NCL30088LED1GEVB
http://onsemi.com
2
THEORY OF OPERATION
Power Stage
The power stage for the demo board is a non−isolated
buck−boost based. The controller has a built in control
algorithm that is specific to the flyback transfer function.
Specifically:
Vout
Vin +Duty
(1*Duty)
This is applicable to flyback, buck−boost, and SEPIC
converters. The control is very similar to the control of the
NCL30080−83 with the addition of a power factor
correction control loop. The controller has a built in
hardware algorithm that relates the output current to a
reference on the primary side.
Iout +Vref Nps
2 Rsense
Nps +Npri
Nsec
Where Npri = Primary Turns and Nsec = Secondary Turns
We can now find Rsense for a given output current.
Rsense +Vref Nps
2 Iout
Line Feedforward
The controller is designed to precisely regulate output
current but variation input line voltage do have an impact.
R3 sets the line feedforward and compensates for power
stage delay times by reducing the current threshold as the
line voltage increases. R3 is also used by the shorted pin
detection. At start up the controller puts out a current to
check for a shorted pin. If R3 is zero, the current sense
resistor is too low a value and the controller will not start
because it will detect a shorted pin. So R3 is required to make
the controller operate properly. In practice, R3 should be
greater than 250 W.
Voltage Sense
The voltage sense pin has several functions:
1. Basis for the reference of the PFC control loop
2. Line Range detection
The reference scaling is automatically controller inside
the controller. While the voltage on Vs is not critical for the
PFC loop control, it is important for the range detection.
Generally the voltage on Vs should be 3.5 V peak at the
highest input voltage of interest. The voltage on Vs
determines which valley the power stage will operate in. At
low line and maximum load, the power stage operates in the
first valley (standard CrM operation). At the higher line
range, the power stage moves to the second valley to lower
the switching frequency while retaining the advantage of
CrM soft switching.
Auxiliary Winding
The auxiliary winding has 3 functions:
1. CrM timing
2. Vcc Power
3. Output voltage sense
CrM Timing
In the off time, the voltage on the transformer/inductor
forward biases Dout and D9. When the current in the
magnetic has reached zero, the voltage collapses to zero.
This voltage collapse triggers a comparator on the ZCD pin
to start a new switching cycle. The ZCD pin also counts rings
on the auxiliary winding for higher order valley operation.
A failure of the ZCD pin to reach a certain threshold also
indicates a shorted output condition.
Vcc Power
The auxiliary winding forward biases D9 to provide
power for the controller. This arrangement is called a
“bootstrap”. Initially the Cvcc, is charged through R4 and
R5. When the voltage on Cvcc reaches, the startup threshold,
the controller starts switching and providing power to the
output circuit and the Cvcc. Cvcc discharges as the
controller draws current. As the output voltage rises, the
auxiliary winding starts to provide all the power to the
controller. Ideally, this happens before Cvcc discharges to
the under voltage threshold where the controller stops
operating to allow Cvcc to recharge once again. The size of
the output capacitor will have a large effect on the rise of the
output voltage. Since the LED driver is a current source, the
rise of output voltage is directly dependent on the size of the
output capacitor.
There are tradeoffs in the selection of Cout and Cvcc. A
low output ripple will require a large Cout value. This
requires that Cvcc be large enough to support Vcc power to
the controller while Cout is charging up. A large value of
Cvcc requires that R4 and R5 be lower in value to allow a fast
enough startup time. Smaller values of R4 and R5 have
higher static power dissipation which lowers efficiency of
the driver.
Output Voltage Sense
The auxiliary winding voltage is proportional to the
output voltage by the turns ratio of the output winding and
the auxiliary winding. The controller has an overvoltage
limit on the Vcc pin at about 26 V minimum. Above that
threshold, the controller will stop operation and enter
overvoltage fault mode such as when an open LED string
occurs.
In cases where the output has a lot of ripple current and the
LED has high dynamic resistance, the peak output voltage
can be much higher than the average output voltage. The
auxiliary winding will charge the Cvcc to the peak of the
output voltage which may trigger the OVP sooner than
expected so in this case the peak voltage of the LED string
is critical.