AFT26H200W03SR6
1
RF Device Data
Freescale Semiconductor, Inc.
RF Power LDMOS Transistor
N−Channel Enhancement−Mode Lateral MOSFET
This 45 watt asymmetrical Doherty RF power LDMOS transistor is designed
for cellular base station applications requiring very wide instantaneous
bandwidth capability covering the frequency range of 2496 to 2690 MHz.
Typical Doherty Single−Carrier W−CDMA Performance: VDD = 28 Volts,
IDQA = 500 mA, VGSB = 0.3 Vdc, Pout = 45 Watts Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
hD
(%)
Output PAR
(dB)
ACPR
(dBc)
2496 MHz 14.1 45.2 7.8 −31.1
2590 MHz 14.2 44.0 7.8 −35.6
2690 MHz 13.9 44.1 7.6 −37.5
Features
Advanced High Performance In−Package Doherty
Designed for Wide Instantaneous Bandwidth Applications
Greater Negative Gate−Source Voltage Range for Improved Class C
Operation
Designed for Digital Predistortion Error Correction Systems
In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13−inch Reel.
Document Number: AFT26H200W03S
Rev. 0, 8/2013
Freescale Semiconductor
Technical Data
2496−2690 MHz, 45 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
AFT26H200W03SR6
Figure 1. Pin Connections
NI−1230S−4S
1. Pin connections 1 and 2 are DC coupled
and RF independent.
(Top View)
RFoutA/VDSA
31
42
RFoutB/VDSB
RFinA/VGSA
RFinB/VGSB
Carrier
Peaking
(1)
© Freescale Semiconductor, Inc., 2013. All rights reserved.
2
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain−Source Voltage VDSS −0.5, +65 Vdc
Gate−Source Voltage VGS −6.0, +10 Vdc
Operating Voltage VDD 32, +0 Vdc
Storage Temperature Range Tstg −65 to +150 °C
Case Operating Temperature Range TC−40 to +125 °C
Operating Junction Temperature Range (1,2) TJ−40 to +225 °C
Table 2. Thermal Characteristics
Characteristic Symbol Value (2,3) Unit
Thermal Resistance, Junction to Case
Case Temperature 76°C, 45 W−CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc, 2590 MHz
RθJC 0.46 °C/W
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22−A114) 2
Machine Model (per EIA/JESD22−A115) B
Charge Device Model (per JESD22−C101) III
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Off Characteristics (4)
Zero Gate Voltage Drain Leakage Current (5)
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS 10 μAdc
Zero Gate Voltage Drain Leakage Current (5)
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS 5 μAdc
Gate−Source Leakage Current (6)
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS 1 μAdc
On Characteristics − Side A (4,6) (Carrier)
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 100 μAdc)
VGS(th) 0.8 1.2 1.6 Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test)
VGS(Q) 1.4 1.8 2.2 Vdc
Drain−Source On−Voltage
(VGS = 6 Vdc, ID = 1.0 Adc)
VDS(on) 0.1 0.15 0.3 Vdc
On Characteristics − Side B (4,6) (Peaking)
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 180 μAdc)
VGS(th) 0.8 1.2 1.6 Vdc
Drain−Source On−Voltage
(VGS = 6 Vdc, ID = 1.8 Adc)
VDS(on) 0.1 0.15 0.3 Vdc
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes − AN1955.
4. VDDA and VDDB must be tied together and powered by a single DC power supply.
5. Side A and Side B are tied together for these measurements.
6. Each side of device measure separately.
AFT26H200W03SR6
3
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic Symbol Min Typ Max Unit
Functional Tests (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc, Pout = 45 W Avg.,
f = 2496 MHz, Single−Carrier W−CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in
3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain Gps 13.0 14.1 16.0 dB
Drain Efficiency ηD42.0 45.2 %
Output Peak−to−Average Ratio @ 0.01% Probability on CCDF PAR 7.5 7.8 dB
Adjacent Channel Power Ratio ACPR −31.1 −28.0 dBc
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 500 mA, VGSB = 0.3 Vdc, f = 2590 MHz, 10 μsec Pulse Width,
10% Duty Cycle, <100 ns Input Rise Time
VSWR 10:1 at 30 Vdc, 280 W Pulse Output Power
(3 dB Input Overdrive from 250 W Pulse Rated Power)
No Device Degradation
Typical Performances (3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc,
2496−2690 MHz Bandwidth
Pout @ 1 dB Compression Point, CW P1dB 200 W
Pout @ 3 dB Compression Point (4) P3dB 280 W
AM/PM
(Maximum value measured at the P3dB compression point across
the 2496−2690 MHz frequency range)
Φ −13 °
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres 220 MHz
Gain Flatness in 194 MHz Bandwidth @ Pout = 45 W Avg. GF0.3 dB
Gain Variation over Temperature
(−30°C to +85°C)
ΔG 0.019 dB/°C
Output Power Variation over Temperature
(−30°C to +85°C)
ΔP1dB 0.0377 dB/°C
1. VDDA and VDDB must be tied together and powered by a single DC power supply.
2. Part internally matched both on input and output.
3. Measurements made with device in an asymmetrical Doherty configuration.
4. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W−CDMA single−carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
4
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
Figure 2. AFT26H200W03SR6 Test Circuit Component Layout
+
-
+
-
AFT26H200-4WS
CUT OUT AREA
Z1
R1
C1 C2
R2
C3 C4
C5
C7
C8
C6
R3
C10
C9
C18
C15 C16
C14
C13
C11 C12
C17
VGGA
VGGB VDDB
VDDA
P
C
Rev. 4
Note: VDDA and VDDB must be tied together and powered by a single DC power supply.
Table 5. AFT26H200W03SR6 Test Circuit Component Designations and Values
Part Description Part Number Manufacturer
C1, C9, C12, C16 10 μF Chip Capacitors C5750X7S2A106M230KB TDK
C2, C5, C7, C10, C11,
C14, C15
6.8 pF Chip Capacitors ATC600F6R8BT250XT ATC
C3, C4 0.7 pF Chip Capacitors ATC600F0R7BT250XT ATC
C6, C8 0.5 pF Chip Capacitors ATC600F0R5BT250XT ATC
C13 2.0 pF Chip Capacitor ATC600F2R0BT250XT ATC
C17, C18 220 μF, 50 V Electrolytic Capacitors 227CKS050M Illinois Capacitor
R1 50 Ω, 4 W Chip Resistor CW12010T0050GBK ATC
R2, R3 3.0 Ω, 1/4 W Chip Resistors CRCW12063R00FNEA Vishay
Z1 2300−2700 MHz, 5 dB, Directional Coupler X3C25P1-05S Anaren
PCB 0.020, εr = 3.5 RO4350B Rogers
AFT26H200W03SR6
5
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
PARC (dB)
-2.4
-2
-2.1
-2.2
-2.3
-2.5
2480
f, FREQUENCY (MHz)
Figure 3. Single−Carrier Output Peak−to−Average Ratio Compression
(PARC) Broadband Performance @ Pout = 45 Watts Avg.
13
15
14.8
14.6
-38
46
45
44
43
-28
-30
-32
-34
ηD, DRAIN
EFFICIENCY (%)
Gps, POWER GAIN (dB)
14.4
14.2
14
13.8
13.6
13.4
13.2
2510 2540 2570 2600 2630 2660 2690 2720
42
-36
ACPR (dBc)
Figure 4. Intermodulation Distortion Products
versus Two−Tone Spacing
TWO-TONE SPACING (MHz)
10
-60
-10
-20
-30
-50
1 300
IMD, INTERMODULATION DISTORTION (dBc)
-40
IM3-U
IM5-U
IM5-L
IM7-L IM7-U
Figure 5. Output Peak−to−Average Ratio
Compression (PARC) versus Output Power
Pout, OUTPUT POWER (WATTS)
-1
-3
25
0
-2
-4
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
10 40 55 85
0
60
50
40
30
20
10
ηD, DRAIN EFFICIENCY (%)
-3 dB = 84 W
70
ACPR
PARC
ACPR (dBc)
-40
-28
-30
-32
-36
-34
-38
15
Gps, POWER GAIN (dB)
14.5
14
13.5
13
12.5
12
-1 dB = 38 W
-2 dB = 59 W
-5
IM3-L
1
ACPR
ηD
PARC
VDD = 28 Vdc, Pout = 45 W (Avg.), IDQA = 500 mA
VGSB = 0.3 Vdc, Single-Carrier W-CDMA
Gps
3.84 MHz Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
ηD
VDD = 28 Vdc, IDQA = 500 mA
VGSB = 0.3 Vdc, f = 2590 MHz
Single-Carrier W-CDMA, 3.84 MHz
Channel Bandwidth, Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
Gps
100
VDD = 28 Vdc, Pout = 59 W (PEP), IDQA = 500 mA
VGSB = 0.3 Vdc, Two-Tone Measurements
(f1 + f2)/2 = Center Frequency of 2590 MHz
6
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
TYPICAL CHARACTERISTICS
1
Gps
ACPR
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single−Carrier W−CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
-10
-20
12
15
0
60
50
40
30
20
ηD, DRAIN EFFICIENCY (%)
ηD
Gps, POWER GAIN (dB)
14.5
14
10 100 200
10
-60
ACPR (dBc)
13.5
13
12.5
0
-30
-40
-50
Figure 7. Broadband Frequency Response
3
21
f, FREQUENCY (MHz)
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 500 mA
VGSB = 0.3 Vdc
15
12
9
GAIN (dB)
18
6
2350 2450 2550 2650 2750 2850 2950 3050 3150
Gain
2496 MHz
VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.3 Vdc
Single-Carrier W-CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
2590 MHz 2690 MHz2690 MHz
2690 MHz
2496 MHz
2590 MHz
2496 MHz
2690 MHz
2590 MHz
AFT26H200W03SR6
7
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQA = 494 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
f
(MHz)
Zsource
(W)
Zin
(W)
Max Output Power
P1dB
Zload (1)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 9.09 - j14.0 8.87 + j13.4 4.40 - j8.11 17.3 50.3 107 53.1 -12
2590 16.1 - j13.2 15.2 + j12.7 4.32 - j8.14 17.5 50.3 107 53.6 -13
2690 22.9 - j0.41 20.5 + j1.37 4.28 - j8.80 17.5 50.2 104 52.2 -13
f
(MHz)
Zsource
(W)
Zin
(W)
Max Output Power
P3dB
Zload (2)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 9.09 - j14.0 9.41 + j14.6 4.15 - j8.72 15.1 51.0 127 53.7 -17
2590 16.1 - j13.2 17.5 + j13.6 4.16 - j8.90 15.2 51.0 127 53.7 -18
2690 22.9 - j0.41 22.2 - j1.34 4.21 - j9.41 15.2 50.9 123 52.3 -18
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin = Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQA = 494 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
f
(MHz)
Zsource
(W)
Zin
(W)
Max Drain Efficiency
P1dB
Zload (1)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 9.09 - j14.0 8.65 + j14.2 9.14 - j5.50 19.4 48.7 74 63.1 -20
2590 16.1 - j13.2 15.2 + j14.1 7.18 - j4.60 19.5 48.8 74 63.2 -21
2690 22.9 - j0.41 22.1 + j2.44 6.06 - j4.93 19.5 48.7 74 61.6 -21
f
(MHz)
Zsource
(W)
Zin
(W)
Max Drain Efficiency
P3dB
Zload (2)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 9.09 - j14.0 8.89 + j15.2 8.01 - j6.15 17.1 49.8 95 63.7 -26
2590 16.1 - j13.2 17.2 + j15.2 6.92 - j5.30 17.3 49.6 92 63.4 -27
2690 22.9 - j0.41 23.6 - j0.47 6.02 - j6.43 17.0 49.9 98 61.6 -25
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin = Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin Zload
Output Load Pull
Tuner and Test
Circuit
8
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
VDD = 28 Vdc, VGSB = 0.3 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle
f
(MHz)
Zsource
(W)
Zin
(W)
Max Output Power
P1dB
Zload (1)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 5.24 - j10.6 5.15 + j9.87 2.61 - j5.59 11.6 52.6 181 52.5 -19
2590 10.3 - j9.81 9.38 + j9.30 2.63 - j5.84 12.0 52.5 176 51.9 -20
2690 12.7 - j0.94 12.0 + j1.20 2.68 - j6.10 12.3 52.1 164 49.8 -20
f
(MHz)
Zsource
(W)
Zin
(W)
Max Output Power
P3dB
Zload (2)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 5.24 - j10.6 5.51 + j10.5 2.57 - j5.91 9.4 53.2 211 52.7 -25
2590 10.3 - j9.81 10.7 + j9.63 2.68 - j6.12 9.4 53.1 205 52.3 -25
2690 12.7 - j0.94 12.2 - j0.26 2.79 - j6.48 10.2 52.8 190 49.7 -25
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin = Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSB = 0.3 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle
f
(MHz)
Zsource
(W)
Zin
(W)
Max Drain Efficiency
P1dB
Zload (1)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 5.24 - j10.6 4.66 + j10.2 5.91 - j4.19 12.8 51.1 129 61.3 -27
2590 10.3 - j9.81 8.53 + j10.5 4.92 - j2.75 13.2 50.6 116 61.2 -30
2690 12.7 - j0.94 13.2 + j3.53 3.52 - j2.21 13.1 49.7 93 59.0 -35
f
(MHz)
Zsource
(W)
Zin
(W)
Max Drain Efficiency
P3dB
Zload (2)
(W)Gain (dB) (dBm) (W)
hD
(%)
AM/PM
(5)
2496 5.24 - j10.6 5.08 + j10.8 5.29 - j4.65 10.7 52.0 160 61.9 -34
2590 10.3 - j9.81 10.2 + j10.5 4.64 - j4.15 11.1 52.0 158 61.2 -34
2690 12.7 - j0.94 13.3 + j1.00 3.85 - j3.19 11.2 51.0 127 58.2 -38
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin = Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin Zload
Output Load Pull
Tuner and Test
Circuit
AFT26H200W03SR6
9
RF Device Data
Freescale Semiconductor, Inc.
P1dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
NOTE: = Maximum Output Power
= Maximum Drain Efficiency
P
E
Power Gain
Drain Efficiency
Linearity
Output Power
Figure 12. P1dB Load Pull Output Power Contours (dBm)
REAL (Ω)
-14
-2
-6
IMAGINARY (Ω)
6810214
-4
-8
-10
12
-12
4
Figure 13. P1dB Load Pull Efficiency Contours (%)
REAL (Ω)
IMAGINARY (Ω)
IMAGINARY (Ω)
Figure 14. P1dB Load Pull Gain Contours (dB)
REAL (Ω)
Figure 15. P1dB Load Pull AM/PM Contours (5)
REAL (Ω)
IMAGINARY (Ω)
47.5 47
P
E
P
E
P
E
P
E
47
48
48.5
49
49.5
50
48
47.5
47
60
58
56
54
52
50
48
46
62
19.5
20
19
18.5
18
17.5
17
16.5
16
-26
-24 -22
-20
-18
-16
-14
-12
10
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
P3dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
-14
-2
-6
6810214
-4
-8
-10
12
-12
4
NOTE: = Maximum Output Power
= Maximum Drain Efficiency
P
E
Power Gain
Drain Efficiency
Linearity
Output Power
Figure 16. P3dB Load Pull Output Power Contours (dBm)
REAL (Ω)
-14
-2
-6
IMAGINARY (Ω)
6810214
-4
-8
-10
12
-12
4
Figure 17. P3dB Load Pull Efficiency Contours (%)
REAL (Ω)
IMAGINARY (Ω)
IMAGINARY (Ω)
Figure 18. P3dB Load Pull Gain Contours (dB)
REAL (Ω)
Figure 19. P3dB Load Pull AM/PM Contours (5)
REAL (Ω)
IMAGINARY (Ω)
47.5
P
E48
48.5
49
49.5
50
48
50.5
51
48
47.5
47
49
60
58
56
54
52
50
48
46
62
P
E
P
E
14.5
15
15.5
18
17.5
17
16.5
16
14
P
E-26
-24
-22
-20
-18
-16
-14
-30
-28
AFT26H200W03SR6
11
RF Device Data
Freescale Semiconductor, Inc.
P1dB − TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
-12
0
-4
-2
-6
-8
-10
-12
0
-4
-2
-6
-8
-10
-12
0
-4
-2
-6
-8
-10
6810212
4
0
6810212
4
0
6810212
4
0
NOTE: = Maximum Output Power
= Maximum Drain Efficiency
P
E
Power Gain
Drain Efficiency
Linearity
Output Power
Figure 20. P1dB Load Pull Output Power Contours (dBm)
REAL (Ω)
-12
0
-4
IMAGINARY (Ω)
68102
-2
-6
-8
12
-10
4
Figure 21. P1dB Load Pull Efficiency Contours (%)
REAL (Ω)
IMAGINARY (Ω)
IMAGINARY (Ω)
Figure 22. P1dB Load Pull Gain Contours (dB)
REAL (Ω)
Figure 23. P1dB Load Pull AM/PM Contours (5)
REAL (Ω)
IMAGINARY (Ω)
P
E
48.5
49
49.5
50
50.5
51
51.5
52
48 48.5 49
P
E
60
58 56
54
52 50
48 46 44
P
E
9
12
10.5
10
9.5 11
11.5
12.5
13
P
E
-26
-24
-22
-20
-18
-16
-14
-28
-30
0
12
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
P3dB − TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
-12
0
-4
468012
-2
-6
-8
10
-10
2
-12
0
-4
468012
-2
-6
-8
10
-10
2
-12
0
-4
468012
-2
-6
-8
10
-10
2
NOTE: = Maximum Output Power
= Maximum Drain Efficiency
P
E
Power Gain
Drain Efficiency
Linearity
Output Power
Figure 24. P3dB Load Pull Output Power Contours (dBm)
-12
REAL (Ω)
0
-4
IMAGINARY (Ω)
468012
-2
-6
-8
10
-10
2
Figure 25. P3dB Load Pull Efficiency Contours (%)
REAL (Ω)
IMAGINARY (Ω)
Figure 26. P3dB Load Pull Gain Contours (dB)
REAL (Ω)
IMAGINARY (Ω)
Figure 27. P3dB Load Pull AM/PM Contours (5)
REAL (Ω)
IMAGINARY (Ω)
P
E
49
49.5
50
50.5
51
51.5
52
52.5
53 P
E
60 58 56 54
52 50 48
46 44
P
E
77.5
88.5 9
9.5
10
10.5
11
P
E
-36
-34
-32
-30
-28
-26
-24
-22
-38
49.5
AFT26H200W03SR6
13
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
14
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
AFT26H200W03SR6
15
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
Electromigration MTTF Calculator
RF High Power Model
.s2p File
Development Tools
Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision Date Description
0Aug. 2013 Initial Release of Data Sheet
16
RF Device Data
Freescale Semiconductor, Inc.
AFT26H200W03SR6
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2013 Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Document Number: AFT26H200W03S
Rev. 0, 8/2013
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Freescale Semiconductor:
AFT26H200W03SR6