 .0 A 0 H 1 7 7 In h ib it te n s io n s e tp o in t 3 0 0 m s S u p p l. te n s io n s e tp o in t [1 2 .3 ] 0 3 0 3 0 3 0 3 0 3 0 3 = 0 = 1 = 2 = 3 = 5 = 4 .0 .0 .0 .0 .0 .0 : In : D : D : D : A : R d ir e c ir e c t ir e c t ir e c t s fo r e s e rv t te te n te n te n s e t e d n s io s io n s io n s io n tin g fo r e n c o n t c o n tro c o n tro c o n tro 3 , h o w x p a n s ro l l w l w l w e v e io n s v ia ith ith ith r, t c u rre n te n s io n d a n c e r d a n c e r e n s io n c u tr r e r v ia c u r r e n t lim a n d u c e r o u tp u t m r r e n t lim it s its v ia s p e e d c o r r e c tio n u ltip lie d v ia V * A K R 0 3 0 4 H 1 9 2 0 .0 T im e c o n s ta n t B t lim it s tra n s d u r o ll v ia c /t e n s io n c o n tr o lle d 3 0 4 0 .0 H 2 0 0 S e tp o in t p r e -c o n t r o l te n s io n c o n tr o lle r T e n s io n c o n tr o lle r B S u m , te n s io n /p o s it io n r e fe r e n c e v a lu e d 3 1 9 C o n t r o l te c h n iq u e H 2 0 3 = 0 .0 ,1 .0 [5 .3 ] K R 0 3 1 9 T e n s io n c o n tr o lle r o u tp u t P I c o m p o n e n t K p .T n + 0 .0 H 2 0 9 D ro o p X - T e n s io n a c tu a l v a lu e , s m o o th e d [7 .8 ] C C b r e a k 1 [7 .8 ] a tin g B 2 5 0 8 le [1 8 .8 ] io n r o lle r o n [ 1 7 .8 ] & C o m v e lo A c tu d ia m p e n s a te d w e b c it y [5 .8 ] a l e te r [9 a .8 ] S o u rc e K p A d a p tio n H 1 7 1 (3 0 8 ) P /P I c o n tr o lle r = 1 /0 1 .0 K P 0 .0 1 Q U H I Q L S A c tu a l K p te n s io n c o n tr . K P a d a p tio n H 2 0 1 K R 0 3 1 8 H 1 7 3 D iffe r e n tia tin g tim e c o n s ta n t 8 0 0 m s 1 .0 M U X H 2 0 2 0 In flu e n c e w e b v e lo c it y E H 1 9 8 3 H 1 9 7 0 .0 H 2 0 7 S ta r t o f a d a p tio n K R 0 3 0 7 M n im u m v a lu e , te n s io n c o n tr o lle r lim its In h ib it D c o n tr o lle r M U X if n e g . C o n t r o l te c h n iq u e 0 .0 0 .0 H 1 9 0 P r e -c o n tr o l, te n s io n fo r d a n c e r r o ll o p e r a t io n L o w e r lim it, te n s io n c o n tr o lle r U p p e r lim it, te n s io n c o n tr o lle r 0 .0 1 1 1 .0 2 -1 .0 2 3 0 .0 3 M A X 4 2 O u tp u t te n s io n c o n tr o l w ith o u t p r e -c o n tr . to r q u e [5 .1 ] d 3 6 1 d 3 1 3 D K R 0 3 1 3 O u tp u t, te n s io n c o n tr o l [6 .1 , 7 .4 ] 0 .0 P r e -c o n tr o l to r q u e is s w itc h e d to 0 .0 f o r s p e e d c o r r e c t io n c o n tr o l (H 2 0 3 = > 3 .0 ) H 2 0 3 E M U X 1 .0 4 H 1 9 4 S e le c t io n , te n s io n c o n tr o lle r lim its F -1 A d a p tio n 1 .0 H 1 9 5 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e T e n s io n c o n tr o lle r 1 C T e n s io n c o n tr o lle r a t its lim it S ta tu s w o r d 1 .1 3 to C B /C U K R 0 3 1 2 5 P r e s s u r e a c t. v a lu e fr o m th e d a n c e r r o ll [1 3 .3 ] H 2 0 8 1 .0 E n d o f a d a p t io n S p e e d a c tu a l v a lu e s m o o th e d [1 3 .6 ] H 1 9 3 1 [9 b .8 ] p r e -c o n tr o l to rq u e 2 d 3 4 6 J V F H 1 7 4 T e n s io n c o n tr o lle r , D c o m p . 1 4 0 ,3 S u m , t e n s io n c o n tr . o u tp u t [9 .4 ] d 3 1 8 M A X T e n s io n s e tp o in t K P m in F H 1 9 6 L o w e r lim it, w e b v e lo c it y K R 0 .0 K P IC E N d 3 6 0 K R 0 3 1 0 0 ,3 K R 0 3 1 7 T N H 2 8 3 0 H 2 0 3 = 0 .0 T e n s io n c o n tr o l o n [5 .1 , 6 .1 , 7 .5 , 9 a .1 ,1 3 .6 , 1 3 a .4 ,1 8 .6 ] K R 0 3 4 0 K P m a x 0 d 3 1 7 C o n t r o l te c h n iq u e Y I L L H 1 9 9 B 2 5 0 3 D E I/P I c o n tr o lle r = 1 /0 & In h ib it te n s io n c o n tr o lle r [ 1 7 .8 ] D 1 0 0 0 m s 0 .0 Y E L U In te g r a tio n tim e W e b O p e r e n a b T e n s c o n t Y B 2 3 E d it io n 1 5 .0 1 .0 1 S h e e t 8 4 5 6 7 8 1 2 A 3 4 5 6 7 8 N o te : S ig n o f v _ C o rre c tio n h a s c h a n g e d fro m v e rs io n 2 .1 to 2 .2 ! A A C o r e d ia m e te r D c o r e /D m a x B C o r e d ia m e te r [5 .1 , 9 b .1 , 1 2 .5 ] K R 0 2 2 2 H 2 2 2 0 .2 v _ C o r r e c t io n [ 5 .4 ] 3 0 0 m H 2 5 4 0 .0 B S m o o n th in g C o m p e n s a te d v e lo c it y w it h o u t g e a r b o x [5 .8 ] H 2 5 5 A d a p ta tio n d e tV K R 0 3 2 7 e x te rn a l w e b v e lo c ity a c tu a l v a lu e [ 1 3 .4 ] C V e lo c ity fr o m ta c h o m e te r [1 3 .4 ] d 3 1 0 V H 2 1 0 1 .0 A d a p ta tio n v _ w e b 0 H 2 1 1 W e b ta c h o . = 1 D ia m e te r c o m p u te r K R 0 3 4 9 D ia m e te r s e ttin g v a lu e [ 1 2 .7 ] D T a c h o m e te r [1 7 .2 ] T e n s io n c o n tr o l o n [8 .2 ] X B 2 5 0 3 0 .0 2 5 0 s C h a n g e tim e , d ia m e t e r a t V m a x a n d D m in D in h ib it X < M M C H 2 3 8 T h e in te g r a tin g c o m p u t a tio n te c h n iq u e r e s u lt s in a s m o o n th e r o u tp u t s ig n a l d 4 1 7 d 3 5 9 H Y 0 ,0 0 5 W ith V s e tp o in t s ig n a l K R 0 3 0 7 E D /D m in D s e t D s e tt in g A c tiv e g e a r b o x r a tio [5 .8 ] D M in . s p e e d fo r 0 .0 1 d ia m e te r c o m p u te r S p e e d a c t . v a lu e s m o o n th e d [1 3 .6 ] a b s o lu te s p e e d a c t. v a lu e [9 b .1 ] H y s te r s is H 2 2 1 H 1 5 8 0 .0 0 1 X * M H Y X < M E n a b le D -c o m p u te r w ith o u t v * M a te r ia l th ic k n e s s E F d /D m a x In itia l d ia m e te r S e ttin g p u ls e d u r a tio n 0 D 0 .0 H 2 8 6 0 .4 H 2 7 6 1 0 s H 2 7 8 D = D H 2 1 6 F A c tu a l d ia m e t e r b e f o r e r a m p fu n c tio n g e n e r a to r (w it h v * ) d 3 5 8 W ith o u t V s e tp o in t s ig n a l ** u ta tio a g e v a e fo r 1 x a n d n in lu e re v D m te g o in A n f. a K R 0 3 5 8 2 * T h ic k . H 2 3 6 3 2 0 m s r v a ll fo r e n e r a tio n lu t io n a t ) A c tu a l d ia m e t e r b e f o r e r a m p fu n c tio n g e n e r a to r (w it h o u t v * ) F E d it io n 0 3 .0 5 .0 1 S h e e t 9 a 3 4 5 E 0 F o r w in d e r s , th e d ia m e t e r m a y o n ly in c r e a s e F o r u n w in d e r s , th e d ia m e te r m a y o n ly d e c r e a s e (if H 2 3 6 = 1 ) S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e D ia m e te r c o m p u te r 2 D K R 0 3 5 9 W e b v e lo c it y S p e e d a c tu a l v a lu e = H 2 7 7 C o m a v e r ( tim V m a 1 K R 0 3 1 0 A c tu a l d ia m e te r [ 5 .1 , 7 .1 , 8 .1 , 9 b .1 , 1 0 .5 , 1 5 a .5 ] D c o r e < D a c t < D m a x = 1 .0 E ff. c h a n g e tim e n S e t d ia m e te r [1 7 .8 ] H o ld d ia m e t e r [ 1 6 .4 ] W e b b r e a k 1 [7 .8 ] C S A V E D B 6 7 8 1 A 2 3 4 5 6 J A c tu a l d ia m e t e r [9 a .8 ] v = 7 C o n s t * A 8 W id t h * d e n s ity G e a r b o x r a tio 2 * (D 4 - D 4 C o re ) A A c tiv e g e a r b o x r a tio [5 .8 ] B B C o r e d ia m e te r [9 a .4 ] 4 X K R 0 2 2 2 4 X B W e b w id th [1 1 .7 ] 1 0 0 0 m s C S c a llin g H 2 4 3 S m o o n th in g 1 0 0 0 m s H 2 2 0 H 2 7 2 0 .0 1 (1 0 0 % a t th e o u tp u t fo r 1 s ra m p ) C o m p e n s s te d w e b v e lo c ity [5 .8 ] S m o o n th in g D 2 A u to m a tic d e n s it y c o r r e c tio n (o n ly fo r H 2 0 3 = 1 ,2 ) L im it, c o r r e c tio n v a lu e In te g r . tim e S u m 0 .0 H 1 6 7 2 0 0 0 0 0 m s H 1 6 8 1 D e a d z o n e 3 2 m s 0 .0 H 2 2 7 C a lib r a tio n J v d 3 3 9 A c tu a l c o r r e c t io n fa c to r te n s io n c o n tr o l o u tp u t [8 .8 ] 0 .0 C H 2 2 8 C o n s ta n t m o m e n t o f in e r tia H 2 2 3 H 2 2 6 d 3 0 2 A c tu a l d v /d t H 2 2 5 1 .0 E x t e r n a l d v /d t [1 1 .7 ] K R 0 3 0 8 V a r ia b le m o m e n t o f in e r tia [3 .2 , 6 a .1 , 8 .2 , 1 5 b .5 ] d 3 0 8 M a te r ia l d e n s ity [1 2 .6 ] d V d t K R 0 3 4 0 C X D e a d z o n e d v /d t K R 0 3 0 2 F in e a d ju s tm e n t, d v /d t 0 K R 0 3 1 6 d v /d t e x te r n a l = 1 X A b s o lu te s p e e d a c tu a l v a lu e [9 a .2 ] D P r e - c o n t r o lle d to r q u e In e r tia c o m p e n s a t io n 2 0 .0 E H 2 3 7 P re -c o n tro l w ith n 2 d 3 1 6 d 3 1 2 1 ,0 -1 ,0 -1 d 3 1 4 F r ic tio n c h a r a c te r is tic E |F r ic tio n to r q u e | P t.1 0 0 .0 H 9 0 3 |F r ic t io n to r q u e | P t.7 0 .0 H 9 0 0 |F r ic t io n to r q u e | P t.6 0 .0 H 2 3 5 |F r ic t io n to r q u e | P t.1 K R 0 3 1 2 K R 0 3 1 4 P r e - c o n t r o lle d to r q u e F r ic tio n c o m p e n s a tio n V * S e tp o in t [5 .7 ] F D 0 .0 P r e - c o n tr o lle d t o r q u e [6 .1 , 8 .7 ] C h a n g e o v e r, p re c o n tr o lle d to r q u e [6 .2 ] E W in d e r [1 6 .8 ] W in d in g fr o m |M R | b e lo w [1 6 .4 ] 1 ,0 A d a p t. fr ic tio n to r q u e g e a r b o x s ta g e 2 [1 1 .7 ] |n | H 2 3 0 G e a r b o x s ta g e 2 [1 6 .8 ] 0 .0 F H 8 9 0 |S p e e d | P t.1 ...... H 8 9 9 1 .0 F |S p e e d l P t.1 0 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P re -c o n tro l 1 2 E d it io n 1 5 .0 1 .0 1 3 S h e e t 9 b 4 5 6 7 8 1 2 3 a ) A n a lo g in p u ts a t T 4 0 0 A d a p ta tio n O ffs e t H 0 5 4 H 0 5 5 1 .0 A 4 0 .0 A d a p ta tio n O ffs e t H 0 5 6 H 0 5 7 1 .0 A n a lo g in p u t 1 A n a lo g o u tp u t 1 K R 0 3 2 1 A d a p ta tio n O ffs e t H 0 5 8 H 0 5 9 1 .0 A d 3 2 1 - B 8 T A = 2 m s O ffs e t 0 .0 + T e r m in a l 9 2 T e r m in a l 9 3 7 d 3 2 0 K R 0 3 2 0 - 6 b ) A n a lo g o u tp u ts a t T 4 0 0 + T e r m in a l 9 0 T e r m in a l 9 1 5 A n a lo g in p u t 2 H 2 7 0 A d a p ta tio n H 1 0 2 1 .0 H 1 0 1 H 1 0 3 (3 2 9 ) K R T A = 2 m s K R 0 3 2 9 S m o o th in g 0 .0 0 .0 T e r m in a l 9 7 T e r m in a l 9 9 B T o r q u e s e tp o in t [6 a ,8 ] 8 m s + T e r m in a l 9 4 T e r m in a l 9 9 K R 0 3 2 2 A n a lo g in p u t 3 T A = 2 m s ( T e n s io n a c t. v a lu e , s m o o th e d ) [1 2 .2 ] - A n a lo g g r o u n d d 3 2 2 A d a p ta tio n H 0 6 0 1 .0 A n a lo g g r o u n d + T e r m in a l 9 5 T e r m in a l 9 9 C S m o o th in g O ffs e t H 2 7 1 0 .0 H 0 6 1 8 m s K R 0 3 2 3 - A d a p ta tio n O ffs e t H 0 6 2 H 0 6 3 1 .0 D 1 H 1 1 0 5 0 0 m s 2 E d 4 0 3 3 X 0 .0 H y s te r e s is H C o m p a r is o n v a lu e G W M 0 .0 A d a p ta tio n 1 H 1 1 1 1 H 1 0 8 (3 0 3 ) K R X H 1 1 2 L M H 1 1 3 X L X H > M B 2 4 0 3 < M B 2 4 0 4 = M B 2 4 0 5 L O u tp u t G W M M L x S m o o th in g H 1 1 8 5 0 0 m s 1 M U X d 4 1 0 0 s ig n a l fo r -1 3 X H y s te r e s is 0 .0 H 0 .0 H 1 2 0 X L H 1 2 1 M C o m p a r is o n v a lu e G W M . L e n g th s to p [1 3 .8 ] B 2 5 0 6 1 H 1 1 9 H 1 1 6 (3 0 4 ) K R X H M U X 1 2 3 B 2 4 0 7 < M B 2 4 0 8 = M B 2 4 0 9 -1 2 H 1 2 2 (2 4 0 7 ) B M -L M L x B 2 5 0 7 L im it v a lu e m o n ito r 2 [2 2 .6 ] 3 E d it io n 2 0 .1 1 .0 0 S h e e t 1 0 4 5 6 E B 2 4 1 0 L S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e A n a lo g in p u ts /o u tp u ts , lim it v a lu e m o n ito r s 1 a n d 2 1 > M O u tp u t G W M 2 L im it v a lu e m o n ito r 1 [1 3 a .5 , 2 2 .6 ] 3 2 X L A d a p ta tio n d 4 1 1 d 4 0 7 H In te r v a l lim it L D d ) L im it v a lu e m o n ito r 2 2 1 H 1 1 4 (2 4 0 3 ) B 2 -1 H 1 1 7 H 1 1 5 (3 1 1 ) . K R B 2 4 1 1 M -L F C T e r m in a l 9 8 T e r m in a l 9 9 A d a p ta tio n 1 2 B 2 4 0 6 M U X 1 1 .0 T A = 2 m s d 4 0 6 H In te r v a l lim it L . A n a lo g in p u t 5 T e n s io n th r e s h o ld [2 1 .1 ] 0 s ig n a l fo r : -1 H 1 0 0 th e d a n c e r r o ll ) [1 3 .3 ] In p u t v a lu e G W M S m o o th in g M U X A d a p ta tio n H 0 9 9 H 0 9 8 (3 1 0 ) K R c ) L im it v a lu e m o n ito r 1 A d a p ta tio n H 1 0 7 (3 0 7 ) K R O ffs e t A c tu a l d ia m e te r [9 a .8 ] K R 0 3 2 2 H 1 0 9 0 .0 d 3 2 4 ( P r e s s u r e a c t. v a lu e fr o m 1 T A = 2 m s d 3 2 3 0 .0 - 1 A n a lo g in p u t 4 K R 0 3 1 0 + T e r m in a l 9 6 T e r m in a l 9 9 In p u t v a lu e G W M A n a lo g o u tp u t 2 7 8 F 1 2 3 4 5 6 7 8 A A H 0 6 9 (6 8 ) F ix e d v a lu e B 0 .0 K R 0 0 6 8 H 0 6 8 A S e tp o in t, lo c a l m o d e [5 .6 ] V e lo c ity s e tp o in t [5 .1 ] H 0 7 5 (H 0 7 4 ) K R F ix e d v a lu e H 0 7 4 0 .0 K R 0 0 7 4 K R B B C W e b v e lo c it y c o m p e n s a tio n [5 .1 ] E x te r n a l d v /d t [9 b .1 ] H 0 7 1 (7 0 ) F ix e d v a lu e C 0 .0 K R 0 0 7 0 H 0 7 0 H 0 7 7 (7 6 ) K R F ix e d v a lu e D H 0 7 6 0 .0 a lte r n a tiv e . d v /d t [5 .5 ] A d a p ta tio n d v /d t 1 ,0 K R 0 0 7 6 C K R K R 0 1 4 0 H 1 4 0 D D E S u p p le m e n ta r y v e lo c ity s e tp o in t [5 .1 ] W e b w id th H 0 7 9 (7 8 ) H 0 7 3 (7 2 ) F ix e d v a lu e 0 .0 K R 0 0 7 2 H 0 7 2 [9 b .1 ] F ix e d v a lu e K R H 0 7 8 1 .0 K R 0 0 7 8 K R E E F R a t io , G e a rb o x s ta g e 2 F r ic tio n to r q u e a d a p ta tio n G e a r b o x s ta g e 2 [ 9 b .2 ] [5 .6 ] H 2 2 9 (1 2 8 ) H 1 3 8 (1 2 7 ) F ix e d v a lu e 1 .0 K R 0 1 2 7 H 1 2 7 F ix e d v a lu e K R 1 .0 H 1 2 8 K R 0 1 2 8 K R F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e In p u ts fo r s e tp o in ts 1 2 3 E d it io n 2 3 .1 0 .0 0 S h e e t 1 1 4 5 6 7 8 1 2 3 4 5 6 7 8 A A T e n s io n s e tp o in t [7 .1 ] H 0 8 1 (8 0 ) F ix e d v a lu e H 0 8 0 0 .0 K R 0 0 8 0 A D ia m e te r s e t tin g v a lu e [9 a .4 ] H 0 8 9 (8 8 ) K R F ix e d v a lu e 0 .1 H 0 8 8 K R 0 0 8 8 H 2 2 2 K R 0 2 2 2 K R B C o r e d ia m e te r 0 .2 [9 a .3 ] B B S u p p le m e n ta r y te n s io n s e tp o in t [8 .1 ] H 0 8 3 (8 2 ) C F ix e d v a lu e 0 .0 H 0 8 2 K R 0 0 8 2 K R M a te r ia l d e n s ity [9 b .3 ] C F ix e d v a lu e D T e n s io n a c tu a l v a lu e F ix e d v a lu e 0 .0 H 2 2 4 (2 7 9 ) H 2 7 9 K R 0 2 7 9 C K R [7 .1 ] H 0 8 5 (3 2 2 ) A n a lo g in p u t 3 s m o o th e d , T e r m .9 4 /9 9 D 1 .0 K R 0 3 2 2 H 0 8 4 K R e x t. s ta tu s w o r d [2 2 .1 ] K R 0 0 8 4 S ta tu s w o r d 1 fr o m C U [3 .8 ] E F ix e d s ta tu s w o r d M a x im u m te n s io n r e d u c tio n [7 .1 ] H 4 9 9 (4 5 4 9 ) K 4 5 4 9 D K K 4 4 9 8 H 0 8 7 (8 6 ) F ix e d v a lu e 0 .0 K R 0 0 8 6 H 0 8 6 K R E X S e tp o in t, p o s it io n in g F F ix e d v a lu e H 0 9 0 0 .0 H 0 9 1 (9 0 ) K R 0 0 9 0 K R X E 2 3 H 1 6 3 0 S e le c t io n , p o s itio n in g s e tp o in t L e n g t h s e tp o in t [1 3 .7 ] H 2 6 2 (4 0 0 ) F ix e d v a lu e 2 .0 K R 0 4 0 0 H 4 0 0 S e tp o in t, p o s it io n in g [5 .6 ] K R F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e In p u ts fo r s e tp o in ts 1 2 3 E d it io n 2 0 .1 0 .0 0 S h e e t 1 2 4 5 6 7 8 1 2 3 4 S p e e d a c tu a l v a lu e s e n s in g 5 6 S p e e d a c tu a l v a lu e A 7 d 3 0 7 H 0 9 2 (5 5 0 ) K R A 2 0 m s 4 0 9 6 H 2 5 1 R a t e d p u ls e n u m b e r 1 0 2 4 H 2 1 2 P u ls e n u m b e r A c tu a l v a lu e W 2 fr o m C U [3 .8 , 1 5 a .6 ] n _ a c t fro m B P u ls e e n c o d e r 1 B K R 0 2 2 0 1 5 0 0 H 2 1 4 7 F C 2 H 2 1 7 P o s itio n a c tu a l v a lu e fr o m T 4 0 0 S p e s m o [5 .4 1 0 .1 K R 0 3 0 7 H 1 6 5 S m o o n th in g , s p e e d a c tu a l v a lu e K R 0 2 1 9 T 4 0 0 e d a c tu a l v a lu e , o n th e d , 6 .3 , 6 a .4 , 8 .1 , 9 a .1 , , 2 0 .1 ] H 2 1 8 7 F 0 2 M o d e H 2 1 3 6 0 0 P u ls e n u m b e r T e r m in a l 6 2 -6 6 T e r m in a l 8 6 -8 8 M o d e N o P a H 2 e ff te ra 1 5 e c A V e lo c ity fr o m th e d ig ita l w e b ta c h o m e te r K R 0 2 2 8 P u ls e e n c o d e r 2 R a te d s p e e d C C K R 0 5 5 0 8 K R 0 2 2 9 : m e te r c h a n g e s fro m H 2 1 2 to a n d H 2 1 7 , H 2 1 8 o n ly b e c o m e tiv e a fte r p o w e r -o ff/-o n ! H 2 1 5 R a te d s p e e d 1 0 0 0 R a te d p u ls e n u m b e r B P o s itio n a c t u a l v a lu e fr o m th e d ig ita l w e b ta c h o m e te r H 2 5 2 1 C W e b le n g th - a n d b r a k in g d is ta n c e c o m p u te r , le n g th s to p In p u t fo r s e tp o in t L e n g th c o m p u te r D In p u t. w e b le n g th m e a s u r e d v a lu e In p u t e x t. w e b v e lo c ity a c t u a l v a lu e d 3 2 7 K R H 0 9 4 (4 0 2 ) F ix e d v a lu e 0 .0 K R 0 4 0 2 H 4 0 2 d 3 0 9 H 2 4 9 (2 2 9 ) K R 0 3 2 7 K R e x t e r n a l w e b v e lo c ity a c tu a l v a lu e [9 a .1 ] K R 0 3 0 9 G e a r r a tio , 1 .0 m e a s u r e r o ll D A c t u a l w e b le n g th H 2 3 9 H 2 4 0 C ir c u m fe r e n c e , 1 .0 m e a s u r e r o ll R e s e t E d 3 4 9 T e n s io n c o n t r o l o n [8 .2 ] H 0 9 3 (4 0 1 ) K R 0 4 0 1 H 4 0 1 0 .0 K R 0 3 4 9 K R V e lo c it y a c t u a l v a lu e ta c h o m e te r [9 a .1 ] 0 .0 K R 0 0 9 5 H 0 9 5 X L e n g t h s e tp o in t [1 2 .3 ] B 2 5 0 9 M X > = M E [ 5 .1 ] H 0 9 6 (9 5 ) F ix e d v a lu e > 1 L e n g th c o m p u te r S to p [1 7 .5 ] E S e tp o in t A B 2 5 0 3 W e b b r e a k 1 [7 .8 ] N o o p e r a tin g [1 8 .8 ] F D S to p R e s e t le n g th c o m p u te r [1 7 .6 ] In p u t v e lo c ity a c tu a l v a lu e ta c h o m e te r F ix e d v a lu e H 5 4 1 1 0 0 0 .0 R a te d le n g th V e lo c ity s e tp o in t < 0 .0 4 K R R a te d v e lo c ity 0 .0 [m /m in ] S > 1 R L e n g th s to p [1 0 .4 ] H 1 2 4 V e lo c it y s e t p o in t [5 .8 ] P r e s s u r e a c tu a l v a lu e fr o m F R a m p -d o w n t im e d a n c e r [8 .4 ] R o u n d in g -o ff tim e H 0 9 7 (3 2 4 ) A n a lo g in p u t 5 T e r m . 9 6 /9 9 [1 0 .4 ] K R 0 3 2 4 A d a p t. b r e a k . d is ta n c e K R 6 0 [s ] H 2 4 1 6 [s ] H 2 4 2 1 .0 K R 0 3 5 0 B r e a k . d is t .c o m p u te r d 3 5 0 H 2 4 4 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e In p u ts fo r s e tp o in ts , in c r e m e n ta l e n c o d e r , le n g th c o m p u te r 1 2 3 A c tu a l b r a k in g d is ta n c e 4 E d it io n 0 6 .0 3 .0 1 S h e e t 1 3 5 6 7 8 F 1 2 3 4 5 6 7 8 A A A D ig ita l o u tp u ts o n th e T 4 0 0 D ig ita l in p u ts o n th e T 4 0 0 B B B D ig it a l o u tp u t 1 1 H a r d w a re a d d r e s s C In v e r t_ m a s k 1 6 # 0 = 1 H 2 9 5 [1 7 .7 ] 2 B 2 0 0 4 D ig it a l in p u t 2 te rm . 5 4 [1 7 .7 ] 3 B 2 0 0 5 D ig it a l in p u t 3 te rm . 5 5 [1 7 .7 ] B 2 0 0 6 D ig it a l in p u t 4 te rm . 5 6 [1 7 .7 ] B 2 0 0 7 D ig it a l in p u t 5 te r m . 5 7 [1 7 .7 ] D ig it a l o u tp u t 3 B 2 0 0 8 D ig it a l in p u t 6 te rm . 5 8 [1 7 .7 ] 7 B 2 0 0 9 D ig it a l in p u t 7 te rm . 5 9 [1 7 .7 ] B 2 5 0 3 H 5 2 3 (2 5 0 3 ) B 8 B 2 0 1 0 D ig it a l in p u t 8 te rm . 6 0 [1 7 .7 ] B 2 5 0 4 D ig it a l o u tp u t 4 H 5 2 4 (2 5 0 4 ) B 4 6 0 0 S e le c tio n B 2 5 2 8 /H 5 2 2 S e le c tio n B 2 5 2 9 /H 5 2 3 D S e le c tio n B 2 5 3 0 /H 5 2 4 0 0 H 5 3 7 9 B 2 5 2 7 D ig it a l in p u t 9 H 5 3 8 1 0 B 2 5 2 8 D ig it a l in p u t 1 0 t e r m . 4 7 H 5 3 9 1 1 B 2 5 2 9 1 2 B 2 5 3 0 D ig it a l in p u t 1 1 t e r m . 4 8 D ig it a l in p u t 1 2 t e r m . 4 9 H 5 4 0 E A d d itio n a l d ig ita l in p u ts B 2 5 0 2 D ig it a l o u tp u t 2 H 5 2 2 (2 5 0 2 ) B te rm . 5 3 5 S e le c tio n B 2 5 2 7 /H 5 2 1 H 5 2 1 (2 5 0 1 ) B D ig it a l in p u t 1 # D B 2 5 0 1 B 2 0 0 3 C [7 .8 ] W e b b r e a k [6 .8 ] S t a n d s till [8 .2 ] T e n s io n c o n tr o l o n te rm . 4 6 S ta tu s w o r d 1 .2 fr o m C U [1 5 a .3 ] C U in o p e r a t io n 1 3 B 2 0 1 3 D ig it a l in p u t 1 3 t e r m . 8 4 1 4 B 2 0 1 4 D ig it a l in p u t 1 4 t e r m . 6 5 [6 .8 ] n * = 0 [1 0 .4 ] L im . v a l. m o n it. 1 T e r m in a l 4 6 S ta tu s w o r d 2 .9 T e r m in a l 4 7 S ta tu s w o r d 2 .1 2 B 2 1 1 4 S e le c tio n B 2 5 2 8 /H 5 2 2 H 5 3 8 to C B 1 C S e le c tio n B 2 5 2 9 /H 5 2 3 1 H 5 3 9 T e r m in a l 4 8 S ta tu s w o r d 2 .1 0 to C B S e le c tio n B 2 5 3 0 /H 5 2 4 T e r m in a l 4 9 S ta tu s w o r d 1 .2 to C B a n d P T P D ig it a l o u tp u t 5 H 5 2 5 (2 5 0 5 ) B B 2 5 0 5 S e le c tio n B 2 5 2 7 /H 5 2 1 1 H 5 3 7 to C B H 5 4 0 1 T e r m in a l 5 2 S ta tu s w o r d 2 .8 to C B D D ig it a l o u tp u t 6 H 5 2 6 (2 1 1 4 ) B T e r m in a l 5 1 S ta tu s w o r d 2 .1 3 P 2 4 e x te rn a l T e r m in a l 4 5 M 2 4 e x te rn a l T e r m in a l 5 0 to C B E E F F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e D ig ita l in p u ts / o u tp u ts 1 2 3 E d it io n 2 0 .1 0 .0 0 S h e e t 1 3 a 4 5 6 7 8 1 2 3 4 5 6 7 8 S e r ia l in te r fa c e 2 fo r th e p e e r -to -p e e r p r o to c o l (te r m in a l 7 2 -7 5 ) A A A C o n v e r s io n R -> N 2 K 4 3 3 5 H 0 1 6 (3 1 0 ) B [9 a .8 ] A c tu a l d ia m e te r (R ) K R 0 3 1 0 d 3 1 0 K R K 4 9 7 0 H 0 1 7 (3 4 4 ) [5 .8 ] V e lo c ity s e tp o in t (R ) B K R 0 0 0 0 c o n s ta n t o u tp u t 0 .0 K R 0 0 0 0 K K K 4 9 7 3 B T x - W o rd 4 K l. 7 5 W o rd 5 H 9 7 3 (4 9 7 3 ) K R K l. 7 4 W o rd 3 K K 4 9 7 2 S e n d e r T x + W o rd 2 H 9 7 2 (4 9 7 2 ) K R H 0 6 5 (0 ) C W o rd 1 H 9 7 0 (4 9 7 0 ) K 4 9 7 1 H 0 6 4 (0 ) c o n s ta n t o u tp u t 0 .0 K H 9 7 1 (4 9 7 1 ) K R K R 0 3 4 4 S e n d d a ta H 0 1 5 (4 3 3 5 ) [2 .5 ] S ta tu s w o r d 1 P T P K S e ttin g s fo r th e p e e r -to -p e e r p r o to c o l H 2 8 9 C D 0 E n a b le p e e r -to - p e e r c o m m u n ic a tio n s C H 2 4 5 1 9 2 0 0 B a u d r a te H 2 4 6 1 0 s M o n ito r in g t im e , t e le g r a m H 2 4 7 9 .9 2 s S e tt in g v a lu e d 2 4 8 fa ilu r e S ta tu s d is p la y D D N o te : C h a n g e s to H 2 4 5 , H 2 8 9 o n ly b e c o m e e ffe c tiv e a fte r p o w e r -d o w n /-u p ! E d 0 1 8 R e c ie v e d a ta K l. 7 2 E F C o n t r o l w o r d P T P [2 2 a .2 ] B 2 6 4 0 W o rd 1 R e c ie v e r C o n v e r s io n N 2 -> R B 2 6 5 5 H 9 7 4 (4 9 7 4 ) W o rd 2 R x + K 4 9 7 4 K R 0 0 1 8 K R K 4 9 7 5 W o rd 4 K l. 7 3 K S e tp o in t W 2 P tP [2 .5 ] E H 9 7 4 (4 9 7 5 ) W o rd 3 R x - d 0 1 9 K R 0 0 1 9 S e t p o in t W 3 P t P [2 .5 ] H 9 7 6 (4 9 7 6 ) K 4 9 7 6 W o rd 5 K R K R 0 0 6 6 S e tp o in t W 4 P tP [2 .5 ] K R 0 0 6 7 S e t p o in t W 5 P t P [2 .5 ] H 9 7 7 (4 9 7 7 ) K 4 9 7 7 K d 0 6 6 F F d 0 6 7 E d it io n 2 0 .1 1 .0 0 S h e e t 1 4 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P e e r -to -p e e r - In te r fa c e 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 A A A S e r ia l in te r fa c e 1 fo r U S S _ S la v e P r o to c o l (T e r m in a l 7 0 -7 1 ) B B B U S S _ S la v e C F ix e d s e ttin g s : R e c e iv e r C T e rm . 7 1 R x + B a u d ra te D T r a n s m ite r S t a t io n a d d r e s s 9 6 0 0 T x + 0 M o n ito r in g t im e C T e rm . 7 0 3 8 4 0 0 0 m s N u m b e r o f p ro c e s s w o rd s P K W -p r o c e s s in g 2 1 D D E S e ttin g s fo r U S S _ S la v e P r o to c o l: E F H 6 0 0 H 6 0 1 1 S 1 /8 0 o n T 4 0 0 E n a b le U S S _ S la v e E c o m m u n ic a tio n U S S d a ta tr a n s fe r lin e O F F F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e U S S _ S la v e - In te r fa c e 1 2 3 E d it io n 2 0 .1 0 .0 0 S h e e t 1 4 a 4 5 6 7 8 1 2 3 4 5 6 7 8 A P R O F IB U S e n a b le A 0 C o m m a n d to C B r e -c o n fig . (o n ly fo r S R T 4 0 0 ) C B s ta tio n a d d r e s s (o n ly fo r S R T 4 0 0 ) P P O t y p e (P R O F IB U S ) B B H 2 8 8 1 A H 6 0 2 3 H 6 0 3 5 H 6 0 4 M o n it o r in g tim e 2 0 0 0 0 m s H 4 9 5 S e ttin g v a lu e t 1 9 9 2 0 m s H 4 9 6 S ta tu s d is p la y B d 4 9 7 C C C d 4 5 0 R e c ie v e d a ta D W o rd 1 B 2 6 0 0 B 2 6 1 5 C o n tro l w o rd 1 fro m C B [2 .3 , 2 2 a .3 ] W o rd 2 D H 9 1 0 (4 9 1 0 ) K R 0 4 5 0 K H 9 1 1 (4 9 1 1 ) B 2 6 2 0 B 2 6 3 5 C o n tro l w o rd 2 fro m C B [2 .3 , 2 2 a .7 ] K 4 9 1 1 K R 0 4 5 1 K K H 9 1 3 (4 9 1 3 ) W o rd 6 K K 4 9 1 3 W o rd 7 S e tp o in t W 2 v o n C B [2 .3 ] S e tp o in t W 3 v o n C B [2 .3 ] H 9 1 2 (4 9 1 2 ) K 4 9 1 2 W o rd 5 E C o n v e r s io n N 2 -> R K 4 9 1 0 W o rd 3 W o rd 4 d 4 5 1 K R 0 4 5 2 S e tp o in t W 5 v o n C B [2 .3 ] K R 0 4 5 3 S e tp o in t W 6 v o n C B [2 .3 , 2 4 .1 ] K R 0 4 5 4 S e tp o in t W 7 v o n C B [2 .3 ] K R 0 4 5 5 S e tp o in t W 8 v o n C B [2 .3 ] K R 0 4 5 6 S e tp o in t W 9 v o n C B [2 .3 ] D H 9 1 4 (4 9 1 4 ) K K 4 9 1 4 W o rd 8 H 9 1 5 (4 9 1 5 ) W o rd 9 K K 4 9 1 5 W o rd 1 0 H 9 1 6 (4 9 1 6 ) K 4 9 1 6 E K H 9 1 7 (4 9 1 7 ) F K 4 9 1 7 K R 0 4 5 7 K d 4 5 2 b is S e tp o in t W 1 0 v o n C B E [2 .3 ] d 4 5 7 F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P R O F IB U S D P - In te r fa c e , R e c ie v e 1 2 3 E d it io n 2 0 .1 1 .0 0 S h e e t 1 5 4 5 6 7 8 1 2 3 4 5 6 7 8 A A P R O F IB U S e n a b le 0 C o m m a n d to C B r e -c o n fig . (o n ly fo r S R T 4 0 0 ) C B s ta tio n a d d r e s s (o n ly fo r S R T 4 0 0 ) P P O t y p e (P R O F IB U S ) B B A H 2 8 8 1 H 6 0 2 3 H 6 0 3 5 H 6 0 4 M o n it o r in g tim e 2 0 0 0 0 m s H 4 9 5 S e ttin g v a lu e t 1 9 9 2 0 m s H 4 9 6 S ta tu s d is p la y B d 4 9 7 C C C C o n v e r s io n R -> N 2 [2 2 .7 ] S ta tu s w o r d 1 fr o m D d 3 3 5 T 4 0 0 H 4 4 4 (4 3 3 5 ) K 4 3 3 5 H 4 4 0 (3 1 0 ) [9 a .8 ] A c tu a l d ia m e te r (R ) d 3 1 0 K R 0 3 1 0 K 4 9 2 0 K R H 4 4 1 (0 ) C o n s ta n t o u tp u t 0 .0 K R 0 0 0 0 K 4 9 2 1 [2 2 .7 ] S ta tu s w o r d 2 fr o m E C o n s ta n t o u tp u t 0 .0 C o n s ta n t o u tp u t 0 .0 E C o n s ta n t o u tp u t 0 .0 F K R 0 0 0 0 K R 0 0 0 0 K R 0 0 0 0 K K R K 4 9 2 6 A c tu a l v a lu e W 2 a t C B W o rd 3 A c tu a l v a lu e W 3 a t C B W o rd 4 S ta tu s w o rd 2 W o rd 5 Is tw e r t W 5 a n C B W o rd 6 A c tu a l v a lu e W 6 a t C B [2 .3 ] a t C B a t C B [2 .3 ] [2 .3 ] [2 .3 ] D [2 .3 ] [2 .3 ] A c tu a l v a lu e W 7 a t C B [2 .3 ] W o rd 8 A c tu a l v a lu e W 8 a t C B [2 .3 ] H 9 2 5 (4 9 2 5 ) W o rd 9 A c tu a l v a lu e W 9 a n C B W o rd 1 0 A c tu a l v a lu e W 1 0 a n C B [2 .3 ] K H 9 2 6 (4 9 2 6 ) K R S ta tu s w o rd 1 W o rd 2 W o rd 7 K 4 9 2 5 K R W o rd 1 K K 4 9 2 4 [2 .3 ] E K H 9 2 7 (4 9 2 7 ) H 4 4 9 (0 ) C o n s ta n t o u tp u t 0 .0 K H 9 2 4 (4 9 2 4 ) H 4 4 8 (0 ) C o n s ta n t o u tp u t 0 .0 K K 4 9 2 3 K R H 4 4 7 (0 ) K R 0 0 0 0 K 4 3 3 6 H 9 2 3 (4 9 2 3 ) H 4 4 6 (0 ) K R 0 0 0 0 H 4 4 5 (4 3 3 6 ) d 3 3 6 K 4 9 2 2 K R H 4 4 3 (0 ) K R 0 0 0 0 T 4 0 0 K H 9 2 2 (4 9 2 2 ) H 4 4 2 (0 ) C o n s ta n t o u tp u t 0 .0 S e n d d a ta K H 9 2 1 (4 9 2 1 ) K R D K H 9 2 0 (4 9 2 0 ) K 4 9 2 7 K R K F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P R O F IB U S D P - In te r fa c e , S e n d 1 2 3 E d it io n 2 0 .1 0 .0 0 S h e e t 1 5 a 4 5 6 7 8 1 2 3 4 5 6 7 8 A A A B B B H 5 1 0 (2 0 0 0 ) B H 5 1 1 (2 0 0 0 ) B C C H 5 1 2 (2 0 0 0 ) B H 5 1 3 (2 0 0 0 ) B D H 5 1 4 (2 0 0 0 ) B H 5 1 5 (2 0 0 0 ) B H 5 1 6 (2 0 0 0 ) B H 5 1 7 (2 0 0 0 ) B D E H 5 1 8 (2 0 0 0 ) B H 5 1 9 (2 5 0 8 ) B H 5 2 0 (2 0 0 0 ) B H 5 3 1 (2 0 0 0 ) B E H 5 3 2 (2 0 0 0 ) B H 5 3 3 (2 0 0 0 ) B F B it N o . P a ra m e te r n a m e B it 0 C o n tr o l w o r d 2 .0 to C U B it 1 C o n tr o l w o r d 2 .1 to C U B it 2 c o n tr o l w o r d 2 .2 to C U B it 3 C o n tr o l w o r d 2 .3 to C U B it 4 C o n tr o l w o r d 2 .4 to C U B it 5 C o n tr o l w o r d 2 .5 to C U B it 6 c o n tr o l w o r d 2 .6 to C U B it 7 C o n tr o l w o r d 2 .7 to C U B it 8 C o n tr o l w o r d 2 .8 to C U B it 9 E n a b le fo r s p e e d c o n tr o lle r B it 1 0 C o n tr o l w o r d 2 .1 0 to C U B it 1 1 C o n tr o l w o r d 2 .1 1 to C U B it 1 2 C o n tr o l w o r d 2 .1 2 to C U B it 1 3 C o n tr o l w o r d 2 .1 3 to C U B it 1 4 C o n tr o l w o r d 2 .1 4 to C U B it 1 5 C o n tr o l w o r d 2 .1 5 to C U [2 2 .6 ] C o n t r o l w o r d 1 a t C U C o n v e r s io n R -> N 2 H 5 0 0 (3 0 3 ) [6 .8 ] S p e e d s e t p o in t ( R ) c o n s ta n t o u tp u t 0 .0 (R ) [6 .8 ] S u p p le m e n ta r y to r q u e s e tp o in t (R ) K R 0 3 0 3 K R H 5 0 7 (0 ) K R 0 0 0 0 K R H 9 4 0 (4 9 4 0 ) H 9 4 1 (4 9 4 1 ) K K 4 9 4 1 H 5 0 1 (5 5 8 ) K R 0 5 5 8 H 9 4 2 (4 9 4 2 ) K 4 9 4 2 K R K H 5 0 2 (5 5 6 ) [6 .5 ] O u tp u t fr o m p o s itiv t o r q u e lim it ( R ) K R 0 5 5 6 K R H 9 4 3 (4 9 4 3 ) K 4 9 4 3 K H 5 0 3 (5 5 7 ) [6 .5 ] O u t p u t n e g . to r q u e lim it (R ) K R 0 5 5 7 [9 b .8 ] V a r ia b le m o m e n t o f in e r t ia (R ) K R 0 3 0 8 K R H 9 4 4 4 (9 4 4 ) K 4 9 4 4 K H 5 0 4 (3 0 8 ) K R H 9 4 5 (4 9 4 5 ) K 4 9 4 5 K H 5 0 5 (0 ) c o n s ta n t o u tp u t 0 .0 (R ) K R 0 0 0 0 c o n s ta n t o u tp u t 0 .0 (R ) K R 0 0 0 0 K R H 9 4 6 (4 9 4 6 ) K K 4 9 4 6 H 5 0 6 (0 ) K R S e n d d a ta K 4 K 4 9 4 0 H 9 4 7 (4 9 4 7 ) C W o rd 1 C o n tro l w o rd 1 a t C U W o rd 2 S e tp o in t W 2 a t C U W o rd 3 S e tp o in t W 3 a t C U W o rd 4 C o n tro l w o rd 2 a t C U W o rd 5 S e tp o in t W 5 a t C U W o rd 6 S e tp o in t W 6 a t C U W o rd 7 S e tp o in t W 7 a t C U W o rd 8 S e tp o in t W 8 a t C U W o rd 9 S e tp o in t W 9 a t C U W o rd 1 0 S e tp o in t W 1 0 a t C U K 4 9 4 7 K D E H 5 3 4 (2 0 0 0 ) B H 5 3 5 (2 0 0 0 ) B F F E d it io n 2 3 .1 0 .0 0 S h e e t 1 5 b S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C U - In te r fa c e , S e n d 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 A A A B B B d 5 4 9 C S ta tu s w o r d 1 .2 fr o m R e c ie v e d a ta C W o rd 1 D C U ) [1 3 a .4 , 1 8 .6 ] B 2 5 0 4 C o n v e r s io n N 2 -> R S ta tu s w o rd 1 fr o m K 4 5 4 9 K 4 9 3 0 W o rd 2 B 2 6 6 0 K 4 5 5 9 W o rd 4 W o rd 5 E C d 5 5 1 H 9 3 0 (4 9 3 0 ) K K R 0 5 5 0 S p e e d a c tu a l v a lu e fr o m K R 0 5 5 1 A c tu a l v a lu e 3 f r o m C U (R ) [1 3 .4 ] H 9 3 1 (4 9 3 1 ) W o rd 3 D C U d 5 5 0 ....... K 4 9 3 1 K C U (R ) B 2 6 7 5 S ta tu s w o r d 2 fro m C U H 9 3 2 (4 9 3 2 ) K 4 9 3 2 K D K R 0 5 5 2 T o r q u e s e tp o in t (R ) [ 6 a .1 ] K R 0 5 5 3 T o r q u e a c t u a l v a lu e (R ) [7 .4 , 2 0 .1 ] K R 0 5 5 4 A c tu a l v a lu e W 7 fr o m C U (R ) K R 0 5 5 5 A c tu a l v a lu e W 8 fr o m C U (R ) H 9 3 3 (4 9 3 3 ) W o rd 6 K 4 9 3 3 W o rd 7 K H 5 3 4 (4 9 3 4 ) W o rd 8 K K 4 9 3 4 H 9 3 5 (4 9 3 5 ) K 4 9 3 5 d 5 5 9 ... K to d 5 5 2 E d 5 5 5 A c tu a l v a lu e W 5 to W 7 f r o m E C U F F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C U - In te r fa c e , R e c ie v e 1 2 3 E d it io n 2 1 .1 1 .0 0 S h e e t 1 5 c 4 5 6 7 8 1 2 3 4 5 6 7 8 A A H 0 2 9 (2 6 2 2 ) B B 2 6 2 2 C o n tro l w o r d 2 .2 fr o m C B M o t. p o t. 2 r a is e [1 9 .2 ] [2 2 a .7 ] H 0 3 3 (2 6 1 5 ) B B 2 6 1 5 C o n tr o l w o r d 1 .1 5 fr o m C B D ia m e te r h o ld [7 .1 , 9 a .1 ] [2 2 a .4 ] H 0 3 7 (2 0 0 0 ) B B 2 0 0 0 A c c e p t s e tp o in t B [5 .1 ] C o n s ta n t d ig ita l o u tp u t 0 H 0 4 2 (2 0 0 0 ) B B 2 0 0 0 A G e a rb o x s ta g e 2 [5 .7 , 9 b .2 ] C o n s ta n t d ig ita l o u tp u t 0 B 2 6 5 5 C o n tr o l w o r d 1 .1 5 fr o m B P T P [2 2 a .5 ] B B C H 0 3 0 (2 6 3 0 ) B B 2 6 3 0 C o n tr o l w o r d 2 .1 0 fr o m C B M o t. p o t. 1 r a is e [1 9 .2 ] C o n tr o l w o r d 2 .9 fr o m [2 2 a .7 ] H 0 3 4 (2 6 2 9 ) B B 2 6 2 9 R a m p -fu n c tio n g e n e r a to r o n T 4 0 0 S to p 1 [5 .1 ] H 0 3 8 (2 6 0 8 ) B B 2 6 0 8 C o n tr o l w o r d 1 .8 fr o m C B [2 2 a .7 ] L o c a l in c h in g fo r w a r d s [ 1 8 .1 ] C B [2 2 a .4 ] H 0 4 3 (2 0 0 0 ) B B 2 0 0 0 W in d e r [5 .1 , 6 .1 , 9 b .4 ] C o n s ta n t d ig ita l o u tp u t 0 B 2 6 4 8 C C o n tr o l w o r d 1 .8 fr o m C P T P [2 2 a .5 ] D D H 0 3 1 (2 6 2 3 ) B E B 2 6 2 3 C o n tr o l w o r d 2 .3 fr o m C o n tr o l w o r d 2 .1 3 fr o m C B [2 2 a .7 ] H 0 3 5 (2 6 3 3 ) B B 2 6 3 3 M o t. p o t. 2 lo w e r [1 9 .2 ] C B W in d fr o m b e lo w [5 .4 , 5 .8 , 6 .1 , 9 b .4 ] H 0 3 9 (2 6 2 7 ) B B 2 6 2 7 [2 2 a .7 ] C o n tr o l w o r d 2 .7 fr o m L o c a l c ra w l [1 8 .1 ] H 0 4 4 (2 0 0 0 ) B B 2 0 0 0 D P o la r it y , s a tu r a t io n s e tp o in t [5 .1 ] C o n s ta n t d ig ita l o u tp u t 0 C B [2 2 a .7 ] E E F H 0 3 2 (2 6 3 1 ) B B 2 6 3 1 C o n tr o l w o r d 2 .1 1 fr o m C B M o t. p o t. 1 lo w e r [1 9 .2 ] B 2 0 0 0 H 0 3 6 (2 0 0 0 ) B A c c e p t s e tp o in t A C o n s ta n t d ig ita l o u tp u t 0 [2 2 a .7 ] [5 .1 ] B 2 6 0 9 C o n tr o l w o r d 1 .9 fr o m H 0 4 0 (2 6 0 9 ) B L o c a l in c h in g b a c k w a r d s [1 8 .1 ] C B [2 2 a .4 ] C o n tr o l w o r d 1 .0 fr o m P T P [2 2 a .5 ] C o n tr o l w o r d 1 .0 fr o m F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e In p u ts fo r c o n tr o l c o m m a n d s 1 2 H 0 4 5 (2 6 0 0 ) B O ff1 /o n = 0 /1 [1 8 .1 ] C B [2 2 a .4 ] B 2 6 4 0 B 2 6 4 9 C o n tr o l w o r d 1 .9 fr o m B 2 6 0 0 P T P [2 2 a .5 F 3 E d it io n 2 3 .1 0 .0 0 S h e e t 1 6 4 5 6 7 8 1 2 C o n tr o l w o r d 1 .4 fr o m 4 R a m p -fu n c tio n g e n e ra to ro n T 4 0 0 in h ib it [5 .1 ] H 0 4 6 (2 6 0 4 ) B B 2 6 0 4 A 3 C B [2 2 a .4 ] B 2 6 0 5 C o n tr o l w o r d 1 .5 fr o m B 2 6 4 4 5 6 7 B 2 0 0 3 R a m p -fu n c tio n g e n e r a to r o n T 4 0 0 s t o p 2 [5 .1 ] H 0 4 9 (2 6 0 5 ) B 8 P T P [2 2 a .5 ] C o n tr o l w o r d 1 .5 fr o m D ig it a l in p u t 2 , t e r m . 5 4 [1 3 a .3 ] P T P [2 2 a .5 ] [2 2 a .4 ] C o n tr o l w o r d 1 .1 1 f r o m H 0 5 1 (2 6 1 3 ) B B 2 6 1 3 C o n tr o l w o r d 1 .1 3 fr o m C B S ta n d s t ill t e n s io n o n [7 .4 , 1 8 .6 ] B 2 6 0 6 C o n tr o l w o r d 1 .6 fr o m [2 2 a .4 ] B 2 6 5 3 H 0 5 0 (2 6 0 6 ) B C B > 1 B 2 0 1 1 B 2 6 1 1 > 1 B 2 0 1 2 [2 1 .8 ] S p lic e e n a b le S e tp o in t e n a b le [5 .1 , 2 2 .3 ] P T P [2 2 a .5 ] C o n tr o l w o r d 1 .6 fr o m B 2 0 0 4 B 2 0 0 4 A T e n s io n c o n tr o lle r o n [5 .2 , 7 .1 , 7 .7 , 8 .1 , 2 1 .1 ] H 0 2 2 (2 0 0 4 ) B B C B [2 2 a .4 ] B 2 6 4 6 C o n tr o l w o r d 1 .1 3 fr o m S ta rt C B [2 2 a .4 ] [1 3 a .3 ] D ig ita l in p u t 2 , te r m . 5 4 B S y s te m [1 8 .6 ] D ig it a l in p u t 1 , te r m . 5 3 [ 1 3 a .3 ] B 2 6 4 5 C o n tr o l w o r d 1 .4 fr o m H 0 2 1 (2 0 0 3 ) B P T P [2 2 a .5 ] H 2 6 0 (2 0 0 0 ) B B 2 0 0 0 C o n tr o l w o r d 2 .7 fr o m C B H 0 2 3 (2 0 0 5 ) B B 2 0 0 5 L e n g th c o m p u te r S to p [1 3 .5 ] In h ib it t e n s io n c o n tr o lle r [8 .1 ] D ig it a l in p u t 3 , te r m . 5 5 [ 1 3 a .3 ] [2 2 a .7 ] C C H 0 1 3 (2 6 3 4 ) B B 2 6 3 4 C o n tr o l w o r d 2 .1 4 fr o m C B T a c h o m e te r [9 a .1 ] H 0 5 2 (2 6 2 6 ) B B 2 6 2 6 [2 2 a .7 ] C o n tr o l w o r d 2 .6 fr o m L o c a l ru n [1 8 .1 ] H 0 4 1 (2 6 0 7 ) B B 2 6 0 7 C B [2 2 a .7 ] C o n tr o l w o r d 2 .7 fr o m C B F a u lt a c k n o w le d g e [2 2 .4 , 2 2 b .2 ] C o n s ta n t d ig ita l o u tp u t 1 D ig it a l in p u t 4 , t e r m . 5 6 [1 3 a .3 ] B 2 0 0 1 [2 2 a .3 ] C o n tr o l w o r d 1 .1 fr o m B 2 6 0 1 C B H 2 8 8 E n a b le P R O F IB U S [2 2 a .3 ] C o n tr o l w o r d 1 .1 fr o m 0 B 2 6 4 1 P T P H 2 8 9 E n a b le P T P N o c o n tro l w o rd fr o m P R O F IB U S E B 2 0 0 7 H 0 4 7 (2 0 0 1 ) B H 1 6 9 (2 0 0 0 ) B B 2 0 0 0 & > 1 0 K n ife in c u ttin g p o s itio n [2 1 .1 ] > 1 H 0 2 6 (2 0 0 8 ) B B 2 0 0 8 H 1 7 0 (2 0 0 0 ) B P a r tn e r d r iv e is in c lo s e d -lo o p t e n s io n c o n t r o l [2 1 .1 ] L o c a l p o s itio n in g [1 8 .1 ] D ig it a l in p u t 6 , t e r m . 5 8 [1 3 a .3 ] E C o n s ta n t d ig ita l o u tp u t 0 H 8 8 8 [2 2 a .5 ] C o n tr o l w o r d 1 .2 fr o m [2 2 a .4 ] C o n tr o l w o r d 1 .2 fr o m E n a b le P R O F IB U S B 2 6 4 2 P T P E n a b le P T P H 2 8 9 0 B 2 6 0 2 C B H 2 8 8 0 In p u t N o O ff3 C o n s ta n t d ig ita l o u tp u t 1 H 0 4 8 (2 0 0 1 ) B B 2 0 0 1 B 2 0 0 9 > 1 H 0 5 3 (2 6 3 2 ) B > 1 B 2 6 3 2 & C o n tr o l w o r d 2 .1 2 fr o m C B R e s e t le n g t h c o m p u te r [1 3 .6 ] H 0 2 7 (2 0 0 9 ) B L o c a l o p e ra to r c o n tro l [ 5 .1 , 6 .1 , 1 8 .1 , 1 8 .6 ] D ig it a l in p u t 7 , t e r m . 5 9 [1 3 a .3 ] [2 2 a .7 ] N o O ff 3 [6 .6 , 6 a .6 , 1 8 .1 , 1 8 .6 , 2 2 .5 ] B 2 0 1 0 [2 1 .8 ] N o fa s t s to p a f te r s p lic e H 0 2 8 (2 0 1 0 ) B L o c a l s to p [1 8 .1 ] D ig it a l in p u t 8 , t e r m . 6 0 [1 3 a .3 ] S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e In p u ts fo r c o n tr o l c o m m a n d s , p r e -a s s ig n e d d ig ita l in p u ts , te r m in a ls 1 D D ig it a l in p u t 5 , t e r m . 5 7 [1 3 a .3 ] N o c o n tro l w o rd fro m P T P F E n te r s u p p l. s e tp o in t [5 .1 ] H 0 2 5 (2 0 0 7 ) B C o n s ta n t d ig ita l o u tp u t 0 N o O ff2 [1 8 .1 , 1 8 .6 , 2 2 .5 ] B 2 0 0 0 H 8 8 7 S e t d ia m e te r [9 a .1 ] [2 2 a .7 ] In p u t N o O ff2 D B 2 0 0 6 H 0 2 4 (2 0 0 6 ) B 2 3 4 E d it io n 2 3 .1 0 .0 0 S h e e t 1 7 5 3 -6 0 5 6 7 8 F 1 2 3 4 5 6 O p e r a tin g m o d e s F a u lt f r o m A > 1 T 4 0 0 N o O ff 2 [1 7 .3 ] X [5 .7 ] L o c a l s to p [1 7 .8 ] & L o c a l o p e r a to r c o n tr o l [1 7 .8 ] C h e c k b a c k s ig n a l, c o n tr o lle r e n a b le b a s e d r iv e S W 1 .2 [1 5 c .3 ] In p u t A lte r n a tiv e o n c o m m a n d d 4 1 8 N o O ff 3 [1 7 .3 ] C o n s ta n t d ig ita l o u tp u t 0 8 C a u tio n : B e fo r e a n e w o p e r a tin g m o d e c a n b e s e le c te d , th e p r e v io u s o n e m u s t b e e x ite d . B a s e d r iv e r e a d y F a u lt, b a s e d r iv e 7 H 1 2 9 (2 0 0 0 ) B B 2 0 0 0 > 1 B 2 5 0 4 0 O ff1 /o n [1 6 .8 ] T S B 2 5 1 0 R L o c a l c r a w l [1 6 .6 ] B A M a in c o n ta c to r O N C o n tr o l w o r d 1 .0 to C U [2 2 .3 ] B > 1 L o c a l c ra w l S R 3 H 2 8 1 L o c a l r u n [1 7 .4 ] S R S ta n d s till [6 .8 ] C h e c k b a c k s ig n a l f. C U S W 1 .5 [2 2 .2 ] & C h e c k b a c k s ig n a l, b a s e d r iv e r e a d y 2 > 1 C h e c k b a c k s ig n a l f. C U S W 1 .4 [2 2 .2 ] A lt e r n a tiv e o n c o m m a n d L o c a l ru n > 1 C 0 & & B 2 5 0 2 C S R L o c a l p o s it io n in g [ 1 7 .8 ] D d 4 2 0 L o c a l p o s itio n in g S > 1 In te r lo c k in g w ith o th e r lo c a l m o d e s > 1 R 6 L o c a l in c h in g fo r w a r d s [ 1 6 .6 ] S ta n s till t e n s io n o n [1 7 .2 ] R R L o c a l in c h in g b a c k w a r d s [ 1 6 .6 ] 0 In c h in g tim e 1 0 0 0 0 m s E S R 4 0 > 1 H 0 1 4 F a u lt, b a s e u n it N o o ff 2 [1 7 .3 ] T T > 1 N o o ff 3 [1 7 .3 ] L o c a l in c h in g b a c k w a rd s S S R F a u lt, b a s e u n it T e n s io n c o n tr o l o n [8 .2 ] L o c a l in c h in g fo rw a rd s > 1 L o c a l o p e r . c o n tr o l [1 7 .8 ] C h e c k b a c k s ig n a l f . C U S W 1 .4 [2 2 .2 ] B 2 5 0 9 D B 2 5 0 8 O p e r a tin g e n a b le [5 .3 , 6 a .2 , 8 .1 , 1 3 .6 , 1 5 b .2 , 2 1 .4 , 2 2 .2 ] > 1 E R S y s te m > 1 S R o p e r a t io n [5 .1 ] S y s te m s ta r t [1 7 .8 ] L o c a l o p e r . c o n tr o l [1 7 .8 ] 0 > 1 F O p e r a tin g m o d e C h e c k b a c k s ig n a l f . C U S W 1 .5 [2 2 .2 ] 1 : if L O C A L o p e r a to r c o n tr o l a n d n o o th e r m o d e h a s b e e n s e le c te d S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P o w e r -o n c o n tr o l (o p e n -lo o p ) 1 & N o o p e r a tin g 5 O ff1 /o n [1 6 .8 ] F S B 2 5 0 3 S > 1 & 2 3 E d it io n 1 5 .0 1 .0 1 S h e e t 1 8 4 5 6 7 8 1 2 3 4 M o t. p o t. 1 o p e r a tin g m o d e 1 = R F G A 0 1 0 6 1 .0 & 7 A H 2 6 8 & d 3 0 5 U p p e r lim it = 1 .2 L o w e r lim it = -1 .2 - 1 B it / -0 .0 0 0 0 1 % T 4 s 0 R a m p -u p /r 2 5 0 F a s t ra te o f c 1 0 0 0 N o rm a m p -d o w n 0 0 m s H h a n g e H 0 0 m s . ra te o f c h 1 0 0 0 0 m s H 2 6 9 tim e a s R F G 2 6 5 R a m p -d o w n tim e 2 6 6 a n g e > 1 [1 6 .2 ] M o t . p o t. 1 , r a is e [1 6 .2 ] M o t . p o t. 1 , lo w e r M o t o r iz e d p o te n t io m e t e r 1 B R a m p -u p t im e & T T A = 8 m s R a is e 3 0 0 m s C K R 0 3 0 5 S e ttin g v a lu e + 1 B it / 0 .0 0 0 0 1 % B 8 S e tp o in t 0 .0 S e tp o in t fo r R F G o p e r a tio n S A V E S a v e p u ls e T H 2 6 7 5 0 & L o w e r S e t r a m p -fu n c tio n g e n e r a to r O p e r a to r c o n tr o l, m o to r iz e d p o te n tio m e te r s : 1 . M o to r iz e d p o te n tio m e te r , r a is e / lo w e r < 3 0 0 m s : M o to r iz e d p o te n tio m e te r o u tp u t is in c r e m e n te d o r d e c r e m e n te d b y 0 .0 0 0 0 1 % (1 B it) 2 . M o to r iz e d p o te n tio m e te r r a is e / lo w e r b e tw e e n 3 0 0 m s a n d 4 s : M o to r iz e d p o te n tio m e te r o u tp u t g o e s to H 2 6 5 o r H 2 6 3 , u p o r d o w n . 3 . M o to r iz e d p o te n tio m e te r , r a is e / lo w e r > 4 s : M o to r iz e d p o te n tio m e te r o u tp u t g o e s to H 2 6 6 o r H 2 6 4 , u p o r d o w n . M o to r iz e d p o te n tio m e te r 1 a s r a m p -fu n c tio n g e n e r a to r : F o r H 2 6 7 = 1 , m o to r iz e d p o te n tio m e te r 1 a c ts a s r a m p fu n c tio n g e n e r a to r . T h e r a m p -u p /r a m p -d o w n tim e is s e t a t H 2 6 9 . T h e s e tp o in t is e n te r e d a t H 2 6 8 . D D C 1 0 T S A V E S a v e p u ls e U p p e r lim it = 1 .2 d 3 0 6 L o w e r lim it = -1 .2 S e ttin g v a lu e K R 0 3 0 6 M o t o r iz e d p o te n t io m e t e r 2 + 1 B it / 0 .0 0 0 0 1 % -1 B it / -0 .0 0 0 0 1 % R a m p -u p t im e E 2 5 0 F a s t ra te o f c h a n g e N o rm a l ra te o f c h a n g e 1 0 0 0 4 T [1 6 .2 ] M o t . p o t. 2 , lo w e r H 2 6 3 0 0 m s H 2 6 4 R a m p -d o w n tim e E T A = 3 2 m s 0 & R a is e 3 0 0 m s > 1 [1 6 .2 ] M o t . p o t. 2 , h ig h e r s 0 0 m s T 0 & L o w e r S e t r a m p -fu n c tio n g e n e r a to r F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e M o to r iz e d p o te n tio m e te r s 1 a n d 2 F 1 2 3 E d it io n 2 0 .1 1 .0 0 S h e e t 1 9 4 5 6 7 8 1 2 S p e e d a c tu a l v a lu e s m o o th e d [1 3 .6 ] 3 K R 0 3 0 7 4 X A 1 .2 -1 .2 H 1 2 5 d 3 3 0 Q M L U H 1 2 6 Q L L L 6 X 1 .2 H 0 0 3 L U -1 .2 H 0 0 4 L L 7 O v e r s p e e d , p o s it iv e B it 0 O v e r s p e e d , n e g a tiv e B it 1 O v e r to r q u e , p o s itiv e B it 2 O v e r to r q u e , n e g a tiv e B it 3 T o r q u e a c tu a l v a lu e [7 .4 ] T o r q u e a c tu a l v a lu e [3 .8 , 1 5 c .6 ] B 5 D r iv e b lo c k e d Q M fro m T 4 0 0 d 3 3 7 # A la r m s f r o m H 0 1 1 1 6 # 0 B it 5 A la r m m a s k & T 4 0 0 [2 2 .5 ] K 4 3 3 7 A la r m s f r o m T 4 0 0 A 0 9 7 to A 1 0 4 B B it 6 R e c e iv e C B fa u lte d Q L A A la r m B it 4 R e c e iv e C U fa u lte d 8 R e c e iv e P T P fa u lte d B it 7 R e c e iv e C U fa u lte d 1 2 0 0 0 0 m s C H 0 0 5 D e la y to e n a b le C U - c o u p lin g R e c e iv e b lo c k s ta tu s R e c e iv e C B fa u lte d 0 & T 1 9 .9 2 s & 2 0 s R e c e iv e P T P fa u lte d S e ttin g v a lu e B it 0 H 4 9 5 B it 1 M o n it o r in g t im e & R e c e iv e b lo c k s ta tu s H 4 9 6 1 0 s 9 .9 2 s K 4 2 4 8 H 2 4 7 F a u lts fr o m 1 6 # 0 B it 5 d 2 4 8 d 4 9 7 # B it 4 S e ttin g v a lu e T 4 0 0 d 3 3 8 B it 3 M o n it o r in g t im e K 4 4 9 7 F a u lt fr o m B it 2 H 2 4 6 H 0 1 2 F a u lt m a s k C T 4 0 0 [2 2 .3 , 2 2 .5 ] & K 4 3 3 8 F a u lts fr o m T 4 0 0 F 1 1 6 to F 1 2 3 B it 6 B it 7 D D X 0 .0 Q U L Q L 0 .0 2 H 0 0 7 S t a l l p r o t e c t i o n n is t 0 .0 1 M H Y X 0 .0 E 0 .1 S t a l l p r o t e c t i o n i is t H 0 0 8 0 .0 2 F a T h a p e .g a s M Q M L > 1 A s O v O v O v O v D r R e R e R e X S ta ll p r o te c tio n c o n t r o l d if fe r e n c e 0 .5 0 .0 M H 0 0 9 L 0 .0 1 S ig n a l a c t = 1 if : n < H 0 0 7 a n d i > H 0 0 8 a n d D n > H 0 0 9 Q M a n d u lts a p r ia te r H 0 1 lt. a la r n d b it 2 th T h e m o n ito r in g a c tiv a te d a fte r F a u lts in c o m m fo r r e c e iv in g th te le g r a m s fr o m 0 H 0 1 0 5 0 0 m s d e la y t im e , a n ti-s ta ll p r o te c tio n H Y S p e e d s e tp o in t [6 .8 ] T u lts e fa p ro . fo fa u H Y F s ig n e rs p e rs p e rto e rto iv e b c e iv c e iv c e iv m e n e e d e e d rq u e rq u e lo c k e fro e fro e fro t, , p , n , p , n e d m m m m s a la p o e s fro m th e r m s s ig n s itio n o f a m e a s 0 o f c o m m a tim e , w u n ic a tio e fir s t v a th e p a rt m e s s a g e s o s itiv e e g a tiv e o s itiv e e g a tiv e (s ta lle d ) C U fa u lte C B fa u lte P T P fa u lt d d T 4 0 a le d th e m F 7 h 0 : fr o m th e T 4 0 0 , a r e c o d e d b itw is e ; a 0 in th e a s k in h ib its th e p a r tic u la r m e s s a g e /s ig n a l. e x (b it 3 = 0 ) o v e r c u r r e n t, p o s itio n is s u p p r e s s e d u n ic a tio n s h ic h c a n b e n s to C B a n lid te le g r a m ic u la r in te r f /o p e r A A A A A e d a to 0 9 0 9 0 9 1 0 1 0 A 1 0 A 1 0 A 1 0 to C U s e le c d P T P o r th a c e w r p a n F 1 8 F 1 9 F 1 0 F 1 1 F 1 2 F 1 3 F 1 4 F 1 7 , C B a te d u s in te r f e tim e a s o v e n d th e P T in g H 0 0 5 , a c e a re o n in te r v a l b r, re fe r to 2 e is o n ly H 2 4 6 . d , if th e tim e o s e q u e n t a n d H 2 4 6 -2 4 7 . e l d is p la y : 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 E d it io n 1 5 .0 1 .0 1 S h e e t 2 0 3 4 5 6 E F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e M o n ito r in g d r iv e , fa u lt a n d a la r m m e s s a g e 1 P in te r fa c H 4 9 5 a n d ly s ig n a le e tw e e n tw H 4 9 5 -4 9 6 7 8 1 2 A 3 L o a d in g p o s itio n 4 6 2 S w iv e lin g m e c h a n is m 7 C h a n g e p o s itio n 8 A 1 S w iv e lin g m e c h a n is m 1 B 5 G lu e r o ll G lu e r o ll 2 S p lic in g k n ife S p lic in g k n ife T e n s io n m e a s u r e m e n t T e n s io n m e a s u r e m e n t T a c h o m e te r C 0 T e n s io n th r e s h o ld [1 0 .4 ] B T a c h o m e te r C T 5 s S p lic e e n a b le [1 7 .6 ] > 1 D P a r t n e r d r iv e is in c lo s e d - lo o p te n s io n c o n tr o l [1 7 .5 ] 0 & & S D R T 6 4 m s O p e r a tin g e n a b le [1 8 .8 ] E 1 B 2 5 0 8 E H 1 4 9 = 0 [6 .2 ] K n if e in t h e c u t tin g p o s . [1 7 .5 ] R e v e r s e w in d in g [6 .4 ] 1 0 0 0 0 m s 3 s H 1 4 8 T im e fo r r e v e r s e w in d in g a ft e r t h e s p lic e T T e n s io n c o n tr o lle r o n [1 7 .8 ] & 0 1 2 0 s 1 1 s N o fa s t s to p a fte r s p lic e [1 7 .2 ] F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e S p lic e c o n tr o l (o p e n -lo o p ) 1 2 3 E d it io n 2 3 .1 0 .0 0 S h e e t 2 1 4 5 6 7 8 1 2 3 4 B 2 5 1 0 A B 2 5 0 8 [1 8 .7 ] M a in c o n ta c to r o n [1 7 .4 ] N o O ff 2 [1 7 .4 ] N o O ff 3 [1 8 .8 ] E n a b le in v e r t e r E n a b le r a m p -fc t. g e n . S ta r t , r a m p -fc t .g e n . [1 7 .4 ] S e t p o in t e n a b le [1 7 .6 ] F a u lt a c k n o w le d g e In c h in g 1 In c h in g 2 C o n tro l fro m A G E n a b le p o s . d ir e c tio n E n a b le n e g .. d ir e c tio n 1 1 0 0 1 1 1 0 1 F a u lt T 4 0 0 [ 2 0 .8 ] B 5 0 F a u lt, e x te r n a l 1 6 7 8 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 A C o n tr o l w o r d 1 to C U [3 .1 , 1 5 b .7 ] 0 1 2 3 4 5 6 B R e a d y to p o w e r-u p R e a d y O p e r a tio n e n a b le d (r u n ) F a u lt N o O ff3 C C 1 - - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 2 3 4 - e x t. s ta tu s w o r d [1 2 ,7 ] 1 1 D 1 1 1 1 1 5 - N o O ff2 6 7 - P o w e r -o n in h ib it 8 - A la r m 9 - S e tp .-a c t. v a lu e d if f. w 0 - C o n tro l re q u e s te d 1 - f/n lim it r e a c h e d 2 - F a u lt, u n d e r v o lta g e 3 - M a in c o n ta c to r e n e r g 4 - R a m p -fu n c tio n g e n e r 5 - C lo c k w is e r o ta tin g fie 6 - K in e tic b u ffe r in g a c tiv e (o n ly C U V C , C U 2 ) ith in th e to l. b a n d w . iz e d a to r a c tiv e ld d 3 3 5 K 4 3 3 5 0 1 2 S ta tu s w o rd 1 fro m [1 4 .1 , 1 5 a .4 ] 3 4 5 6 D T 4 0 0 [2 0 .8 ] F a u lt, T 4 0 0 [2 0 .8 ] A la r m , T 4 0 0 T e n s io n c o n tr o l a t it s lim it E E L o L o c B 2 5 0 5 B 2 5 0 1 S p B 2 5 0 6 F B 2 5 0 7 S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C o n tr o l- a n d s ta tu s w o r d s to /fr o m C U , s ta tu s w o r d s fr o m 1 2 3 L o c a l o p e S y s te m s ta rt L o c a l s to p N o O ff 3 L o c a l ru n L o c a l c ra w l c a l in c h in g fo r w a r d s a l in c h in g b a c k w a r d s L o c a l p o s itio n in g S p e e d s e tp o in t is 0 W e b b re a k T e n s io n c o n tr o l is o n S y s te m o p e r a tio n e e d a c tu a l v a lu e is 0 L im it v a lu e m o n it o r L im it v a lu e m o n it o r r a to r c o n tr o l s e le c te d - 1 - 2 - 3 - 4 - 5 - 6 d 3 3 6 - 7 - 8 K 4 3 3 6 - 9 - 1 0 - 1 1 - 1 2 - 1 3 1- 1 4 2- 1 5 - 1 6 S ta tu s w o rd 2 fro m [1 4 .1 , 1 5 a .4 ] T 4 0 0 F E d it io n 1 5 .0 1 .0 1 S h e e t 2 2 T 4 0 0 4 5 6 7 8 1 2 3 1 2 3 4 5 6 7 8 9 1 0 1 1 - A C o n tro l w o rd 1 fro m C B < 1 > B 1 2 1 3 1 4 1 5 1 6 - - M a in c o n ta c to r o n N o O ff 2 N o O ff 3 In v e r te r e n a b le R a m p -fu n c tio n g e n e r a R a m p -fu n c tio n g e n e r a R a m p -fu n c tio n g e n e r a A c k n o w le d g e f a u lt L o c a l in c h in g fo r w a r d L o c a l in c h in g b a c k w a C o n tro l fro m P L C T e n s io n c o n tr o lle r o n T e n s io n c o n tr o lle r in h S ta n d s till te n s io n o n S e t d ia m e te r H o ld d ia m e t e r 4 B 2 6 0 0 B 2 6 0 1 B 2 6 0 2 t o r in h ib it to r s to p t o r s e tp o in t e n a b le s rd s B B 2 6 0 7 B 2 6 0 8 B 2 6 1 0 B 2 6 1 1 ib it B B 2 6 0 4 B 2 6 0 5 B 2 6 1 3 B 2 6 1 4 B 2 6 1 5 B B 5 C o n tr o l w o r d 1 .0 fr o m C B C o n tr o l w o r d 1 .1 fr o m C B C o n tr o l w o r d 1 .2 fr o m C B C o n tr o l w o r d 1 .3 2 6 0 3 C o n tr o l w o r d 1 .4 fr o m C B C o n tr o l w o r d 1 .5 fr o m C B C o n tr o l w o r d 1 .6 2 6 0 6 C o n tr o l w o r d 1 .7 fr o m C B C o n tr o l w o r d 1 .8 fr o m C B C o n tr o l w o r d 1 .9 2 6 0 9 C o n tr o l w o r d 1 .1 0 fr o m C B C o n tr o l w o r d 1 .1 1 fr o m C B 2 6 1 2 C o n tr o l w o r d 1 .1 2 C o n tr o l w o r d 1 .1 3 fr o m C C o n tr o l w o r d 1 .1 4 fr o m C B C o n tr o l w o r d 1 .5 fr o m C B 6 7 P R O F IB U S e n a b le fro m C B fro m C B fro m C B fro m C B < 1 > 1 2 3 4 5 6 7 8 9 1 0 1 1 - D 1 2 1 3 1 4 1 5 1 6 C o n tro l w o rd 1 fro m p e e r-to -p e e r < 2 > 1 2 1 3 1 4 1 5 1 6 F - - - - S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e P r e -a s s ig n m e n t o f c o n tr o l w o r d s fr o m C B 1 2 B 2 6 4 4 B 2 6 4 5 B 2 6 4 7 B 2 6 4 8 B 2 6 5 0 B 2 6 5 1 B 2 6 5 3 B 2 6 5 4 B 2 6 5 5 - - - - - E n t e r s u p p le m e L o c a l p o s itio n in M O P 2 , r a is e M O P 2 , lo w e r L o c a l c o n tro l L o c a l s to p L o c a l ru n L o c a l c ra w l 0 S e t V s e t to s to p M O P 1 , r a is e M O P 1 , lo w e r W e b le n g th r e s W in d in g fr o m b T a c h o m e te r 0 n ta r y s e tp o in t V * g H 4 9 5 1 9 9 2 0 m s H 4 9 6 re fe r to S h e e t 2 a n d 1 5 C o C o C o B 2 C o C o B 2 6 2 0 B 2 6 2 1 B 2 6 2 2 n t n t n t 6 2 n t n t ro ro ro 3 ro ro B 2 6 2 6 C o n tro C o n tro B 2 6 2 7 B 2 6 2 8 B 2 6 2 9 C o n tro C o n tro B 2 6 3 0 B 2 6 3 1 B 2 6 3 3 B 2 6 3 4 B 2 6 3 5 B 2 6 3 2 C o n tro C o n tro C o n tro l w o rd 2 l w o rd 2 l w o rd 2 C o l w o rd 2 l w o rd 2 C o l w o rd 2 l w o rd 2 C o l w o rd 2 l w o rd 2 C o l w o rd 2 l w o rd 2 l w o rd 2 .0 fr o m C B .1 fr o m C B .2 fr o m C B n tr o l w o r d 2 .3 fr o .4 fr o m C B .5 fr o m C B n tr o l w o r d 2 .6 fr o .7 fr o m C B .8 fr o m C B n tr o l w o r d 2 .9 fr o .1 0 fr o m C B .1 1 fr o m C B n tr o lw o r d 2 .1 2 fr o .1 3 fr o m C B .1 4 fr o m C B .1 5 fr o m C B C m C B m C B m m C B E F E d it io n 2 3 .1 0 .0 0 S h e e t 2 2 a 4 5 D C B C o n tr o l w o r d 1 .0 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .1 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .2 fr o m P e e r-to -P e e r C o n tr o l w o r d 1 .3 fr o m P e e r -to -P e e r B 2 6 4 3 C o n tr o l w o r d 1 .4 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .5 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .6 fr o m P e e r -to -P e e r B 2 6 4 6 C o n tr o l w o r d 1 .7 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .8 fr o m P e e r -to -P e e r C o n tr o l w o r d 1 .9 fr o m P e e r -to -P e e r B 2 6 4 9 C o n tr o l w o r d 2 .0 fr o m P e e r -to -P e e r C o n tr o l w o r d 2 .1 fr o m P e e r -to -P e e r B 2 6 5 2 C o n tr o l w o r d 2 .2 fr o m P e e r -to -P e e r C o n tr o l w o r d 2 .3 fr o m P e e r -to -P e e r C o n tr o l w o r d 2 .4 fr o m P e e r -to -P e e r C o n tr o l w o r d 2 .5 fr o m P e e r -to -P e e r a n d p e e r-to -p e e r 3 2 0 0 0 0 m s re fe r to S h e e t 2 a n d 1 5 B 2 6 2 4 B 2 6 2 5 e t e lo w H 6 0 3 B S e ttin g v a lu e B A H 2 8 9 H 6 0 2 3 M o n ito r in g tim e (te le g r a m fa ilu r e ) < 1 > E 1 C B -s ta tio n a d d r e s s (o n ly fo r S R T 4 0 0 ) C o n tro l w o rd 2 fro m C B B 2 6 4 0 B 2 6 4 1 B 2 6 4 2 H 2 8 8 0 C o m m a n d to r e -c o n fig . C B (o n ly fo r S R T 4 0 0 ) C M a in c o n ta c to r o n N o O ff 2 N o O ff 3 In v e r te r e n a b le R a m p -f u n c t io n g e n e r a t o r in h ib it R a m p -fu n c tio n g e n e r a to r s to p R a m p -f u n c tio n g e n e r a t o r s e tp o in t e n a b le A c k n o w le d g e f a u lt L o c a l in c h in g fo r w a r d s L o c a l in c h in g b a c k w a r d s C o n tro l fro m P L C T e n s io n c o n tr o lle r o n T e n s io n c o n tr o lle r in h ib it S ta n d s till te n s io n o n S e t d ia m e te r H o ld d ia m e t e r 0 P e e r -to -p e e r e n a b le < 2 > 1 2 3 4 5 6 7 8 9 1 0 1 1 - 8 6 7 8 1 2 3 4 5 6 7 8 A A B B d 3 3 2 C o n tro l w o rd 1 fo r T 4 0 0 d 3 3 3 C C o n tro l w o rd 1 fo r T 4 0 0 D 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 - - - - M a in c o n ta c to r c lo s e d N o O ff 2 N o O ff 3 E n a b le in v e r t e r E n a b le r a m p -fu n c tio n g S ta r t r a m p -fu n c tio n g e n R a m p -fu n c tio n g e n e r a to A c k n o w le d g e f a u lt L o c a l in c h in g fo r w a r d s L o c a l in c h in g b a c k w a r d C o n tro l fro m th e P L C T e n s io n c o n tr o lle r o n T e n s io n c o n tr o lle r in h ib S ta n d s till te n s io n o n S e t d ia m e te r H o ld d ia m e t e r d 3 3 4 C o n tro l w o rd 2 fo r T 4 0 0 K 4 3 3 2 C o n tro l w o rd 3 K 4 3 3 3 fo r T 4 0 0 K 4 3 3 4 C e n e ra to r e ra to r r , s e tp o in t e n a b le s C o n tro l w o rd 2 fo r T 4 0 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 it e d - - - - - E n t e r s u p p le m e L o c a l p o s itio n in M O P 2 , r a is e M O P 2 , lo w e r L o c a l c o n tr o l L o c a l s to p L o c a l ru n L o c a l c ra w l 0 S e t V s e t to s to p M O P 1 , r a is e M O P 1 , lo w e r W e b le n g th r e s W in d in g fr o m b T a c h o m e te r 0 1 2 3 4 5 6 7 8 9 1 0 1 1 - n ta r y s e tp o in t V * g C o n tro l w o rd 3 fro m T 4 0 0 1 2 1 3 1 4 1 5 1 6 e t e lo w - - - 0 P o la W in G e a A c c A c c 0 0 0 0 0 0 0 0 0 r it d e rb e p e p y , s a tu r a tio n s e tp o in t r o x s ta g e 2 t s e tp o in t A t s e tp o in t B D E E F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C o n tro l w o rd s fro m T 4 0 0 1 2 3 E d it io n 2 0 .1 1 .0 0 S h e e t 2 2 b 4 5 6 7 8 1 2 3 4 5 A In p u t 1 (M U L _ 1 ) T 1 (1 ) Y K R 0 .0 C h a r a c te r is tic s H 8 0 3 S ta r t, p o in t Y 1 0 .0 H 8 0 1 In p u t 2 (A D D _ 1 ) K R 0 8 1 0 K R X In p u t 1 (M U L _ 2 ) 0 .0 H 8 0 0 H 8 0 2 1 .0 M in u e n d (S U B _ 1 ) T 1 (4 ) K R In p u t 2 (M U L _ 2 ) C K R O u tp u t (M U L _ 2 ) K R K R T 1 (2 ) In p u t q u a n tity (K e n n _ 2 ) H 8 0 9 (0 ) Y K R E n d , p o in t Y 2 S ta r t, p o in t Y 1 0 .0 C In p u t 1 (D IV _ 1 ) C h a r a c te r is tic s O u tp u t (K e n n _ 2 ) H 8 0 8 T 1 (2 1 ) H 8 1 7 (0 ) K R K R 0 8 0 9 O u tp u t (D IV _ 1 ) In p u t 2 (D IV _ 1 ) H 8 0 6 X E n a b le F r e e _ b lo c k K R 0 8 1 7 S a m p lin g tim e H 8 1 8 (3 ) D 0 .0 H 8 0 5 H 8 0 7 0 H 6 5 0 T 1 = 2 m s S e q u e n c e in T 1 o r T 5 K R E K R 0 8 4 5 H 8 4 6 (0 ) H 8 1 3 (0 ) 0 .0 O u tp u t (S U B _ 1 ) S u b tra h e n d (S U B _ 1 ) K R 0 8 1 2 B T 1 (6 ) H 8 4 5 (0 ) H 8 1 2 (0 ) E n d , p o in t X 2 S ta r t, p o in t X 1 D K R 0 8 4 0 H 8 4 1 (0 ) K R B C A O u tp u t (A D D _ 1 ) K R H 8 1 1 (0 ) K R 0 8 0 4 B T 1 (5 ) In p u t 1 (A D D _ 1 ) T 1 (3 ) O u tp u t (M U L _ 1 ) In p u t 2 (M U L _ 1 ) O u tp u t (K e n n _ 1 ) 8 H 8 4 0 (0 ) K R H 8 0 4 (0 ) E n d , p o in t Y 2 7 H 8 1 0 (0 ) In p u t q u a n tity (K e n n _ 1 ) A 6 A r ith m e tic T 5 = 1 2 8 m s (3 ) D 1 .0 E n d , p o in t X 2 S ta r t, p o in t X 1 C h a n g e o v e r T 1 (9 ) E F K R K R 0 In p u t 2 (U M S _ 1 ) 1 0 In p u t 2 (U M S _ 2 ) K R 0 8 2 2 1 S w it c h s ig n a l ( U M S _ 1 ) K R O u tp u t (U M S _ 2 ) H 8 2 7 (0 ) K R 0 8 2 8 1 O u tp u t (U M S _ 3 ) K R S w it c h s ig n a l ( U M S _ 3 ) S w it c h s ig n a l ( U M S _ 2 ) H 8 2 2 (2 0 0 0 ) B 0 In p u t 2 (U M S _ 3 ) K R 0 8 2 5 H 8 2 4 (0 ) O u tp u t (U M S _ 1 ) K R F H 8 2 6 (0 ) H 8 2 3 (0 ) K R F H 8 2 8 (2 0 0 0 ) B H 8 2 5 (2 0 0 0 ) B S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e A r ith m e tic a n d C h a n g e o v e r 1 2 E In p u t 1 (U M S _ 3 ) In p u t 1 (U M S _ 2 ) H 8 2 0 (0 ) H 8 2 1 (0 ) T 1 (1 1 ) T 1 (1 0 ) In p u t 1 (U M S _ 1 ) 3 E d it io n 2 3 .1 0 .0 0 S h e e t 2 3 a 4 5 6 7 8 1 2 3 4 C o n tro l 5 6 7 8 L o g ic T 1 (1 2 ) A E n a b le F r e e _ B lo c k A S a m p lin g tim e 0 H 6 5 0 T 1 = 2 m s S e q u e n c e in T 1 o r T 5 In p u t (E in V ) H 8 6 0 (2 0 0 0 ) (3 ) D e la y tim e (E in V ) T 0 H 8 6 2 (2 0 0 0 ) T H 8 6 3 0 m s D e la y tim e (A u s V ) A O u tp u t (A u s V ) B B 2 8 6 0 H 8 6 1 0 m s In p u t (A u s V ) O u tp u t (E in V ) B T 5 = 1 2 8 m s T 1 (1 3 ) 0 B 2 8 6 2 B B B T 1 (7 ) O u tp u t (IN T ) In p u t (IN T ) C 0 ,0 H 8 5 0 X U p p e r lim it ( IN T ) 0 ,0 H 8 5 1 L U L o w e r lim it (IN T ) 0 ,0 In te g r a tio n tim e (IN T ) S e ttin g v a lu e (IN T ) C H 8 5 2 L L H 8 5 3 T I 0 m s S e t (IN T ) T 1 (1 4 ) In p u t (Im p V ) H 8 6 4 (2 0 0 0 ) B T P u ls e d u r a t io n ( Im p V ) 0 m s T 1 (1 5 ) O u tp u t (Im p V ) In p u t (Im p B ) O u tp u t (Im p B ) H 8 6 6 (2 0 0 0 ) B B 2 8 6 4 H 8 6 5 P u l s e d u r a t i o n ( I m p B )0 m s B 2 8 6 6 H 8 6 7 S V H 8 5 4 (0 ) C S K R D K R 0 8 5 0 Y H 8 5 5 (2 0 0 0 ) B D T 1 (8 ) In p u t (L IM ) E H 8 5 6 (0 ) X H 8 5 7 (0 ) Y 1 B O B B 2 8 6 8 & In p u t 2 (A N D _ 2 ) H 8 7 1 (2 0 0 1 ) K R 0 8 5 6 D O u tp u t (A N D _ 1 ) B 2 8 7 0 B L U K R L L H 8 5 8 (0 ) L o w e r lim it (L IM ) H 8 6 8 (2 0 0 0 ) O u tp u t (L IM ) K R U p p e r lim it ( L IM ) H 8 7 0 (2 0 0 1 ) o u tp u t (In v ) In p u t (In v ) T 1 (1 7 ) In p u t 1 (A N D _ 1 ) T 1 (1 6 ) K R E E F In p u t 1 (V e r g l) In p u t 1 (O R _ 1 ) T 1 (2 0 ) In p u t (G la e t ) K R S m o o n th in g F S e ttin g v a lu e (G la e t) 0 m s X H 8 8 4 Y K R B In p u t 2 (O R _ 2 ) K R 0 8 8 3 H 8 7 7 (2 0 0 0 ) T > 1 O u tp u t (O R _ 1 ) B 2 8 7 6 In p u t 2 (V e r g l) H 8 8 1 (0 ) K R B S V H 8 8 5 (0 ) =< > B 2 8 7 0 O u tp u t 1 B 2 8 7 0 O u tp u t 2 (V e r g l) (V e r g l) B 2 8 7 0 O u tp u t 3 (V e r g l) S K R S e t (G la e t) H 8 7 6 (2 0 0 0 ) O u tp u t (G la e t ) H 8 8 3 (0 ) T 1 (1 9 ) H 8 8 0 (0 ) T 1 (1 8 ) F H 8 8 6 (2 0 0 0 ) B S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C o n tr o l a n d L o g ic 1 2 3 E d it io n 2 3 .1 0 .0 0 S h e e t 2 3 b 4 5 6 7 8 1 2 3 4 5 6 7 8 C o n s ta n t v a lu e A E n a b le F r e e _ B lo c k A T 5 (1 ) F ix e d s e tp o in t_ 1 0 ,0 0 H 6 5 0 T 1 = 2 m s S e q u e n c e in T 1 o r T 5 O u tp u t o f H 8 1 4 K R 0 8 1 4 H 8 1 4 S a m p lin g tim e A T 5 = 1 2 8 m s (3 ) B B H 7 0 0 (2 0 0 0 ) B T 5 (2 ) F ix e d s e tp o in t_ 2 0 ,0 K R 0 8 1 5 H 8 1 5 O u tp u t o f H 8 1 5 C H 7 0 1 (2 0 0 0 ) B B it N o . H 7 0 2 (2 0 0 0 ) B B it 0 F ix e d v a lu e B it_ 0 B it 1 F ix e d v a lu e B it_ 1 B it 2 F ix e d v a lu e B it_ 2 B it 3 F ix e d v a lu e B it_ 3 B it 4 F ix e d v a lu e B it_ 4 B it 5 F ix e d v a lu e B it_ 5 H 7 0 3 (2 0 0 0 ) B T 5 (3 ) C F ix e d s e tp o in t_ 3 0 ,0 H 7 0 4 (2 0 0 0 ) B O u tp u t o f H 8 1 6 K R 0 8 1 6 H 8 1 6 H 7 0 5 (2 0 0 0 ) B D H 7 0 6 (2 0 0 0 ) B H 7 0 7 (2 0 0 0 ) B H 7 0 8 (2 0 0 0 ) B D H 7 0 9 (2 0 0 0 ) B E H 7 1 0 (2 0 0 0 ) B H 7 1 1 (2 0 0 0 ) B T 1 (2 1 ) In p u t s e t In p u t R e s e t O u tp u t H 9 9 0 (2 0 0 0 ) B S B 2 8 9 0 H 7 1 2 (2 0 0 0 ) B R H 9 9 1 (2 0 0 0 ) B H 7 1 3 (2 0 0 0 ) B E F H 9 9 2 (2 0 0 0 ) B In p u t r e s e t H 9 9 3 (2 0 0 0 ) B O u tp u t S P a ra m e te r n a m e B it 6 F ix e d v a lu e B it_ 6 B it 7 F ix e d v a lu e B it_ 7 B it 8 F ix e d v a lu e B it_ 8 B it 9 F ix e d v a lu e B it_ 9 B it 1 0 F ix e d v a lu e B it_ 1 0 B it 1 1 F ix e d v a lu e B it_ 1 1 B it 1 2 F ix e d v a lu e B it_ 1 2 B it 1 3 F ix e d v a lu e B it_ 1 3 B it 1 4 F ix e d v a lu e B it_ 1 4 B it 1 5 F ix e d v a lu e B it_ 1 5 K 4 7 0 0 O u t p u t B _ W C D E H 7 1 4 (2 0 0 0 ) B H 7 1 5 (2 0 0 0 ) B T 1 (2 2 ) In p u t s e t B T 5 (4 ) B 2 8 9 2 R F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e C o n s ta n t v a lu e 1 2 3 E d it io n 2 3 .1 0 .0 0 S h e e t 2 3 c 4 5 6 7 8 1 2 3 4 5 6 7 A 8 E n a b le F r e e _ B lo c k A S a m p lin g tim e S e q u e n c e 1 H 6 5 0 T 1 = 2 m s in T 1 o r T 5 A T 5 = 1 2 8 m s (3 ) B T 1 (2 ) In p u t q u a n tity (c h a r _ 1 ) B W (g /m * * 2 ) R e c e iv e w o r d 6 fr o m C B [1 5 .3 ] H 8 0 4 (4 5 3 ) K R 0 4 5 3 Y K R E n d , p o in t Y 2 0 .5 H 8 0 3 S ta r t, p o in t Y 1 0 .0 H 8 0 1 O u tp u t (c h a r_ 1 ) H 8 1 0 (8 0 4 ) K R 0 8 0 4 C T 5 (3 ) X 0 .9 0 .0 C H 8 0 0 H 8 0 2 B In p u t 1 (M U L _ 1 ) C h a r a c te r is tic 1 .0 K R 0 8 1 4 H 8 1 4 T 1 (4 ) K R In p u t 2 (M U L _ 1 ) H 8 1 1 (8 1 4 ) K R O u tp u t (M U L _ 1 ) F ix e d s e tp o in t_ 1 C E n d , p o in t X 2 S ta r t, p o in t X 1 D In p u t 1 (U M S _ 1 ) T 1 (8 ) H 8 2 0 (3 5 1 ) T o r q u e lim it [6 .3 ] K R 0 3 5 1 1 H 8 2 1 (8 2 2 ) E K R 0 8 2 2 K R K R 0 8 2 2 H 8 2 4 (8 1 0 ) K R 0 8 1 0 B 2 6 2 8 H 8 2 2 (2 6 2 8 ) B D K R 0 In p u t 2 (U M S _ 2 ) O u tp u t (U M S _ 1 ) S w it c h s ig n a l ( U M S _ 1 ) T e n s io n tr a n s d u c e r c h a n g e C o n tr o l w o r d 2 .8 fr o m C B [1 5 .4 , 2 2 a .7 ] T 1 (9 ) H 8 2 3 (8 2 2 ) 0 In p u t 2 (U M S _ 1 ) D In p u t 1 (U M S _ 2 ) K R K R 0 8 2 5 1 O u tp u t (U M S _ 2 ) a t H 6 1 0 a n d H 6 1 1 [6 .4 ] K R S w it c h s ig n a l ( U M S _ 2 ) K n ife in th e c u ttin g p o s . C o n tr . w o r d 2 .1 5 fr o m C B [1 5 .4 , 2 2 a .7 ] E B 2 6 3 5 H 8 2 5 (2 6 3 5 ) B E F F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e E x a m p le w ith fr e e b lo c k s : C u t te n s io n fo r s p lic e 1 2 3 4 E d it io n 2 3 .1 0 .0 0 S h e e t 2 4 5 6 7 8 1 2 A 3 4 5 C o n n c to r d is p la y (R -ty p e ) 6 7 B in n e c to r d is p la y (B -ty p e ) 8 C o n s ta n t b in n e c to r A A In p u t (A n z _ R 1 ) B d 5 6 1 H 5 6 0 (0 ) K R B 1 In p u t (A n z _ B 1 ) H 5 7 0 (2 0 0 0 ) O u tp u t (A n z _ R 1 ) 1 B c o n s ta n t o u tp u t 0 B 2 0 0 0 d 5 7 1 (B -ty p e ) O u tp u t (A n z _ B 1 ) B c o n s ta n t o u tp u t 1 B 2 0 0 1 (B -ty p e ) C In p u t (A n z _ R 2 ) C H 5 6 2 (0 ) K R In p u t (A n z _ B 2 ) d 5 6 3 1 d 5 7 3 H 5 7 2 (2 0 0 0 ) O u tp u t (A n z _ R 2 ) C 1 B O u tp u t (A n z _ B 2 ) C o n s ta n t c o n n e c to r D c o n s ta n t o u tp u t 0 .0 K R 0 0 0 0 D D In p u t (A n z _ R 3 ) E H 5 6 4 (0 ) K R d 5 6 5 1 C o n n e c to r d is p la y (I-ty p e ) O u tp u t (A n z _ R 3 ) E In p u t (A n z _ I1 ) In p u t (A n z _ R 4 ) H 5 8 0 (4 0 0 0 ) K d 5 6 7 1 K R 0 0 0 3 c o n s ta n t o u tp u t 1 .0 K 4 0 0 0 c o n s ta n t o u tp u t 0 (R -ty p e ) E (I-ty p e ) d 5 8 1 F H 5 6 6 (0 ) K R (R -ty p e ) 1 O u tp u t (A n z _ I1 ) O u tp u t (A n z _ R 4 ) F F S ta n d a r d S P W 4 2 0 a x ia l w in d e r s o ftw a r e F r e e d is p la y p a r a m e te r s a n d c o n s ta n t b in -/c o n n e c to r s 1 2 3 4 E d it io n 2 3 .1 0 .0 0 S h e e t 2 5 5 6 7 8 Conversion N4 -> R T1 T1 H950 (4000) K DW high H980 (4000) K 100% DW high 100% KR0950 H951 (4000) K low W KR0980 H981 (4000) K 1.0 low W 1.0 T1 H952 (4000) K DW high T1 H982 (4000) K 100% DW high 100% KR0952 H953 (4000) K low W KR0982 H983 (4000) K 1.0 Enable Free blocks 0 low W 1.0 H650 Sampling time T1=2ms, T5=128ms Conversion R -> N4 T1 T1 H954 (0) KR 1.0 DW W 100% high K4954 low K4955 H984 (0) KR 1.0 DW W 100% high K4984 low K4985 T1 T1 H956 (0) KR 1.0 DW W 100% 1 2 Free function blocks Conversion of normalized values 3 high K4956 low K4957 4 1.0 H986 (0) KR 100% 5 6 03.07.00 DW W high K4986 low K4987 7 Edition 06.03.01 8 Sheet 26 Conversion R -> DI Conversion I -> R T1 T1 H960 (0) KR DW R DI W high K4960 low K4961 H964 (4000) K I KR0964 R T1 T1 H962 (0) KR DW R DI W high K4962 low K4963 H965 (4000) K I KR0965 R Enable Free blocks 0 H650 Sampling time T1=2ms, T5=128ms Conversion DI -> R H966 (4000) K Conversion R -> I T1 DW high T1 DI KR0966 H967 (4000) K H968 (4000) K low W K4958 R I T1 DW high T1 DI low 1 2 Free function blocks Conversion of not normalized values W R H959 (0) KR KR0968 H969 (4000) K R H958 (0) KR K4959 R 3 I 4 5 6 7 Edition 06.03.01 03.07.00 8 Sheet 26a