Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage dV/dt immune
Application- specific gate drive range:
Motor Drive: 12 to 20V (IR2127/IR2128)
Automotive: 9 to 20V (IR21271)
Undervoltage lockout
3.3V, 5V and 15V input logic compatible
F
AUL
T
lead indicates shutdown has occured
Output in phase with input (IR2127/IR21271)
Output out of phase with input (IR2128)
Avaliable in Lead-Free
CURRENT SENSING SINGLE CHANNEL DRIVER
VOFFSET 600V max.
IO+/- 200 mA / 420 mA
VOUT 12 - 20V 9 - 20V
(IR2127/IR2128) (IR21271)
VCSth 250 mV or 1.8V
ton/off (typ.) 200 & 150 ns
Typical Connection
www.irf.com 1
Packages
IR2127/IR21271
IR2128
8-Lead PDIP
8-Lead SOIC
IR2127(S) / IR2128(S)
IR21271(S) & (PbF)
Data Sheet No. PD60143-O
Description
The IR2127/IR2128/IR21271(S) is a high voltage, high
speed power MOSFET and IGBT driver. Proprietary
HVIC and latch immune CMOS technologies enable
ruggedized monolithic construction. The logic input is
compatible with standard CMOS or LSTTL outputs,
down to 3.3V. The protection circuity detects over-cur-
rent in the driven power transistor and terminates the
gate drive voltage. An open drain
F
AUL
T
signal is pro-
vided to indicate that an over-current shutdown has oc-
curred. The output driver features a high pulse current
buffer stage designed for minimum cross-conduction.
The floating channel can be used to drive an N-chan-
nel power MOSFET or IGBT in the high side or low
side configuration which operates up to 600 volts.
Product Summary
VCC VB
CS
HO
VS
COM
IN
FAULT
VCC
IN
FAULT
VCC VB
CS
HO
VS
COM
IN
FAULT
VCC
IN
FAULT
(Refer to Lead Assignments for correct pin
configuration). This/These diagram(s) show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
2www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Symbol Definition Min. Max. Units
VBHigh Side Floating Supply Voltage -0.3 625
VSHigh Side Floating Offset Voltage VB - 25 VB + 0.3
VHO High Side Floating Output Voltage VS - 0.3 VB + 0.3
VCC Logic Supply Voltage -0.3 25 V
VIN Logic Input Voltage -0.3 VCC + 0.3
VFLT FAUL T Output Voltage -0.3 VCC + 0.3
VCS Current Sense Voltage VS - 0.3 VB + 0.3
dVs/dt Allowable Offset Supply Voltage T ransient 50 V/ns
PDPackage Power Dissipation @ T A +25°C (8 Lead DIP) 1.0
(8 Lead SOIC) 0.625
RthJA Thermal Resistance, Junction to Ambient (8 Lead DIP) 125
(8 Lead SOIC) 200
TJJunction Temperature 150
TSStorage Temperature -55 150
TLLead Temperature (Soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions.
Symbol Definition Min. Max. Units
VBHigh Side Floating Supply Voltage (IR2127/IR2128) VS + 12 VS + 20
(IR21271) VS + 9 VS + 20
VSHigh Side Floating Offset Voltage Note 1 600
VHO High Side Floating Output Voltage VSVB
VCC Logic Supply Voltage 10 20
VIN Logic Input Voltage 0 VCC
VFLT FAUL T Output V oltage 0 VCC
VCS Current Sense Signal Voltage VSVS + 5
TAAmbient Temperature -40 125 °C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
°C/W
W
°C
V
www.irf.com 3
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” Input Voltage (IR2127/IR21271)
Logic “0” Input Voltage (IR2128)
VIL Logic “0” Input Voltage (IR2127/IR21271)
Logic “1” Input Voltage (IR2128)
VCSTH+ CS Input Positive (IR2127/IR2128) 180 250 320 mV
Going Threshold (IR21271) 1.8 V
VOH High Level Output Voltage, VBIAS - VO 100 IO = 0A
VOL Low Level Output V oltage, VO 100 IO = 0A
ILK Offset Supply Leakage Current 50 VB = VS = 600V
IQBS Quiescent VBS Supply Current 200 400
IQCC Quiescent VCC Supply Current 60 120
IIN+ Logic “1” Input Bias Current 7.0 15 VIN = 5V
IIN- Logic “0” Input Bias Current 1.0 VIN = 0V
ICS+ “High” CS Bias Current 1.0 VCS = 3V
ICS- “High” CS Bias Current 1.0 VCS = 0V
VBSUV+ VBS Supply Undervoltage (IR2127/IR2128) 8.8 10.3 11.8
Positive Going Threshold (IR21271) 6.3 7.2 8.2
VBSUV- VBS Supply Undervoltage (IR2127/IR2128) 7.5 9.0 10.6
Negative Going Threshold (IR21271) 6.0 6.8 7.7
IO+ Output High Short Circuit Pulsed Current 2 00 250 VO = 0V, VIN = 5V
PW10 µs
IO- Output Low Short Circuit Pulsed Current 420 500 VO = 15V, VIN = 0V
PW10 µs
Ron, FLT FAUL T - Low on Resistance 125
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-On Propagation Delay 200 250 VS = 0V
toff Turn-Off Propagation Delay 150 200 VS = 600V
trTurn-On Rise Time 80 130
tfTurn-Off Fall Time 40 65 ns
tbl Start-Up Blanking Tim e 500 700 900
tcs CS Shutdown Propagation Delay 240 360
tflt CS to FAULT Pull-Up Propagation Delay 340 510
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in Figure 3.
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to VS.
3.0
0.8 VCC = 10V to 20V
VIN = 0V or 5 V
mV
µA
mA
V
V
4www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Functional Block Diagram IR2127/IR21271
DOWN
SHIFTER
PULSE
GEN
UV
DETECT
PULSE
FILTER
PULSE
GEN
BUFFER
HV
LEVEL
VB
HO
VS
CS
R
S
RQ
VCC
IN
UP
SHIFTERS
COM
F
AULT -
+
PULSE
FILTER
VB
DELAY
S
QR
QR
S
SHIFT
Functional Block Diagram IR2128
DOWN
SHIFTER
PULSE
GEN
UV
DETECT
PULSE
FILTER
PULSE
GEN
BUFFER
HV
LEVEL
V
B
HO
V
S
CS
R
S
RQ
V
CC
IN
UP
SHIFTERS
COM
F
AULT -
+
PULSE
FILTER
V
B
DELAY
S
QR
QR
S
SHIFT
5V
www.irf.com 5
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Lead Definitions
Symbol Description
VCC Logic and gate drive supply
IN Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271)
out of phase with HO (IR2128)
Indicates over-current shutdown has occurred, negative logic
COM Logic ground
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
CS Current sense input to current sense comparator
Lead Assignments
8 Lead PDIP 8 Lead SOIC
IR2127/IR21271 IR2127S/IR21271S
F
AUL
T
8 Lead PDIP 8 Lead SOIC
IR2128 IR2128S
6www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Figure 4. CS Shutdown Waveform Definitions
90%
CS VCSTH
tcs
HO
Figure 5. CS to
F
AUL
T
Waveform Definitions
90%
CS VCSTH
tflt
F
AUL
T
Figure 2. Switching Time Waveform Definition
IN
HO
90% 90%
10% 10%
50%
50%
trtf
ton toff
50% 50%
IN
(IR2128)
(IR2127/
IR21271)
Figure 1. Input/Output Timing Diagram
HO
CS
IN
F
AUL
T
IN
(IR2128)
(IR2127/
IR21271)
Figure 3. Start-up Blanking Time Waveform Definitions
HO
CS
IN tbl
90%
50%
F
AUL
T
50%
(IR2127/
IR21271)
IN
(IR2128)
www.irf.com 7
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Max
Typ.
Turn-Of f Delay Time (ns)
Temperature (oC)
Figure 11A Turn-Off Time vs. Temperature
0
100
200
300
400
500
10 12 14 16 18 2
0
Max.
Typ.
Turn-On Delay T ime (ns)
VBIAS Supply Voltage (V)
Figure 10B Turn-On Time vs. Supply Voltage
0
1
00
2
00
3
00
4
00
5
00
10 12 14 16 18 2
0
Max.
Typ.
Turn-Of f Delay Time (ns)
VBIAS Supply V oltage (V)
Figure 11B Turn-Off Time vs. Supply Voltage
Turn-On Delay T ime (ns)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Temperat ure (°C)
Max.
Typ
Temperature (oC)
Figure 10A Turn-On Time vs. Temperature
0
50
100
150
200
250
300
350
0246810121416182
0
Turn-On Delay Time (ns)
Input Voltage (V)
Figure 10C Turn-On Time vs. Input Voltage
Figure 11C Turn-OffTime vs. Input Voltage
0
50
100
150
200
250
300
350
400
024681012141618
20
Inpu t Vo ltag e (V)
Max
.
Typ
.
Turn-Off D elay Time (n s)
8www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Start-Up Blanking Time (ns)
0
200
400
600
800
1000
1200
1400
1600
-50 -25 0 25 50 75 100 12
5
Max.
Typ
Min.
Temperature (oC)
Figure 14A Start-Up Blanking Time vs. Temperature
Temperature (oC)
Figure 13A Turn-Off Fall Time vs. T emperature
Turn-Of f Fall Time (ns)
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Temperature (°C)
Max.
Typ
.
0
200
400
600
800
1000
1200
1400
1600
10 12 14 16 18 2
0
Start-Up Bla nking Time (n s)
Max.
Typ.
Min.
Vcc Supply Voltage (V)
Figure 14B Start-Up Blanking Time
vs Voltage
Start-Up Blanking time (ns)
VBIAS Supply Voltage (V)
Figure 13B Turn-Off Fall Time vs. Voltage
Turn-Of f Fall Time (ns)
200
150
100
50
010 12 14 16 18 20
Max.
Typ.
Temperature (oC)
Figure 12A Turn-On Rise Time vs. T emperature
Turn-On Rise Time (ns)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Temperature (°C)
Typ
Max
.
0
100
200
300
400
500
10 12 14 16 18 2
0
Typ.
Max.
VBIAS Supply Voltage (V)
Figure 12B Turn-On Rise Time vs. Supply Voltage
Turn-On Rise Time (ns)
www.irf.com 9
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
0
100
200
300
400
500
600
700
800
-50 -25 0 25 50 75 100 125
Delay Tim e (ns)
Max.
Typ
Temperature (oC)
Figure 17A Logic “1” Input Voltage (IR2127)
Logic “0” Input Voltage (IR2128)
vs Temperature
Input V oltage (V)
0
1
2
3
4
5
6
7
8
-50-25 0 25 50 7510012
5
Min.
CS to F AUL T Pull-Up
Propagation Delay Time (ns)
Temperature (oC)
Figure 16A CS to FA ULT Pull-Up Propagation Delay
vs. T emperature
0
100
200
300
400
500
600
700
800
10 12 14 16 18 2
0
Tim e (ns)
Max.
Typ
CS to F AUL T Pull-Up
Propagation Delay Time (ns)
VCC Supply Voltage (V)
Figure 16B CS to FAULT Pull-Up Propagation Delay
vs. V oltage
VCC Supply Voltage (V)
Figure 17B Logic “1” Input Voltage (IR2127)
Logic “0” Input Voltage (IR2128)
vs Voltage
0
1
2
3
4
5
6
7
8
10 12 14 16 18 2
0
Min.
VCC Supply Voltage (V)
Input V oltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Max
.
Typ.
Temperature (oC)
Figure 15A CS Shutdown Propagation Delay
vs. Temperature
CS Shutdown Propagation Delay (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Vcc Supply Voltage(V)
Typ.
MAX.
Vcc Supply Voltage (V)
Figure 15B CS Shutdown Propagation Delay
vs. Voltage
CS Shutdown Propagation Delay (ns)
10 www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Temperature (oC)
Figure 19A CS Input Positive Going Voltage
vs Temperature (IR2127/IR2128)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Min.
Typ.
Max.
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 12
5
Max.
Temperature (oC)
Figure 20A High Level Output vs Temperature
High Level Output Voltage (V)
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18
20
Max.
Vcc Supply V oltage (V)
Figure 20B High Level Output vs Voltage
High Level Output Voltage (V)
0
100
200
300
400
500
10 12 14 16 18 2
0
Vcc Supply V oltage (V)
Min.
Typ.
Max.
CS Input Positive Going Voltage m(V)
Vcc Supply V oltage (V)
Figure 19B CS Input Positive Going Voltage
vs Voltage (IR2127/IR2128)
CS Input Positive Going Voltage (mV)
Temperature (oC)
Figure 18A Logic “0” Input Voltage (IR2127)
Logic “1” Input Voltage (IR2128)
vs Temperature
Input V oltage (V)
0
0.8
1.6
2.4
3.2
4
-50 -25 0 25 50 75 100 12
5
0
0.8
1.6
2.4
3.2
4
10 12 14 16 18 2
0
Max
VCC Supply Voltage (V)
Figure 18B Logic “0” Input Voltage (IR2127)
Logic “1” Input Voltage (IR2128)
vs Voltage
Input V oltage (V)
www.irf.com 11
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Offset Supply Leakage Current (uA)
0
100
200
300
400
500
0 100 200 300 400 500 60
0
Max.
VB Boost Voltage (V)
Figure 22B Offset Supply Current
vs V oltage
Offset Supply Leakage Current (uA)
0
100
200
300
400
500
600
700
800
-50 -25 0 25 50 75 100 12
5
Max.
Typ.
Temperature (oC)
Figure 23A VBS Supply Current
vs Temperature
VBS Supply Current (uA)
0
100
200
300
400
500
600
700
800
10 12 14 16 18 2
0
Max.
Typ.
Vcc Supply Voltage (V)
Figure 23B VBS Supply Current
vs Voltage
VBS Supply Current (uA)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Max.
Temperature (oC)
Figure 22A Offset Supply Current
vs T emperature
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 12
5
Max.
Temperature (oC)
Figure 21A Low Level Output vs Temperature
Low Level Output V oltage (V)
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 2
0
Max.
Vcc Supply V oltage (V)
Figure 21B Low Level Output vs Voltage
Low Level Output V oltage (V)
12 www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
0
1
2
3
4
5
-50 -25 0 25 50 75 100 12
5
Max.
Logic “0” Input Current (uA)
Temperature (oC)
Figure 26A Logic “0” Input Current
vs T emperature
0
5
10
15
20
25
30
35
40
-50 -25 0 25 50 75 100 125
Max.
Typ
Logic “1” Input Bias Current (uA)
Temperature (oC)
Figure 25A Logic “1” Input Current
vs T emperature
0
5
10
15
20
25
30
35
40
10 12 14 16 18 2
0
Max.
Typ
Logic “1” Input Bias Current (uA)
Vcc Supply Voltage (V)
Figure 25B Logic “1” Input Current
vs Voltage
0
1
2
3
4
5
10 12 14 16 18
20
Max.
Logic “0” Input Current (uA)
Vcc Supply Voltage (V)
Figure 26B Logic “0” Input Current
vs Voltage
0
50
100
150
200
250
300
-50 -25 0 25 50 75 100 12
5
Typ
.
Max
.
Vcc Supply Current (uA)
Temperature (oC)
Figure 24A Vcc Supply Current
vs Temperature
0
50
100
150
200
250
300
10 12 14 16 18 2
0
Typ
Max
.
Vcc Supply Current (uA)
Vcc Supply Voltage (V)
Figure 24B Vcc Supply Current
vs Voltage
www.irf.com 13
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
0
1
2
3
4
5
-50 -25 0 25 50 75 100 12
5
Max.
“Low” CS Bias Current (uA)
Temperature (oC)
Figure 28A “Low” CS Bias Current
vs Temperature
0
1
2
3
4
5
10 12 14 16 18 2
0
Max.
VCC Supply Voltage (V)
Figure 28B “Low” CS Bias Current vs Voltage
“Low” CS Bias Current (uA)
6
7
8
9
10
11
12
13
14
15
10 12 14 16 18 2
0
Vcc S upply Voltage (V)
Min.
Typ
Max.
VBS UVLO Threshold + (V)
VCC Supply Voltage (V)
Figure 29B VBS Undervoltage Threshold (+)
vs Voltage (IR2127/IR2128)
6
7
8
9
10
11
12
13
14
15
-50 -25 0 25 50 75 100 12
5
T e mperature (°C)
Min.
Typ.
Max.
VBS UVLO Threshold + (V)
Temperature (oC)
Figure 29A VBS Undervoltage Threshold (+)
vs Temperature (IR2127/IR2128)
0
1
2
3
4
5
-50 -25 0 25 50 75 100 12
5
Max.
“High” CS Bias Current (uA)
Temperature (oC)
Figure 27A “High” CS Bias Current
vs T emperature
0
1
2
3
4
5
10 12 14 16 18 2
0
Max.
“High” CS Bias Current (uA)
Vcc Supply Voltage (V)
Figure 27B “High” CS Bias Current
vs Voltage
14 www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
0
100
200
300
400
500
600
700
800
-50 -25 0 25 50 75 100 12
5
Typ.
Min.
Output Sink Current (mA)
Temperature (oC)
Figure 32A Output Sink Current vs Temperature
0
100
200
300
400
500
10 12 14 16 18 2
0
Typ.
Min.
Output Source Current (mA)
VBIAS Supply Voltage (V)
Figure 31B Output Source Current vs Voltage
0
1
00
2
00
3
00
4
00
500
-50-25 0 25 50 7510012
5
Typ.
Min.
Output Source Current (mA)
Temperature (oC)
Figure 31A Output Source Current vs Temperature
Output Sink Current (mA)
0
100
200
300
400
500
600
700
800
10 12 14 16 18 2
0
Typ.
Min.
VBIAS Supply Voltage (V)
Figure 32B Output Sink Current vs Voltage
6
7
8
9
10
11
12
13
14
15
-50 -25 0 25 50 75 100 125
Temperature (°C)
Min.
Typ.
Max.
VBS UVLO Threshold - (V)
Temperature (oC)
Figure 30A VBS Undervoltage Threshold (-)
vs Temperature (IR2127/IR2128)
6
7
8
9
10
11
12
13
14
15
10 12 14 16 18 2
0
Min.
Typ.
Max.
VBS UVLO Threshold - (V)
Vcc Supply Voltage (V)
Figure 30B VBS Undervoltage Threshold (-)
vs Voltage (IR2127/IR2128)
www.irf.com 15
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
Case outlines
01-6027
01-0021 11 (MS-012AA)
8-Lead SOIC
87
5
65
D B
E
A
e
6X
H
0.25 [.0 10] A
6
4312
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y1 4.5M-1994.
2. CONT ROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.7 2 [.028]
6.46 [.255]
3X 1.27 [.050] 8X 1.78 [.070]
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENS ION DO ES NOT INCLUDE MOLD PROT RUSIONS.
6 DIMENS ION DO ES NOT INCLUDE MOLD PROT RUSIONS.
MO LD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENS ION IS THE LENGTH OF LEAD FO R SOLDERING T O
A SUBSTRATE.
MO LD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
0.25 [.010] C A B
e1 A
A1
8X b
C
0.10 [.004 ]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BA SIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINCHES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BA SIC 0.635 BASIC
16 www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
09/08/04
Basic Part (Non-Lead Free)
Lead-Free Part
8-Lead PDIP IR2127 order IR2127 8-Lead PDI P IR21 27 order IR2127 PbF
8-Lead SOIC IR2127S order IR2127S 8-Lead SOIC IR21 27S order IR2127 SP bF
8-Lead PDIP IR21271 order IR21271 8-Lead PDIP IR21271 order IR21271PbF
8-Lead SOIC IR21271S order IR21271S 8-Lead SOIC IR21 271S order IR2127 1SPbF
8-Lead PDIP IR2128 order IR2128 8-Lead PDI P IR21 28 order IR2128 PbF
8-Lead SOIC IR2128S order IR2128S 8-Lead SOIC IR21 28S order IR2128 SP bF
ORDER INFORMATION