- 43 -
K4T1G164QF datasheet DDR2 SDRAM
Rev. 1.1
K4T1G084QF
K4T1G044QF
24. tWTR is at lease two clocks (2 x tCK or 2 x nCK) independent of operation frequency.
25. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(AC) level to the sin-
gle-ended data strobe crossing VIH/L(DC) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(AC) level to the
single-ended data strobe crossing VIH/L(DC) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be
monotonic between VIL(DC)max and VIH(DC)min.
26. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(DC) level to the
single-ended data strobe crossing VIH/L(AC) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(DC) level to the
single-ended data strobe crossing VIH/L(AC) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be
monotonic between VIL(DC)max and VIH(DC)min.
27. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire
time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of
tIS + 2 x tCK + tIH.
28. If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
29. These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective
clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and
hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is pres-
ent or not.
30. These parameters are measured from a data strobe signal ((L/U/R)DQS/DQS) crossing to its respective clock signal (CK/CK) crossing. The spec val-
ues are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these
parameters should be met whether clock jitter is present or not.
31. These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/
R)DQS/DQS) crossing.
32. For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK(avg)}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied.
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR2-667 5-5-5, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 5, i.e. as long as the input clock jitter specifications are
met, Precharge command at Tm and Active command at Tm+5 is valid even if (Tm+5 - Tm) is less than 15ns due to input clock jitter.
33. tDAL [nCK] = WR [nCK] + tnRP [nCK] = WR + RU {tRP [ps] / tCK(avg) [ps] }, where WR is the value programmed in the mode register set.
34. New units, ’tCK(avg)’ and ’nCK’, are introduced in DDR2-667 and DDR2-800. Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under
operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.
Note that in DDR2-400 and DDR2-533, ’tCK’ is used for both concepts.
ex) tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm+2, even if (Tm+2 - Tm) is 2 x tCK(avg)
+ tERR(2per),min.
35. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as 'input clock jitter spec parameters' and these
parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
Parameter Symbol DDR2-667 DDR2-800 units NOTE
Min Max Min Max
Clock period jitter tJIT(per) -125 125 -100 100 ps 35
Clock period jitter during DLL locking period tJIT(per,lck) -100 100 -80 80 ps 35
Cycle to cycle clock period jitter tJIT(cc) -250 250 -200 200 ps 35
Cycle to cycle clock period jitter during DLL locking period tJIT(cc,lck) -200 200 -160 160 ps 35
Cumulative error across 2 cycles tERR(2per) -175 175 -150 150 ps 35
Cumulative error across 3 cycles tERR(3per) -225 225 -175 175 ps 35
Cumulative error across 4 cycles tERR(4per) -250 250 -200 200 ps 35
Cumulative error across 5 cycles tERR(5per) -250 250 -200 200 ps 35
Cumulative error across n cycles, n = 6 ... 10, inclusive tERR(6-10per) -350 350 -300 300 ps 35
Cumulative error across n cycles, n = 11 ... 50, inclusive tERR(11-50per) -450 450 -450 450 ps 35
Duty cycle jitter tJIT(duty) -125 125 -100 100 ps 35