EPROM. Standby mode supply current is typically less
than 1 µA at 3V. The AT27BV010 simplifies system design
and stretches battery lifetime even further by eliminating
the need for power supply regulation.
The AT27BV010 is available in industry standard JEDEC-
approved one-time programmable (OTP) plastic PLCC
and TSOP packages. All devices feature two-line control
(CE, OE) to give designers the flexibility to prevent bus
contention.
The AT27BV010 operating with V CC at 3.0V produces TTL
level outputs that are compatible with standard TTL logic
devices operating at VCC = 5.0V. A t VCC = 2.7V, the part
is compatible with JEDEC approved low voltage battery
operation (LVBO) interface specifications. The device is
also capable of standard 5-volt operation making it ideally
suited for dual supply range systems or card products that
are pluggable in both 3-volt and 5-volt hosts.
Atmel’s AT27BV010 has additional features to ensure
high quality and efficient produc tion us e. T he RapidPro-
gramming Algorithm reduces the time required to progr am
the part and guarantees reliable programming. Program-
ming time is typically only 100 µs/byte. The Integrated
Product Identification Code electronically identifies the de-
vice and manufacturer. This feature is used by industry
standard programming equipment to select the proper
programming algorithms and voltages. The AT27BV010
programs exactly the same way as a standard 5V
AT27C010 and uses the same programming equipment.
Description (Continued) Switching between active and standby conditions via the
Chip Enable pin may produce transient voltage excur-
sions. Unless accommodated by the system design, these
transients may exceed data sheet limits, resulting in de-
vice non-conformance. At a minimum, a 0.1 µF high fre-
quency, low inherent inductance, ceramic capacitor
should be utilized for each device. This capacitor should
be connected between the VCC and Ground terminals of
the device, as close to the device as possible. Additionally,
to stabilize the supply voltage level on printed circuit
boards with large EPROM arrays, a 4.7 µF bulk electrolytic
capacitor should be utilized, again connected between the
VCC and Ground terminals. This capacitor should be posi-
tioned as close as possible to the point where the power
supply is connected to the array.
System Considerations
3-24 AT27BV010