PRELIMINARY
FullFlex™ Synchronous
SDR Dual-Port SRAM
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document #: 38-06082 Rev. *C Revised October 11, 2005
Features
True dual-ported memory allows simultaneous access
to the shared array from each port
Synchronous pipelined operation with SDR operation
on each port
Single Data Rate (SDR) interface at 250 MHz
Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)
Selectable pipeline or flow-through mode
Selectable 1.5V or 1.8V core power supply
Commercial and Industrial temperature
IEEE 1149.1 JTAG boundary scan
Available in 484-ball PBGA Packages and 256-ball
FBGA packages
FullFlex72 family
36-Mbit: 512K x 72 (CYD36S72V18)
18-Mbit: 256K x 72 (CYD18S72V18)
9-Mbit: 128K x 72 (CYD09S72V18)
4-Mbit: 64K x 72 (CYD04S72V18)
FullFlex36 family
36-Mbit: 1M x 36 (CYD36S36V18)
18-Mbit: 512K x 36 (CYD18S36V18)
9-Mbit: 256K x 36 (CYD09S36V18)
4-Mbit: 128K x 36 (CYD04S36V18)
FullFlex18 family
36-Mbit: 2M x 18 (CYD36S18V18)
18-Mbit: 1M x 18 (CYD18S18V18)
9-Mbit: 512K x 18 (CYD09S18V18)
4-Mbit: 256K x 18 (CYD04S18V18)
Built-in deterministic access control to manage
address collisions
Deterministic flag output upon collision detection
Collision detection on back-to-back clock cycles
First Busy Address readback
Advanced features for improved high-speed data
transfer and flexibility
Variable Impedance Matching (VIM)
Echo clocks
Selectable LVTTL (3.3V), Extended HSTL
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on
each port
Burst counters for sequential memory access
Mailbox with interrupt flags for message passing
Dual Chip Enables for easy depth expansion
Functional Description
The FullFlex™ Dual-Port SRAM families consist of 4-Mbit,
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two
ports are provided, allowing the array to be accessed simulta-
neously. Simultaneous access to a location triggers determin-
istic access control. For FullFlex72 these ports can operate
independently with 72-bit bus widths and each port can be
independently configured for two pipeline stages. Each port
can also be configured to operate in pipeline or flow-through
mode.
Advanced features include built-in deterministic access
control to manage address collisions during simultaneous
access to the same memory location, variable impedance
matching (VIM) to improve data transmission by matching the
output driver impedance to the line impedance, and echo
clocks to improve data transfer.
To reduce the static power consumption, chip enables can be
used to power down the internal circuitry. The number of
cycles of latency before a change in CE0 or CE1 will enable
or disable the databus matches the number of cycles of read
latency selected for the device. In order for a valid write or read
to occur, both chip enable inputs on a port must be active.
Each port contains an optional burst counter on the input
address register. After externally loading the counter with the
initial address, the counter will increment the address inter-
nally.
Additional features of this device include a mask register and
a mirror register to control counter increments and
wrap-around, counter-interrupt (CNTINT) flags to notify that
the counter will reach the maximum value on the next clock
cycle, readback of the burst-counter internal address, mask
register address, and BUSY address on the address lines,
retransmit functionality, mailbox interrupt flags for message
passing, JTAG for boundary scan, and asynchronous Master
Reset (MRST). The logic block diagram in Figure 1 displays
these features.
The FullFlex72 is offered in a 484-ball plastic BGA package.
The FullFlex36 and FullFlex18 are offered in a 256-ball fine
pitch BGA package.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 2 of 48
Notes:
1. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and the CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18,
and the CYD09S18V18 devices have 19 address bits. The CYD18S72V18, CYD09S36V18, and the CYD04S18V18 devices have 18 address bits. The
CYD09S72V18 and the CYD04S36V18 devices have 17 address bits. The CYD04S72V18 has 16 address bits.
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte
enables.
FTSELL
PORTSTD[1:0]L
DQ[71:0]L
BE [7:0]
L
R/W
L
FTSELR
PORTSTD[1:0]R
DQ [71:0]R
BE [7:0]
R
CE0R
CE1R
OER
R/W
R
A [20:0]L
CNT/MSK
L
ADSL
CNTENL
CNTRSTL
RETL
CNTINT
L
CL
WRPL
A [20:0]R
CNT/MSK
R
ADSR
CNTENR
CNTRSTR
RETR
CNTINT
R
CR
WRPR
CONFIG Block CONFIG Block
IO
Control
IO
Control
Address &
Counter Logic Address &
Counter Logic
INTL
TRST
TMS
TDI
TDO
TCK
JTAG
MRST
READY
R
LowSPDR
READYL
LowSPDL
RESET
LOGIC
INTR
BUSYLBUSYR
Mailboxes
Collision Detection Logic
Dual Ported Array
Figure 1. FullFlex72 18-Mbit (CYD18S72V18) Block Diagram[1, 2, 3]
CQENLCQENR
CE0L
CE1L
OEL
CQ1R
CQ1R
CQ0R
CQ0R
CQ0L
CQ0L
CQ1L
CQ1L
VC_SEL
ZQ0R
ZQ1R
ZQ0L
ZQ1L
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 3 of 48
Notes:
4. Leaving this pin NC disables VIM
5. Leave this ball unconnected for CYD18S72V18, CYD09S72V18 and CYD04S72V18.
6. Leave this ball unconnected for CYD09S72V18 and CYD04S72V18
7. Leave this ball unconnected for CYD04S72V18
FullFlex72 SDR 484-ball BGA Pinout (Top View)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
ANC DQ61
L
DQ59
L
DQ57
L
DQ54
L
DQ51
L
DQ48
L
DQ45
L
DQ42
L
DQ39
L
DQ36
L
DQ36
R
DQ39
R
DQ42
R
DQ45
R
DQ48
R
DQ51
R
DQ54
R
DQ57
R
DQ59
R
DQ61
R
NC
BDQ63
L
DQ62
L
DQ60
L
DQ58
L
DQ55
L
DQ52
L
DQ49
L
DQ46
L
DQ43
L
DQ40
L
DQ37
L
DQ37
R
DQ40
R
DQ43
R
DQ46
R
DQ49
R
DQ52
R
DQ55
R
DQ58
R
DQ60
R
DQ62
R
DQ63
R
CDQ65
L
DQ64
L
VSS VSS DQ56
L
DQ53
L
DQ50
L
DQ47
L
DQ44
L
DQ41
L
DQ38
L
DQ38
R
DQ41
R
DQ44
R
DQ47
R
DQ50
R
DQ53
R
DQ56
R
VSS VSS DQ64
R
DQ65
R
D
DQ67
L
DQ66
L
VSS VSS VSS CQ1L CQ1L VSS LOW
SPDL
PORT
STD0
L
ZQ0L[
4] BUSY
L
CNTI
NTL
PORT
STD1
L
NC CQ1R CQ1R VSS VSS VSS DQ66
R
DQ67
R
EDQ69
L
DQ68
L
VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
NC VSS VDDI
OR
DQ68
R
DQ69
R
FDQ71
L
DQ70
L
CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R DQ70
R
DQ71
R
GA0L A1L RETL BE4L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE4R RETR A1R A0R
HA2L A3L WRP
L
BE5L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE5R WRP
R
A3R A2R
JA4L A5L READ
YL
BE6L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE6R READ
YR
A5R A4R
KA6L A7L ZQ1L[
4] BE7L VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
BE7R ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L VSS BE3L VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL BE3R VSS A11R A10R
NA12L A13L ADSL BE2L VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL BE2R ADSR A13R A12R
P
A14L A15L CNT
MSKL
BE1L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE1R CNT
MSK
R
A15R A14R
RA16L[
7] A17L[
6] CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R[
6] A16R[
7]
TA18L[
5] NC CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
NC A18R[
5]
UDQ35
L
DQ34
L
R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR DQ34
R
DQ35
R
VDQ33
L
DQ32
L
FTSE
LL
VDDI
OL
NC VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
DQ32
R
DQ33
R
W
DQ31
L
DQ30
L
VSS MRST VSS CQ0L CQ0L VC_S
EL
PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
VSS CQ0R CQ0R VSS TDI TDO DQ30
R
DQ31
R
YDQ29
L
DQ28
L
VSS VSS DQ20
L
DQ17
L
DQ14
L
DQ11
L
DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11
R
DQ14
R
DQ17
R
DQ20
R
TMS TCK DQ28
R
DQ29
R
AA DQ27
L
DQ26
L
DQ24
L
DQ22
L
DQ19
L
DQ16
L
DQ13
L
DQ10
L
DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10
R
DQ13
R
DQ16
R
DQ19
R
DQ22
R
DQ24
R
DQ26
R
DQ27
R
AB NC DQ25
L
DQ23
L
DQ21
L
DQ18
L
DQ15
L
DQ12
L
DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12
R
DQ15
R
DQ18
R
DQ21
R
DQ23
R
DQ25
R
NC
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 4 of 48
FullFlex36 SDR 484-ball BGA Pinout (Top View)[8]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
ANC NC NC NC NC DQ33
L
DQ30
L
DQ27
L
DQ24
L
DQ21
L
DQ18
L
DQ18
R
DQ21
R
DQ24
R
DQ27
R
DQ30
R
DQ33
R
NC NC NC NC NC
BNC NC NC NC NC DQ34
L
DQ31
L
DQ28
L
DQ25
L
DQ22
L
DQ19
L
DQ19
R
DQ22
R
DQ25
R
DQ28
R
DQ31
R
DQ34
R
NC NC NC NC NC
CNC NC VSS VSS NC DQ35
L
DQ32
L
DQ29
L
DQ26
L
DQ23
L
DQ20
L
DQ20
R
DQ23
R
DQ26
R
DQ29
R
DQ32
R
DQ35
R
NC VSS VSS NC NC
D
NC NC VSS VSS VSS CQ1L CQ1L VSS LOW
SPDL
PORT
STD0
L
ZQ0L[
4] BUSY
L
CNTI
NTL
PORT
STD1
L
NC CQ1R CQ1R VSS VSS VSS NC NC
ENC NC VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
NC VSS VDDI
OR
NC NC
FNC NC CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R NC NC
GA0L A1L RETL BE2L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE2R RETR A1R A0R
HA2L A3L WRP
L
BE3L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE3R WRP
R
A3R A2R
JA4L A5L READ
YL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC READ
YR
A5R A4R
KA6L A7L ZQ1L[
4] NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
NC ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L VSS NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC VSS A11R A10R
NA12L A13L ADSL NC VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC ADSR A13R A12R
P
A14L A15L CNT
MSKL
BE1L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE1R CNT
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L A19L CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
A19R A18R
UNC NC R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR NC NC
VNC NC FTSE
LL
VDDI
OL
NC VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
NC NC
W
NC NC VSS MRST VSS CQ0L CQ0L VC_S
EL
PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
VSS CQ0R CQ0R VSS TDI TDO NC NC
YNC NC VSS VSS NC DQ17
L
DQ14
L
DQ11
L
DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11
R
DQ14
R
DQ17
R
NC TMS TCK NC NC
AA NC NC NC NC NC DQ16
L
DQ13
L
DQ10
L
DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10
R
DQ13
R
DQ16
R
NC NC NC NC NC
AB NC NC NC NC NC DQ15
L
DQ12
L
DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12
R
DQ15
R
NC NC NC NC NC
Note:
8. Use this pinout only for device CYD36S36V18 of the FullFlex36 famiy.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 5 of 48
FullFlex18 SDR 484-ball BGA Pinout (Top View)[9]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
ANC NC NC NC NC NC NC NC DQ15
L
DQ12
L
DQ9L DQ9R DQ12
R
DQ15
R
NC NC NC NC NC NC NC NC
BNC NC NC NC NC NC NC NC DQ16
L
DQ13
L
DQ10
L
DQ10
R
DQ13
R
DQ16
R
NC NC NC NC NC NC NC NC
CNC NC VSS VSS NC NC NC NC DQ17
L
DQ14
L
DQ11
L
DQ11
R
DQ14
R
DQ17
R
NC NC NC NC VSS VSS NC NC
D
NC NC VSS VSS VSS CQ1L CQ1L VSS LOW
SPDL
PORT
STD0
L
ZQ0L[
4] BUSY
L
CNTI
NTL
PORT
STD1
L
NC CQ1R CQ1R VSS VSS VSS NC NC
ENC NC VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
NC VSS VDDI
OR
NC NC
FNC NC CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R NC NC
GA0L A1L RETL BE1L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE1R RETR A1R A0R
HA2L A3L WRP
L
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC WRP
R
A3R A2R
JA4L A5L READ
YL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC READ
YR
A5R A4R
KA6L A7L ZQ1L[
4] NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
NC ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L VSS NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC VSS A11R A10R
NA12L A13L ADSL NC VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC ADSR A13R A12R
P
A14L A15L CNT
MSKL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC CNT
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L A19L CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
A19R A18R
UA20L NC R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR NC A20R
VNC NC FTSE
LL
VDDI
OL
NC VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
NC NC
W
NC NC VSS MRST VSS CQ0L CQ0L VC_S
EL
PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
VSS CQ0R CQ0R VSS TDI TDO NC NC
YNCNCVSSVSSNCNCNCNCDQ8LDQ5LDQ2LDQ2RDQ5RDQ8RNCNCNCNCTMSTCKNCNC
AA NC NC NC NC NC NC NC NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC NC NC NC NC NC NC NC
AB NC NC NC NC NC NC NC NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC NC NC NC NC NC NC NC
Note:
9. Use this pinout only for device CYD36S18V18 of the FullFlex18 famiy.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 6 of 48
Notes:
10. Leave this ball unconnected for CYD09S36V18 and CYD04S36V18.
11. Leave this ball unconnected for CYD04S36V18.
FullFlex36 SDR 256-Ball BGA (Top View)
12345678910111213141516
ADQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R
BDQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R
CDQ34L DQ35L RETL INTL CQ1L CQ1L VC_SEL TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DQ35R DQ34R
DA0L A1L WRPL VREF FTSELL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
FTSELR VREF WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R CE0R A3R A2R
FA4L A5L CNINTL BE3L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE3R CNINTR A5R A4R
GA6L A7L BUSYL BE2L ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIOR BE2R BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L VSS PORTST
D1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTST
D1R
VSS A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE0R ADSR A15R A14R
MA16L A17L[11] R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR A17R[11] A16R
NA18L[10] NC CNTMS
KL
VREF PORTST
D0L
READYL ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTST
D0R
VREF CNTMS
KR
NC A18R[10]
PDQ16L DQ17L CNTENL CNTRST
L
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRST
R
CNTEN
R
DQ17R DQ16R
RDQ15L DQ13L DQ11L DQ9L DQ7L DQ5L DQ3L DQ1L DQ1R DQ3R DQ5R DQ7R DQ9R DQ11R DQ13R DQ15R
TDQ14L DQ12L DQ10L DQ8L DQ6L DQ4L DQ2L DQ0L DQ0R DQ2R DQ4R DQ6R DQ8R DQ10R DQ12R DQ14R
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 7 of 48
Notes:
12. Leave this ball unconnected for CYD09S18V18 and CYD04S18V18.
13. Leave this ball unconnected for CYD04S18V18.
FullFlex18 SDR 256-Ball BGA (Top View)
12345678910111213141516
ANC NC NC DQ17L DQ16L DQ13L DQ12L DQ9L DQ9R DQ12R DQ13R DQ16R DQ17R NC NC NC
BNC NC NC NC DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R NC NC NC NC
CNC NC RETL INTL CQ1L CQ1L VC_SEL TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR NC NC
DA0L A1L WRPL VREF FTSELL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
FTSELR VREF WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R CE0R A3R A2R
FA4L A5L CNINTL NC VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR NC CNINTR A5R A4R
GA6L A7L BUSYL NC ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIOR NC BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L VSS PORTST
D1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTST
D1R
VSS A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE0R ADSR A15R A14R
MA16L A17L R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR A17R A16R
NA18L[13] A19L[12] CNTMS
KL
VREF PORTST
D0L
READYL ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTST
D0R
VREF CNTMS
KR
A19R[12] A18R[13]
PNC NC CNTENL CNTRST
L
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRST
R
CNTEN
R
NC NC
RNC NC NC NC DQ6L DQ5L DQ2L DQ1L DQ1R DQ2R DQ5R DQ6R NC NC NC NC
TNC NC NC DQ8L DQ7L DQ4L DQ3L DQ0L DQ0R DQ3R DQ4R DQ7R DQ8R NC NC NC
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 8 of 48
Table 1. Selection Guide
-250[14, 15] -200[14] -167[14] -133[14] Unit
fMAX 250 200 167 133 MHz
Max. Access Time (Clock to Data) 2.64 3.3 4.0 4.5 ns
Typical Operating Current ICC TBD TBD TBD TBD mA
Typical Standby Current for ISB3 (Both Ports CMOS Level) TBD TBD TBD TBD mA
Pin Definitions
Left Port Right Port Description
A0L–A20L A0R–A20R Address Inputs.[1]
DQ0L–DQ71L DQ0R–DQ71R Data Bus Input/Output.[2]
BE0L–BE7L BE0R–BE7R Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to
the corresponding bytes of the memory array.
BUSYLBUSYRPort Busy Output. When there is an address match and both chip enables are active
for both ports, an external BUSY signal is asserted on the fifth clock cycles from when
the collision occurs.
CLCRClock Signal. Maximum clock input rate is fMAX.
CE0LCE0RActive LOW Chip Enable Input.
CE1LCE1RActive HIGH Chip Enable Input.
CQENLCQENREcho Clock Enable Input. Assert HIGH to enable echo clocking on respective port.
CQ0LCQ0REcho Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal
Output for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for
FullFlex18 devices.
CQ0LCQ0RInverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Inverted
Echo Clock Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock
Signal Output for DQ[8:0] for FullFlex18 devices.
CQ1LCQ1REcho Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9]
for FullFlex18 devices.
CQ1LCQ1RInverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Inverted
Echo Clock Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock
Signal Output for DQ[17:9] forFullFlex18 devices.
ZQ[1:0]L[16] ZQ[1:0]R[16] VIM Output Impedance Matching Input. To use, connect a calibrating resistor
between ZQ and ground. The resistor must be five times larger than the intended line
impedance driven by the dual-port. Assert HIGH to disable Variable Impedance
Matching.
OELOEROutput Enable Input. This asynchronous signal must be asserted LOW to enable the
DQ data pins during Read operations.
INTLINTRMailbox Interrupt Flag Output. The mailbox permits communications between ports.
The upper two memory locations can be used for message passing. INTL is asserted
LOW when the right port writes to the mailbox location of the left port, and vice versa.
An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox.
LowSPDLLowSPDRPort Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation
at less than 100 MHz, assert this pin LOW.
PORTSTD[1:0]L[17] PORTSTD[1:0]R[17] Port Clock/Address/Control/Data/Echo Clock/ I/O Standard Select Input. Assert
these pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS,
and HIGH/HIGH for 1.8V LVCMOS, respectively. Connect these pins to a VTTL supply.
R/WLR/WRRead/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the
dual-port memory array.
Notes:
14. SDR mode with two pipeline stages.
15. 250 MHz for HSTL and 1.8V LVCMOS I/O standards only
16. Leaving pins K3, K20 of the 484-ball BGA package and pin C10 of the 256-ball BGA package disables VIM.
17. For FullFlex72, pins D14 and W9 have an internal pull-down resistor.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 9 of 48
Selectable I/O Standard
The FullFlex families of devices also offer the option of
choosing one of four port standards for the device. Each port
can independently select standards from single-ended HSTL
class I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V
LVCMOS. The selection of the standard is determined by the
PORTSTD pins for each port. These pins should be connected
to either an LVTTL or 2.5V LVCMOS power suppy. This will
determine the input clock, address, control, data, and Echo
clock standard for each port as shown in Table 2 .
Operating mode with different IO standards combined with
different core power supply will result in different maximum
speed as shown in Tab le 3 .
READYLREADYRPort DLL Ready Output. This signal will be asserted LOW when the DLL and Variable
Impedance Matching circuits have completed calibration. This is a wired OR capable
output.
CNT/MSKLCNT/MSKRPort Counter/Mask Select Input. Counter control input.
ADSLADSRPort Counter Address Load Strobe Input. Counter control input.
CNTENLCNTENRPort Counter Enable Input. Counter control input.
CNTRSTLCNTRSTRPort Counter Reset Input. Counter control input.
CNTINTLCNTINTRPort Counter Interrupt Output. This pin is asserted LOW one cycle before the
unmasked portion of the counter is incremented to all “1s”.
WRPLWRPRPort Counter Wrap Input. When the burst counter reaches the maximum count, on
the next counter increment WRP can be set LOW to load the unmasked counter bits
to 0 or set HIGH to load the counter with the value stored in the mirror register.
RETLRETRPort Counter Retransmit Input. Assert this pin LOW to reload the initial address for
repeated access to the same segment of memory.
VREFLVREFRPort External HSTL I/O Reference Input.
VDDIOLVDDIORPort Data I/O Power Supply.
FTSELLFTSELRPort Flow-Through Mode Select Input. Assert this pin LOW to select Flow-Through
mode. Assert this pin HIGH to select Pipeline mode.
MRST Master Reset Input. MRST is an asynchronous input signal and affects both ports.
Asserting MRST LOW performs all of the reset functions as described in the text. A
MRST operation is required at power-up. This pin must be driven by a VDDIOL refer-
enced signal.
VC_SEL Core Power Supply Select. Assert this pin LOW to select 1.8V Core operation. Assert
this pin HIGH to select 1.5V Core operation. This pin must be driven by a VTTL refer-
enced signal.
TMS JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine.
State machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V
LVCMOS.
TDI JTAG Test Data Input. Data on the TDI input will be shifted serially into selected
registers. Operation for LVTTL or 2.5V LVCMOS.
TRST JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.
TCK JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.
TDO JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is
normally three-stated except when captured data is shifted out of the JTAG TAP.
Operation for LVTTL or 2.5V LVCMOS.
VSS Ground Inputs.
VCORE Device Core Power Supply.
VTTL LVTTL Power Supply.
Pin Definitions (continued)
Left Port Right Port Description
Table 2. Port Standard Selection
PORTSTD1 PORTSTD0 I/O Standard
VSS VSS LVTTL
VSS VTTL HSTL
VTTL VSS 2.5V LVCMOS
VTTL VTTL 1.8V LVCMOS
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 10 of 48
Clocking
Separate clocks synchronize the operations on each port.
Each port has one clock input C. In this mode, all the transac-
tions on the address, control, and data will be on the C rising
edge. All transactions on the address, control, data input,
output, and byte enables will occur on the C rising edge.
Selectable Pipeline/Flow-Through Mode
To meet data rate and throughput requirements, the FullFlex
families offer selectable pipeline or flow-through mode. Echo
clocks are not supported in flow-through mode and the DLL
must be disabled.
Flow-Through mode is selected by the FTSEL pin. Strapping
this pin HIGH selects pipeline mode. Strapping this pin LOW
selects flow-through mode.
DLL
The FullFlex familes of devices have an on-chip DLL. Enabling
the DLL reduces the clock to data valid time allowing more
set-up time for the receiving device. For operation below
100 MHz, the DLL must be disabled. This is selectable by
strapping LowSPD low. For information on DLL lock and reset
time, please see the Master Reset section below.
Echo Clocking
As the speed of data increases, on-board delays caused by
parasitics make providing accurate clock trees extremely
difficult. To counter this problem, the FullFlex families incor-
porate Echo Clocks. Echo Clocks are enabled on a per port
basis. The dual-port receives input clocks that are used to
clock in the address and control signals for a read operation.
The dual-port retransmits the input clocks relative to the data
output. The buffered clocks are provided on the CQ1/CQ1 and
CQ0/CQ0 outputs. Each port has a pair of Echo clocks. Each
clock is associated with half the data bits. The output clock will
match the corresponding ports I/O configuration.
To enable Echo clock outputs, tie CQEN HIGH. To disable
Echo clock outputs, tie CQEN LOW.
Deterministic Access Control
Deterministic Access Control is provided for ease of design.
The circuitry detects when both ports are accessing the same
location and provides an external BUSY flag to the port on
which data may be corrupted. The collision detection logic
saves the address in conflict (Busy Address) to a readable
register. In the case of multiple collisions, the first Busy
address will be written to the Busy Address register.
If both ports are accessing the same location at the same time
and only one port is doing a write, if tCCS is met, then the data
being written to and read from the address is valid data. For
example, if the right port is reading and the left port is writing
and the left ports clock meets tCCS, then the data being read
from the address by the right port will be the old data. In the
same case, if the right ports clock meets tCCS, then the data
being read out of the address from the right port will be the new
data. In the above case, if tCCS is violated by the either ports
clock with respect to the other port and the right port gets the
external BUSY flag, the data from the right port is corrupted.
Table 5 shows the tCCS timing that must be met to guarantee
the data.
Table 6 shows that, in the case of the left port writing and the
right port reading, when an external BUSY flag is asserted on
the right port, the data read out of the device will not be
guaranteed.
The value in the busy address register can be read back to the
address lines. The required input control signals for this
function are shown in Table 9. The value in the busy address
register will be read out to the address lines tCA after the same
amount of latency as a data read operation. After an initial
address match, the address under contention is saved in the
busy address register. All following address matches cause
the BUSY flag to be generated, however, none of the
addresses are saved into the busy address register. Once a
busy readback is performed, the address of the first match
which happens at least two clocks cycles after the busy
readback, is saved into the busy address register.
Table 3. Speed vs. I/O Standard and Pipeline Stages
Maximum
Speed (MHz)
Core
Voltage (V) I/O Standard
Latency
Cycles
250[15] 1.8 HSTL/1.8V LVCMOS 2
200 1.8 LVTTL/2.5V LVCMOS 2
200 1.5 HSTL/LVTTL
2.5V LVCMOS
1.8V LVCMOS
2
Table 4. Data Pin Assignment
BE Pin Name Data Pin Name
BE[7] DQ[71:63]
BE[6] DQ[62:54]
BE[5] DQ[53:45]
BE[4] DQ[44:36]
BE[3] DQ[35:27]
BE[2] DQ[26:18]
BE[1] DQ[17:9]
BE[0] DQ[8:0]
Figure 2. SDR Echo Clock Delay
Input Clock
Echo Clock
Data Out
Echo Clock
Table 5. tCCS Timing for All Operating Modes
Port A—Early Arriving Port Port B—Late Arriving Port tCCS
C Rise to Opposite C Rise Set-up Time for Non-corrupt Data UnitMode Active Edge Mode Active Edge
SDR C SDR C tCYC(min) – 1 ns
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 11 of 48
Variable Impedance Matching (VIM)
Each port contains a Variable Impedance Matching circuit to
set the impedance of the I/O driver to match the impedance of
the on-board traces. The impedance is set for all outputs
except JTAG and is done on a per port basis. To take
advantage of the VIM feature, connect a calibrating resistor
(RQ) that is five times the value of the intended line impedance
from the ZQ pin to VSS. The output impedance is then
adjusted to account for drifts in supply voltage and temper-
ature every 1024 clock cycles. If a port’s clock is suspended,
the VIM circuit will retain its last setting until the clock is
restarted where it will then resume periodic adjustment. In the
case of a significant change in device temperature or supply
voltage, the recalibration period is multiples of 1024 clock
cycles. A Master Reset will initialize the VIM circuitry. Ta ble 7
shows the VIM parameters and Table 8 describes the VIM
operation modes.
In order to disable VIM, the ZQ pin must be connected to
VDDIO of the relative supply for the I/Os before a Master
Reset.
Address Counter and Mask Register Operations[1]
Each port of the FullFlex family contains a programmable burst
address counter. The burst counter contains four registers: a
counter register, a mask register, a mirror register, and a busy
address register.
The counter register contains the address used to access the
RAM array. It is changed only by the master reset (MRST),
Counter Reset, Counter Load, Retransmit, and Counter
Increment operations.
The mask register value affects the Counter Increment and
Counter Reset operations by preventing the corresponding
bits of the counter register from changing. It also affects the
counter interrupt output (CNTINT). The mask register is only
changed by Mask Reset, Mask Load, and MRST. The Mask
Load operation loads the value of the address bus into the
mask register. The mask register defines the counting range
of the counter register. It divides the counter register into two
or three consecutive regions. Zero or more “0s” define the
masked region and one or more “1s” define the unmasked
portion of the counter register. The counter register may only
be divided into up to three regions. The region containing the
least significant bits must be no more than two bits. Bits one
and zero may be “10” respectively, masking the least signif-
icant counter bit and causing the counter to increment by two
instead of one. If bits one and zero are “00”, the two least
significant bits are masked and the counter will increment by
four instead of one. For example, in the case of a 256Kx72
Table 6. Deterministic Access Control Logic
Left Port Right Port Left Clock Right Clock BUSYLBUSYRDescription
Read Read X X H H No Collision
Write Read >tCCS 0 H H Read OLD Data
0>t
CCS H H Read NEW Data
<tCCS 0 H H Read OLD Data
H L Data Not Guaranteed
0<t
CCS H H Read NEW Data
H L Data Not Guaranteed
Read Write >tCCS 0 H H Read NEW Data
0>t
CCS H H Read OLD Data
<tCCS 0 H H Read NEW Data
L H Data Not Guaranteed
0<t
CCS H H Read OLD Data
L H Data Not Guaranteed
Write Write 0 >–tCCS & <tCCS L L Array Data Corrupted
0>t
CCS L H Array Stores Right Port Data
>tCCS 0 H L Array Stores Left Port Data
Table 7. Variable Impedance Matching Parameters
Parameter Min. Max. Unit Tolerance
RQ Value 100 275 ± 2%
Output Impedance 20 55 ± 15%
Reset Time N/A 1024 Cycles N/A
Update Time N/A 1024 Cycles N/A
Table 8. Variable Impedance Matching Operation
RQ Connection Output Configuration
100 - 275 to VSS Output Driver Impedance = RQ/5 ±
15% at Vout = VDDIO/2
ZQ to VDDIO VIM Disabled. Rout < 20at Vout =
VDDIO/2
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 12 of 48
configuration, a mask register value of 003FC divides the
mask register into three regions. With bit 0 being the least
significant bit and bit 17 being the most significant bit, the two
least significant bits are masked, the next eight bits are
unmasked, and the remaining bits are masked.
The mirror register is used to reload the counter register on
retransmit operations (see “retransmit” below) and wrap
functions (see “counter increment” below). The last value
loaded into the counter register is stored in the mirror register.
The mirror register is only changed by master reset (MRST),
Counter Reset, and Counter Load.
Table 9 summarizes the operations of these registers and the
required input control signals. All signals except MRST are
synchronized to the ports clock.
Counter Load Operation[1]
The address counter and mirror registers are both loaded with
the address value presented on the address lines. This value
ranges from 0 to 1FFFFF.
Mask Load Operation[1]
The mask register is loaded with the address value presented
on the address bus. This value ranges from 0 to 1FFFFF
though not all values permit correct increment operations.
Permitted values are in the form of 2n–1, 2n–2, or 2n–4. The
counter register can only be segmented in up to three regions.
From the most significant bit to the least significant bit,
permitted values have zero or more “0s”, one or more “1s”, and
the least significant two bits can be “11”, “10”, or “00”. Thus
1FFFFE, 07FFFF, and 003FFC are permitted values but
02FFFF, 003FFA, and 07FFE4 are not.
Counter Readback Operation
The internal value of the counter register can be read out on
the address lines. The address will be valid tCA after the
selected number of latency cycles configured by FTSEL. The
data bus (DQ) is tri-stated on the cycle that the address is
presented on the address lines. Figure 3 shows a block
diagram of the operation.
Mask Readback Operation
The internal value of the mask register can be read out on the
address lines. The address will be valid tCA after the selected
number of latency cycles configured by FTSEL. The data bus
(DQ) is tri-stated on the cycle that the address is presented on
the address lines. Figure 3 shows a block diagram of the
operation.
Counter Reset Operation
All unmasked bits of the counter and mirror registers are reset
to “0”. All masked bits remain unchanged. A mask reset
followed by a counter reset will reset the counter and mirror
registers to 00000.
Mask Reset Operation
The mask register is reset to all “1s”, which unmasks every bit
of the burst counter.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 13 of 48
Notes:
18. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.
19. Counter operation and mask register operation is independent of chip enables.
Table 9. Burst Counter and Mask Register Control Operation (Any Port) [18, 19]
CMRSTCNTRST CNT/MSK CNTEN ADS RET Operation Description
X L X X X X X Master Reset Reset address counter to all 0s, mask register
to all 1s, and BUSY address to all 0’s.
H L H X X X Counter Reset Reset counter and mirror unmasked portion to
all 0s.
H L L X X X Mask Reset Reset mask register to all 1s.
H H H L L X Counter Load Load burst counter and mirror with external
address value presented on address lines.
H H L L L X Mask Load Load mask register with value presented on the
address lines.
H H H L H L Retransmit Load counter with value in the mirror register
HH H LHHCounter
Increment
Internally increment address counter value.
H H H H H H Counter Hold Constantly hold the address value for multiple
clock cycles.
HH H HLHCounter
Readback
Read out counter internal value on address
lines.
H H L H L H Mask
Readback
Read out mask register value on address lines.
H H L H H L Busy Address
Readback
Read out last busy address
HH L LHXReserved
HH L HLLReserved
HH L HHHReserved
HH H HLLReserved
HH H HHLReserved
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 14 of 48
Increment Operation[1]
Once the address counter is initially loaded with an external
address, the counter can internally increment the address
value and address the entire memory array. Only the
unmasked bits of the counter register are incremented. In
order for a counter bit to change, the corresponding bit in the
mask register must be “1”. If the two least significant bits of the
mask register are “11”, the burst counter will increment by one.
If the two least significant bits are “10”, the burst counter will
increment by two, and if they are “00”, the burst counter will
increment by four. If all unmasked counter bits are incre-
mented to “1” and WRP is deasserted, the next increment will
wrap the counter back to the initially loaded value. The cycle
before an increment will result in the unmasked counter bits
being “1s”, a counter interrupt flag (CNTINT) is asserted if the
counter is continuously incrementing. The next increment will
cause the counter to reach its maximum value and the second
increment will return the counter register to its initial value
which was stored in the mirror register when WRP is
deasserted. When WRP is asserted, the second increment
after CNTINT is asserted will load the unmasked counter bits
with “0”. The example shown in Figure 4 shows an example of
the CYDD36S18V18 device with the mask register loaded with
a mask value of 00007F unmasking the seven least significant
bits. Setting the mask register to this value allows the counter
to access the entire memory space. The address counter is
then loaded with an initial value of 000005 assuming WRP is
deasserted. The masked bits, the seventh address through the
twenty-first address, do not increment in an increment
operation. The counter address will start at address 000005
and will increment its internal address value until it reaches the
mask register value of 00007F. The counter wraps around the
memory block to location 000005 at the next count. CNTINT
is issued when the counter reaches the maximum –1 count.
Hold Operation
The value of all three registers can be constantly maintained
unchanged for an unlimited number of clock cycles. Such
operation is useful in applications where wait states are
needed, or when address is available a few cycles ahead of
data in a shared bus interface.
Retransmit
Retransmit allows repeated access to the same block of
memory without the need to reload the initial address. An
internal mirror register stores the address counter value last
loaded. When the burst counter reaches its maximum value
set by the mask register, it wraps back to the initial value stored
in the mirror register as long as WRP is deasserted. The
unmasked counter bits will be loaded with “0” If WRP is
asserted. If the counter is configured to continuously be in
increment mode, it increments once again to the maximum
value and wraps back to the value initially stored in the mirror
register as long as WRP is deasserted. While RET is asserted
low, the counter will continue to wrap back to the value in the
mirror register independent of the state of WRP.
Counter Interrupt
The counter interrupt (CNTINT) is asserted LOW one clock
cycle before an increment operation that results in the
unmasked portion of the counter register being all “1s”. It is
deasserted by counter reset, counter load, mask reset, mask
load, and MRST.
Counting by Two
When the two least significant bits of the mask register are
“10,” the counter increments by two.
Counting by Four
When the two least significant bits of the mask register are
“00”, the counter increments by four.
Mailbox Interrupts
The upper two memory locations can be used for message
passing and permit communications between ports. Tabl e 10
shows the interrupt operation for both ports. The highest
memory location is the mailbox for the right port and the
maximum address – 1 is the mailbox for the left port.
When one port Writes to the other port’s mailbox, the INT flag
of the port that the mailbox belongs to is asserted LOW. The
INT flag remains asserted until the mailbox location is read by
the other port. When a port reads its mailbox, the INT flag is
deasserted high after one cycle of latency with respect to the
input clock of the port to which the mailbox belongs and is
independent of OE.
Table 10 shows that in order to set the INTR flag, a Write
operation by the left port to address 1FFFFF will assert INTR
LOW. A valid Read of the 1FFFFF location by the right port will
reset INTR HIGH after one cycle of latency with respect to the
right port’s clock. At least one byte enable has to be activated
to set or reset the mailbox interrupt.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 15 of 48
From
Mask
Register
Mirror Counter
Address
Decode
RAM
Array
Wrap
1
0
Increment
Logic
1
0
+1
+2
1
0
Wrap
Detect
From
Mask
From
Counter
To
Counter
Bit 0
and 1
Wrap
Figure 3. Counter, Mask, and Mirror Logic Block Diagram[1]
21 21
21
21
21
1
0
Load/Increment
CNT/MSK
CNTEN
A
CNTRST
C
Decode
Logic
Bidirectional
Address
Lines
Mask
Register
Counter/
Address
Register
From
Address
Lines To Readback
and Address
Decode
21
21
MRST
RET
+4
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 16 of 48
Master Reset
The FullFlex family of Dual-Ports undergo a complete reset by
asserting MRST. The MRST can be asserted asynchronously
to the clocks and must remain asserted for at least tRS. Once
asserted MRST deasserts READY, initializes the internal burst
counters, internal mirror registers, and internal Busy
Addresses to zero, and initializes the internal mask register to
all “1s”. All mailbox interrupts (INT), Busy Address Outputs
(BUSY), and burst counter interrupts (CNTINT) are
deasserted upon master reset. Releasing MRST also signifies
that the power supplies and all port clocks are stable. This
begins calibration of the DLL and VIM circuits. READY will be
asserted within 1024 clock cycles. READY is a wired OR
capable output with a strong pull-up and weak pull-down. Up
to four outputs may be connected together. For faster
pull-down of the signal, connect a 250 Ohm resistor to VSS. If
the DLL and VIM circuits are disabled for a port, the port will
be operational within five clock cycles. However, the READY
will be asserted within 160 clock cycles.
IEEE 1149.1 Serial Boundary Scan (JTAG)
The FullFlex families incorporate an IEEE 1149.1 serial
boundary scan test access port (TAP). The TAP operates
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending
on the VTTL power supply. It is composed of four input
connections and one output connection required by the test
logic defined by the standard.
Notes:
20. CE is internal signal. CE = LOW if CE0 = LOW and CE1 = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.
21. OE is “Don’t Care” for mailbox operation.
22. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.
23. The “X” in this diagram represents the counter upper bits.
220 219 2621
2522
242320
220 219 2621
2522
242320
220 219 2621
2522
242320
220 219 2621
2522
242320
H
H
L
H
11
0s 1
01
0111
00
Xs 0
X1
X001
11
Xs 1
X1
X111
00
Xs 0
X1
X001
Masked Address Unmasked Address
Mask
Register
LSB
Address
Counter
LSB
CNTINT
Example:
Load
Counter-Mask
Register = 00007F
Load
Address
Counter = 000005
Max
Address
Value
Max + 1
Address
Value
Figure 4. Programmable Counter-Mask Register Operation[1, 23]
0
27
X
27
X
27
X
27
Table 10.Interrupt Operation Example[1, 19, 20, 21, 22]
Function
Left Port Right Port
R/WLCELA0L–21L INTLR/WRCERA0R–21R INTR
Set Right INTR Flag L L Max. Address X X X X L
Reset Right INTR Flag X X X X H L Max. Address H
Set Left INTL Flag X X X L L L Max. Address–1 X
Reset Left INTL Flag H L Max. Address–1 H X X X X
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 17 of 48
Table 11.Identification Register Definitions
Part Number Configuration Value
CYD36S72V18 512Kx72 0C022069h
CYD36S36V18 1024Kx36 0C023069h
CYD36S18V18 2048Kx36 0C024069h
CYD18S72V18 256Kx72 0C025069h
CYD18S36V18 512Kx36 0C026069h
CYD18S18V18 1024Kx18 0C027069h
CYD09S72V18 128Kx72 0C028069h
CYD09S36V18 256Kx36 0C029069h
CYD09S18V18 1024Kx18 0C02A069h
CYD04S72V18 64Kx72 0C02B069h
CYD04S36V18 128Kx36 0C02C069h
CYD04S18V18 256Kx18 0C02D069h
Table 12.Scan Registers Sizes
Register Name Bit Size
Instruction 4
Bypass 1
Identification 32
Boundary Scan n[24]
Table 13.Instruction Identification Codes
Instruction Code Description
EXTEST 0000 Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.
BYPASS 1111 Places the BYR between TDI and TDO.
IDCODE 1011 Loads the IDR with the vendor ID code and places the register between TDI and TDO.
HIGHZ 0111 Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers
to a High-Z state.
CLAMP 0100 Controls boundary to 1/0. Places BYR between TDI and TDO.
SAMPLE/PRELOAD 1000 Captures the input/output ring contents. Places BSR between TDI and TDO.
RESERVED All other codes Other combinations are reserved. Do not use other than the above.
Note:
24. Details of the boundary scan length can be found in the BSDL file for the device.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 18 of 48
Maximum Ratings
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Storage Temperature ................................ –65°C to + 150°C
Ambient Temperature with
Power Applied............................................–55°C to + 125°C
Supply Voltage to Ground Potential .............. –0.5V to + 4.1V
DC Voltage Applied to
Outputs in High-Z State......................–0.5V to VCORE + 0.5V
DC Input Voltage............................... –0.5V to VCORE + 0.5V
Output Current into Outputs (LOW) ............................ 20 mA
Static Discharge Voltage ...........................................> 2200V
(JEDEC JESD8-6, JESD8-B)
Latch-up Current .....................................................> 200 mA
Operating Range
Range Ambient Temperature VCORE
Commercial 0°C to +70°C 1.8V ± 100 mV
1.5V ± 80 mV
Industrial –40°C to +85°C 1.8V ± 100 mV
1.5V ± 80 mV
Power Supply Requirements
Min. Typ. Max.
LVTTL VDDIO 3.0V3.3V3.6V
2.5V LVCMOS VDDIO 2.3V 2.5V 2.7V
HSTL VDDIO 1.4V1.5V1.9V
1.8V LVCMOS VDDIO 1.7V 1.8V 1.9V
3.3V VTTL 3.0V 3.3V 3.6V
2.5V VTTL 2.3V 2.5V 2.7V
HSTL VREF 0.68V 0.75V 0.95V
Electrical Characteristics Over the Operating Range
Parameter Description Configuration
-250[15] -200
UnitMin. Typ. Max. Min. Typ. Max.
VOH Output HIGH Voltage
(VCORE=Min., IOH=-8 mA)
LVTTL 2.4[25] 2.4 [25] V
(VCORE=Min., IOH=-4 mA) HSTL (DC)[26] VDDIO – 0.4[25] VDDIO – 0.4[25] V
(VCORE=Min., IOH=-4 mA) HSTL (AC)[26] VDDIO – 0.5[25] VDDIO – 0.5[25] V
(VCORE=Min., IOH=-6 mA) 2.5V LVCMOS 1.7[25] 1.7[25] V
(VCORE=Min., IOH=-4 mA) 1.8V LVCMOS VDDIO 0.45[25] VDDIO – 0.45[25] V
VOL Output HIGH Voltage
(VCORE=Min., IOL= 8 mA)
LVTTL 0.4[25] 0.4[25] V
(VCORE=Min., IOL= 4 mA) HSTL (DC)[26] 0.4[25] 0.4[25] V
(VCORE=Min., IOL= 4 mA) HSTL (AC)[26] 0.5[25] 0.5[25] V
(VCORE=Min., IOL= 6 mA) 2.5V LVCMOS 0.7[25] 0.7[25] V
(VCORE=Min., IOL= 4 mA) 1.8V LVCMOS 0.2[25] 0.2[25] V
VIH Input HIGH Voltage LVTTL 2 VDDIO
+ 0.3
2VDDI
O +
0.3
V
HSTL (DC)[26] VREF + 0.1 VDDIO
+ 0.3
VREF + 0.1 VDDI
O +
0.3
V
HSTL (AC)[26] VREF + 0.2 VREF + 0.2 V
2.5V LVCMOS 1.7 1.7 V
1.8V LVCMOS 1.26 1.26 V
VIL Input LOW Voltage LVTTL –0.3 0.8 –0.3 0.8 V
HSTL (DC)[26] –0.3 VREF
– 0.1
–0.3 VREF
– 0.1
V
HSTL (AC)[26] VREF
– 0.2
VREF
– 0.2
V
2.5V LVCMOS 0.7 0.7 V
1.8V LVCMOS 0.36 0.36 V
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 19 of 48
READY
VOH
Output HIGH Voltage
(VCORE = Min., IOH = –24 mA)
LVTTL 2.7[25] 2.7[25] V
(VCORE = Min., IOH = –12 mA) HSTL (DC)[26] VDDIO – 0.4[25] VDDIO – 0.4[25] V
(VCORE = Min., IOH = –12 mA) HSTL (AC)[26] VDDIO – 0.5[25] VDDIO – 0.5[25] V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS 2.0[25] 2.0[25] V
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[25] VDDIO – 0.45[25] V
READY
VOL
Output HIGH Voltage
(VCORE = Min., IO = 0.12 mA)
LVTTL 0.4[25] 0.4[25] V
(VCORE = Min., IOL = 0.12 mA) HSTL (DC) 0.4[25] 0.4[25] V
(VCORE = Min., IOL = 0.12 mA) HSTL (AC) 0.5[25] 0.5[25] V
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7[25] 0.7[25] V
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.2[25] 0.2[25] V
IOZ Output Leakage Current –10 10 –10 10 µA
IIX1 Input Leakage Current Except
TDI, TMS, MRST
–10 10 –10 10 µA
IIX2 Input Leakage Current TDI,
TMS, MRST
–300 10 –300 10 µA
IIX3 Input Leakage Current
PORTSTD, DDRON,
VC_SEL
–10 300 –10 300 µA
ICC Operating Current
(VCORE = Max.,IOUT = 0 mA)
Outputs Disabled
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Notes:
25. These parameters are met with VIM disabled.
26. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed.
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-250[15] -200
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 20 of 48
ISB1 Standby Current
(Both Ports TTL Level)
CEL and CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
ISB2 Standby Current
(One Port TTL Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
ISB3 Standby Current
(Both Ports CMOS Level)
CEL and CER V CORE – 0.2V,
f = 0
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-250[15] -200
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 21 of 48
ISB4 Standby Current
(One Port CMOS Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range
Parameter Description Configuration
-167 -133
UnitMin. Typ. Max. Min. Typ. Max.
VOH Output HIGH Voltage
(VCORE = Min., IOH = –8 mA)
LVTTL 2.4[25] 2.4 [25] V
(VCORE = Min., IOH = –4 mA) HSTL (DC) VDDIO – 0.4[25] VDDIO – 0.4[25] V
(VCORE = Min., IOH = –4 mA) HSTL (AC) VDDIO – 0.5[25] VDDIO – 0.5[25] V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS 1.7[25] 1.7[25] V
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS VDDIO 0.45[25] VDDIO – 0.45[25] V
VOL Output HIGH Voltage
(VCORE = Min., IOH = –8 mA)
LVTTL 0.4[25] 0.4[25] V
(VCORE = Min., IOH = –4 mA) HSTL (DC) 0.4[25] 0.4[25] V
(VCORE = Min., IOH = –4 mA) HSTL (AC) 0.5[25] 0.5[25] V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS 0.7[25] 0.7[25] V
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS 0.2[25] 0.2[25] V
VIH Input HIGH Voltage LVTTL 2 VDDIO
+ 0.3
2 VDDIO
+ 0.3
V
HSTL (DC) VREF + 0.1 VDDIO
+ 0.3
VREF + 0.1 VDDIO
+ 0.3
V
HSTL (AC) VREF + 0.2 VREF + 0.2 V
2.5V LVCMOS 1.7 1.7 V
1.8V LVCMOS 1.26 1.26 V
VIL Input LOW Voltage LVTTL –0.3 0.8 –0.3 0.8 V
HSTL (DC) –0.3 VREF
0.1
–0.3 VREF –
0.1
V
HSTL (AC) VREF
0.2
VREF –
0.2
V
2.5V LVCMOS 0.7 0.7 V
1.8V LVCMOS 0.36 0.36 V
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-250[15] -200
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 22 of 48
READY
VOH
Output HIGH Voltage
(VCORE = Min., IOH = –24 mA)
LVTTL 2.7[25] 2.7[25] V
(VCORE = Min., IOH = –12 mA) HSTL (DC)[26] VDDIO – 0.4[25] VDDIO – 0.4[25] V
(VCORE = Min., IOH = –12 mA) HSTL (AC)[26] VDDIO – 0.5[25] VDDIO – 0.5[25] V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS 2.0[25] 2.0[25] V
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[25] VDDIO – 0.45[25] V
READY
VOL
Output HIGH Voltage
(VCORE = Min., IOL = 0.12 mA)
LVTTL 0.4[25] 0.4[25] V
(VCORE = Min., IOL = 0.12 mA) HSTL (DC) 0.4[25] 0.4[25] V
(VCORE = Min., IOL = 0.12 mA) HSTL (AC) 0.5[25] 0.5[25] V
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7[25] 0.7[25] V
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.2[25] 0.2[25] V
IOZ Output Leakage Current –10 10 –10 10 µA
IIX1 Input Leakage Current
Except TDI,
TMS, MRST
–10 10 –10 10 µA
IIX2 Input Leakage Current TDI,
TMS, MRST
–300 10 –300 10 µA
IIX3 Input Leakage Current
PORTSTD, DDRON,
VC_SEL
–10 300 –10 300 µA
ICC Operating Current
(VCORE = Max., IOUT = 0 mA)
Outputs Disabled
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-167 -133
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 23 of 48
ISB1 Standby Current
(Both Ports TTL Level)
CEL and CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
ISB2 Standby Current
(One Port TTL Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
ISB3 Standby Current
(Both Ports CMOS Level)
CEL and CER VCORE
– 0.2V,
f = 0
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-167 -133
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 24 of 48
ISB4 Standby Current
(One Port CMOS Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
2048Kx18 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
1024x18 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
512x18 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
256x18 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-167 -133
UnitMin. Typ. Max. Min. Typ. Max.
Table 14.Capacitance
Parameter Description Test Conditions Max. Unit
CIN[27] Input Capacitance TA = °C, f = MHz,
VCORE = 3 dV[28] 10 pF
COUT[27, 29] Output Capacitance 12 pF
AC Test Load and Waveforms
Figure 5. Output Test Load for LVTTL/CMOS
Figure 6. Output Test Load for HSTL
Notes:
27. Capacitance for the 36M x18 device is 20 pF, capacitance for all other 36M or x18 devices is 12 pF.
28. Input and Output switch from 0V to 3V or from 3V to 0V.
29. Cout also references to CI/O.
O utput
50 Ohm 50 O hm
VTH = 1.5V for LVTTL
VTH = 50% VDDIO for 2.5V CMOS
VTH = 50% VDDIO for 1.8V CMOS
ZQ
RQ =250 Ohm
Device under
te s t
VREF
VREF = 0V
Test Point
C = 10pF
READY
R=250 O hm VTH
O utput
50 O hm 50 O hm
VTH = 50% VDDIO
ZQ
RQ=250 Ohm
D evice under
te s t
VREF
VREF = 0.75V
Test Point
C = 10pF for SD R
R =250 O hm
READY
VTH
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 25 of 48
Switching Characteristics Over the Operating Range
Table 15.SDR Mode with DLL Enabled (LOWSPD-HIGH)[32]
Parameter Description
-250[15} -200 -167 -133
UnitMin. Max. Min. Max. Min. Max. Min. Max.
fMAX (PIPELINED) Maximum Operating Frequency
for Pipelined mode
100 250 100 200 100 167 100 133 MHz
fMAX[33]
(FLOW-THROUGH)
Maximum Operating Frequency
for Flow-through mode
100 77 66.7 55.6 MHz
tCYC (PIPELINED) C Clock Cycle Time for Pipelined
mode
4.00 10.00 5.00 10.00 6.00 10.00 7.00 10.00 ns
tCYC
(FLOW-THROUGH)
C Clock Cycle Time for
Flow-through mode
10.00 13.00 15.00 18.00 ns
tCKD C Clock Duty Time 45 55 45 55 45 55 45 55 %
tSD Data Input Set-up Time to C Rise 1.20[31] 1.50[31] 1.70[31] 1.80[31] ns
tHD Data Input Hold Time after C Rise 0.50[31] 0.50[31] 0.50[31] 0.50[31] ns
tSAC Address & Control Input Setup
Time to C Rise
1.20 1.50 1.70 1.80 ns
tHAC Address & Control Input Hold
Time after C Rise
0.50 0.50 0.60 0.70 ns
tOE Output Enable to Data Valid 3.40[31] 4.40[31] 5.00[31] 5.50[31] ns
tOLZ[30] OE to Low Z 1.00 1.00 1.00 1.00 ns
tOHZ[30] OE to High Z 1.00[31] 3.40[31] 1.00[31] 4.40[31] 1.00[31] 5.00[31] 1.00[31] 5.50[31] ns
tCD1 C Rise to DQ Valid for
Flow-through Mode
(LowSPD = 1)
7.20 9.00 11.00 13.00 ns
tCD2 C Rise to DQ Valid for Pipelined
mode
(LowSPD = 1)
2.64[31] 3.30[31] 4.00[31] 4.50[31] ns
tCA1 C Rise to Address Readback
Valid for flow-through mode
7.20 9.00 11.00 13.00 ns
tCA2 C Rise to Address Readback
Valid for pipelined mode
4.00 5.00 6.00 7.50 ns
tDC DQ Output Hold after C Rise 1.00 1.00 1.00 1.00 ns
tCCQ C Rise to CQ Rise 1.00 2.64 1.00 3.30 1.00 4.00 1.00 4.50 ns
tCQHQV Echo Clock (CQ) High to Output
Valid
0.70[31] 0.76[31] 0.80[31] 0.90[31] ns
tCQHQX Echo Clock (CQ) High to Output
Hold
–0.66 –0.72 –0.76 –0.90 ns
tCKHZ1[30] C Rise to DQ Output High Z in
Flow-Through Mode
1.00 7.20 1.00 9.00 1.00 11.00 1.00 13.00 ns
tCKLZ1[30] C Rise to DQ Output Low Z in
Flow-Through Mode
1.00 1.00 1.00 1.00 ns
tCKHZ2[30] C Rise to DQ Output High Z in
Pipelined Mode
1.00[31] 2.64[31] 1.00[31] 3.30[31] 1.00[31] 4.00[31] 1.00[31] 4.50[31] ns
tCKLZ2[30] C Rise to DQ Output Low Z in
Pipelined Mode
1.00 1.00 1.00 1.00 ns
tAC Address Output Hold after C Rise 1.00 1.00 1.00 1.00 ns
Notes:
30. Parameters specified with the load capacitance in Figure 5 and Figure 6.
31. For the x18 devices, add 200 ps to this parameter in the table above.
32. Test conditions assume a signal transition time of 2 V/ns.
33. Flow-Through Mode operates at this frequency regardless of DLL being enabled or disabled
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 26 of 48
tCKHZA1[30] C Rise to Address Output High Z
for Flow-Through Mode
1.00 7.20 1.00 9.00 1.00 11.00 1.00 13.00 ns
tCKHZA2[30] C Rise to Address Output High Z
for Pipelined Mode
1.00 4.00 1.00 5.00 1.00 6.00 1.00 7.50 ns
tCKLZA[30] C Rise to Address Output Low Z 1.00 1.00 1.00 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 2.64 1.00 3.30 1.00 4.00 1.00 4.50 ns
tRCINT C Rise to CNTINT High 1.00 2.64 1.00 3.30 1.00 4.00 1.00 4.50 ns
tSINT C Rise to INT Low 0.50 6.00 0.50 7.00 0.50 8.00 0.50 8.50 ns
tRINT C Rise to INT High 0.50 6.00 0.50 7.00 0.50 8.00 0.50 8.50 ns
tBSY C Rise to BUSY Valid 1.00 2.64 1.00 3.30 1.00 4.00 1.00 4.50 ns
Table 16. SDR Mode with DLL Disabled (LOWSPD-LOW)[32]
Parameter Description
-100
UnitMin. Max.
fMAX (PIPELINED) Maximum Operating Frequency for Pipelined mode 100 MHz
fMAX (FLOW-THROUGH)[33] Maximum Operating Frequency for Flow-through mode 55.6 MHz
tCYC (PIPELINED) C Clock Cycle Time for Pipelined mode 7.00 10.00 ns
tCYC (FLOW-THROUGH) C Clock Cycle Time for Flow-through mode 18.00 ns
tCKD C Clock Duty Time 45 55 %
tSD Data Input Set-up Time to C Rise 1.80[31] ns
tHD Data Input Hold Time after C Rise 0.50[31] ns
tSAC Address & Control Input Setup Time to C Rise 1.80 ns
tHAC Address & Control Input Hold Time after C Rise 0.70 ns
tOE Output Enable to Data Valid 5.50[31] ns
tOLZ[30] OE to Low Z 1.00 ns
tOHZ[30] OE to High Z 1.00[31] 5.50[31] ns
tCD1 C Rise to DQ Valid for Flow-through Mode (LowSPD = 0) 13.00 ns
tCD2 C Rise to DQ Valid for Pipelined mode (LowSPD = 0) 6.00[31] ns
tCA1 C Rise to Address Readback Valid for flow-through mode 13.00 ns
tCA2 C Rise to Address Readback Valid for pipelined mode 7.50 ns
tDC DQ Output Hold after C Rise 1.00 ns
tCCQ C Rise to CQ Rise 1.00 6.00 ns
tCQHQV Echo Clock (CQ) High to Output Valid 0.90[31] ns
tCQHQX Echo Clock (CQ) High to Output Hold –0.90 ns
tCKHZ1[30] C Rise to DQ Output High Z in Flow-through Mode 1.00 13.00 ns
tCKLZ1[30] C Rise to DQ Output Low Z in Flow-Through Mode 1.00 ns
tCKHZ2[30] C Rise to DQ Output High Z in Pipelined Mode 1.00[31] 6.00[31] ns
tCKLZ2[30] C Rise to DQ Output Low Z in Pipelined Mode 1.00 ns
tAC Address Output Hold after C Rise 1.00 ns
tCKHZA1[30] C Rise to Address Output High Z for Flow-Through mode 1.00 13.00 ns
tCKHZA2[30] C Rise to Address Output High Z for Pipelined mode 1.00 7.50 ns
tCKLZA[30] C Rise to Address Output Low Z 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 4.50 ns
tRCINT C Rise to CNTINT High 1.00 4.50 ns
Table 15.SDR Mode with DLL Enabled (LOWSPD-HIGH)[32] (continued)
Parameter Description
-250[15} -200 -167 -133
UnitMin. Max. Min. Max. Min. Max. Min. Max.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 27 of 48
tSINT C Rise to INT Low 0.50 8.50 ns
tRINT C Rise to INT High 0.50 8.50 ns
tBSY C Rise to BUSY Valid 1.00 4.50 ns
Table 16. SDR Mode with DLL Disabled (LOWSPD-LOW)[32]
Parameter Description
-100
UnitMin. Max.
Master Reset Timing
Parameter Description
-250[15] -200 -167 -133
UnitMin. Max. Min. Max. Min. Max. Min. Max.
tPUP Power-Up Time 1 1 1 1 ms
tRS Master Reset Pulse Width 5 5 5 5 cycles
tRSR Master Reset Recovery Time 5 5 5 5 cycles
tRSF Master Reset to Outputs Inactive/Hi Z 10 10 10 10 ns
tRDY[34] Master Reset Release to Port Ready 1024 1024 1024 1024 cycles
tCORDY[35] C Rise to Port Ready 8 9.5 11 13 ns
Table 17.JTAG Timing
Parameter Description
-250[15] -200 -167 -133
UnitMin. Max. Min. Max. Min. Max. Min. Max.
fJTAG JTAG TAP Controller Frequency 20 20 20 20 MHz
tTCYC TCK Cycle Time 50 50 50 50 ns
tTH TCK High Time 20 20 20 20 ns
tTL TCK Low Time 20 20 20 20 ns
tTMSS TMS Set-up to TCK Rise 10 10 10 10 ns
tTMSH TMS Hold to TCK Rise 10 10 10 10 ns
tTDIS TDI Set-up to TCK Rise 10 10 10 10 ns
tTDIH TDI Hold to TCK Rise 10 10 10 10 ns
tTDOV TCK Low to TDO Valid 10 10 10 10 ns
tTDOX TCK Low to TDO Invalid 0 0 0 0 ns
tJXZ TCK Low to TDO High Z 15 15 15 15 ns
tJZX TCK Low to TDO Active 15 15 15 15 ns
Notes:
34. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250-Ohm resistor to VSS.
35. Add this propagation delay after tRDY for all Master Reset Operations.
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 28 of 48
Switching Waveforms
JTAG Timing
Master Reset[34]
Test Clock
Test Mode Select
TCK
TMS
Test Data-In
TDI
Test Dat a- O ut
TDO
tTCYC
tTMSH
t
TL
t
TH
tTMSS
tTDIS tTDIH
tTDOX tTDOV
tPUP tRS
tRSF
tRSR
VCORE
MRST
C
READY
All Address
& Data
All Other
Inputs
tRDY tCORDY
~
~
~
~
~
~
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 29 of 48
READ Cycle for Pipelined Mode
WRITE Cycle for Pipelined and Flow-Through Modes
Switching Waveforms (continued)
C
tCYC
R/W
A
2 pipeline stages
AnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tDC tCD2
tSAC tHAC
DQ
CE
OE
tCYC
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQnDQn+1 DQn+2 DQn+3 DQn+4 DQn+5 DQn+6
2 pipeline stages
tSD tHD
DQ
CE
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 30 of 48
READ with Address Counter Advance for Pipelined Mode
READ with Address Counter Advance for Flow-Through Mode
Switching Waveforms (continued)
C
tCYC
DQx-1 DQxDQnDQn+1 DQn+2
A
Internal
ADS
A
ddress
CNTEN
An
An
An+1 An+2 An+3
DQn+3
DQ
tCYC
C
tSAC tHAC
tHAC
tDC
tCD1
tSAC
READ EXTERNAL ADDRESS READ W ITH COUNTERCOUNTER HOLDREAD W ITH COUNTER
DQx DQn + 1 DQn + 2 DQn + 3 DQn + 4DQn
An
A
DQ
CNTEN
ADS
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 31 of 48
Port-to-Port WRITE–READ for Pipelined Mode
Chip Enable READ for Pipelined Mode
Switching Waveforms (continued)
CL
An
DQn
Left Port
R/WL
CR
Right Port
An
R/WR
DQn
tCD2 tDC
tSAC tHAC
tCYC
tCYC
tCCS
AL
DQL
AR
DQR
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
tSAC tHAC
tCYC
CE0
CE1
DQ DQnDQn+3
tCD2 tDC tCKLZ2
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 32 of 48
OE Controlled WRITE for Pipelined Mode
OE Controlled WRITE for Flow-Through Mode
Switching Waveforms (continued)
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQx-1 DQx
DQx+1
DQnDQn+1 DQn+2 DQn+3
OE
DQ
tOHZ
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQxDQx+1
DQx+2
DQnDQn+1 DQn+2 DQn+3
OE
DQ
tOHZ
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 33 of 48
Byte-Enable READ for Pipelined Mode
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3
tCYC
BE7
BE6
BE5
BE4
BE3
BE2
BE1
BE0
DQ63:71
DQ54:62
DQ45:53
DQ36:44
DQ27:35
DQ18:26
DQ9:17
DQ0:8
DQn+1(63:71)
DQn+1(54:62)
DQn+1(27:35)
DQn+2(45:53)
DQn+2(36:44)
DQn+2(18:26)
DQn+3(9:17)
DQn+3(0:8)
tCKLZ2 tCKHZ2
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 34 of 48
Port-to-Port WRITE-to-READ for Flow-Through Mode
Busy Address Readback for Pipelined and Flow-Through Modes[36]
Note:
36. Amatch is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy
Address Readback.”
Switching Waveforms (continued)
tHD
tSD
tCD1
tDC
tDC
tSAC tHAC
tCD1
tCCS
tHAC
tSAC
MATCH
VALID
NO MATCH
NO MATCH
MATCH
VALID VALID
CL
R/WL
CR
AL
DQL
R/WR
AR
DQR
Internal Amatch+2 Amatch+3 Amatch+4
tCYC
C
BUSY
~
~
~
~
~
~
CNTEN
ADS
External
Amatch
tCA tAC
Address
Address
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 35 of 48
Read Cycle for Flow-Through Mode
READ-to-WRITE for Pipelined Mode (OE = VIL)[37,38,39]
Notes:
37. When OE = VIL, the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.
38. Two dummy writes should be issued to accomplish bus turnaround. The 3rd instruction is the first valid write.
39. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.
Switching Waveforms (continued)
tCYC
tSAC tHAC
tCKHZ1
tDC
tOE
tOLZ
tOHZ
tDCtCD1
tCKLZ1
An
tHACtSAC
CE1
CE0
C
An + 1 An + 3An + 2
DQn DQn + 1 DQn + 2
R/W
OE
BEn
A
DQ
C
AAxAnAn+1 An+2
tCYC
DQx-2 DQx-1 DQxDQnDQn+1 DQn+2
tCH
tCL
tSAC tHAC tSAC tHAC
tDC
tCD2 tCKHZ2 tSD tHD
R/W
DQ
tCKLZ2
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 36 of 48
READ-to-WRITE for Pipelined Mode (OE Controlled)[40,41]
Notes:
40. OE should be deasserted and tOHZ allowed to elapse before the first write operation is issued.
41. Any write scheduled to complete after OE is deasserted will be preempted.
Switching Waveforms (continued)
C
R/W
AAxAx+1 Ax+2 AnAn+1 An+2 An+3
tCYC
DQx-2 DQx-1
DQxDQnDQn+1 DQn+2 DQn+3
tSAC tHAC
tOHZ tSD tHD
OE
DQ
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 37 of 48
Read-to-Write-to-Read for Flow-Through Mode (OE = LOW)
Switching Waveforms (continued)
tHDtSD
tSAC
tCKHZ1
tDC
tCD1
tCD1
tSAC
tCYC
tHAC
tDC
tCD1tCD1
tCKLZ1
READ READWRITENOP
An An + 1 An + 2 An + 2 An + 3 An + 4
DQn + 2
DQn DQn + 1 DQn + 3
C
R/W
BEn
CE1
DQOUT
DQIN
A
tHAC
CE0
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 38 of 48
Read-to-Write-to-Read for Flow-Through Mode (OE Controlled)
Switching Waveforms (continued)
tCD1
tCKLZ1
tHDtSD
tOHZ
tDCtCD1
tHAC
tSAC
tCYC
tDC
tCD1
tOE
READ READWRITE
An An + 1 An + 2 An + 3 An + 4 An + 5
DQn + 2 DQn + 3
DQn DQn + 4
C
R/W
BEn
CE1
DQOUT
DQIN
A
OE
tHAC
tSAC
CE0
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 39 of 48
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Violates tCCS. (Flag Both
Ports)
Switching Waveforms (continued)
Port A
A
R/W
tBSY tBSY
BUSY
Port B
< tCCS
A
R/W
tBSY tBSY
BUSY
C
Losing Port
C
A
R/W
tBSY tBSY
BUSY
Winning Port
A
R/W
C
tccs
Match
C
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Meets tCCS. (Flag Losing
Port)
BUSY
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 40 of 48
Read with Echo Clock for Pipelined and Flow-Through Modes (CQEN = HIGH)
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tSAC tHAC
DQ
CQ1
CQ1
CQ0
CQ0
tCCQ
tCQHQV tCQHQX
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 41 of 48
Mailbox Interrupt Output
Switching Waveforms (continued)
tCYC
CL
AL
R/WL
DQL
INTR
CR
AR
R/WR
DQR
AMAX
DQMAX
AMAX
tSINT tRINT
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 42 of 48
Ordering Information
512K
×
72 (36 Mbit) 1.8V Synchronous CYD36S72V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYD36S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
167 CYD36S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
133 CYD36S72V18-133BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S72V18-133BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
256K
×
72 (18 Mbit) 1.8V Synchronous CYD18S72V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD18S72V18-250BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
200 CYD18S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD18S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYD18S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD18S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
128K
×
72 (9 Mbit) 1.8V Synchronous CYD09S72V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD09S72V18-250BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
200 CYD09S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD09S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYD09S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD09S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
64K
×
72 (4 Mbit) 1.8V Synchronous CYD04S72V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD04S72V18-250BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
200 CYD04S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD04S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYD04S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD04S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
1024K
×
36 (36 Mbit) 1.8V Synchronous CYD36S36V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYD36S36V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
167 CYD36S36V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S36V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
133 CYD36S36V18-133BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S36V18-133BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 43 of 48
512K
×
36 (18 Mbit) 1.8V Synchronous CYD18S36V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD18S36V18-250BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD18S36V18-200BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYD18S36V18-200BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD18S36V18-167BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYD18S36V18-167BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
256K
×
36 (9 Mbit) 1.8V Synchronous CYD09S36V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD09S36V18-250BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD09S36V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD09S36V18-200BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD09S36V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD09S36V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
128K
×
36 (4 Mbit) 1.8V Synchronous CYD04S36V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD04S36V18-250BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD04S36V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD04S36V18-200BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD04S36V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD04S36V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
2048K
×
18 (36 Mbit) 1.8V Synchronous CYD36S18V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYD36S18V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
167 CYD36S18V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S18V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
133 CYD36S18V18-133BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYD36S18V18-133BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
1024K
×
18 (18 Mbit) 1.8V Synchronous CYD18S18V18 Dual-Port SRAM
Speed
MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD18S18V18-250BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD18S18V18-200BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYD18S18V18-200BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD18S18V18-167BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYD18S18V18-167BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
Ordering Information (continued)
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 44 of 48
512K
×
18 (9 Mbit) 1.8V Synchronous CYD09S18V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD09S18V18-250BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD09S18V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD09S18V18-200BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD09S18V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD09S18V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
256K
×
18 (4 Mbit) 1.8V Synchronous CYD04S18V18 Dual-Port SRAM
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYD04S18V18-250BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
200 CYD04S18V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD04S18V18-200BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
167 CYD04S18V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYD04S18V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
Ordering Information (continued)
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 45 of 48
Package Diagrams
BOTTOM VIEW
TOP VIEW
10987654321
A
B
C
D
E
F
G
H
J
K
PIN 1 CORNER
PIN 1 CORNER
0.20(4X)
Ø0.25MCAB
Ø0.05 M C
Ø0.45±0.05(256X)-CPLD DEVICES (37K & 39K)
0.25 C
0.70±0.05
C
SEATING PLANE
0.15 C
16 15 14 13 12 11
T
R
P
M
N
L
N
T
R
P
M
L
K
J
F
G
H
E
D
A
C
B
161513 141210 11928765431
A
B
Ø0.50 (256X)-ALL OTHER DEVICES
+0.10
-0.05
A1 0.36 0.56
A 1.40 MAX. 1.70 MAX.
REFERENCE JEDEC MO-192
15.00
1.00
0.35
A
17.00±0.10
7.50
7.50
15.00
17.00±0.10
1.00
A1
-0.05
+0.10
256-Ball FBGA (17 x 17 mm) BB256
51-85108-*F
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 46 of 48
Package Diagrams (continued)
Package Weight - 1.1 grams
0.70 (REF)
0.56 (REF)
SEATING PLANE
-C-
T
R
H
L
P
N
M
K
J
G
F
E
C
D
B
3
A
24
PIN A1 CORNER
17
56810
9
TOP VIEW
0.15 C
1.70 MAX.
0.35 +0.10/-0.05 0.25 C
0.15(4X)
-A-
-B-
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
T
R
11
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
1412 16
11 13 15 16 14 12
15 13
H
L
P
N
M
K
J
G
F
E
C
D
B
A1 CORNER
Ø0.05 M C
5
7
8
10 6
93
42
A
Ø0.50 (256 X)
Ø0.25 M C A B
1
BOTTOM VIEW
Jedec Outline - Design Guide 4.14
256 FBGA (19 x 19 x 1.7 mm) BW256C
001-00915-*A
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 47 of 48
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are
trademarks of their respective holders.
Package Diagrams (continued)
Ø0.50~Ø0.70(484X)
0.97 REF.
0.20 C
0.56 REF.
f
SEATING PLANE
-C-
30° TYP.
f
0.40~0.60
0.132.03 ±
PIN #1 CORNER
1.00
G
20.00 REF.
AB
AA
3.20*45°(4x)
U
W
Y
V
R
T
P
K
M
N
L
J
H
20.00 REF.
-A-
0.20(4X)
-B-
23.00±0.20
21.00
23.00±0.20
21.00
Ø1.00(3X) REF.
E
F
D
B
C
A
1
24
359
6
7
8
11
10 12
19
1614
13 15
18
17 21
20 22 22
15
19
20
21 17
18 16 1214
13
10
11 9
G
1.00
AB
AA
U
Y
W
V
R
T
P
K
M
N
L
J
H
E
F
D
B
C
A
5
7
8642
31
Package Weight - 2.0 grams
Jedec Outline - Design Guide 4.14
0.25 C
0.35 C
484-ball PBGA (23 mm x 23 mm x 2.03 mm) BY484
51-85218-**
PRELIMINARY FullFlex
Document #: 38-06082 Rev. *C Page 48 of 48
Document History Page
Document Title: FullFlex™ Synchronous SDR Dual-Port SRAM
Document Number: 38-06082
REV. ECN NO.
Issue
Date
Orig. of
Change Description of Change
** 302411 See ECN YDT New data sheet
*A 334036 See ECN YDT Corrected typo on page 1
Reproduced PDF file to fix formatting errors
*B 395800 See ECN SPN Added statement about no echo clocks for flow-through mode
Updated electrical characteristics
Added note 16 and 17 (1.5V timing)
Added note 33 (timing for x18 devices)
Updated input edge rate (note 34)
Updated table 5 on deterministic access control logic
Added description of busy readback in deterministic access control section
Changed dummy write descriptions
Updated ZQ pins connection details
Updated note 24, B0 to BE0
Added power supply requirements to MRST and VC_SEL
Added note 4 (VIM disable)
Updated supply voltage to ground potential to 4.1V
Updated parameters on table 15
Updated and added parameters to table 16
Updated x72 pinout to SDR only pinout
Updated 484 PBGA pin diagram
Updated the pin definition of MRST
Updated the pin definition of VC_SEL
Updated READY description to include Wired OR note
Updated master reset to include wired OR note for READY
Updated minimum VOH value for the 1.8V LVCMOS configuration
Updated electrical characteristics to include IOH and IOL values
Updated electrical characteristics to include READY
Added IIX3
Updated maximum input capacitance
Added Note 33
Added Note 34
Removed Notes 15 and 17
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1
Removed -100 Speed bin from Table.1 Selection Guide
Changed voltage name from VDDQ to VDDIO
Changed voltage name from VDD to VCORE
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram
Updated the Package Type for the CYD36S18V18 parts
Updated the Package Type for the CYD36S18V18 parts
Updated the Package Type for the CYD18S18V18 parts
Updated the Package Type for the CYD18S36V18 parts
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256
Included an OE Controlled Write for Flow-Through Mode Switching Waveform
Included a Read with Echo Clock Switching Waveform
Updated Figure 5 and Figure 6
Updated Electrical Characteristics for READY VOH and READY V
Updated Electrical Characteristics for VOH and VOL for the -167 and -133 speeds
Included a Unit column for Table 5
Removed Switching Characteristic tCA from chart
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-Through Mode
*C 402238 SEE ECN KGH Updated AC Test Load and Waveforms
Included FullFlex36 SDR 484-ball BGA Pinout (Top View)
Included FullFlex18 SDR 484-ball BGA Pinout (Top View)
Included Timing Parameter tCORDY