1
Motorola Bipolar Power Transistor Device Data

 
   
1 kV SWITCHMODE Series
These transistors are designed for high–voltage, high–speed, power switching in
inductive circuits where fall time is critical. They are particularly suited for
line–operated switchmode applications.
Typical Applications: Features:
Switching Regulators Collector–Emitter Voltage — VCEV = 1000 Vdc
Inverters Fast Turn–Off Times
Solenoids 80 ns Inductive Fall Time — 100
_
C (Typ)
Relay Drivers 120 ns Inductive Crossover Time — 100
_
C (Typ)
Motor Controls 800 ns Inductive Storage Time — 100
_
C (Typ)
Deflection Circuits 100
_
C Performance Specified for:
Reverse–Biased SOA with Inductive Load
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
Extended FBSOA Rating Using Ultra–fast Rectifiers
Extremely High RBSOA Capability
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
Value
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCEO
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
500
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCEV
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1000
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter–Base Voltage
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VEB
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
6
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak(1)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IC
ICM
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
8
16
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak(1)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IB
IBM
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
6
12
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation@ TC = 25
_
C
@ TC = 100
_
C
Derate above TC = 25
_
C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
PD
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
125
50
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Watts
W/
_
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction
Temperature Range
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
55 to 150
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
RθJC
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
TL
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
275
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle
v
10%.
Designer’s Data for “W orst Case” Conditions — The Designers Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.

SEMICONDUCTOR TECHNICAL DATA Order this document
by MJH16006A/D
Motorola, Inc. 1995
POWER TRANSISTORS
8 AMPERES
500 VOLTS
150 WATTS

CASE 340D–01
REV 3
MJH16006A
2 Motorola Bipolar Power Transistor Device Data
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25
_
C unless otherwise noted)
Characteristic
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS(1)
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
500
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current
(VCEV = 1000 Vdc, VBE(off) = 1.5 Vdc)
(VCEV = 1000 Vdc, VBE(off) = 1.5 Vdc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICEV
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.003
0.020
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.15
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Collector Cutoff Current
(VCE = 1000 Vdc, RBE = 50 , TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICER
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.020
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Emitter Cutoff Current
(VEB = 6 Vdc, IC = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IEBO
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.005
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.15
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
See Figure 14a or 14b
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
RBSOA
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
See Figure 15
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS(1)
Collector–Emitter Saturation Voltage
(IC = 3 Adc, IB = 0.6 Adc)
(IC = 5 Adc, IB = 1 Adc)
(IC = 5 Adc, IB = 1 Adc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.35
0.50
0.60
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.7
1
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 5 Adc, IB = 1 Adc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VBE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
1
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.5
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
DC Current Gain
(IC = 8 Adc, VCE = 5 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
hFE
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
8
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1 kHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Cob
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
350
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
IB1 = 0.66 Adc,
VBE(off) = 5 Vdc,
VCE(pk) = 400 Vdc)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(TJ = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
800
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2000
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ns
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
IB1 = 0.66 Adc,
VBE(off) = 5 Vdc,
VCE(pk) = 400 Vdc)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(TJ = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
80
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
IB1 = 0.66 Adc,
VBE(off) = 5 Vdc,
VCE(pk) = 400 Vdc)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
120
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
IB1 = 0.66 Adc,
VBE(off) = 5 Vdc,
VCE(pk) = 400 Vdc)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(TJ = 150
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1000
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
VCE(pk) = 400 Vdc)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(TJ = 150
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
90
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
150
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 2)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
VCC = 250 Vdc,
IB1 = 0.66 Adc,
PW = 30 µs,
Duty Cycle
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IB2 = 1.3 Adc,
RB1 = RB2 = 4 )
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
25
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ns
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(I
C = 5 Adc,
VCC = 250 Vdc,
IB1 = 0.66 Adc,
PW = 30 µs,
Duty Cycle
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(I
B2 = 1.3 Adc,
RB1 = RB2 = 4 )
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
700
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
VCC = 250 Vdc,
IB1 = 0.66 Adc,
PW = 30 µs,
Duty Cycle
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IB2 = 1.3 Adc,
RB1 = RB2 = 4 )
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1400
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
3000
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
IB1 = 0.66 Adc,
PW = 30 µs,
Duty Cycle
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
175
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Duty Cycle
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(VBE(off) = 5 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
475
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
v
2%)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(VBE(off) = 5 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle
v
2%.
MJH16006A
3
Motorola Bipolar Power Transistor Device Data
VBE, BASE–EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
0.2 1
2
0.5
0.3
1
IB, BASE CURRENT (AMPS)
0.5
0.3
0.2
0.2
100
0.2
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
10.3 0.5 1 5 10 20
30
10
5
Figure 2. Collector–Emitter Saturation Region
0.1 IC, COLLECTOR CURRENT (AMPS)
0.1 0.3 0.5
3
1
0.5
50
hFE, DC CURRENT GAIN
3
1 2 3 10
Figure 3. Collector–Emitter Saturation Region
50.50.1 0.2 0.3 1 102 50.5
Figure 4. Base–Emitter Saturation Region
Figure 5. Capacitance
10
2
10 k
1
VR, REVERSE VOLTAGE (VOLTS)
10 10
1 k
100 850
C, CAPACITANCE (pF)
100
0.1
TJ = 25
°
C
Cib
3 A
TJ = 100
°
C
55
°
C
25
°
C
20
2 3
IC/IB = 10
TJ = 100
°
C
IC/IB = 10
TJ = 25
°
C
1.5
1
2 10
0.1
2
5
0.3
0.2
0.2 5
3
5 A
8 A
1 A
IC/IB = 10
TJ = 25
°
C
5
0.3 3
Cob
TYPICAL STATIC CHARACTERISTICS
MJH16006A
4 Motorola Bipolar Power Transistor Device Data
tc, CROSSOVER TIME (ns) tfi, COLLECTOR CURRENT FALL TIME (ns)
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Storage Time Figure 7. Storage Time
3000
2000
1000
700
500
300
, STORAGE TIME (ns)tsv
400
tfi, COLLECTOR CURRENT FALL TIME (ns)tc, CROSSOVER TIME (ns)
IC, COLLECTOR CURRENT (AMPS)
2 3 5 7 10
3000
2000
1000
700
500
300
, STORAGE TIME (ns)tsv
1
400
IC, COLLECTOR CURRENT (AMPS)
2 3 5 7 10
400
300
200
100
70
40 1
50
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
2 3 5 7 10
500
300
200
100
50 1
70
IC, COLLECTOR CURRENT (AMPS)
Figure 8. Collector Current Fall Time Figure 9. Collector Current Fall Time
Figure 10. Crossover Time Figure 11. Crossover Time
2 V
VBE(off) = 0 V
IC/IB1 = 5, TC = 75°C, VCE(pk) = 400 V IC/IB1 = 10, TC = 75°C, VCE(pk) = 400 V
5 V
2 3 5 7 101
2 V
5 V
2 V
5 V
0 V
2 V
5 V
2 3 5 7 10
400
300
200
100
70
40 1
50
2 V
5 V
2 V 5 V
2 3 5 7 10
500
300
200
100
50 1
70
*
β
f = IC
IB1
VBE(off) = 0 V
VBE(off) = 0 V VBE(off) = 0 V
VBE(off) = 0 V VBE(off) = 0 V 2 V
5 V
TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS
MJH16006A
5
Motorola Bipolar Power Transistor Device Data
+15
150
100
100
µ
F
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500
µ
F
Voff
50
+10
MTP12N10
MTP8P10
RB1
RB2
A
1
µ
F
1
µ
F
Drive Circuit
*Tektronix AM503
*P6302 or Equivalent Scope — Tektronix
7403 or Equivalent T1
[
Lcoil (ICpk)
VCC
Note: Adjust Voff to obtain desired VBE(off) at Point A.
T1 adjusted to obtain IC(pk)
T1+V
V
0 V
A
*IB
*ICL
T.U.T. MR918
Vclamp VCC
IC(pk)
VCE(pk)
VCE
IB
IC
IB1
IB2
VCEO(sus)
L = 10 mH
RB2 =
VCC = 20 Volts
Inductive Switching
L = 750 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired IB1
RBSOA
L = 750 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired IB1
Table 1. Inductive Load Switching
IB2, REVERSE BASE CURRENT (AMPS)
Figure 12. Inductive Switching Measurements Figure 13. Peak Reverse Base Current
VBE(off), REVERSE BASE VOLTAGE (VOLTS)
0
8
6
4
2
IB1 = 1 A
0.5 A
0 2 4 6 8
IC = 5 A
TJ = 25
°
C
tfi
trv
t, TIME
IC
90% IB1
IC(pk) VCE(pk)
90% VCE(pk) 90% IC(pk)
10% VCE(pk) 10%
IC(pk) 2% IC
IB
tsv tti
tc
VCE
td and trts and tf
H.P. 214
OR
EQUIV.
P.G.
50 RB = 8.5
*IB*IC
T.U.T. RL
VCC
Vin
0 V
11 V
tr
15 ns
*Tektronix AM503
*P6302 or Equivalent
VCC 250 V
RL50
IC5 A
IB0.66 A
+15
150
100
100
µ
F
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500
µ
F
Voff
50
+10 V
MTP12N10
MTP8P10
RB1
RB2
A
1
µ
F
1
µ
F
T.U.T. *IC
*IB
ARL
VCC
V(off) adjusted
to give specified
off drive
RL50
Table 2. Resistive Load Switching
MJH16006A
6 Motorola Bipolar Power Transistor Device Data
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
IC, COLLECTOR CURRENT (AMPS)
20
0.1
Figure 14. Maximum Rated Forward Biased Safe Operating Area
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
0.02 1 10 2000
5
2
1
10
0.5
0.2
0.1
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN
100 1000
a. MJ16006A
REGION II — EXPANDED FBSOA USING
REGION II — MUR8100 ULTRA–FAST
REGION II — RECTIFIER, SEE FIGURE 17
TC = 25
°
C10
µ
s1 ms
dc
II
20
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
0.02
5
2
1
10
0.5
0.2
0.1
a. MJH16006A
REGION II —
EXPANDED FBSOA USING
MUR8100 ULTRA–FAST
RECTIFIER, SEE FIGURE 17
TC = 25
°
C10
µ
s
1 ms
dc
20
VCE(pk), COLLECTOR–EMITTER VOLTAGE (VOLTS)
0100
0
16
12
8
4
100 200 300 400 900
Figure 15. Maximum Reverse Biased
Safe Operating Area
IC/IB1
4
TJ
100
°
C
POWER DERATING FACTOR (%)
100
0TC, CASE TEMPERATURE (
°
C)
040 200
80
60
40
20
80 120 160
Figure 16. Power Derating
500 600 700 800
VBE(off) = 0 V
SECOND BREAKDOWN DERATING
THERMAL DERATING
3
0.3
3
0.3
0.1 1 10 2000100 1000
IC, COLLECTOR CURRENT (AMPS)
IC(pk), PEAK COLLECTOR CURRENT (AMPS)
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN
II
0
VBE(off) = 5 V
100 ns 100 ns
GUARANTEED SAFE OPERATING AREA LIMITS
Figure 17. Switching Safe Operating Area
+15
150
100
µ
F
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500
µ
F
Voff
50
+10
MTP12N10
RB1
RB2
1
µ
F
1
µ
F100
MTP8P10
MUR105
MUR1100
T.U.T.
MUR8100
VCE (1000 V MAX)
10
µ
F10 mH
Note: Test Circuit for Ultra–fast FBSOA
Note: RB2 = 0 and VOff = –5 Volts
MJH16006A
7
Motorola Bipolar Power Transistor Device Data
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.05 1 2 5 10 20 50 100 200 500
R
θ
JC(t) = r(t) R
θ
JC
R
θ
JC = 1.17 or 1
°
C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) R
θ
JC(t)
P(pk)
t1t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.02
SINGLE PULSE
0.1
0.1 0.50.2
RESISTANCE (NORMALIZED)
100
0
Figure 18. Thermal Response
0.5
0.3
0.07
0.03
0.03 0.3 3 30 3000.02
0.05
0.01
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of a
transistor: average junction temperature and second break-
down. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipa-
tion than the curves indicate.
The data of Figures 14a and 14b is based on TC = 25
_
C;
TJ(pk) is variable depending on power level. Second break-
down pulse limits are valid for duty cycles to 10% but must be
derated when TC 25
_
C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable current
at the voltages shown on Figures 14a and 14b may be found
at any case temperature by using the appropriate curve on
Figure 16.
TJ(pk) may be calculated from the data in Figure 18. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases, with
the base–to–emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping,
RC snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Biased Safe Operating Area
and represents the voltage current condition allowable dur-
ing reverse biased turnoff. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 15 gives the RBSOA character-
istics.
SWITCHMODE III DESIGN CONSIDERATIONS
1. FBSOA —
Allowable dc power dissipation in bipolar power transistors
decreases dramatically with increasing collector emitter
voltage. A transistor which safely dissipates 100 watts at
10 volts will typically dissipate less than 10 watts at its rated
VCEO(sus). From a power handling point of view, current and
voltage are not interchangeable (see Application Note
AN875).
2. TURN–ON —
Safe turn–on load line excursions are bounded by pulsed
FBSOA curves. The 10 µs curve applies for resistive loads,
most capacitive loads, and inductive loads that are clamped
by standard or fast recovery rectifiers. Similarly, the 100 ns
curve applies to inductive loads which are clamped by ultra–
fast recovery rectifiers, and are valid for turn–on crossover
times less than 100 ns (see Application Note AN952).
At voltages above 75% of VCEO(sus), it is essential to pro-
vide the transistor with an adequate amount of base drive
VERY RAPIDLY at turn–on. More specifically , safe operation
according to the curves is dependent upon base current rise
time being less than collector current rise time. As a general
rule, a base drive compliance voltage in excess of 10 volts is
required to meet this condition (see Application Note
AN875).
3. TURN–OFF —
A bipolar transistor s ability to withstand turn–off stress is
dependent upon its forward base drive. Gross overdrive vio-
lates the RBSOA curve and risks transistor failure. For this
reason, circuits which use fixed base drive are often more
likely to fail at light loads due to heavy overdrive (see Ap-
plication Note AN875).
4. OPERATION ABOVE VCEO(sus)
When bipolars are operated above collector–emitter
breakdown, base drive is crucial. A rapid application of ade-
quate forward base current is needed for safe turn–on, as is
a stiff negative bias needed for safe turn–off. Any hiccup in
the base–drive circuitry that even momentarily violates either
of these conditions will likely cause the transistor to fail.
Therefore, it is important to design the driver so that its out-
put is negative in the absence of anything but a clean crisp
input signal (see Application Note AN952).
MJH16006A
8 Motorola Bipolar Power Transistor Device Data
SWITCHMODE DESIGN CONSIDERATIONS (Cont.)
5. RBSOA —
Reverse Biased Safe Operating Area has a first order de-
pendency on circuit configuration and drive parameters. The
RBSOA curves in this data sheet are valid only for the condi-
tions specified. For a comparison of RBSOA results in sever-
al types of circuits (see Application Note AN951).
6. DESIGN SAMPLES —
Transistor parameters tend to vary much more from wafer
lot to wafer lot, over long periods of time, than from one de-
vice to the next in the same wafer lot. For design evaluation
it is advisable to use transistors from several different date
codes.
7. BAKER CLAMPS —
Many unanticipated pitfalls can be avoided by using Baker
Clamps. MUR105 and MUR1100 diodes are recommended
for base drives less than 1 amp. Similarly, MUR405 and
MUR4100 types are well–suited for higher drive require-
ments (see Article Reprint AR131).
MJH16006A
9
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 340D–01
ISSUE A
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
A
D
VG
K
SL
U
BQEC
JH
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A19.00 19.60 0.749 0.771
B14.00 14.50 0.551 0.570
C4.20 4.70 0.165 0.185
D1.00 1.30 0.040 0.051
E1.45 1.65 0.058 0.064
G5.21 5.72 0.206 0.225
H2.60 3.00 0.103 0.118
J0.40 0.60 0.016 0.023
K28.50 32.00 1.123 1.259
L14.70 15.30 0.579 0.602
Q4.00 4.25 0.158 0.167
S17.50 18.10 0.689 0.712
U3.40 3.80 0.134 0.149
V1.50 2.00 0.060 0.078
1 2 3
4
MJH16006A
10 Motorola Bipolar Power Transistor Device Data
How to reach us:
USA/ EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–35218315
MFAX: RMFAX0@email.sps.mot.com – T OUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Af firmative Action Employer .
MJH16006A/D
*MJH16006A/D*