SMSC TMC2084 Page 1 Revision 0.2 (10-23-08)
DATASHEET
TMC2084
Standalone Mode
CircLinkTM Controller
Datasheet
PRODUCT FEATURES
Low Power CMOS, 3.3 Volt Power Supply with 5
Volt Tolerant I/O
Enhanced Token Passing Protocol from ARCNET
Maximum 15 node per network
Token Retry Mechanism
64/128 Byte Per Packet
Consecutive Node ID Assignment
Memory Mirror
Shared Memory Within Network
Network Standard Time
Network Time Synchronization
Automatic Time Stamping
Coded Mark Inversion
Intelligent 1-Bit Error Correction
Magnetic Saturation Prevention
Standalone I/O Mode Operates without MCU
Supports 16 Bit Input and 16 Bit Output
Up to 14 Intelligent Remote I/O Ports:
Programmable with 8-bit basis (16 to 32 outputs; 0 to
16 inputs)
Selectable output type (push-pull or open-drain)
The part of port is definable as strobe outputs and/or
external trigger inputs
The anti-chatter circuit on the input port can be set in
ON/OFF
The sampling frequency of the anti-chatter circuit can
be set (19.1Hz/1.22KHz)
Feature Rich Transmit Trigger:
After receiving OUTPUT DATA packet or expiring on-
chip timer
Continuous transmission
External trigger input
Flexible Transceiver Interface:
RS-485 transceiver + twist pair cable
RS-485 transceiver + pulse transformer + twist pair
cable
Hybrid transceiver (HYC4000 or HYC2000 from
SMSC Japan)
Fiber Optics also supported
48-Pin, TQFP Lead-Free RoHS Compliant
Package
Body size: 7 × 7mm; pitch: 0.5mm
Temperature Range from 0 to 70 degrees C
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 2 SMSC TMC2084
DATASHEET
ORDERING INFORMATION
Order Number(s):
TMC2084-HT for 48 pin, TQFP Lead-Free RoHS Compliant Package
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123
Copyright © 2008 SMSC or its subsidiaries. All rights reserved.
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete
information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without
notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information
does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of
SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's
standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or
errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon
request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure
could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC
and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms
of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems
Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIM ITATION ANY AND ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND
ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY
DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR
REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC
OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO
HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 3 Revision 0.2 (10-23-08)
DATASHEET
Table of Contents
Chapter 1 General Description.............................................................................................................5
1.1 About CircLink ..................................................................................................................................... 5
1.2 About TMC2084 .................................................................................................................................. 5
1.3 Block Diagram ..................................................................................................................................... 7
1.4 Pin List................................................................................................................................................. 8
1.5 Pinout ................................................................................................................................................ 12
Chapter 2 Functional Description.......................................................................................................13
2.1 Network Configuration....................................................................................................................... 13
2.1.1 General...................................................................................................................................................13
2.1.2 Configuration Examples..........................................................................................................................15
2.2 Initial Configuration............................................................................................................................ 16
2.2.1 Configuration Using Shared Pins............................................................................................................16
2.2.2 Configuration Through the Network ........................................................................................................21
2.2.3 Returning Configuration Data .................................................................................................................29
2.3 Types of Packets............................................................................................................................... 30
2.3.1 Packets TMC2084 Can Receive.............................................................................................................30
2.3.2 Packets TMC2084 Can Transmit............................................................................................................31
2.4 Command Packets ............................................................................................................................ 32
2.4.1 Format of COMMAND Packets...............................................................................................................32
2.5 OUTPUT PORTs............................................................................................................................... 34
2.5.1 Format of OUTPUT DATA Packets ........................................................................................................35
2.5.2 Configuring I/O Port Directions ...............................................................................................................36
2.5.3 Open-Drain Mode ...................................................................................................................................36
2.5.4 Initializing OUTPUT PORTs ...................................................................................................................36
2.5.5 Switching Timing In OUTPUT PORTs ....................................................................................................36
2.6 INPUT PORT..................................................................................................................................... 37
2.6.1 Format of Input Data Packets .................................................................................................................38
2.7 FLAG OUTPUT ................................................................................................................................. 40
2.7.1 Flag Descriptions ....................................................................................................................................41
2.7.2 Pulse Level Width Of Each Output Flag .................................................................................................42
2.8 Status Bits ......................................................................................................................................... 42
2.9 NST Time Stamps ............................................................................................................................. 45
2.9.1 Time Synchronization .............................................................................................................................46
2.9.2 Carry Output ...........................................................................................................................................46
2.10 CMI Coding .................................................................................................................................... 48
2.11 RAM Image On Host Side.............................................................................................................. 48
2.12 Configuration Flow ......................................................................................................................... 51
Chapter 3 Operating Conditions.........................................................................................................53
3.1 Absolute Maximum Ratings .............................................................................................................. 53
3.2 Typical Operating Conditions ............................................................................................................ 53
3.3 DC Characteristics ............................................................................................................................ 53
3.4 AC Characteristics............................................................................................................................. 55
3.4.1 Timing Measurement Points ...................................................................................................................55
3.4.2 CMI Transmit And Receive Waveforms (nCMIBYP = H) ........................................................................56
3.4.3 RZ Transmit And Receive Waveforms (nCMIBYP = L) ..........................................................................57
3.4.4 External Trigger Input .............................................................................................................................57
3.4.5 Other Timing Specifications....................................................................................................................58
3.5 Package Outline ................................................................................................................................ 59
3.6 Device Marking.................................................................................................................................. 61
3.7 Oscillator Circuit ................................................................................................................................ 62
3.8 Basic Device Connections ................................................................................................................ 63
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 4 SMSC TMC2084
DATASHEET
Chapter 4 APPENDIX.........................................................................................................................64
4.1 Application Circuit Examples............................................................................................................. 64
4.1.1 Connecting A/D and D/A.........................................................................................................................64
4.1.2 Connecting Watchdog Timer ..................................................................................................................65
4.1.3 Using SLT4 Plus RS485 .........................................................................................................................65
4.1.4 Considerations for Shared Pins When Port D is Configured as INPUT PORT .......................................66
4.1.5 Case Where Port A and B are Unused ...................................................................................................67
4.1.6 Case Where Port C is Unused................................................................................................................68
4.1.7 Case Where Port D is Unused................................................................................................................68
4.1.8 Initial Configuration for OUTPUT PORT (LED Display Example) ...........................................................69
4.1.9 Width of Reset Signal .............................................................................................................................70
4.2 Output Current from Shared Pins...................................................................................................... 72
4.3 Values of Pull-Up and Pull-Down Resisters...................................................................................... 73
List of Figures
Figure 1 - TMC2084 Block Diagram..........................................................................................................................7
Figure 2 - TMC2084 Pin Configuration....................................................................................................................12
Figure 3 - Network Configuration Example 1: S Single Host and 15 Nodes............................................................15
Figure 4 - Network Configuration Example 2: Dual Hosts and 6 Nodes..................................................................15
Figure 5 - Functional Diagram Of FLAG OUTPUT..................................................................................................40
Figure 6 - Functional Diagram of NST Carry Output Generation Section................................................................46
Figure 7 - nNSTCOUT Output Timing Example For Bits NSTC3 - 0 = 2h...............................................................47
Figure 8 - State Transition Diagram for CMI ...........................................................................................................48
Figure 9 - Initialization Procedure ...........................................................................................................................51
Figure 10 - Procedure to change the configuration through the network during operation ....................................52
Figure 11 - Input Signal Measurement Points .......................................................................................................55
List of Tables
Table 1 - Truth Table Of Bits FOSL3 - 0 ................................................................................................................40
Table 2 - Bits NSTPRE2 – 0 And NST Resolution.................................................................................................46
Table 3 - Bits NSTC3 – 0 vs. Carry Output Bit.......................................................................................................47
Table 4 - CircLink Controller Comparison Table ....................................................................................................74
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 5 Revision 0.2 (10-23-08)
DATASHEET
Chapter 1 General Description
1.1 About CircLink
The CircLink networking controller was developed for small control-oriented local network data
communication based on ARCNET’s token-passing protocol that guarantees message integrity and
calculatable maximum delivery times.
In a CircLink network, when a node receives the token it becomes the temporary master of the network for
a fixed, short period of time. No node can dominate the network since token control must be relinquished
when transmission is complete. Once a transmission is completed the token is passed on to the next node
(logical neighbor), allowing it to be come the master.
Because of this token passing scheme, maximum waiting time for network access can be calculated and
the time performance of the network is predictable or deterministic. Industrial network applications require
predictable performance to ensure that controlled events occur when required.
However, reconfiguration of a regular ARCNET network becomes necessary when the token is missed due
to electronic and magnetic noise. In these cases, the maximum wait time for sending datagrams can not be
guaranteed and the real-time characteristic is impaired. CircLink makes several modification to the original
ARCNET protocol (such as maximum and consecutive node ID assignment) to avoid token missing as
much as possible and reduce the network reconfiguration time.
CircLink implements other enhancements to the ARCNET protocol including a smaller-sized network ,
shorter packet size, and remote buffer mode operation that enable more efficient and reliable small,
control-oriented LANs. In addition, CircLink introduces several unique features for reducing overall system
cost while increasing system reliability.
CircLink can operate under a special mode called “Standalone” or “I/O” mode. In this mode, CircLink does
not need an administrating CPU for each node. Only one CPU is needed to manage a CircLink network
composed of several nodes, reducing cost and complexity.
In a CircLink network, the data sent by the source node is received by all other nodes in the network and
stored according to node source ID. For the target node the received data is executed per ARCNET flow
control and the data is stored in its buffer RAM. The receiving node processes the data while the remaining
nodes on the network discard the data when the receiving node has completed. This memory-mirroring
function assures higher reliability and significantly reduces network traffic.
Network Standard Time (NST) is also a unique CircLink feature. NST is realized by synchronizing the
individual local time on each network node to the clock master in the designated node from which the
packet is sent. CircLink also uses CMI code for transmitting signals, rather than the dipulse or bipolar
signals that are the standard ARCNET signals. Since CMI encoding eliminates the DC element, a simple
combination of a standard RS485 IC and a pulse transformer can be used to implement a transformer-
coupled network.
1.2 About TMC2084
The TMC2084 is CircLink’s standalone mode controller acting as an intelligent remote I/O controller that
uses the enhanced token passing protocol. TMC2084 I/O nodes are controlled by the Host node
(TMC2074/72) via the network. Thus, TMC2084 enables a single-processor with multi-remote I/O
controllers environment at reasonable cost.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 6 SMSC TMC2084
DATASHEET
The TMC2084 has thirty-two I/O port lines featuring programmable direction, with 8-bit basis (output: 16 to
32 bit; input: 0 to 16 bit). The maximum number of nodes per network is fifteen, including the host node.
This configuration enables a processor to control a total of 448 (14 × 32) remote I/O lines.
The Output Port type is selectable from either open-drain or push-pull, while one part of the I/O ports is
definable as either output pins for network status monitoring, strobe output pins to handshake with AD or
DA converter, or input pins for external trigger.
TMC2084 also has additional functions including the function to notify the host of its status, the states of its
Output Ports and settings, the function to send packets with timestamp, and the function to synchronize
the on-chip timer to the host.
This rich feature set is contained in a single 48-pin TQFP package.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 7 Revision 0.2 (10-23-08)
DATASHEET
1.3 Block Diagram
General
Purpose
I/O
NST
Time
Stamp
Command
Register
Configuration
Register
Receive Data
Buffer
Transmit Data
MUX
Status
S-P
P-S
Receiver
RZ Modulator
CMI
Demodulator
CMI
Modulator
Enhance
d
Token Passing
Protocol Microsequence
r
PA[7:0]
PB[7:0]
PC[7:0]
PD[7:0]
nRESET
PGS[2:0]
NID[3:0]
PSSL
nCMIBYP
TXD
TXEN
RXIN
CMI Clear Signal
Configuration Reg iste r
X1
X2
Flags
VDD
VSS
Figure 1 - TMC2084 Blo ck Diagram
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 8 SMSC TMC2084
DATASHEET
1.4 Pin List
PIN
NO. SIGNAL NAME PIN NAME BUFFER
TYPE BY
FUNCTION DETAILED DESCRIPTION
General Purpose I/O Group A
2 - 9 Port A bit 0 - 7
(output-only)
PA0 - 7 O42/OD4 General Purpose I/O Port A.
An output-only port. The type of output can
be selected using the PAOD bit, configured
through the network. PAOD = 0 selects
push-pull; PAOD = 1 selects open-drain
(default).
General Purpose I/O Group B
10-11,
14-19
Port B bit 0 - 7
(output-only)
PB0 - 7 O42/OD4 General Purpose I/O Port B.
An output-only port. The type of output can
be selected using PBOD bit, configured
through the network. PBOD = 0 selects
push-pull; PBOD = 1 selects open-drain
(default).
General Purpose I/O Group C
20 Port C bit 0
External Trigger Input 1
PC0
nPISTR1
IT/O42/OD4
IT
General Purpose I/O Port Bit 0.
A bi-directional port. The port direction can
be specified using the shared pin PGS0.
PGS0 = L specifies input; PGS0 = H
specifies output. The type of output can be
selected using PCOD bit, configured
through the network. PCOD = 0 selects
push-pull; PCOD = 1 selects open-drain
(default).
External Trigger Input 1
The input pin for external trigger signal. If
the shared pin PGS0 is set to L while "6h"
or “7” is set using TXTRG3 - 0 bits that are
configured through network then this port is
configured for the external trigger input.
21-23,
26-29
Port C bit 1 - 7 PC1 - 7 IT/O42/OD4 General Purpose I/O port C bit 1 to 7.
A bi-directional port. The direction of port
and the type of output are configured using
the same way as PC0.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 9 Revision 0.2 (10-23-08)
DATASHEET
PIN
NO. SIGNAL NAME PIN NAME BUFFER
TYPE BY
FUNCTION DETAILED DESCRIPTION
General Purpose I/O Group D
30 Port D bit 0
External Trigger Input 2
(Node ID Configuration Bit
0)
PD0
nPISTR2
(NID0)
IT/O42
IT
(IT)
The bit 0 of Port D.
A bi-directional port. The port direction can
be specified using the shared pin PGS1.
PGS1 = L specifies input; PGS1 = H
specifies output.
External Trigger Input 2
The input port of external trigger signal. If
the shared pins PGS0 and PGS1 are set to
L and H respectively while either "6h" or
"7h" is set using TXTRG3 – 0 bits that are
configured through network, then this port is
configured for the external trigger input port.
The configuration bit 0 of the own node ID.
For detailed information, see the section on
Configuration Using Shared Pins.
31 Port D bit 1
(Node ID Configuration Bit
1)
PD1
(NID1)
IT/O42
(IT)
The bit 1 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD0.
The configuration bit 1 of the own node ID
For detailed information, see the section on
Configuration Using Shared Pins.
32 Port D bit 2
(Node ID Configuration Bit
2)
PD2
(NID2)
IT/O42
(IT)
The bit 2 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD0.
The configuration bit 2 of the own node ID
For detailed information, see the section on
Configuration Using Shared Pins.
33 Port D bit 3
(Node ID Configuration Bit
3)
PD3
(NID3)
IT/O42
(IT)
The bit 3 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD0.
The configuration bit 3 of the own node ID
For detailed information, see the section on
Configuration Using Shared Pins.
34 Port D bit 4
FLAG OUTPUT bit0
(Page Size Selection)
PD4
FO0
(PSSL)
IT/O42
O42
(IT)
The bit 4 of Port D.
A bi-directional port. The port direction can
be specified using the shared pin PGS1.
PGS1 = L specifies input; PGS1 = H
specifies output. PGS2 should be set to L.
The bit0 of FLAG OUTPUT.
A bi-directional port. Setting the shared pin
PGS2 to H configures FLAG OUTPUT
mode. For detailed information of the flag,
see the section on Configuration Through
Network.
Page Size Selection.
For detailed information, see the section on
Configuration Using Shared Pins.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 10 SMSC TMC2084
DATASHEET
PIN
NO. SIGNAL NAME PIN NAME BUFFER
TYPE BY
FUNCTION DETAILED DESCRIPTION
35 Port D bit 5
FLAG OUTPUT bit1
(Port Direction Configuration
- bit 0)
PD5
FO1
(PGS0)
IT/O42
O42
(IT)
The bit 5 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD4.
The bit1 of FLAG OUTPUT.
The FLAG OUTPUT mode is configured
using the same way as PD4. For detailed
information of the flag, see the section on
Configuration Through Network.
Configuration bit 0 of port direction.
For detailed information, see the section on
Configuration Using Shared Pins.
37 Port D bit6
FLAG OUTPUT bit2
(Port Direction Configuration
- bit 1)
PD6
FO2
(PGS1)
IT/O42
O42
(IT)
The bit 6 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD4.
The bit2 of FLAG OUTPUT.
The FLAG OUTPUT mode is configured
using the same way as PD4. For detailed
information of the flag, see the section on
Configuration Through the Network.
Configuration bit 1 of port direction.
For detailed information, see the section on
Configuration Using Shared Pins.
38 Port D bit 7
Network Status
Monitoring output
(Port Direction Configuration
- bit 2)
PD7
nRCNERR
(PGS2)
IT/O42
O42
(IT)
The bit 7 of Port D.
A bi-directional port. The port direction is
configured using the same way as PD4.
Network Status Monitoring output.
The FLAG OUTPUT mode is configured
using the same way as PD4. For detailed
information see the section on
Configuration Through the Network.
The configuration bit 2 of port direction.
For detailed information, see the section on
Configuration Using Shared Pins.
Reset and Clock
41 Reset Input nRESET ICS The input for the reset signal.
The signal for hardware reset is connected
to this active low pin.
43 Oscillator/
External Clock Input
X1
IC This pin functions as the input for either the
oscillator or the external clock.
44 Oscillator Output X2
OX Oscillator output.
Transceiver Interface
46 Transmit Enable Output TXEN
O42 Transmit enable output (active high)
47 Transmit Data Output
(CMI bypass configuration)
TXD
(nCMIBYP)
O42
(IT)
Transmit data output.
Specifies bypassing of CMI encoder/
decoder.
For detailed information, see the section on
Configuration Using Shared Pins.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 11 Revision 0.2 (10-23-08)
DATASHEET
PIN
NO. SIGNAL NAME PIN NAME BUFFER
TYPE BY
FUNCTION DETAILED DESCRIPTION
48 Receive Data Input RXIN IT Receive data input.
Test Pin
39,
40
Test Mode nTMODE
nSMODE
IT_PU Test mode.
This pin must be tied to Vdd.
Pow er Supply Pin
13,
25,
42
Power Supply Vdd -
Power supply pin.
This pin is connected to the power supply
voltage (3.3V).
1,
12,
24,
36,
45
Ground Vss - Ground pin.
This pin is connected to the ground level
(0V).
Description of buffer types:
IC Input, CMOS Level
IT Input, TTL Level
IT_PU Input, TTL Level with pull-up
ICS Input, CMOS Level with Schmitt Trigger
O42 Output, IOL = 4 mA, IOH = -2 mA
OD4 Open-drain Output, IOL = 4 mA
OX Oscillator Output
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 12 SMSC TMC2084
DATASHEET
1.5 Pinout
Vs s
PD5
PD4
PD3
PD2
PD1
PD0
PC7
PC6
PC5
PC4
Vdd
36 35 34 33 32 31 30 29 28 27 26 25
PD6 37 24 Vs s
PD7 38 23 PC3
nTMODE 3 9 2 2 P C2
nSMODE 4 0 2 1 P C1
nRESET 41 20 PC0
Vdd 42 19 PB7
X1 43 18 PB6
X2 44 17 PB5
Vs s 45 16 PB4
TXEN 46 15 PB3
TXD 47 14 PB2
RXI N 48 13 Vdd
123456789101112
Vs s
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
Vs s
TMC2084
Figure 2 - TMC2084 Pin Configuration
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 13 Revision 0.2 (10-23-08)
DATASHEET
Chapter 2 Functional Description
2.1 Network Configuration
2.1.1 General
Host Node and I/O Node
A CircLink network can consist of a single host node/multi I/O node, or multiple host nodes/single I/O, or
multiple host nodes and multiple I/O nodes. The host node is directly connected to the system (external)
CPU, which controls all communications to or from it. The device that can be used for the host node should
be a TMC2072/74 that is configured to operate in Peripheral mode; the TMC2084 is dedicated for the use
as an I/O node only (Standalone mode). The I/O nodes do not require the CPU and they are controlled
indirectly via the network by the CPU through the host node.
The CircLink network allows a combination of host nodes and I/O nodes up to 15 nodes total. Every
CircLink network must have at least one host node.
The host node controls the following I/O node functions:
Input and output activities on a port (sending and receiving data and initializing the port)
Setting various configuration data
Request for configuration data
Activation of transmission activity
Software reset
These functions are controlled through the network.
Section 2.1.2 shows two examples: network configuration example 1 (single host) that includes one host
node and fourteen I/O nodes, and network configuration example 2 (dual host) that includes two host
nodes and four I/O nodes. When multiple hosts are used, I/O nodes should be grouped so that each host
can control its corresponding group as shown in network configuration example 2: Host 1 controls both I/O-
1 and -2; Host 2 controls both I/O-3 and -4.
Node ID
Any node that belongs to a network should have a unique identification number (ID). The ID is configured
using shared pins NID3 - 0. When shared pin PSSL is set to L, the allowable range of the node ID is 1
trough 7; it is 1 through 15 when the PSSL pin is set to H. 0 is not allowed for any node ID.
Consecutive node ID numbers (beginning with 1) are assigned to nodes in a network. Consecutive node ID
numbers should be used, because each unused ID number between 2 working node IDs causes a latency
of 93.6 μs (2.5 Mbps operation) every time a token is sent and thus degrades overall network performance.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 14 SMSC TMC2084
DATASHEET
MAXID
The MAXID defines the maximum node ID of the network and is configured through the network using the
MAXID3 – 0 bits. Configuring the MAXID for the network when the number of nodes is less than the upper
limit that is defined as 7 for PSSL = L and 15 for PSSL = H in the protocol enables tokens to circulate only
among the existing nodes. The allowable MAXID range is 2 through 7 for PSSL = L and 2 through 15 for
PSSL = H. Both 0 and 1 are not allowed. The node ID should be assigned consecutively starting with 1 and
the MAXID should be equal to the number of nodes.
Typically, all nodes should have the same value for MAXID. However, the node that requires MAXID is the
node that has the largest ID number in the network and the remaining nodes can be left to use the default
value: 7 for PSSL = L and 15 for PSSL = H (in this case the maximum ID is assigned to the host node). In
the case where configuration items other than MAXID also can use their corresponding default values,
configuration through the network is not required.
Transmission Rate
Transmission Rate defines a common rate for all nodes. The transmission rate for TMC2072/74 is
configured using either an internal register or an external pin; for TMC2084, it is configured by the value
that is equal to one eighth of the input clock.
TRANSMISSION
RATE CLOCK
FREQUENCY CLOCK SOURCE
5 Mbps 40 MHz External clock only
4 Mbps 32 MHz External clock or crystal resonator
2.5 Mbps 20 MHz External clock or crystal resonator
2 Mbps 16 MHz External clock or crystal resonator
1.25 Mbps 10 MHz External clock or crystal resonator
1 Mbps 8 MHz External clock only
625 Kbps 5 MHz External clock only
500 Kbps 4 MHz External clock only
312.5 Kbps 2.5 MHz External clock only
The acceptable frequency of an external crystal resonator is limited to the range of 10 MHz to 32 MHz due
to the limitation of the onchip oscillator’s performance. Please use the external clock module if a frequency
other than the above is needed.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 15 Revision 0.2 (10-23-08)
DATASHEET
2.1.2 Configuration Examples
Host
TMC2072/74
Transceiver
I/O -1
TMC2084
Transceiver
I/O -2
TMC2084
Transceiver
I/O -3
TMC2084
Transceiver
I/O -14
TM
C
2084
Transceiver
Max 15 Nodes
Termination R Ter mina-
tion R
MAXID=15
ID=2 MAXID=15 MAXID=15 MAXID=15
ID=3 ID=4 ID=15
MAXID=15
ID=1
Switches etc.
Switches etc.
Switches etc.
Switches etc.
LED etc.
LED etc.
LED etc.
LED etc.
CPU
Figure 3 - Network Configuration Example 1: S Single Host and 15 Nodes
Host 1
TMC20070A/73
Transceiver
I/O -1
TMC20080
Transceiver
I/O -2
TMC20080
Transceiver
I/O -3
TMC20080
Transceiver
Group controlled by Host 1
Host 2
TMC20070A/73
Transceiver
I/O -4
TMC20080
Transceiver
ID=2
MAXID=15 ID=3
MAXID=15 MAXID=15
ID=4 ID=5
MAXID=1
5
MAXID=6
ID=6ID=1
MAXID6 *1
*1 Because a token is s till passed to node 6 even if node s 2 to 5 are off .
Switc hes etc.
LED etc.
LED etc.
LED etc.
Switches etc.
Switc hes etc.
Switc hes etc.
LED etc.
Termination R Termina-t
i
on R
Group controlled by Host 2
CPU CPU
Figure 4 - Network Config uration Example 2: Dual Hosts and 6 Nodes
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 16 SMSC TMC2084
DATASHEET
2.2 Initial Configuration
Initial configuration can be performed two ways: through shared pins or through the network.
2.2.1 Configuration Using Shared Pins
Basic items related to communication are configured using the shared pins. The configuration is performed
after reading the states of pins PD7 - 0 and TXD at the rising edge of the reset signal. Since these pins
remain in their high-impedance states (input states) during reset, connecting pull-up resisters to them
causes High level input and connecting pull-down resisters to them causes Low level input. The items
configured here are essential to send or receive packets within the network. Additional detail items may be
configured if necessary using configuration through the network as described below.
nCMIBYP This pin specifies whether CMI coding is bypassed.
(Shared with TXD)
Low: the CMI coding is bypassed (RZ coding for HYC4000/2000)
High: the CMI coding is not bypassed. (CMI coding for RS-485/CAN transceiver)
NID3 - 0 These three pins specify the node ID within the range 1 through 15.
(Shared with PD3 - 0) NID3 and NID0 correspond to MSB and LSB respectively. Low causes 0; High
causes 1. When PSSL is set to Low, NID3 causes 0.
Note: DO NOT set low level for all pins.
PSSL This pin selects the page size.
(Shared with PD4) Low: 128 bytes/page (the maximum number of nodes = 7): All of the NID3,
MAXID3 and CMID3 bits are fixed to 0.
Burst Transmission Period = 1.07 ms × 2.5/R (R = Transmission Rate in Mbps)
High: 64 bytes/page (the maximum number of nodes = 15)
Burst Transmission Period = 0.79 ms × 2.5/R (R = Transmission Rate in Mbps)
Two types of page sizes out of the four types that TMC2072/74 supports can be configured for TMC2084:
64-byte and 128-byte modes. A common page size must be configured for all nodes including host nodes.
The data size that TMC2084 can send to or receive from the host in all modes is only the 8 bytes that are
taken from the page; 64 bytes or 128 bytes of data can be transmitted only between host nodes.
PGS2 - 0 These three pins specify I/O port direction as shown in the table below.
(Shared with PD7 - 5)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 17 Revision 0.2 (10-23-08)
DATASHEET
Port D Considerations
Example 1: Configuring Port D as OUTPUT PORT or FLAG OUTPUT - The case where the configuration
by the shared pins is the same as the initial data from the OUTPUT PORT configured
The figure below shows the case where the initial data from the OUTPUT PORT does not conflict with the
configuration by shared pins even if port D is configured as the OUTPUT PORT or FLAG OUTPUT. Port D
remains in high-impedance state while the reset signal (nRESET) remains low. OUTPUT PORT remains in
high-impedance state during the period from the falling edge of reset to the beginning of the first output
data received. During these high-impedance periods, each input to port D is defined by the external pull-up
(High) or pull-down (Low) resister. When port D is configured as FLAG OUTPUT, it starts driving right after
the deassertion of the reset signal.
Push-pull only O.D / Push-pull
PGS2 PGS1 PGS0 PD7 - 4 PD3 - 0 PC7 - 0 PB7 - 0 PA7 - 0
Input Pins
for External
Trigger
L L L Input nPISTR1
L L H Input Input Output nPISTR2
L H L Input nPISTR1
L H H Output Output Output -
H L L Input nPISTR1
H L H Input Output nPISTR2
H H L Input nPISTR1
H H H
FLAG
OUTPUT
Output Output
Output Output
-
L : Low ; H : High O.D : Open-drain. The pins PA7 – 0 and PB7 – 0 are output-only.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 18 SMSC TMC2084
DATASHEET
Configuration by
shared pins
H
L
Register
Reset
generator
nRESET
Inside of LSI
Reset signal
Output port
Only port D remains in Hi-Z
while nRESET = L
PD7-0
Clock
Setting Value
Reset
Example 2: Configuring Port D as OUTPUT PORT - The case where the configuration by the shared
pins is different from the initial data from the OUTPUT PORT configured.
The figure below shows the case where the initial data from the OUTPUT PORT does conflict with the
configuration by shared pins when port D is configured as an OUTPUT PORT. Port D remains in high -
impedance state while the reset signal (nRESET) remains low. Also, the OUTPUT PORT remains in high-
impedance state during the period from the falling edge of reset to the beginning of the first output data
received.
During reset, the external tri-state buffer is enabled and the values configured by the shared pins are
inputted to port D. After the reset signal is deasserted, the tri-state buffer is disabled and the initial data
from the OUTPUT PORT is defined by an external pull-up (High) or pull-down (Low) resister. If initial data
from the OUTPUT PORT is needed during the reset, use an external gate as shown in the figure below to
define the data from OUTPUT PORT while the nRESET remains at low level.
A hold time greater than 5 ns is required to retrieve the data configured by the shared pins and place it in
the onchip memory. Thus, a buffer is added to provide a delay time for the control signal of an external tri-
state buffer.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 19 Revision 0.2 (10-23-08)
DATASHEET
H
L
Configuration
for initial data
of Output Port
Register
Reset
generator
nRESET
Inside of LSI
H
L
Configuration by
shared pins
Reset signal
Output port
Delay >5ns
Logic
Gate
Output of logic gate:
• Initial L: Outputs L during reset
(AND circuit)
• Initial H: Outputs H during reset
(OR circuit)
Note: No gate required if you do
not care output during reset.
PD7-0
Only port D remains in Hi-Z while
nRESET = L
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 20 SMSC TMC2084
DATASHEET
Example 3: Configuring Port D as an INPUT PORT
The figure below shows the case where the port D is configured as INPUT PORT. The port D remains in
high impedance state while the reset signal (reset) remains low level. During this high-impedance state,
data defined by an external pull-up (High) or pull-down (Low) resister must be inputted to port D and any
external input data to port D should be inhibited to avoid conflict. This requires the external tri-state buffer
to inhibit input data during the reset period.
A hold time greater than 5 ns is required to retrieve the data configured by the shared pins and place it on
the onchip memory. Thus, the buffer is added to provide a delay time for the control signal of the external
tri-state buffer.
Register
Reset
generator
nRESET
Inside of LSI
H
L
Configuration
b
y
shared
p
ins
Reset signal
Input data
Delay >5ns
Only port D remains in Hi-Z while
nRESET = L.
PD7-0
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 21 Revision 0.2 (10-23-08)
DATASHEET
2.2.2 Configuration Through the Network
Additional items configured using this feature. The configuration is performed with an INITIAL SETTING
packet received from the host node.
If the default is acceptable for all items that require configuration via the network and the NST carry output
(i.e. nNSTCOUT described later) is not used, then configuration by the INITIAL SETTING packet is
unnecessary. The configuration by INITIAL SETTING packet is valid only before receiving the START
TRANSMIT command (described later). After receiving the START TRANSMIT command, the INITIAL
SETTING packet is ignored.
Format of INITIAL SETTING Packet
From host node (transmit) to I/O node (receive)
Name Adrs. * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Initial
value
SID 00h Host node ID --
DID 01h I/O node ID
or 00h (broadcasted) --
C.P 02h C.P = 38h/78h * --
• • •
--
• • •
PACKET ID code --
DATA0 38h/78h 0 1 0 0 --
DATA1 39h/79h 0 PCOD PBOD PAOD BSTSEN
D
CMIERR
MD EMGYMD BRE 7Fh
DATA2 3Ah/7Ah POSTRM
D
POSTRD
LY
ACHTBY
P 0 MAXID3 - 0 0Fh
DATA3 3Bh/7Bh FOSL3 - 0 TXTRG3 - 0 00h
DATA4 3Ch/7Ch NSTCOM
D
ACHTFR
Q 0 0 NSTC3 - 0 80h
DATA5 3Dh/7Dh NSTPRE2 - 0 0 CMID3 - 0 00h
NST-L 3Eh/7Eh NST7 - 0 --
NST-H 3Fh/7Fh NST15 - 8 --
Note: *Addresses in 64-byte mode/Addresses in 128-byte mode
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 22 SMSC TMC2084
DATASHEET
Register Description (DATA1: Vario u s Configurations)
Name Drs. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA1 39h/79h 0 PCOD PBOD PAOD BSTSEN
D
CMIERR
MD
EMGYMD BRE
BRE Enables or disables receiving broadcast
0: Receiving broadcast is disabled.
1: Receiving broadcast is enabled (default).
When the broadcast packet is received by the BRE=0 setting, it is disregarded. (It doesn't
become a receiving error.)
EMGYMD Configures emergency mode (Assertion of MYRECON causes dropping from network).
0: Does not initialize OUTPUT PORT (high-impedance state) when MYRECON is
asserted.
1: Initializes OUTPUT PORT (high-impedance state) when MYRECON is asserted
(default).
CMIERRMD Configures the CMI error mode.
0: Does not discard the packet when CMIECC is asserted in it.
1: Discards the packet when CMIECC is asserted in it (default)
BSTSEND Configures Recon-burst signal transmit (Assertion of MYRECON causes dropping from
network).
0: Does not transmit Recon-burst signal when MYRECON is asserted.
1: Transmits Recon-burst signal when MYRECON is asserted (default).
PAOD Configures port A pins (PA7 - 0) as open-drain outputs.
0: Configures port A pins (PA7 - 0) as push-pull outputs (totem pole).
1: Configures port A pins (PA7 - 1) as open-drain outputs (default).
PBOD Configures port B pins (PB7 - 0) as open-drain outputs.
0: Configures port B pins (PB7 - 0) as push-pull output (totem pole).
1: Configures port B pins (PB7 - 1) as open-drain outputs (default).
PCOD Configures port D pins (PD7 - 0) as open-drain outputs.
0: Configures port D pins (PD7 - 0) as push-pull output (totem pole).
1: Configures port D pins (PD7 - 1) as open-drain outputs (default).
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 23 Revision 0.2 (10-23-08)
DATASHEET
Register Description (DATA2: MAXID and nPOSTR Related)
Name Adrs. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA2 3Ah/7Ah POSTRM
D
POSTRD
LY
ACHTBY
P 0 0
MAXID3 - 0 Configure the maximum ID number with range 1 to 15 (MAXID4 is fixed to 0)
MAXID3: MSB; MAXID0: LSB
Configuring PSSL = Low causes MAXID3 to be fixed to 0.
Default: MAXID3 - 0 = 1111
ACHTBYP Configures the bypass or not for Anti-chatter circuit on input ports.
0: Enable the anti-chatter circuit (default)
1: Bypass (Disable) the anti-chatter circuit
Note: When the transmit trigger (TXTRG3-0) setting is set to “By the external trigger”, bypass is automatic.
POSTRDLY Configures delay time for the OUTPUT PORT strobe (nPOSTR).
0: From the transition of port A to the falling edge of strobe at least 11 times of Tx (default)
1: From the transition of port A to the falling edge of strobe at least 43 times of Tx.
Note: Tx = Period of input clock (11 × Tx = 550 ns and 43 × Tx = 2.15 μs @20 MHz input)
POSTRMD Configures output mode for the OUTPUT PORT strobe signal (nPOSTR).
0: Asserts OUTPUT PORT strobe signal after initializing OUTPUT PORT and after
receiving the OUTPUT DATA packet (default).
1: Asserts only after receiving the OUTPUT DATA packet.
Note: Initializing OUTPUT PORT means Initialization by both the INITIALIZE OUTPUT PORT command and the
assertion of MYRECON in emergency mode (EMGYMD = 1).
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 24 SMSC TMC2084
DATASHEET
Register Description (DATA3: This register selects the transmit trigger in F L AG OUTPUT.)
Name Adrs. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA3 3Bh/7Bh FOSL3 - 0 TXTRG3 - 0
TXTRG3 - 0 These bits select the transmit trigger.
The trigger condition to send the INPUT DATA packet is configured. The transmit trigger is enabled after
receiving the START TRANSMIT command.
TXTRG
3 2 1 0
The transmit trigger to send the INPUT DATA
packet is generated upon ...
0 0 0 0
Receiving the OUTPUT DATA packet
0 0 0 1
Receiving the OUTPUT DATA packet or expiring
on-chip timer (3.3 ms)
0 0 1 0
Receiving the OUTPUT DATA packet or expiring
on-chip timer (6.6 ms)
0 0 1 1
Receiving the OUTPUT DATA packet or expiring
on-chip timer (13.1 ms)
0 1 0 0
Receiving the OUTPUT DATA packet or expiring
on-chip timer (26.2 ms)
0 1 0 1
Receiving the OUTPUT DATA packet or expiring
on-chip timer (104.8 ms)
0 1 1 0
By the external trigger (with NST latch)
0 1 1 1
By the external trigger (without NST latch)
1 0 0 0 Reserved (unused)
1 0 0 1 Reserved (unused)
1 0 1 0 Reserved (unused)
1 0 1 1 Reserved (unused)
1 1 0 0 Reserved (unused)
1 1 0 1 Reserved (unused)
1 1 1 0
Receiving own token
1 1 1 1
Receiving the COMMAND packet
Receiving the OUTPUT DATA packet:
A single transmit trigger is generated after receiving the OUTPUT DATA packet that is destined for this
node or broadcasted is received. The INPUT DATA packet is transmitted after receiving the token (i.e., the
token destined for this node).
Receiving the OUTPUT DATA packet or expiring on-chip timer:
A single transmit trigger is generated after either receiving the OUTPUT DATA packet that is destined for
this node or broadcasted, or expiring on-chip timer. The INPUT DATA packet is then transmitted after
receiving the token.
Note: This on-chip timer is cleared by an of three events: receiving the START TRANSMIT command; receiving
the INITIALIZE OUTPUT PORT command; or transmitting an INPUT DATA packet after receiving a data
packet.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 25 Revision 0.2 (10-23-08)
DATASHEET
By the external trigger:
The rising edge on the external trigger input pin (nPISTR1 or nPISTR2) latches the input data and
generates the trigger. The INPUT DATA packet is then transmitted after receiving the token.
Either nPISTR1 or nPISTR2 is selected as the external trigger input pin depending on the I/O port direction
configured by pins PGS2 - 0. If all of ports are configured as OUTPUT PORTs by the configuration feature
for I/O port direction, then this external trigger cannot be used.
When the NST value latch is used, both the NST value and input data are latched simultaneously and the
latched NST value is transmitted. When the NST value latch is not used, the last NST value is transmitted
regardless to latching the input data.
(Both the input data and NST value latches are cleared to zero by hardware at initialization.)
Receiving the token allows the actual transmission of packets. Thus, the delay time from the trigger to the
actual transmission can vary. If two consecutive external triggers are inputted, it can not be determined
which trigger caused the data transmission since it depends on when the token was received.
Using nTXDONE (transmit completion flag) of the FLAG OUTPUT allows an easy handshake.
nPISTR1/2
nTXD
E
Trigger input is inhibited
during transmission process
Completion of transmission
Whenever the token is received:
With this condition, the trigger is always generated. The INPUT DATA packet is transmitted whenever own
token is received.
Receiving COMMAND packet:
A single transmit trigger is generated whenever either the START TRANSMIT or INITIALIZE OUTPUT
PORT command that is destined for this node or broadcasted is received. The INPUT DATA packet is then
transmitted upon receiving the token (The transmit trigger caused by the INITIALIZE OUTPUT PORT
command is valid after receiving the START TRANSMIT command).
Note that the Return Setting and SOFTWARE RESET commands do not cause any transmit trigger. For
detail information on each command, see section 2.4 COMMAND packet.
NOTE: A single transmit trigger is generated each time the START TRANSMIT command is received regardless
of the configuration for the transmit trigger. Additionally, a single transmit trigger is generated at the time
the INITIALIZE OUTPUT PORT command is received after receiving the START TRANSMIT command.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 26 SMSC TMC2084
DATASHEET
FOSL3 - 0 Select FLAG OUTPUT.
These bits select the flags that are outputted to the upper 4 bits of port D. For detailed information, see
section of 2.7 FLAG OUTPUT.
FOSL
3 2 1 0 FO3 (PD7) FO2 (PD6) FO1 (PD5) FO0 (PD4)
Default 0 0 0 0 nNSTCOUT
0 0 0 1 NSTUNLOC
0 0 1 0
nTXDONE
nTKN2ME
0 0 1 1 NSTUNLOC
0 1 0 0 nNSTCOUT
0 1 0 1
nPOSTR
NSTUNLOC nTKN2ME
0 1 1 0 NSTUNLOC
0 1 1 1 nNSTCOUT
1 0 0 0
nTXDONE
1 0 0 1 nNSTCOUT
NSTUNLOC nTKN2ME
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
nRCNERR
(Fixed to High) (Fixed to High) (Fixed to High)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 27 Revision 0.2 (10-23-08)
DATASHEET
Register Description (DATA4: NST carry-related configuration)
Name Adrs. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA4 3Ch/7Ch NSTCOM
D
ACHTFR
Q 0 0 NSTC3 – 0
NSTC3 - 0 These bits select the NST carry (default: NSTC3 - 0 = 0000)
0000: 1st digit (carry period = NST resolution X 2^1)
0001: 2nd digit (carry period = NST resolution X 2^2)
0010: 3rd digit (carry period = NST resolution X 2^3)
0011: 4th digit (carry period = NST resolution X 2^4)
: : :
1110: 15th digit (carry period = NST resolution X 2^15)
1111: 16th digit (carry period = NST resolution X 2^16)
ACHTFRQ Configures the sampling frequency for Anti-chatter circuit on input ports.
0: Sampling frequency is 1.22 kHz (default)
1: Sampling frequency is 19.1Hz (52 ms period)
NOTE: When the transmit trigger (TXTRG3-0) setting is set to “By the external trigger”, bypass is automatic. The
above-mentioned sampling frequency is the value when the input clock is 20 MHz. The sampling frequency
doubles when the input clock is 40 MHz, and half when the input clock is 10 MHz.
NSTCOMD Configures the output mode of NST carry (NST carry is outputted via nNSTCOUT)
0: Active low pulse output with the pulse Level Width resolution selected by the bits
NSTPRE2 – 0
1: Clock output with the duty ratio 50% (default)
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 28 SMSC TMC2084
DATASHEET
Register Description (DATA5: Clock master ID and NST resolution)
Name Adrs. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DATA5 3Dh/7Dh NSTPRE2 - 0 0 CMID3 - 0
CMID3 - 0 These bits define the clock master ID in the range of 1 to 15 (CMID4 is fixed to 0)
CMID3: MSB; CMID0: LSB
PSSL = Low causes CMID3 = 0.
Default: CMID3 - 0 = 0000 (Asynchronous to NST: free running)
If a non-zero value is set in bits CMID3 – 0, the synchronization to NST begins when a
packet is received from the next CMID.
NSTPRE2 - 0 These bits define the NST resolution (default: NSTPRE2 - 0 = 000)
000: 1.6 μs (Maximum period = 104.9 ms)
001: 3.2 μs (Maximum period = 209.7 ms)
010: 6.4 μs (Maximum period = 419.4 ms)
011: 12.8 μs (Maximum period = 838.9 ms)
100: 25.6 μs (Maximum period = 1.68 s)
101: 51.2 μs (Maximum period = 3.35 s)
110: 102.4 μs (Maximum period = 6.71 s)
111: 204.8 μs (Maximum period = 13.42 s)
NOTE: The above data are for 20 MHz input.
(For 40 MHz input they are half; for 10 MHz input they double)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 29 Revision 0.2 (10-23-08)
DATASHEET
2.2.3 Returning Configuration Data
When the RETURN SETTING command is received before receiving the START TRANSMIT command,
the RETURN SETTING packet is broadcasted upon receiving the next own token. Items configured using
the INITIAL SETTING packet are transmitted as the RETURN SETTING packet.
After receiving the START TRANSMIT command, any RETURN SETTING command is ignored. For detail
information on each command, see the section of 2.4 COMMAND packets.
Format of the RETURN SETTING Packet
From I/O node (transmit) to host node (receive)
Name Adrs. * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SID 00h ID of I/O node
DID 01h 00h (always broadcasted)
C.P 02h C.P = 38h/78h *
• • •
• • •
PACKET ID code
DATA0 38h/78h 0 1 1 0 0 000 / PGS2-0 *2
DATA1 39h/79h 0 PCOD PBOD PAOD BSTSEN
D
CMIERR
MD EMGYMD BRE
DATA2 3Ah/7Ah POSTRM
D
POSTRD
LY
ACHTBY
P 0 0
DATA3 3Bh/7Bh FOSL3 - 0 TXTRG3 - 0
DATA4 3Ch/7Ch NSTCOM
D
ACHTFR
Q 0 0 NSTC3 - 0
DATA5 3Dh/7Dh NSTPRE2 - 0 0 CMID3 - 0
NST-L 3Eh/7Eh NST7 - 0
NST-H 3Fh/7Fh NST15 - 8
* Addresses in 64-byte mode/Addresses in 128-byte mode
*2 “000” or “PGS2-0” is selected using the RETURN SETTING command.
PGS2-0 sets status of the I/O ports direction for the configuration using shared pins.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 30 SMSC TMC2084
DATASHEET
2.3 Types of Packets
2.3.1 Packets TMC2084 Can Receive
TMC2084 can receive the three types of packets from the host node: the Initial Setting, Command and
OUTPUT DATA packets. The packet is identified using the packet ID code included in the first data byte
(DATA0) of it and any packet that has undefined code is discarded.
Packet’s RAM image on the host node is shown below.
Adrs. *1 Name INITIAL SETTING Packet COMMAND Packet OUTPUT DATA Packet
00h SID ID of host node
01h DID ID of I/O node
or 00h (broadcasted)
02h C.P C.P = 38h/78h *1
• • •
• • •
38h/78h DATA0
PACKET ID code = 010 PACKET ID code = 100 PACKET ID code = 000,
OPICDONE clear
39h/79h DATA1 Various configuration data 0 Status clear
3Ah/7Ah DATA2 MAXID, nPOSTR-related Command code Port A output data
3Bh/7Bh DATA3 Transmit trigger ,
FLAG OUTPUT selection 0 Port B output data
3Ch/7Ch DATA4 NST carry -related Command code Port C output data
3Dh/7Dh DATA5 Clock master ID,
NST resolution 0 Port D output data
3Eh/7Eh NST-L Lower byte of NST (for the time synchronization use*2)
3Fh/7Fh NST-H Upper byte of NST (for the time synchronization use*2)
*1 Addresses in 64-byte mode/Addresses in 128-byte mode
*2 In the case where the originator of the packet is the clock master (CM) node. If the originator of the
packet is not the clock master (CM) node, then the time synchronization is not used.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 31 Revision 0.2 (10-23-08)
DATASHEET
2.3.2 Packets TMC2084 Can Transmit
TMC2084 can send two types of packets: the Return Setting and INPUT DATA packets. It sends the
RETURN SETTING packet during the period from the deassertion of reset signal to receiving the START
TRANSMIT command. After receiving the START TRANSMIT command it sends INPUT DATA packets.
For more information, see section of 2.4 COMMAND packets.
Packet’s RAM image on the host node is shown below.
Adrs. * Name RETURN SETTING Packet INPUT DATA Packet
00h SID ID of I/O node
01h DID 00h (always broadcasted)
02h C.P C.P = 38h/78h *
• • •
• • •
38h/78h DATA0
PACKET ID code = 011 PACKET ID code = 001,
OPICDONE, configuration data of PGS2
– 0 pins
39h/79h DATA1 Various configuration data Status
3Ah/7Ah DATA2 MAXID, nPOSTR-related configuration
data Port A OUTPUT PORT data
3Bh/7Bh DATA3 Transmit trigger,
FLAG OUTPUT selections Port B OUTPUT PORT data
3Ch/7Ch DATA4 NST carry-related configurations Port C input data
or port C OUTPUT PORT data
3Dh/7Dh DATA5 Clock master ID,
NST resolution configurations
Port D input data
or port D OUTPUT PORT data
3Eh/7Eh NST-L Lower byte of NST (time stamp)
3Fh/7Fh NST-H Upper byte of NST (time stamp)
* Addresses in 64-byte mode/Addresses in 128-byte mode
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 32 SMSC TMC2084
DATASHEET
2.4 Command Packets
2.4.1 Format of COMMAND Packets
From host node (transmit) to I/O node (receive)
Name Adrs. * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SID 00h ID of host node
DID 01h ID of I/O node
or 00h (broadcasted)
C.P 02h C.P = 38h/78h *
• • •
• • •
PACKET ID code
DATA0 38h/78h 1 0 0 0
DATA1 39h/79h 00h
DATA2 3Ah/7Ah CMD7 - 0
DATA3 3Bh/7Bh 00h
DATA4 3Ch/7Ch CMD7 - 0 (repeat the same data twice)
DATA5 3Dh/7Dh 00h
NST-L 3Eh/7Eh NST7 - 0
NST-H 3Fh/7Fh NST15 - 8
* Addresses in 64-byte mode/Addresses in 128-byte mode
RETURN SETTING Command (CMD7 - 0 = 000P - 0001 = 01h or 11h)
Operation: Requests sending the configuration data configured via the network (i.e., RETURN
SETTING packet).
3bit Data of Bit2-0 on DATA0 in the RETURN SETTING packet, is selected by the “P”
option.
P=0 (CMD=01h) : Bit2-0 is all zero (Compatible with TMC20080)
P=1 (CMD=11h) : Bit2-0 is PGS2-0 which is I/O ports direction status
This command is ignored after receiving the Start Transmit packet.
Response: The RETURN SETTING packet is broadcasted upon receiving own token. (Refer to 2.2.3)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 33 Revision 0.2 (10-23-08)
DATASHEET
START TRANSMIT co mmand (CMD7 - 0 = 0000 - 0011 = 03h)
Operation: Enables the transmit trigger and starts the transmission of the INPUT DATA packet. After
receiving this command, packets the TMC2084 can transmit are limited to INPUT DATA packets. The
SOFTWARE RESET command disables transmission from the TMC2084.
Response: The INPUT DATA packet is broadcasted only one time upon receiving own token regardless of
the transmit trigger configuration. After that the transmissions depend on the transmit trigger configuration.
NOTE: If the transmit trigger is configured for the external trigger and:
If the external trigger input (either nPISTR1 or 2) is low when TMC2084 comes out of reset, then both the
input data and the NST are returned with zeroes set as their values. If the external trigger input is High, it
returns the data taken from the INPUT PORTs and NST at the time the INITIAL SETTING packet is
received. However, when the NST latch is not used, typically current contents of the counter are
transmitted as the NST value.
For the START TRANSMIT commands that are received after the first START TRANSMIT command, it
returns the data that are taken from the input data and the NST at the time the preceding external trigger is
inputted. However, when the NST latch is not used, usually the current contents of the counter are
transmitted as NST value.
INITIALIZE OUTPUT PORT command (CMD7 - 0 = 0000 to 0111 = 07h)
Operation: Places all of OUTPUT PORTs in high-impedance state.
Response: If any START TRANSMIT command is already received, then TMC2084 sends the INPUT
DATA packet upon receiving own token. Otherwise, it sends nothing.
SOFTWARE RESET command (CMD7 - 0 = 1000 to 1111 = 8Fh)
Operation: Executes the software reset (i.e., it resets the communication section of the TMC2084), sets all
I/O ports to high-impedance state and initializes the configuration data configured through the network to
default values, then adds TMC2084 to the network automatically. The transmit trigger is also disabled
(disabled transmission).
Response: None
*NOTE: After receiving the software reset command, software reset is executed within 100 μS (@2.5 Mbps) or
less.
(The100 μS becomes 50 μS at 5 Mbps, and 200 μS at 1.25 Mbps)
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 34 SMSC TMC2084
DATASHEET
2.5 OUTPUT PORTs
These ports output the data included in the OUTPUT DATA packet received from the host node. The
received data are outputted to the OUTPUT PORTs that are configured using the I/O port direction
configuration feature, and the data destined for the INPUT PORT and FLAG OUTPUT are not outputted to
pins. The output type is only available for the port A, B and C: Either push-pull or open-drain output type is
selectable for them through network using the PAOD, PBOD and PCOD bits.
OUTPUT DATA packets also include the area to clear NST and various status bits.
All ports that are configured for the FLAG OUTPUT mode, except for pins PD7 – 4, are placed in the high-
impedance state until the first OUTPUT DATA packet is received, regardless the output type configured.
Dropping from the network causes high-impedance state for them (depending on the EMGYMD
configured). Initializing OUTPUT PORTs to high-impedance is also possible using a command.
In addition, the output port is initialized (high-impedance state) by the hardware reset and the software
reset command.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 35 Revision 0.2 (10-23-08)
DATASHEET
2.5.1 Format of OUTPUT DATA Packets
From host node (transmit) to I/O node (receive)
Name Adrs. * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SID 00h ID of host node
DID 01h ID of I/O node
or 00h (broadcasted)
C.P 02h C.P = 38h/78h *
• • •
• • •
PACKET ID code
DATA0 38h/78h 0 0 0 0 OPICDON
E 0
DATA1 39h/79h RXERR CMIECC NSTUNL
OC MRCV TKNRETF RCPUM POR MYRECO
N
DATA2 3Ah/7Ah PA7 - 0
DATA3 3Bh/7Bh PB7 - 0
DATA4 3Ch/7Ch PC7 - 0
DATA5 3Dh/7Dh PD7 - 0
NST-L 3Eh/7Eh NST7 - 0
NST-H 3Fh/7Fh NST15 - 8
* Addresses in 64-byte mode/Addresses in 128-byte mode
PA7 - 0, PB7 - 0, PC7 – 0 and PD7 - 0
These pins accept data that are outputted to the corresponding port. However, data on the bits that are
configured as both the INPUT PORTs and the FLAG OUTPUTs (PD7 - 4) are not outputted to pins.
RXERR 1: Clears RXERR flag 0: Unaffected
CMIECC 1: Clears CMIECC flag 0: Unaffected
NSTUNLOC 1: Clears NSTUNLOC flag 0: Unaffected
MRCV 1: Clears MRCV flag 0: Unaffected
TKNRETF 1: Clears TKNRETF flag 0: Unaffected
RCPUM 1: Clears RCPUM flag 0: Unaffected
POR 1: Clears POR flag 0: Unaffected
MYRECON 1: Clears MYRECON flag 0: Unaffected
OPICDONE 1: Clears OPICDONE flag 0: Unaffected
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 36 SMSC TMC2084
DATASHEET
2.5.2 Configuring I/O Port Directions
The direction of each I/O port is configured using shared pins PGS2 - 0. For detailed information, see the
section on Configuration Using Shared Pins.
2.5.3 Open-Drain Mode
Either push-pull or open-drain output type is configurable for ports A, B, and C through the network using
PAOD, PBOD, and PCOD. For detailed information, see the section on Configuration Through Network.
2.5.4 Initializing OUTPUT PORTs
OUTPUT PORTs are initialized to high-impedance by the following events:
Node dropped from network (EMGYMD = 1; MYRECON asserted)
For detailed information, see EMGYMD in the section on Configuration Through Network.
The INITIALIZE OUTPUT PORT command is received
Hardware reset
The SOFTWARE RESET command is received
The data from the OUTPUT DATA packet are outputted to the corresponding port again when the
OUTPUT DATA packet is received.
2.5.5 Switching Timing In OUTPUT PORTs
To prevent simultaneously switching OUTPUT PORTs which would generate noise, a time delay is
provided for each group ports. The delay time depends on the input clock: 50 ns at 20 MHz clock. The
figure below shows timing relationships between the OUTPUT PORT and the output strobe flag, nPOSTR.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 37 Revision 0.2 (10-23-08)
DATASHEET
Tdr: Period of transmission rate (400 ns @ 2.5 Mbps)
Tx: Period of input clock (50 ns @ 20 MHz) Tdr = 8 × Tx
PA7 - 0
PB7 - 0
PC7 - 0
PD7 - 0
Tx
Tx
Tx
Tdr
MYRECON asserted (EMGYMD=1)
Tx X 14 / Tx X 46 (700 ns / 2.3 μs @ 2.5 Mbps)
INITIALIZE OUTPUT PORT command received
Tx X 11 / Tx X 43 (550 ns / 2.15 μs @ 2.5 Mbps
OUTPUT DATA packet received
* First receiving
Tx X 11 / Tx X 43 (550 ns / 2.15 μs @ 2.5 Mbps
* Subsequent receiving
Tx X 12 / Tx X 44 (600ns / 2.2 μs @ 2.5 Mbps)
(nPOSTR)
POSTRDLY = 0 : Tx ×11~14
POSTRDLY = 1 : Tx×43~46
2.6 INPUT PORT
In the following events, Data from the INPUT PORTs are broadcasted using the INPUT DATA packet:
Own token is received immediately after the START TRANSMIT command is received.
Own token is received after the transmit trigger is issued.
Own token is received immediately after the OUTPUT PORT command is received.
Also, the following data are transmitted together with the data from INPUT PORTs:
Various statuses
PGS2 – 0 Configuration data of I/O direction (see the section of Configuration Using Shared
Pins)
NST15 – 0 Time stamp (see the section of NST)
The data from the OUTPUT PORTs are retransmitted (feed backed) to the bits that are configured as
OUTPUT PORTs. However, if bits PD7 – 4 are configured as FLAG OUTPUT, ”1” is transmitted to each
corresponding bit. Additionally, if the transmit trigger is configured as the external trigger, ”0” is transmitted
to the corresponding trigger input pin: PC0 or PD0.
No INPUT DATA packet is transmitted before the START TRANSMIT command is received from the host
(i.e., the transmission function is activated). Once the START TRANSMIT command is received, the
transmission of the INPUT DATA packet commences depending on the transmit trigger mode configured
through network using bits TXTRG3 - 0. For detailed information, see sections 2.2.2 Configuration
Through Network and 2.4 Command Packets.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 38 SMSC TMC2084
DATASHEET
2.6.1 Format of Input Data Packets
From I/O node (transmit) to host node (receive)
Name Adrs. * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SID 00h ID of I/O node
DID 01h 00h (always broadcasted)
C.P 02h C.P = 38h/78h *
• • •
• • •
PACKET ID code
DATA0 38h/78h 0 0 1 0 OPICDON
E PGS2 - 0
DATA1 39h/79h RXERR CMIECC NSTUNL
OC MRCV TKNRETF RCPUM POR MYRECO
N
DATA2 3Ah/7Ah PA7 - 0
DATA3 3Bh/7Bh PB7 - 0
DATA4 3Ch/7Ch PC7 - 0
DATA5 3Dh/7Dh PD7 - 0
NST-L 3Eh/7Eh NST7 - 0
NST-H 3Fh/7Fh NST15 - 8
* Addresses in 64-byte mode/Addresses in 128-byte mode
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 39 Revision 0.2 (10-23-08)
DATASHEET
PA7 - 0, PB7 - 0, PC7 – 0 and PD7 - 0
Each of these bits transmits the state of a port. The data from the OUTPUT PORTs are transmitted
(feedback) to the bits that are configured as OUTPUT PORTs. However, if bits PD7 – 4 are configured as
FLAG OUTPUT, ”1” is transmitted to the corresponding bit. Additionally, if the transmit trigger is configured
as the external trigger, ”0” is transmitted to either PC0 or PD0 pin that corresponds to the trigger input pin,
nPISTR1 or nPISTR 2 respectively.
PGS2 - 0 Configuration data of I/O port direction For detail information, see the section of
Configuration Using Shared Pins.
RXERR 1: Receiving error was detected. 0: No error was detected.
CMIECC 1: Error correction was performed 0: No error was detected.
during CMI decoding.
NSTUNLOC 1: NST unlock state was detected. 0: No error was detected.
MRCV 1: Own packet was received. 0: No own packet was received.
TKNRETF 1: Token retry was encountered. 0: No token retry was encountered.
RCPUM 1: The C.P value in the received packet was different from 38h/78h.
0: The C.P value in the received packet was equal to 38h/78h.
POR 1: Either hardware or software reset was asserted.
0: No reset was asserted.
MYRECON 1: Dropping from network caused the RECON timer to expire.
0: No timeout was encountered.
OPICDONE 1: The INITIALIZE OUTPUT PORT command was executed.
0: The INITIALIZE OUTPUT PORT command was not executed.
After receiving the START TRANSMIT command, TMC2084 commences the transmission of the above
data: configuration data (3 bits), status data (9 bits) input data (32 bits) and NST(16 bits).
For detail information on each status bit, see the section 2.8 Status Bits.
NST15 - 0 (Time stamp)
TMC2084 sends the INPUT DATA packet with time information (NST value) attached. When the transmit
trigger is configured as the external trigger mode that uses NST latch, the NST value taken at the time the
input data is latched is transmitted. In the external trigger mode that does not use the NST latch, the
preceding NST value is transmitted regardless of the input data latch (For detail information on the transmit
trigger, see the section on Configuration Through the Network).
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 40 SMSC TMC2084
DATASHEET
2.7 FLAG OUTPUT
Tying the shared pin PGS2 to high level configures the upper four bits of port D to be FLAG OUTPUT port.
When the FLAG OUTPUT configuration is used, the OUTPUT PORT feature using the OUTPUT DATA
packet is not available. The flags start to drive within two system clock cycles after the de-assertion of
reset.
The FLAG OUTPUT port outputs six different flags: MSB (FO3) always outputs nRCNERR; the lower three
bits (FO2 – 0) output a set of three flags that is selected from five flags using the bits FOSL3 – 0 that are
configured through network.
5 to 3
MUX
Config. via network FOSL3 - 0
nPOSTR
nTXDONE
nNSTCOUT
N
STUNLOC
nTKN2ME
3
3
3
3
3
nRCNERR
in Output Data packet
Bit7 of Data5
Shared pin PGS2
0
1
0
1
FO3 (PD7)
FO2-0 (PD6 - 4)
When PGS2=1, driving starts within
2 clock cycles after de-assertion of
reset.
in Output Data packet
Bit6 - 4 of Data5
Figure 5 - Functional Diagram Of FLAG OUTPUT
Table 1 - Truth Table Of Bits FOSL3 - 0
FOSL
3 2 1 0 FO3 (PD7) FO2 (PD6) FO1 (PD5) FO0 (PD4)
Default 0 0 0 0 nNSTCOUT
0 0 0 1 NSTUNLOC
0 0 1 0
nTXDONE
nTKN2ME
0 0 1 1 NSTUNLOC
0 1 0 0 nNSTCOUT
0 1 0 1
nPOSTR
NSTUNLOC nTKN2ME
0 1 1 0 NSTUNLOC
0 1 1 1 nNSTCOUT
1 0 0 0
nTXDONE
1 0 0 1 nNSTCOUT
NSTUNLOC nTKN2ME
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
nRCNERR
(Fixed to High) (Fixed to High) (Fixed to High)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 41 Revision 0.2 (10-23-08)
DATASHEET
2.7.1 Flag Descriptions
nPOSTR The strobe pulse for the OUTPUT PORT (active low). This can be used as the strobe
signal for such as an external DA converter (see the examples of application circuits in the
section of the Appendix). The following events assert nPOSTR:
OUTPUT DATA packet was received.
The INITIALIZE OUTPUT PORT command was received when POSTRMD = 0 had been configured
through network.
Dropped from network due to EMGYMD = 1 (MYRECON asserted) when POSTRMD = 0 had been
configured through network.
The nPOSTR outputs a pulse after the OUTPUT DATA packet is received and the state of OUTPUT
PORT is stabled. As the delay time from the settling of OUTPUT PORT state to the output of strobe pulse,
one of two delay times is selectable using the POSTRDLY bit that is configured through network.
PA7-0
PB7-0
PC7-0
PD7-0
n
POSTR
POSTRDLY=0: Tx X (11 to 14)
POSTRDLY=1: Tx X (43 to 46)
Tdr
Tx: Input clock period
Tdr: Transmission rate period
nTXDONE The pulse that indicates the completion of transmitting the INPUT DATA packet (active
low). The pulse Level Width is Tdr (= transmission rate period). This can be used as the
trigger signal for such as an external AD converter (see the example of application circuits
in the section of the Appendix).
nNSTCOUT NST carry pulse (active low or clock). For detail information, see the section of NST.
NSTUNLOC The output flag that indicates the synchronization status between own and clock master’s
NSTs (active high). The asynchronous state (unlocked state) causes High level. For
detail information, see the section of NST.
nTKN2ME The pulse that indicates that own token was received (active low). The pulse Level Width
is Tdr ( = transmission rate period).
nRCNERR The output flags that indicates network error (active low).
This is asserted in the event of dropping from network (MYRECON asserted), expiring idle
timer or token retry and it is reset upon receiving own token.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 42 SMSC TMC2084
DATASHEET
Own token received
nRCNERR
Erro
r
• Dropping from network (MYRECON asserted)
• Expiring idle timer
• Token retry
2.7.2 Pulse Level Width Of Each Output Flag
nTXDONE
Tdr
nTKN2ME
Tdr
nNSTCOUT
(NSTCOMD = 0)
(Configured by bits NSTPRE2 – 0)
Tdr: Transmission rate period
Resolution of NST
2.8 Status Bits
TMC2084 has multiple status bits that indicate its various states and transmits them as a part of the INPUT
DATA packet. Setting anyone of these statuses bits to "1" causes it to keep its value until it is cleared. Any
status bit is cleared when the OUTPUT DATA packet in which its corresponding status bit is set to "1" is
received. Also, they are cleared by the hardware reset and receiving the SOFTWARE RESET command.
RXERR Indicates that the device stopped receiving a packet since it detected an error during it
(the packet was discarded).
1: Receiving error is detected
0: Non error
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 43 Revision 0.2 (10-23-08)
DATASHEET
This flag is asserted in the following events:
a) CP error
The C.P in the received packet exceeded the Page Size (40h or 80h) or it was equal to the
value (01h or 02h) that means the header area. Potential causes: Incorrect configuration in
host node side.
b) Frame error
The packet data of which frame format violated the token passing protocol was received.
Potential causes: Mismatch in the configuration for such as transmission rate or coding
scheme.
c) Length error
The data size that was actually received was different from the value C.P indicated. The
device failure is only potential cause.
d) CRC error
The received packet data had incorrect CRC code. Potential causes: Unreliable physical
line.
e) CMI decoding error (CMIERRMD = 1)
The CMI demodulator encountered error correction. (This is considered as an error only if
CMIERRMD = 1 is configured through network)
NOTE: No error source bit is available for RXERR.
CMIECC Indicates that CMI decoder corrected an error in the received data.
1: An error was corrected.
0: Non error
NOTE: The state transition diagram for CMI describes that no potential symbol received is regarded as the
nearest potential symbol received. For an example, receiving no potential symbol 10 allows the CMI
receiver to interpret that the correct symbol either 11 or 00 was changed to 10 due to an error. Receiving
another 11 illegally immediately after symbol 11 enables the CMI receiver to think that the correct symbol
would be 00, inversely if the preceding 00 is received then the correct symbol would be 11. On the other
hand, receiving another 11 (00) immediately after 11 (00) allows selecting 01 as correct symbol. For more
information, see section 2.10 CMI Coding.
NSTUNLOC Indicates the NST synchronization state between the CM and own nodes. For detail
information, see the section 2.9 NST Time Stamps.
1: Not locked to NST of the CM node.
0: Locked (synchronized) to NST of the CM node.
Although this flag has the same meaning as the NSTUNLOC bit of the FLAG OUTPUT, it
acts differently:
This status bit: Once It is set to ”1,” it remains in the ”1” state until it is cleared.
FLAG OUTPUT: The Lock/Unlock sate is reflected to the output pin immediately.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 44 SMSC TMC2084
DATASHEET
If own node is the CM node, this flag always is ”0.”
If other node is CM node, this flag is ”1” by default. Be sure to clear this bit before you use
it to confirm the synchronization to the CM node.
*About approval condition for Synchronous lock /unlock state
- Unlock to lock state (NSTUNLOC=0)
The difference between own NST and NST from CM node enters within +/-2. And NST
from CM node must be received three times or more continuously, and all of those
differences must be within +/-2.
- Lock to unlock state (NSTUNLOC=1)
The difference between own NST and NST from CM node doesn’t enter within +/-2. Or
NST from CM node must be received three times or more continuously, and all of those
differences are not within +/-2.
MRCV Indicates that own packet was received normally.
1: Own packet was received.
0: Own packet was not received.
Receiving the broadcasted packet or others packet does not affect this bit.
TKNRETF Indicates that a token was retransmitted (Token retry).
1: Token retry was performed;
0: No token retry was performed
When a token did not arrive at the destination (own ID + 1), TMC2084 transmit it to the
same destination one more time. This may happen when the next node does not exist or
some reason like noise prevents token to arrive at the destination (own ID + 1). When non-
consecutive node ID numbers are used, this always happen at the neighboring node of
unused ID number.
RCPUM Indicates that the C.P in the received packet had an invalid value; the correct value is 38h
for PSSL = H or 78h for PSSL = L. Potential cause: the host node has an incorrect
configuration. The received packet is discarded.
1: The C.P in the received packet had a value other than 38h/78h.
0: It had 38h/78h.
In the event that the C.P in the received packet exceeded the Page Size (40h for PLLS =
H or 80h for PSSL = L) or it was equal to the value (01h or 02h) that means the header
area, RXERR is asserted instead of RCPUM.
RCPUM=1 is generated by receiving the broadcast packet that it transmits when the
TMC2072/74 is set to Standalone mode when BRE=1 is set.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 45 Revision 0.2 (10-23-08)
DATASHEET
POR Indicates that hardware reset or receiving the SOFTWARE RESET command caused
software reset.
1: Either hardware or software reset was performed.
0: No reset was performed.
MYRECON Indicates that RECON timer has expired, dropping the node from the network. When no
node recognized its own node, i.e., no own token received during the time period of 52 ms
(@2.5 Mbps), the RECON timer expires.
1: The RECON timer expired.
0: The RECON timer did not expire.
OPICDONE Indicates that the INITIALIZE OUTPUT PORT command was executed.
1: The INITIALIZE OUTPUT PORT command was executed.
0: It was not executed.
2.9 NST Time Stamps
TMC2084 can handle packets with an attached time stamp. The time stamp is known as NST (Network
Standard Time). Every node in the network has its own clock that is synchronized to the NST of the clock
master node (CM node). Only one clock master node is allowed to exist in a network.
NST has 16-bit length and is included in the last two bytes of the packet that is sent or received. The NST
has a different meaning depending on whether it is in a received or transmitted packet.
Packet Type Usage of NST
Received packet
(transmitted from CM node) Synchronization with CM node
Received packet
(transmitted from non-CM node) Receiving time stamp
Transmitted packet Transmitting time stamp
The NST used in the time stamp usually represents the time at which the packet is transmitted (see Y in
the figure shown below). If you need the time stamp that represents the time at which data on an INPUT
PORT is taken using the external trigger, please configure bits TXTRG3 – 0 = 6h (i.e., external trigger
using NST latch). The time stamp represents the time at which the external trigger is inputted (see X in the
figure shown below).
Own token
INPUT DATA packet
RXIN
TXD
NST15 - 0
X
Y
15.6 μs @ 2.5 Mbps
68.4 μs @ 2.5 Mbps
External trigger inputted
TXTRG3-0 = 6h : Sends NST(X)
TXTRG3-0 = 0h-5h, 7h and Eh : Sends NST(Y)
Token for
Next node
Latches data on INPUT PORT
NST is also latched when TXTRG3-0 = 6h
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 46 SMSC TMC2084
DATASHEET
2.9.1 Time Synchronization
Receiving the packet from the clock master after configuring both bit sets CMID3 – 0 and NSTPRE2 - 0 to
the appropriate values enables synchronization with NST.
CMID3 - 0 The ID number for the clock master. It must be in the range 1 to 15 (1 to 7 for PSSL = L).
NSTPRE2 - 0 The resolution of NST. Its range must be the system clock period multiplied by 32 to 4096.
NOTE: All nodes must have a common resolution. (Except for the asynchronous case).
Table 2 - Bits NSTPRE2 – 0 And NST Resolution
NSTPRE
2 1 0
Dividing Ratio Resolution and NST Period
@ 20 MHz Clock
0 0 0 1: 32 1.6 μs 105 ms
0 0 1 1: 64 3.2 μs 210 ms
0 1 0 1: 128 6.4 μs 409 ms
0 1 1 1: 256 12.8 μs 839 ms
1 0 0 1: 512 25.6 μs 1,680 ms
1 0 1 1: 1024 51.2 μs 3,360 ms
1 1 0 1: 2048 102.4 μs 6,710 ms
1 1 1 1: 4096 204.8 μs 13,420 ms
The local time is synchronized each time with unicasted or broadcasted packet received from the CM node
that is specified by bits CMID3 – 0 and even with any packet that the CM node transmits. The NSTUNLOC
pin of FLAG OUTPUT and the NSTUNLOC status bit indicate whether the device is synchronized to the
NST of CM node. For detailed information, see the sections on FOSL3 – 0 in Configuration Through the
Network and the Status Bits.
2.9.2 Carry Output
Configuring both the bit sets FOSL3 - 0 (flag selection) and NSTC3 – 0 through the network enables the
nNSTCOUT pin (NST carry output) of the FLAG OUTPUT to output the operating state of NST counter.
Additionally, configuring the NSTCOMD bit through the network enables the selection of output type from
either pulse (NSTCOMD = 0) or clock (NSTCOMD = 1: default).
N
ST
Pulse
generator
nNSTCOUT
N
STC3 - 0
N
STCOMD
Selects output type
16
4
16 to1 MUX
Selects output digits
2 to1 MUX
Time stamp for transmit packet
N
STPRE2 - 0
Specifies resolution
Clock
0
1
Controls time
synchronization
Figure 6 - Functional Diagram of NST Carry Output Generation Section
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 47 Revision 0.2 (10-23-08)
DATASHEET
Table 3 - Bits NSTC3 – 0 vs. Carry Output Bit
NSTC
3 2 1 0
Carry Output Bits Output period of
Carry
0 0 0 0 NST bit 0 Resolution X 21
0 0 0 1 NST bit 1 Resolution X 22
0 0 1 0 NST bit 2 Resolution X 23
· · · · · ·
1 1 1 1 NST bit 15 Resolution X 215
nNSTCOUT (Pul se)
n
NSTCOUT (Clock)
Resolution X 1
N
ST0
N
ST1
N
ST2
Resolution X 2 (NSTC + 1)
.
.
.
Figure 7 - nNSTCOUT Output Timing Example For Bits NSTC3 - 0 = 2h
The NST feature as a network standard time allows multiple nodes to output the synchronous NST carry. It
is suitable for LED lamp controlling applications.
(CM node) nNSTCOUT
Phase error = Resolution X 1.5 (guideline)
(Node a) nNSTCOUT
(Node b) nNSTCOUT
The carry output starts driving with High level when the devise comes out of reset. The condition for the pin
to start driving the carry output depends on the configuration of bits CMID3 – 0 as shown in the table
below:
Bits CMID3 - 0 Start Condition Of Carry Output
Own ID or 0 When the INITIAL SETTING packet is received
ID of other node When a packet is received from CM node
(regardless the destination of packet)
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 48 SMSC TMC2084
DATASHEET
2.10 CMI Coding
TMC2084 supports CMI coding and RZ coding as the coding scheme for media interface.
Features of CMI Coding:
Low DC component
This makes external circuitry to prevent the pulse transformer from magnetic saturation
unnecessary when it is used for isolation in RS485, since in CMI coding the same bit is never
repeated more than two consecutive times.
Limited possible states allows easy self-correction
The self-correction capability of CMI may correct an error caused by jitter or one shot noise. The
CMIECC status bit reports whether the self-correction was made.
The bit CMIERMD that is configured through the network specifies whether the self-corrected
packet is treated as a normally-received packet. Usually it is not a problem to treat it as a normal
packet *1 Faulty correction made by CMI causes the assertion of CRC check and the RXERR status
bit reports this event. In this case, the received packet should be discarded.
*1 The CMIERRMD bit is by default configured to "The packet is discarded."
00 01
01
11
0
0
0
0
1 1 1
1
Figure 8 - State Transition Diagram for CMI
The shared pin nCMIBYP is used to select either the CMI or RZ coding: nCMIBYP = H selects CMI coding;
nCMIBYP = L selects RZ coding.
For detail information on CMI coding, see the data sheet for TMC2072 or TMC2074.
2.11 RAM Image On Host Side
The image of on-chip RAM in the host node is shown below. The area labeled as ”I/O-n” shows the packet
data received from each I/O node and the area labeled as ”host ” shows the state of the transmission page
of host node.
I. Page Size configuration: 64 byte/page (PSSL = H)
The following conditions apply:
Host node ID = MAXID
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 49 Revision 0.2 (10-23-08)
DATASHEET
The number of I/O nodes = m (possible setting: m = 14 max, ID = 1 to 14 and MAXID = 15)
One host node (required setting: ID = m + 1 and MAXID = m+1)
0 1 2 3 4 5 6 7 8 9 A B C D E F
00 01h 00h 38h
10
20
Page: 1
(ID = 1)
I/O-1
30 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
00 02h 00h 38h
10
20
Page: 2
(ID = 2)
I/O-2
30 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
00 03h 00h 38h
10
20
Page: 3
(ID = 3)
I/O-3
30 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
• • •
• • •
00 m 00h 38h
10
20
Page: m
(ID = m)
I/O-m
30 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
00 m + 1 DID 38h
10
20
Page: m + 1
(ID = m + 1)
Host
30 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 Reserved Reserved
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 50 SMSC TMC2084
DATASHEET
II. Page Size configuration: 128 byte/page (PSSL = L)
The following conditions apply:
Host node ID = 1
The number of I/O nodes = m (required setting: m = 6 max, ID = 2 to 6 and MAXID = m + 1)
One host node (required setting: ID = 1 and MAXID = m+1)
0 1 2 3 4 5 6 7 8 9 A B C D E F
00 01h DID 78h
10
20
30
40
50
60
Page: 1
(ID = 1)
Host
70 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
00 02h 00h 78h
10
20
30
40
50
60
Page: 2
(ID = 2)
I/O-1
70 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
00 03h 00h 78h
10
20
30
40
50
60
Page: 3
(ID = 3)
I/O-2
70 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
• • •
• • •
00 m+1 00h 78h
10
20
30
40
50
60
Page: m
(ID = m+1)
I/O-m
70 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 NST-L NST-H
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 51 Revision 0.2 (10-23-08)
DATASHEET
2.12 Configuration Flow
Unicasts INITIAL SETTING
packet
Receives INITIAL SETTING
packet and loads initial
configuration data then waits
for receiving
Broadcasts RETURN
SETTING command then
waits for receiving
Receives RETURN SETTING
packet then checks its
contents
Sends START TRANSMIT
command; After this no INITIAL
SETTING packet
nor RETURN SETTING
command packet should be
sent
Generates transmit trigger
after receiving START
TRANSMIT command then
waits for token
Broadcasts INPUT DATA
packet
Completion of initial configuration
Completion of initial configuration
Release reset
Joins network automatically
after reading pins then waits
for receiving
TMC2072/74 (Host side)
Release reset
TMC2084 (I/O side)
Joins network after own
initial configuration
Waits for RETURN SETTING
packet
I/O
Timeout
The case where I/O side can accept its default configuration and NST carry is not used
Power ON
Unicasts RETURN SETTING
command packet Receives RETURN SETTING
command then waits for token
Ille
g
al contents
After this, ignores INITIAL
SETTING packet and RETURN
SETTING command packet
Optional
Figure 9 - Initialization Procedure
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 52 SMSC TMC2084
DATASHEET
TMC2072/74 (Host side) TMC2084 (I/O Side)
Unicasts SOFTWARE
RESET command packet
Receives SOFTWARE
RESET command packet
then:
• Resets its communication
section
• Changes data configured
via network back to default
setting
Re-joins network then waits
for receivin
g
Unicasts INITIAL
SETTING packet
Receives RETURN
SETTING packet then
checks its contents
Sends START
TRANSMIT command;
After this no INITIAL
SETTING packet
nor RETURN SETTING
command packet should
be sent
Waits for RETURN
SETTING packet
Timeout
Unicasts RETURN
SETTING command
Receives INITIAL SETTING
packet and loads initial
configuration data then
waits for receiving
Broadcasts RETURN
SETTING command then
waits for receiving
Generates transmit trigger
after receiving START
TRANSMIT command then
waits for toke
Broadcasts INPUT DATA
packet
Completion of initial configuration
Receives RETURN
SETTING command then
waits for token
After this, ignores INITIAL
SETTING packet and
RETURN SETTING
command packet
Ille
g
al contents
Completion of initial configuration
Optional
Figure 10 - Procedure to change the configuration through the network during operation
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 53 Revision 0.2 (10-23-08)
DATASHEET
Chapter 3 Operating Conditions
3.1 Absolute Maximum Ratings
(Vss = 0 V)
Parameter Symbol Rating Unit
Supply Voltage Vdd –0.3 to +5.0 V
Input Voltage (X1 pin) Vin –0.3 to Vdd +0.3 V
Input Voltage (except X1 pin) Vin –0.3 to +7.0 V
Output Voltage Vout –0.3 to Vdd +0.3 V
Input Current Iin ±10 mA
Maximum Power Dissipation Pd (MAX) 350 mW
Average Power Dissipation Note Pd (AVE) 200 mW
Storage Temperature Tstg –40 to +125 °C
NOTE: Pd (AVE) is average per a day.
3.2 Typical Operating Conditions
(Vss = 0 V)
Parameter Symbol Rating Unit
Supply Voltage Vdd 3.0 to 3.6 V
Operating Ambient temperature Ta 0 to +70 °C
Input Voltage (except X1 pin) Vin –0.3 to +5.5 V
Input Rising or Falling time
Note dt/dV 0 to 5 ns/V
Input Clock Frequency fX1 2.5 to 40 MHz
Input Clock Frequency Tolerance ΔfX1 ±100 ppm
NOTE: dt/dV applies to pins nPISTR1, nPISTR2, RXIN and X1 (configured for the external clock input).
3.3 DC Characteristics
Symbol Parameter Buffer
Type Conditions Min Typ Max Unit
High Level Input Voltage IT 2.2
VIH1 (TTL Level) V
Low Level Input Voltage IT 0.8
VIL1 (TTL Level) V
High Level Input Voltage IC 0.8 X Vdd
VIH2 (CMOS Level) ICS 0.8 X Vdd V
Low Level Input Voltage IC 0.2 X Vdd
VIL2 (CMOS Level) ICS 0.2 X Vdd V
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 54 SMSC TMC2084
DATASHEET
Symbol Parameter Buffer
Type Conditions Min Typ Max Unit
IIH High Level Input Current Common Vin = Vdd –10 10 μA
Low Level Input Current Except IT_PU –10 10
IIL IT_PU
Vin = Vss –200 10
μA
Vout = Vdd
IOZ Output Off State Leakage Current Common or Vss –10 10
μA
VHY Schmitt Trigger Hysteresis Voltage ICS 1.0 V
IOH = -1mA Vdd-0.5
O42 IOH = -2mA 0.8 X Vdd
VOH
Note High Level Output Voltage
V
IOL = 1mA Vss + 0.5
O42/OD4 IOL = 4mA 0.4
VOL Note Low Level Output Voltage
V
O42 (absolute
value) 2
IOHM Note Maximum High Level Output
Current
mA
O42/OD4 4.5
IOLM Note Maximum Low Level Output
Current
mA
fX1 = 20MHz 15
IDD Operating Current (No Load) fX1 = 40MHz 25 mA
NOTE: Excludes X2 pin.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 55 Revision 0.2 (10-23-08)
DATASHEET
3.4 AC Characteristics
3.4.1 Timing Measurement Points
VIHA
VILA
I
nput signal
2.2V
0.8V
Output signal 1.4V
Figure 11 - Input Signal Measurement Points
Buffer type:
IC : VIHA = 0.8 X Vdd , VILA = 0.2 X Vdd (X1)
ICS : VIIHA= 0.8 X Vdd , VILA = 0.2 X Vdd (nRESET)
IT : VIHA = 2.2V, VILA = 0.8V (excluding both nRESET and X1)
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 56 SMSC TMC2084
DATASHEET
3.4.2 CMI Transmit And Receive Waveforms (nCMIBYP = H)
TXEN
TXD
t1 t6 t5
t7 t2
t3 t4
Data ‘1’ Data ‘1’ Data ‘0’
t8 t9 t11
Data ‘0’
t10
t12
RXIN Data ‘1’
Data ‘1’
1.4V
1.4V
Symbol Parameter MIN TYP MAX Unit Comments
t1 TXEN Active to First TXD Low 2Tdr - 40 2Tdr ns Note 1
t2 Last TXD High to TXEN Inactive 3Trd / 8 - 40 3Tdr / 8 ns Note 1
t3 Data ' 1 : Low Level Width of TXD Tdr ns Note 1
t4 Data ' 1 ' : High Level Width of TXD Tdr ns Note 1
t5 Data ' 0 ' : Low Level Width of TXD Tdr / 2 ns Note 1
t6 Data ' 0 ' : High Level Width of TXD Tdr / 2 ns Note 1
Data ' 0 ' : Period of TXD Tdr ns Note 1
t7 Data ' 0 ' : Duty Ratio of TXD 1 / 2
t8 Data ' 1 ': Low Level Width of RXIN 7Tdr / 8 Tdr 9Tdr / 8 ns Note 1
t9 Data ' 1 ' : High Level Width of RXIN 7Tdr / 8 Tdr 9Tdr / 8 ns Note 1
t10 Data ' 0 ' : Low Level Width of RXIN 3Tdr / 8 Tdr / 2 5Tdr / 8 ns Note 1
t11 Data ' 0 ' : High Level Width of RXIN 3Tdr / 8 Tdr / 2 5Tdr / 8 ns Note 1
Data ' 0 ' : Period of RXIN 7Tdr / 8 Tdr 9Tdr / 8 ns Note 1
t12 Data ' 0 ' : Duty Ratio of RXIN 3 / 8 1 / 2 5 / 8
Note 1: Tdr represents the period of communication rate (transmission rate). (2.5 Mbps: Tdr = 400 ns)
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 57 Revision 0.2 (10-23-08)
DATASHEET
3.4.3 RZ Transmit And Receive Waveforms (nCMIBYP = L)
TXEN
TXD
t1 t3 t4 t2
t5
RXIN
t6 t7
t8
1.4V
1.4V
Symbol Parameter MIN TYP MAX Unit Comments
t1 TXEN Active to First TXD Low 7Tdr / 4 to 40 7Tdr / 4 ns Note 1
t2 Last TXD High to TXEN Inactive 3Trd / 4 to 40 3Tdr / 4 ns Note 1
t3 Low Level Width of TXD Tdr / 2 ns Note 1
t4 High Level Width of TXD Tdr / 2 ns Note 1
t5 Period of TXD Tdr ns Note 1
t6 Low Level Width of RXIN 20 Tdr / 2 ns Note 1
t7 High Level Width of RXIN 20 Tdr / 2 ns Note 1
t8 Period of RXIN 3Tdr / 4 Tdr 5Tdr / 4 ns Note 1
Note 1: Tdr represents the period of communication rate (transmission rate). (2.5 Mbps: Tdr = 400 ns)
3.4.4 External Trigger Input
Valid
t1 t2
t3 t4
PC7-0, PD7-0
nPISTR1, nPISTR2
Symbol Parameter MIN TYP MAX Unit Comments
t1
Setup Time Of Data
(Referenced to rising edge of nPISTR1 or
nPISTR2)
30 ns Note1
t2
Hold Time Of Data
(Referenced to rising edge of nPISTR1 or
nPISTR2)
30 ns Note1
t3 Active Period Of nPISTR1 or nPISTR2 50 ns
t4 Inactive Period Of nPISTR1 or nPISTR2 50 ns
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 58 SMSC TMC2084
DATASHEET
NOTE 1: When the transmit trigger is configured as the external trigger (TXTRG = 6 or 7), this applies to the timing
to capture the transmit data.
3.4.5 Other Timing Specifications
X1
Configuration
data
t1 t2 t3
t6 t7
t4 t5
PD7-0, TXD
nRESET
Symbol Parameter MIN TYP MAX Unit Comments
t1 Clock High Level Width (External Clock) 10 ns
t2 Clock Low Level Width (External Clock) 10 ns
t3 Clock Period (External Clock) 25 400 ns
f3 Clock Frequency (External Clock) 2.5 40 MHz
t3x Clock Period (Crystal Resonator) 31.25 100 ns Note 1
f3x Clock Frequency (Crystal Resonator) 10 32 MHz Note 1
Δf3 Clock Frequency Tolerance –100 +100 PPM
t4 nRESET Low Level Width 6Tx ns Note 2, Note 3
t5 nRESET High Level Width 3Tx ns Note 2, Note 3
t6 Data Setup Time
(Referenced To Rising Edge Of nRESET) 30 ns Note 4
t7 Data Hold Time
(Referenced To Rising Edge Of nRESET) 5 ns Note 4
Note 1: For oscillator circuit component values, see the section 3.7 Oscillator Circuit.
Note 2: Tx represents the clock period that is applied to X1. (Tx = 50 ns @20 MHz)
Note 3: This applies to the stable crystal oscillator after the power supply voltage exceeds Vdd (min).
Vdd (min) = 3.0 V for TMC2084.
Note 4: This specifies the read timing of shared pins.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 59 Revision 0.2 (10-23-08)
DATASHEET
3.5 Package Outline
T
H
L
L1
R2
R1
0.25mm
www
M
D1
D
N
E
E1
1
Ze
Zd
e
W
A
A2
A1
ccc
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 60 SMSC TMC2084
DATASHEET
TMC2084 OUTLINE
SYMBOL ITEMS MIN TYP MAX
A Overall Package Height - - 1.6
A1 Standoff 0.05 - 0.15
A2 Body Thickness 1.35 - 1.45
D X Span 8.8 - 9.2
D1 X body Size 6.9 - 7.1
E Y Span 8.8 - 9.2
E1 Y body Size 6.9 - 7.1
H Lead Frame Thickness 0.09 - 0.2
L Lead Foot Length 0.45 0.6 0.75
L1 Lead Length - 1.0 -
e Lead Pitch 0.5 Basic
T Lead Foot Angle -
W Lead Width 0.17 0.22 0.27
www Lead position Tolerance -0.04 - 0.04
R1 Lead Shoulder Radius 0.08 - -
R2 Lead Foot Radius 0.08 - 0.2
ccc Coplanarity - - 0.08
N Pin count 48
NOTES:
1) Controlling Unit: millimeter.
2) Package body dimensions D1 and E1 do not include the mold protrusion.
Maximum mold protrusion is 0.25 mm.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 61 Revision 0.2 (10-23-08)
DATASHEET
3.6 Device Marking
NOTE: The character style may be slightly different from that of actual devices.
112
25
36
37
48
Weekl y_Code- Lot _Code1
e2
Lot _Code2
24
13
TMC2084- HT
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 62 SMSC TMC2084
DATASHEET
3.7 Oscillator Circuit
Symbol Reference Valu e
Rfb 51 Kohm
Rout 51 Ohm
Cin 22 pF
Cout 22 pF
Reference Valu es
(For fundamental tone)
R
fb
R
out
C
outC
in
Internal clock
Inside of LSI
X1 X2
F = 20 to 32 MHz
F=10 MHz
Symbol Reference Value
Rfb 5 1 Kohm
Rout 51 Ohm
Cin 22 pF
Cout 22 pF
[ CAUTION ]
Above R, C values may not be correct for a crystal you select. You may have to determine the correct
values. If you use an overtone type crystal, follow the manufacturer’s recommendations for connection
details.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 63 Revision 0.2 (10-23-08)
DATASHEET
3.8 Basic Device Connections
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
HH H H
H
L
NID3
H
NID2
L
H
L
NID1
H
L
NID0
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
nRESET
X2 (O)
X1 (I)
nTMODE
PD7-0
Pull-up or pull-down resister
H
L
nCMIBYP
Line_
Line_
DE
A
B
D
R
Drv
Rcv
RE
RS-48 5 trans ceiver I
C
TXEN
TXD
L
nSMODE
RXIN
VDD
VDD
VDD
VSS
VSS
VSS
VSS
+
PSSLPGS0PGS1PGS2
LLL L
Power supply voltage for offset
resistors must be unified at all
nodes in a network.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 64 SMSC TMC2084
DATASHEET
Chapter 4 APPENDIX
4.1 Application Circuit Examples
4.1.1 Connecting A/D and D/A
Conversion
PB7-0,
_
PA7-0
nPOSTR STRB
DI15 - 0
A-OUT
D
/
A
nTXDONE
PC0/nPISTR1
PD3-0,
PC7-1
nNSTCOUT CLK
DATA10 - 0
A- IN Analog input
Integrator Type A/D
(External trigger input)
STC
(
Start of conversion)
EOC
(
Com
p
letion of co nversion
)
Analog output
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 65 Revision 0.2 (10-23-08)
DATASHEET
4.1.2 Connecting Watchdog Timer
nTXDONE
nRESET
nPOSTR
CK1
CK2
RESET
Power supply monitor IC with WDT
(MB3794 from Fujitsu)
INH
Cp
Cw
nTXDONE
nRESET
nPOSTR
WDTI
MR
RESET
External reset
input
D
C
K
R
SQ
Q
Power supply monitor IC with WDT
(TPS3823 from TI)
4.1.3 Using SLT4 Plus RS485
Pulse Transformer
SLT-4 from Nagano JRC
1
1
1
1
Vcc
R1
R2
R4
R3
Cct
DE
Y
ZD
R
Drv
Rcv
RE
B
A
RS-485 Driver/Receiver
SN75LBC180A from TI, etc.
Line –
Lin e –
TXEN
TXD
RXIN
Reference values at Vcc=5V
R1 = R2 = 18K ohm
R3 = R4 = 1K ohm
It must connect Pull-up resister
on TXD pin. (use CMI code)
Cct: Optional
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 66 SMSC TMC2084
DATASHEET
4.1.4 Considerations for Shared Pins When Port D is Configured as INPUT
PORT
H
L
PSSL
H
L
PGS2
H
L
PGS1
H
L
PGS0
H
L
NID3
H
NID2
L
H
L
NID1
H
L
NID0
74HC244/541, etc.
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
nRESET
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 67 Revision 0.2 (10-23-08)
DATASHEET
4.1.5 Case Where Port A and B are Unused
Although both port A (PA7 - 0) and port B (PB7 - 0) are output-only ports, input buffers exist to send
(feedback) the states of the OUTPUT PORT to the host node. The OUTPUT PORT remains in its high-
impedance (floating) state during both reset (nRESET = Low) and the period from de-assertion of reset
(nRESET = High) to the first OUTPUT DATA packet received. Thus, the input node of the input buffer may
be placed in the open state (undefined) during the high-impedance state. This can cause a punch-through
current through the input buffer. To avoid this, either a pull-up or a pull-down resister should be added
externally to each pin of both ports A and B so that each added resister can define the input sate of the
corresponding input buffer during the high-impedance state.
PAD7-0
PB7-0
Out put Buf f er
Input buffer
H
L
No pul l - up/down resister causes
the input its open state during
Hi
-
Zstate.
Either a pull-up or a pull-down resister is required externally connected to each pin of both unused ports A
and B as described above.
H
L
PA7, PB7
PA6, PB6
PA5, PB5
PA4, PB4
PA3, PB3
PA2, PB2
PA1, PB1
PA0, PB0
H
L
H
L
H
L
H
L
H
L
H
L
H
L
A pull-up or pull-
down resister is
needed for each pin.
A pull-up or pull-
down resister is
needed for each pin.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 68 SMSC TMC2084
DATASHEET
4.1.6 Case Where Port C is Unused
When the port C (PC7 - 0) is unused, its I/O port direction bits (PGS2 - 0) must be configured so that they
specify INPUT PORT and either a pull-up or pull-down resister should be added externally to each pin of
the INPUT PORT to define the state of the corresponding pin as shown below:
H
L
PC7
H
L
A
pull- up or pulldown resister is
always required for a group of 4 pins
if and only if they are input port.
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Be sure to connect to input
port.
A
pull- up or pulldown resister is
always required for a group of 4 pins
if and only if they are input port.
4.1.7 Case Where Port D is Unused
When port D (PD7 - 0) is unused, its I/O port direction bits (PGS2 - 0) must be configured so that they
specify INPUT PORT and either a pull-up or a pull-down resister should be added externally to each pin of
the INPUT PORT to define the state of the corresponding pin as shown below:
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 69 Revision 0.2 (10-23-08)
DATASHEET
L
PD7
H
L
H
L
H
L
H
L
H
L
H
L
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Be sure to connect to
input port.
(PGS2 = PGS1 = Low)
L
PGS2 PGS1 PGS0 PSSL
N
ID0
N
ID1
N
ID2
N
ID3
4.1.8 Initial Configuration for OUTPUT PORT (LED Display Example)
The initial state of OUTPUT PORT is high-impedance (floating) state. It remains in its high-impedance
(floating) state during both reset (nRESET = Low) and the period from de-assertion of reset (nRESET =
High) to the first OUTPUT DATA packet received. To avoid this, either a pull-up or a pull-down resister
should be added externally to each pin of the OUTPUT PORT to ensure the inactive sate of the
corresponding pin during the high-impedance state.
Output port
N-MOS
LED
NPN
LED
Output port
* If the low level causes inactive state (LED turns off), an external pull-down resister is required.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 70 SMSC TMC2084
DATASHEET
LED
Output port
I
OL
< 4 mA
* If the high level causes inactive state (LED turns off), an external pull-up resister is required.
4.1.9 Width of Reset Signal
In an actual operating environment, the following considerations are needed for the width of the reset
signal that is applied to the nRESET pin:
Oscillator Startup Time at Pow er-up (Tstart)
The oscillator startup time (Tstart) is required for the crystal oscillator to stabilize. The startup time is
required for TMC2084 regardless of whether a crystal oscillator or an external clock is used. After the
oscillator startup time, the input clock to X1 pin becomes normal (after approximately 20 ms).
The reset signal must stay low longer than 6(Tx) is required after Tstart.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 71 Revision 0.2 (10-23-08)
DATASHEET
nRESET
Crystal oscillator
>
6 X Tx
V
IL
: 0.2 X Vdd
Stable
Vdd
(
min
)
: 3.0V
Vdd
(
max
)
: 3.6V
Vdd
Oscillator startup time (Tstart)
Output Stabilization Time for Shared Pins (Tphz and Tplz)
The low level on reset input pin (nRESET) sets the high-impedance state for shared pins (PD7 - 0 and
TXD). Since each pin has either a pull-up or a pull-down resister, it stabilizes to high or low level after
sufficient time. The length of stabilization time (Tphz and Tplz) depends on the resister value connected.
Therefore, the duration of reset signal must be longer than Tphz + Tplz + setup time (30 ns).
V
IH
(
2.2V
)
V
IL
(0.8V)
nRESET
PD7-0,
TXD
Tphz or Tplz
>
30 ns
V
IH
(
0.8 X Vdd
)
V
IL
(0.2 X Vdd)
Pull-up resister is used
Pull-down resister is used
>
Tphz (or Tplz) + 30 ns
High impedance state
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 72 SMSC TMC2084
DATASHEET
4.2 Output Current from Shared Pins
The output current from the PD7/nRCNERR pin is specified as IOL = 4 mA (Max). However, this pin should
drain no current when it is used as the OUTPUT PORT pin (PD7) (PGS2 = Low). Otherwise, configuration
by the shared pin can not be performed correctly.
In the following example, the low level on PD7 pin turns on the LED; R1 limits LED current; and the pull-
down resister R2 is used for configuration (PGS2 = Low) using the shared pin during reset. The voltage
level on PD7 pin during the reset (PD7 is in high-impedance state) will be as follows:
Assuming Vdd = 3.3 V, Vf = 2 V, R1 = 330 Ω and R2 = 10 kΩ, the current (IR2) flows in R1 and R2 from
Vdd is:
IR2 = (Vdd - Vf) ÷(R1 + R2)
= (3.3 V - 2 V) ÷ (330 Ω + 10000 Ω)..
=126 μA.
Thus, the voltage level of PD7 pin during reset is IR2 × R2 = 126μA × 10 kΩ..
=1.3V and this exceeds the
maximum low level input voltage 0.8V. This makes the configuration PGS2 = Low impossible.
LED
Vf=2V
PD7
Hi-Z state
R1
R2
Vdd=3.3V
IR2
The pull-up resister R2 in the figure below allows the configuration PGS2 = High correctly because no
current flows through R2 during high-impedance state in reset phase. This enables LED to monitor the
nRCNERR signal.
I
OL
<
4 mA
LED
nRCNERR
(PD7)
R2
The same considerations are needed for other shared pins (PD6 - 0 and TXD). In the high-impedance
state during reset, careful attention should be paid for the current and voltage caused by the pull-up and
pull-down resisters.
Standalone Mode CircLink TM Controller
Datasheet
SMSC TMC2084 Page 73 Revision 0.2 (10-23-08)
DATASHEET
4.3 Values of Pull-Up and Pull-Down Resisters
Care must be taken when selecting the values of the pull-up and pull-down resisters used for ports A, B, C
and D and shared pins (PD7 - 0 and TXD):
Higher resistance values result in longer stabilization time for the transition from the active state to the
high-impedance state. Shorter stabilization time follows from use of less resistance. However, lower
resistance allows a higher output current in the drive state and wastes output current, limiting the
necessary load current.
As a guideline, a 10 kΩ resister can typically be used; If shorter transition time from the active state to the
high-impedance state is needed, use 4.7 kΩ.
Standalone Mode CircLinkTM Controller
Datasheet
Revision 0.2 (10-23-08) Page 74 SMSC TMC2084
DATASHEET
Table 4 - CircLink Controller Comparison Table
TMC2072 TMC2074 TMC2084
3.3V +/-0.3V 3.3V +/-0.3V 3.3V +/-0.3V
5V tolerant I/O 5V tolerant I/O 5V tolerant I/O
Temperature range 0 to +70C 0 to +70C 0 to +70C
TQFP-100 pin VTQFP-128 pin TQFP-48 pin
14x14x1.4mm Body 14x14x1.0mm Body 7x7x1.4mm Body
0.5mm Pitch 0.4mm Pitch 0.5mm Pitch
Maximum Data Rate 5 Mbps 5 Mbps 5 Mbps
HUB function External 2 ports External 2 ports none
Transmission code CMI / RZ code CMI / RZ code CMI / RZ code
TXEN polarity setting Pin setting Pin setting Active-High Only
NodeID, MaxID, PageSize setting Pin / Bit setting Pin / Bit setting Shared Pins
Data Rate Prescaler setting Pin / Bit setting Pin / Bit setting none
Page-Size 32/64/128/256 bytes 32/64/128/256 bytes 64/128 bytes
Max. Node count 31/15/7/3 nodes 31/15/7/3 nodes 15/7 nodes
Operation Mode Peripheral mode Only Peripheral/Standalone mode Standalone mode Only
Internal RAM size 1 kBytes 1 kBytes -
Data Bus width 8/16 bit 8/16 bit -
CPU Type: nRD&nWR/DIR&nDS CPU Type: nRD&nWR/DIR&nDS -
Bus Type: MUX/Non-MUX Bus Type: MUX/Non-MUX -
New Flag for Warning Timer none none -
General Purpose-I/O 8 bit 8 bit -
IN : 16 IN : 0/ 8/16
OUT : 16 OUT : 32/24/16
Variable Settings by - Pins Shared Pins and a Packet
Tx Trigger - 7 kinds 10 kinds
Receive Broadcast - No Yes
Send Status - No Yes
Anti-Chatter Sampling Freq. - 2.44 kHz 1.22 kHz/19.1 Hz
ITEMS
* Common
CircLink
-
* Peripheral Mode (With CPU mode)
* Standalone Mode (No CPU control mode)
Power supply voltage
Package
Support CPU
Number of I/O Port