www.irf.com 1
8/22/06
IRFI4019H-117P
Notes through are on page 2
DIGITAL AUDIO MOSFET
TO-220 Full-Pak 5 PIN
Features
Integrated Half-Bridge Package
Reduces the Part Count by Half
Facilitates Better PCB Layout
Key Parameters Optimized for Class-D
Audio Amplifier Applications
Low RDS(ON) for Improved Efficiency
Low Qg and Qsw for Better THD and
Improved Efficiency
Low Qrr for Better THD and Lower EMI
Can Delivery up to 200W per Channel into
8 Load in Half-Bridge Configuration
Amplifier
Lead-Free Package
Description
This Digital Audio MosFET Half-Bridge is specifically designed for Class D audio amplifier applications. It
consists of two power MosFET switches connected in half-bridge configuration. The latest process is used
to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery, and
internal Gate resistance are optimized to improve key Class D audio amplifier performance factors such
as efficiency, THD and EMI. These combine to make this Half-Bridge a highly efficient, robust and reliable
device for Class D audio amplifier applications.
G1, G2 D1, D2 S1, S2
Gate Drain Source
Absolute Maximum Ratings h
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
IDM Pulsed Drain Current c
EAS Single Pulse Avalanche EnergydmJ
PD @TC = 25°C Power Dissipation fW
PD @TC = 100°C Power Dissipation f
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Thermal Resistance h
Parameter Typ. Max. Units
RθJC Junction-to-Case f––– 6.9
RθJA Junction-to-Ambient f––– 65
77
18
7.2
0.15
10lbxin (1.1Nxm)
-55 to + 150
300
Max.
6.2
34
±20
150
8.7
S2
G2
S1/D2
G1
D1
VDS 150 V
RDS(ON) typ. @ 10V 80 m:
Qg typ. 13 nC
Qsw typ. 4.1 nC
RG(int) typ. 2.5
TJ max 150 °C
Key Parameters h
PD - 97074A
IRFI4019H-117P
2www.irf.com
S
D
G
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 5.8mH, RG = 25, IAS = 5.2A.
Pulse width 400µs; duty cycle 2%.
Notes: Rθ is measured at TJ of approximately 90°C.
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive
avalanche information
Specifications refer to single MosFET.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified) h
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 150 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.19 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 80 95 m
VGS(th) Gate Threshold Voltage 3.0 ––– 4.9 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 11 ––– ––– S
QgTotal Gate Charge ––– 13 20
Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.3 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 0.8 ––– nC
Qgd Gate-to-Drain Charge ––– 3.9 –––
Qgodr Gate Charge Overdrive ––– 5.0 ––– See Fig. 6 and 19
Qsw Switch Charge (Qgs2 + Qgd)––– 4.1 –––
RG(int) Internal Gate Resistance ––– 2.5 –––
td(on) Turn-On Delay Time ––– 7.0 –––
trRise Time ––– 6.6 –––
td(off) Turn-Off Delay Time ––– 13 ––– ns
tfFall Time ––– 3.1 –––
Ciss Input Capacitance ––– 810 –––
Coss Output Capacitance ––– 100 ––– pF
Crss Reverse Transfer Capacitance ––– 15 –––
Coss Effective Output Capacitance ––– 97 –––
LDInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
Diode Characteristics h
Parameter Min. Typ. Max. Units
IS @ TC = 25°C Continuous Source Current ––– ––– 8.7
(Body Diode) A
ISM Pulsed Source Current ––– ––– 34
(Body Diode)c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 57 86 ns
Qrr Reverse Recovery Charge ––– 140 210 nC
ID = 5.2A
ƒ = 1.0MHz, See Fig.5
TJ = 25°C, IF = 5.2A
di/dt = 100A/µs e
TJ = 25°C, IS = 5.2A, VGS = 0V e
showing the
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 5.2A e
VDS = VGS, ID = 50µA
VDS = 150V, VGS = 0V
VGS = 0V, VDS = 0V to 120V
VDS = 150V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 10V
ID = 5.2A
VGS = 0V
MOSFET symbol
RG = 2.4
VDS = 50V, ID = 5.2A
Conditions
and center of die contact
VDD = 75V, VGS = 10Ve
VDS = 75V
VDS = 25V
IRFI4019H-117P
www.irf.com 3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
5.5V
VGS
TOP 15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.5V
110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 5 10 15 20
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 120V
VDS= 75V
VDS= 30V
ID= 5.2A
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 150°C
5.5V
VGS
TOP 15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.5V
-60 -40 -20 020 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 5.2A
VGS = 10V
45678
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current
(Α)
VDS = 50V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
IRFI4019H-117P
4www.irf.com
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area
Fig 10. Threshold Voltage vs. Temperature
25 50 75 100 125 150
TJ , Junction Temperature (°C)
0
2
4
6
8
10
ID , Drain Current (A)
0.00.51.01.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
2.0
3.0
4.0
5.0
VGS(th) Gate threshold Voltage (V)
ID = 50µA
1E-006 1E-005 0.0001 0.001 0.01 0.1 110
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τι (sec)
1.508254 0.000814
2.154008 0.111589
3.237738 2.2891
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci= τi/Ri
Ci= τi/Ri
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
DC
IRFI4019H-117P
www.irf.com 5
Fig 13. Maximum Avalanche Energy Vs. Drain Current
Fig 12. On-Resistance Vs. Gate Voltage
45678910
VGS, Gate-to-Source Voltage (V)
0.0
0.1
0.2
0.3
0.4
0.5
RDS(on), Drain-to -Source On Resistance (
)
TJ = 25°C
TJ = 125°C
ID = 5.2A
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
50
100
150
200
250
300
350
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 0.91A
1.1A
BOTTOM 5.2A
Fig 14. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
IRFI4019H-117P
6www.irf.com
Fig 16a. Switching Time Test Circuit Fig 16b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 15b. Unclamped Inductive Waveforms
Fig 15a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 17a. Gate Charge Test Circuit Fig 17b Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
1K
VCC
DUT
0
L
S
VDS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
20K
IRFI4019H-117P
www.irf.com 7
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/06
TO-220 Full-Pak 5-Pin Part Marking Information
TO-220AB Full-Pak 5-Pin package is not recommended for Surface Mount Application.
TO-220 Full-Pak 5-Pin Package Outline, Lead-Form Option 117
(Dimensions are shown in millimeters (inches))
25
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/