FM22LD16 - 256Kx16 FRAM
Rev. 2.0
Dec. 2009 Page 4 of 14
Overview
The FM22LD16 is a wordwide F-RAM memory
logically organized as 262,144 x 16 and accessed
using an industry standard parallel interface. All data
written to the part is immediately nonvolatile with no
delay. The device offers page mode operation which
provides higher speed access to addresses within a
page (row). An access to a different page requires that
either /CE transitions low or the upper address
A(17:2) changes.
Memory Operation
Users access 262,144 memory locations, each with 16
data bits through a parallel interface. The F-RAM
array is organized as 8 blocks each having 8192 rows.
Each row has 4 column locations, which allows fast
access in page mode operation. Once an initial
address has been latched by the falling edge of /CE,
subsequent column locations may be accessed
without the need to toggle /CE. When /CE is
deasse rted high, a pr echarge oper ation begins. Writes
occur immediately at the end of the access with no
delay. The /WE pin must be toggled for each write
operation. The write data is stored in the nonvolatile
memory array immediately, which is a feature unique
to F-RAM called NoDelay
TM
writes.
Read Operation
A read operation begins on the falling edge of /CE.
The falling edge of /CE causes the address to be
latched and starts a memory read cycle if /WE is high.
Data becomes available on the bus after the access
time has been satisfied. Once the address has been
latched and the access completed, a new access to a
random location (different r ow) may begin while /CE
is still low. The minimum cycle time for random
addresses is t
RC
. Note that unlike SRAMs, the
FM22LD16’s /CE-initiated access time is faster than
the address cycle time.
The FM22LD16 will drive the data bus when /OE
and at least one of the byte enables (/UB, /LB) is
asserted low. The upp er data byte is driven when /UB
is low, and the lower data byte is driven when /LB is
low. If /OE is asserted after the memory access time
has been satisfied, the data bus will be driven with
valid data. If /OE is asserted prior to completion of
the memory access, the data bus will not be driven
until valid data is available. This feature minimizes
supply current in the system by eliminating transients
caused by invalid data being driven onto the bus.
When /OE is deasserted high, the data bus will
remain in a high-Z state.
Write Operation
Writes occur in the FM22LD16 in the same time
interval as reads. The FM22LD16 supports both /CE-
and /WE-controlled write cycles. In both cases, the
address A(17:2) is latched on the falling edge of /CE.
In a /CE-controlled write, the /WE signal is asserted
prior to beginning the memory cycle. That is, /WE is
low when /CE falls. In this case, the device begins the
memory cycle as a write. The FM22LD16 will not
drive the data bus regardless of the state of /OE as
long as /WE is low. Input data must be valid when
/CE is d easserted high. I n a /WE-controlled write, the
memory cycle begins on the falling edge of /CE. The
/WE signal falls some time later. Therefore, the
memory cycle begins as a read. The data bus will be
driven if /OE is low, however it will hi-Z once /WE is
asserted low. The /CE- and /WE-controlled write
timing cases are shown in the Electrical
Specifications section.
Write access to the array begins on the falling edge of
/WE after the memory cycle is initiated. The write
access terminates on the rising edge of /WE or /CE,
whichever comes first. A valid write operation
requires the user to meet the access time specification
prior to deasserting /WE or /CE. Data setup time
indicates the interval during which data cannot
change prior to the end of the write access (rising
edge of /WE or /CE).
Unlike other truly nonvolatile memory technologies,
there is no write delay with F-RAM. Since the read
and write access times of the underlying memory are
the same, the user experiences no delay through the
bus. The entire memory operation occurs in a single
bus cycle. Data polling, a technique used with
EEPROMs to determine if a write is complete, is
unnecessa ry.
Page Mode Operation
The F-RAM array is organized as 8 blocks each
having 8192 rows. Each row has 4 column address
locations. Address inputs A(1:0) define the column
address to be accessed. An access can start on any
column address, and other column locations may be
accessed without the need to toggle the /CE pin. For
fast access reads, once the first data byte is driven
onto the bus, the column address inputs A(1:0) may
be changed to a new value. A new data byte is then
driven to the DQ p ins no later than t
AAP
, which is less
than half the initial read access time. For fast access
writes, the first write pulse defines the first write
access. While /CE is low, a subsequent write pulse