This is information on a product in full production.
August 2012 Doc ID 018835 Rev 7 1/171
1
STA381BW
Sound Terminal®
2.1-channel high-efficiency digital audio system
Datasheet production data
Features
Wide-range supply voltage
4.5 V to 26 V (operating range)
30 V (absolute maximum rating)
I2C control with selectable device address
Embedded full IC protection
Manufacturing short-circuit protection (out
vs. gnd, out vs. vcc, out vs. out)
Thermal protection
Overcurrent protection
Undervoltage protection
1 Vrms stereo analog input
I2S interface, sampling rate 32 kHz ~ 192 kHz,
with internal sampling frequency converter for
fixed processing frequency
Three output power stage configurations
2.0 mode, L/R full bridges
2.1 mode, L/R two half-bridges, subwoofer
full bridge
2.1 mode, L/R full bridges, PWM output for
external subwoofer amplifier
Driving load capabilities
2 x 20 W into 8 Ω ternary modulation
2 x 9 W into 4 Ω + 1 x 20 W into 8 Ω
FFXTM 100 dB dynamic range
Fixed output PWM frequency at any input
sampling frequency
Embedded RMS meter for measuring real-time
loudness
Two analog outputs
Selectable headphone / line out driver with
adjustable gain via external resistors
–New F3X
TM analog output
New fully programmable noise-gating function
Headphone
Embedded negative charge pump
Full capless output configuration
Driving load capabilities: 40 mW into 32 Ω
Line out
2 Vrms line output capability
Up to 12 user-programmable biquads with
noise-shaping technology
Direct access to coefficients through I2C
shadowing mechanism
Fixed (88.2 kHz / 96 kHz) internal processing
sampling rate
Two independent DRCs configurable as a
dual-band anticlipper or independent
limiters/compressors (B2DRC)
Digital gain/att +48 dB to -80 dB with
0.125 dB/step resolution
Independent (fade-in, fade-out) soft volume
update with programmable rate 48 ~ 1.5 dB/ms
Bass/treble tones control
Audio presets: 15 crossover filters,
5 anticlipping modes, nighttime listening mode
STSpeakerSafeTM protection circuitry
–Pre
- and post-processing DC blocking filters
Checksum engine for filter coefficients
PWM fault self-diagnosis
STCompressorTM dual-band DRC
Table 1. Device summary
Order code Package Packing
STA381BW VQFN48 Tray
STA381BWTR VQFN48 Tape and Reel
VQFN48 (7 x 7 mm)
www.st.com
Contents STA381BW
2/171 Doc ID 018835 Rev 7
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 22
3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 23
3.6 Electrical specifications for the analog section . . . . . . . . . . . . . . . . . . . . . 24
4 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Processing data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Input oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 STCompressorTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 STC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Band splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Level meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.5 Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.6 Dynamic attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.7 Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.8 Stereo link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.9 Programming of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.10 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5I
2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STA381BW Contents
Doc ID 018835 Rev 7 3/171
5.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.5 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.6 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Register description: New Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 CLK register (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 STATUS register (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 RESET register (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Soft volume register (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 MVOL register (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 FINEVOL register (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.7 CH1VOL register (addr 0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.8 CH2VOL register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.9 POST scaler register (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10 OPER register (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.11 FUNCT register (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.11.1 Dual-band DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.12 HPCFG register (addr 0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.13 Configuration register A (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.13.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.13.2 Interpolation ratio selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.13.3 Fault-detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.14 Configuration register B (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.14.1 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Contents STA381BW
4/171 Doc ID 018835 Rev 7
6.14.2 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.14.3 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.14.4 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.15 Configuration register C (addr 0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.15.1 FFX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.16 Configuration register D (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.16.1 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.16.2 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.16.3 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.16.4 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.16.5 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.17 Configuration register E (addr 0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.17.1 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.17.2 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.17.3 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.17.4 Zero-crossing enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.18 Configuration register F (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.18.1 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.18.2 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 65
6.18.3 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.18.4 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.18.5 External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.19 Volume control registers (addr 0x17 - 0x1B) . . . . . . . . . . . . . . . . . . . . . . 66
6.19.1 Mute/line output configuration register (addr 0x17) . . . . . . . . . . . . . . . . 66
6.19.2 Channel 3 / line output volume (addr 0x1B) . . . . . . . . . . . . . . . . . . . . . . 68
6.20 Audio preset registers (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.20.1 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.20.2 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.21 Channel configuration registers (addr 0x1F - 0x21) . . . . . . . . . . . . . . . . . 70
6.21.1 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.21.2 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.21.3 Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.21.4 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.21.5 Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.21.6 Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.22 Tone control register (addr 0x22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
STA381BW Contents
Doc ID 018835 Rev 7 5/171
6.22.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.23 Dynamic control registers (addr 0x23 - 0x26 / addr 0x43 - 0x46) . . . . . . 73
6.23.1 Limiter 1 attack/release rate (L1AR addr 0x23) . . . . . . . . . . . . . . . . . . . 73
6.23.2 Limiter 1 attack/release threshold (L1ATRT addr 0x24) . . . . . . . . . . . . . 73
6.23.3 Limiter 2 attack/release rate ( L2AR addr 0x25) . . . . . . . . . . . . . . . . . . 73
6.23.4 Limiter 2 attack/release threshold ( L2 ATRT addr 0x26) . . . . . . . . . . . . 73
6.23.5 Limiter 1 extended attack threshold (addr 0x43) . . . . . . . . . . . . . . . . . . 77
6.23.6 Limiter 1 extended release threshold (addr 0x44) . . . . . . . . . . . . . . . . . 77
6.23.7 Limiter 2 extended attack threshold (addr 0x45) . . . . . . . . . . . . . . . . . . 78
6.23.8 Limiter 2 extended release threshold (addr 0x46) . . . . . . . . . . . . . . . . . 78
6.24 User-defined coefficient control registers (addr 0x27 - 0x37) . . . . . . . . . . 78
6.24.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.24.2 Coefficient b1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.24.3 Coefficient b1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.24.4 Coefficient b1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.24.5 Coefficient b2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.6 Coefficient b2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.7 Coefficient b2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.8 Coefficient a1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.9 Coefficient a1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.10 Coefficient a1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.11 Coefficient a2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.24.12 Coefficient a2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.13 Coefficient a2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.14 Coefficient b0 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.15 Coefficient b0 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.16 Coefficient b0 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.24.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.24.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.24.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.25 Fault-detect recovery constant registers (addr 0x3C - 0x3D) . . . . . . . . . . 85
6.26 Extended configuration register (addr 0x47) . . . . . . . . . . . . . . . . . . . . . . 85
6.26.1 Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.26.2 Extended attack rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.26.3 Extended biquad selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Contents STA381BW
6/171 Doc ID 018835 Rev 7
6.27 PLL configuration registers
(address 0x52; 0x53; 0x54; 0x55; 0x56; 0x57) . . . . . . . . . . . . . . . . . . . . 87
6.28 Short-circuit protection mode registers SHOK (address 0x58) . . . . . . . . 89
6.29 Extended coefficient range up to -4...4 (address 0x5A) . . . . . . . . . . . . . . 90
6.30 Miscellaneous registers (address 0x5C, 0x5D) . . . . . . . . . . . . . . . . . . . . 91
6.30.1 Rate power-down enable (RPDNEN) bit . . . . . . . . . . . . . . . . . . . . . . . . 91
6.30.2 Bridge immediately off (BRIDGOFF) bit (address 0x4B, bit D5) . . . . . . 91
6.30.3 Channel PWM enable (CPWMEN) bit . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.30.4 External amplifier hardware pin enabler (LPDP, LPD LPDE) bits . . . . . 92
6.30.5 Power-down delay selector (PNDLSL[2:0]) bits . . . . . . . . . . . . . . . . . . . 92
6.30.6 Short-circuit check enable bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.31 Bad PWM detection registers (address 0x5E, 0x5F, 0x60) . . . . . . . . . . . 93
6.32 Enhanced zero-detect mute and input level measurement
(address 0x61-0x65, 0x3F, 0x40, 0x6F) . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.33 Headphone/Line out configuration register (address 0x66) . . . . . . . . . . . 96
6.34 F3XCFG (address 0x69; 0x6A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.35 STCompressorTM configuration register (address 0x6B; 0x6C) . . . . . . . 98
6.36 Charge pump synchronization (address 0x70) . . . . . . . . . . . . . . . . . . . . . 98
6.37 Coefficient RAM CRC protection (address 0x71-0x7D) . . . . . . . . . . . . . . 99
6.38 MISC4 (address 0x7E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Register description: Sound Terminal compatibility . . . . . . . . . . . . . 103
7.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.3 Fault-detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.1 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.2 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.3 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.4 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.5 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.1 FFX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
STA381BW Contents
Doc ID 018835 Rev 7 7/171
7.4.2 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.3 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.4 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.5 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.1 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.2 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.3 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.4 Zero-crossing enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.5 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6.1 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6.2 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.3 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.4 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.5 IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.6 External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . 122
7.7.1 Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7.2 Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.3 Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.4 Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.5 Channel 3 / line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.8 Audio preset registers (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.8.1 Audio preset register (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.8.2 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.3 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.9 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . 126
7.9.1 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.9.2 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.9.3 Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.9.4 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.9.5 Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.9.6 Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.10 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.10.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Contents STA381BW
8/171 Doc ID 018835 Rev 7
7.11 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . 129
7.11.1 Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.11.2 Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.11.3 Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.11.4 Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.11.5 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . 133
7.11.6 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . 133
7.11.7 Limiter 2 extended attack threshold (addr 0x34 . . . . . . . . . . . . . . . . . ) 134
7.11.8 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . 134
7.12 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . 134
7.12.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.12.2 Coefficient b1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.12.3 Coefficient b1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.12.4 Coefficient b1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.12.5 Coefficient b2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.6 Coefficient b2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.7 Coefficient b2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.8 Coefficient a1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.9 Coefficient a1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.10 Coefficient a1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.11 Coefficient a2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.12.12 Coefficient a2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.13 Coefficient a2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.14 Coefficient b0 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.15 Coefficient b0 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.16 Coefficient b0 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.12.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.12.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.13 Fault-detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . 141
7.14 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.15 EQ coefficients configuration register (addr 0x31) . . . . . . . . . . . . . . . . . 141
7.16 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . 142
7.16.1 Dual-band DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.16.2 Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
STA381BW Contents
Doc ID 018835 Rev 7 9/171
7.16.3 Extended attack rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.16.4 Extended BIQUAD selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.17 EQ soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . 145
7.18 Extra volume resolution configuration registers (address 0x3F; 0x40) . . 146
7.19 PLL configuration registers
(address 0x41; 0x42; 0x43; 0x44; 0x45; 0X46) . . . . . . . . . . . . . . . . . . . 147
7.20 Short-circuit protection mode registers SHOK (address 0x47) . . . . . . . 149
7.21 Extended coefficient range up to -4...4 (address 0x49, 0x4A) . . . . . . . . 151
7.22 Miscellaneous registers (address 0x4B, 0x4C) . . . . . . . . . . . . . . . . . . . 151
7.22.1 Rate power-down enable (RPDNEN) bit (address 0x4B, bit D7) . . . . . 151
7.22.2 Bridge immediately off (BRIDGOFF) bit (address 0x4B, bit D5) . . . . . 152
7.22.3 Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2) . . . . . . . 152
7.22.4 External amplifier hardware pin enabler (LPDP, LPD LPDE) bits
(address 0x4C, bit D7, D6, D5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.22.5 Power-down delay selector (PNDLSL[2:0]) bits
(address 0x4C, bit D4, D3, D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.22.6 Short-circuit check enable bit (address 0x4C, bit D0) . . . . . . . . . . . . . 153
7.23 Bad PWM detection registers (address 0x4D, 0x4E, 0x4F) . . . . . . . . . . 154
7.24 Enhanced zero-detect mute and input level measurement
(address 0x50-0x54, 0x2E, 0x2F and 0x5E) . . . . . . . . . . . . . . . . . . . . . 155
7.25 Headphone/Line out configuration register (address 0x55) . . . . . . . . . . 157
7.26 F3XCFG (address 0x58; 0x59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.27 STCompressorTM configuration register (address 0x5A; 0x5B) . . . . . . 159
7.28 Charge pump synchronization (address 0x5F) . . . . . . . . . . . . . . . . . . . 160
7.29 Coefficient RAM CRC protection (address 0x60-0x6C) . . . . . . . . . . . . . 161
7.30 MISC3 (address 0x6E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.31 MISC4 (address 0x7E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.1 Application schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2 Headphone and 2 Vrms line out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
List of tables STA381BW
10/171 Doc ID 018835 Rev 7
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8. Electrical specifications for the analog section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Coefficients extended-range configuration 0x74h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 10. Compressor ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. Conversion example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. STC coefficients memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 13. STC band splitter filters memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 14. Default register map table: NEW MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 15. CLK register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 17. RESET register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 18. Soft volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 20. Fine volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 21. Channel 1 volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 22. Channel 2 volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. OPER register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. OPER configuration selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. FUNCT register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 26. HPCFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 27. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 28. Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 29. Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 30. IR bit settings as a function of the input sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 31. Fault-detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 32. Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 33. Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 60
Table 34. Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 61
Table 35. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 36. Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 37. FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 38. Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 39. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 40. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 41. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 43. Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 44. Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 45. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 46. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 47. Zero-crossing enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 48. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STA381BW List of tables
Doc ID 018835 Rev 7 11/171
Table 49. Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 50. LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 51. IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 52. External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 53. Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 54. Mute configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 55. Channel 3 volume as a function of CH3VOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 56. AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 57. Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 58. Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 59. Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 60. Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 61. EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 62. Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 63. Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 64. Channel limiter mapping as a function of C3LS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 65. Channel output mapping as a function of C3OM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 66. Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 67. Limiter attack rate as a function of LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 68. Limiter release rate as a function of LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 69. Limiter attack threshold as a function of LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . 76
Table 70. Limiter release threshold as a function of LxRT bits (AC mode). . . . . . . . . . . . . . . . . . . . . 76
Table 71. Limiter attack threshold as a function of LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . 77
Table 72. Limiter release threshold as a function of LxRT bits (DRC mode) . . . . . . . . . . . . . . . . . . . 77
Table 73. RAM block for biquads, mixing, scaling and bass management. . . . . . . . . . . . . . . . . . . . . 84
Table 74. Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 75. Extended attack rate, limiter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 76. Extended attack rate, limiter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 77. Extended biquad selector, biquad 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 78. Extended biquad selector, biquad 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 79. Extended biquad selector, biquad 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 80. PLL factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 81. PLL register 0x54 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 82. PLL register 0x55 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 83. PLL register 0x56 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 84. PLL register 0x57 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 85. Coefficients extended range configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 86. External amplifier enabler configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 87. PNDLSL bits configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 88. Zero-detect threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 90. Manual threshold register 0x3F, 0x40 and 0x6F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 89. Zero-detect hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 91. Headphone/Line out configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 92. F3X configuration register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 93. F3X configuration register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 94. Register STCCFG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 95. STCCFG0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 96. Register STCCFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 97. STCCFG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 98. Charge pump sync configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 99. Misc register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 100. I2C registers summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
List of tables STA381BW
12/171 Doc ID 018835 Rev 7
Table 101. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 102. Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 103. Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 104. IR bit settings as a function of the input sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 105. Fault-detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 106. Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 107. Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 108. Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . 109
Table 109. Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . 110
Table 110. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 111. Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 112. FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 113. Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 114. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 115. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 116. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 117. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 118. Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 119. Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 120. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 121. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 122. Zero-crossing enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 123. Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 124. Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 125. Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 126. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 127. Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 128. LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 129. IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 130. External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 131. Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 132. Mute configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 133. Master volume offset as a function of MVOL[7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 134. Channel volume as a function of CxVOL[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 135. AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 136. Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 137. Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 138. Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 139. Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 140. EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 141. Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 142. Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 143. Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 144. Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 145. Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 146. Limiter attack rate as a function of LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 147. Limiter release rate as a function of LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 148. Limiter attack threshold as a function of LxAT bits (AC mode). . . . . . . . . . . . . . . . . . . . . 132
Table 149. Limiter release threshold as a function of LxRT bits (AC mode). . . . . . . . . . . . . . . . . . . . 132
Table 150. Limiter attack threshold as a function of LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . 133
Table 151. Limiter release threshold as a function of LxRT bits (DRC mode) . . . . . . . . . . . . . . . . . . 133
Table 152. RAM block for biquads, mixing, scaling and bass management. . . . . . . . . . . . . . . . . . . . 140
STA381BW List of tables
Doc ID 018835 Rev 7 13/171
Table 153. Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 154. Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 155. Extended attack rate, limiter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 156. Extended attack rate, limiter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 157. Extended biquad selector, biquad 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 158. Extended biquad selector, biquad 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 159. Extended biquad selector, biquad 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 160. Soft volume update enable, increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 161. Soft volume update enable, decrease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 162. Volume fine-tuning steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 163. Extra volume resolution enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 164. PLL factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 165. PLL register 0x43 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 166. PLL register 0x44 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 167. PLL register 0x45 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 168. PLL register 0x46 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 169. Coefficients extended range configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 170. External amplifier enabler configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 171. PNDLSL bits configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 172. Zero-detect threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 173. Zero-detect hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 174. Manual threshold register 0x2E, 0x2F and 0x5E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 175. Headphone/Line out configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 176. F3X configuration register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 177. F3X configuration register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 178. STCompressorTM configuration bits1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 179. STCompressorTM configuration bits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 180. Charge pump sync configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 181. Misc register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 182. MISC4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 183. VQFN48 (7 x 7 x 0.9 mm) package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 184. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
List of figures STA381BW
14/171 Doc ID 018835 Rev 7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Pin connections VQFN48 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. Processing path, first part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. Processing path, second part: 2.1 output with individually configurable anticlipper/DRCs. 26
Figure 6. Processing path, second part: 2.0 output with B2DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. Processing path, second part: 2.1 output configuration with STCompressorTM . . . . . . . . . 27
Figure 8. STCompressorTM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Band splitter with 4th order filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. STCompressorTM behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11. STCompressorTM behavior as a limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Offset effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Stereo link block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 15. Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 16. OPER = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 17. OPER = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 18. OPER = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 19. OPER = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 20. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 21. 2.0 channels (OPER = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 22. 2.1 channels (OPER = 11) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23. 2.1 channels (OPER = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 24. B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 25. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 26. Short-circuit detection timing diagram (no short detected) . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 27. Alternate function for INTLINE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 28. Coefficients direct access single-write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 29. Coefficients direct access multiple-write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 30. Coefficients direct access single-read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 31. OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 32. OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 33. OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 34. OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 35. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 36. 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 37. 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 38. 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 39. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 40. B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 41. Extra resolution volume scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 42. Short-circuit detection timing diagram (no short detected) . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 43. Alternate function for INTLINE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 44. External audio source to line/headphone out application scheme . . . . . . . . . . . . . . . . . . 164
Figure 45. F3X (from SAI) source to line/headphone out application scheme. . . . . . . . . . . . . . . . . . 165
Figure 46. F3X auxiliary analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 47. Headphone and line out block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 48. Output configuration for stereo BTL mode in filterlight configuration . . . . . . . . . . . . . . . . 167
STA381BW List of figures
Doc ID 018835 Rev 7 15/171
Figure 49. VQFN48 (7 x 7 x 0.9 mm) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Description STA381BW
16/171 Doc ID 018835 Rev 7
1 Description
The STA381BW is an integrated solution embedding digital audio processing, digital
amplification, FFXTM power output stage, headphone and 2 Vrms line outputs. It is part of
the Sound Terminal® family and provides full digital audio streaming from the source to the
speaker, offering cost effectiveness, low power dissipation and sound enrichment.
The STA381BW input section consists of a flexible digital input serial audio interface,
feeding the digital processing unit, and an analog 1 Vrms input for a seamless connection
with pure analog sources. The serial audio data input interface supports many formats,
including the popular IIS format.
The STA381BW is based on an FFXTM (Fully Flexible Amplification) processor, proprietary
technology from STMicroelectronics. FFXTM is the evolution of the ST ternary technology:
the advanced processor is available for ternary, binary, binary differential and phase shift
PWM modulation. The STA381BW embeds the ternary, binary and binary differential
implementations, a subset of the full capability of the FFXTM processor.
The STA381BW power section consists of four independent half-bridges. These can be
configured via digital control to operate in different modes. A 2.1-channel setup can be
implemented with two half-bridges (L/R) together with a single full-bridge (subwoofer).
Alternatively, the 2.0-channel setup can be done with two full-bridges. When using this
configuration, an external amplifier for the SW channel can also be driven through the PWM
output. The STA381BW is able to deliver 2 x 20 W (ternary) into an 8 Ω load at 18 V or
2 x 9 W (binary) into a 4 Ω load, plus 1 x 20 W (ternary) into an 8 Ω load at 18 V.
The STA381BW also provides a capless headphone out (with embedded negative charge
pump), able to deliver up to 40 mW into a 32 Ω load or, alternatively, can be configured as a
2 Vrms line output.
The STA381BW digital processing unit includes up to 12 programmable biquads (EQs),
allowing perfect sound equalization and offering advanced noise-shaping techniques.
Moreover, the coefficient range ensures a great variety of filter shapes (low/high-pass,
low/high shelf, peak, notch, band-pass). The equalization engine is fully compatible with the
ST speaker compensation technology embedded into the APWorkbench suite. A state-of-
the-art multi-band DRC, STCompressorTM equalizes the system to provide active speaker
protection with full audio quality preservation against sudden sound peaks. Moreover,
STSpeakerSafeTM technology offers reliable speaker protection under any condition. The
master clock can be from stable BICKI (64xfs, 50% duty cycle) or external XTI.
STA381BW Description
Doc ID 018835 Rev 7 17/171
1.1 Block diagram
Figure 1. Block diagram
Pin connections STA381BW
18/171 Doc ID 018835 Rev 7
2 Pin connections
2.1 Connection diagram
Figure 2. Pin connections VQFN48 (top view)
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
VCC_REG
VSS_REG
OUT2B
GND2
VCC2
OUT2A
OUT1B
VCC1
GND1
OUT1A
VDD_REG
GND_REG
MCLK
AGNDPLL
VREGFILT
TWARN/FFX4A
EAPD/FFX4B
FFX3B
FFX3A
GNDDIG1
VDDDIG1
VDD3V3CHP
CPP
GNDPSUB
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
F3X_FILT
F3XL
F3XR
LINEINL
LINEINR
LINEHPOUT_L
LINEHPOUT_R
GNDA
SOFTMUTE
VDD3V3
CPVSS
CPM
VDDDIG2
GNDDIG2
TESTMODE
SA
SCL
SDA
INTLINE
PWDN
RESET
SDI
LRCKI
BICKI
STA 381BW
STA381BW Pin connections
Doc ID 018835 Rev 7 19/171
2.2 Pin description
Table 2. Pin list
VQFN 48-pin Name Type Description
1 VCC_REG POWER VCC reg
2 VSS_REG POWER Vss reg, VCC_REG-3.3 V
3 OUT2B OUTPUT Half-bridge 2B output
4 GND2 POWER Half-bridge 2A and 2B ground
5 VCC2 POWER Half-bridge 2A and 2B supply
6 OUT2A OUTPUT Half-bridge 2A output
7 OUT1B OUTPUT Half-bridge 1B output
8 VCC1 POWER Half-bridge 1A and 1B supply
9 GND1 POWER Half-bridge 1A and 1B ground
10 OUT1A OUTPUT Half-bridge 1A output
11 VDD_REG POWER VDD reg 3.3 V
12 GND_REG POWER DC reg ground
13 F3X_FILT POWER F3X reference voltage
14 F3XL OUTPUT F3X analog out left channel
15 F3XR OUTPUT F3X analog out right channel
16 LINEINL INPUT Line in left channel
17 LINEINR INPUT Line in right channel
18 LINEHPOUT_L OUTPUT Headphone/line driver left channel
19 LINEHPOUT_R OUTPUT Headphone/line driver right channel
20 GNDA POWER Headphone/line driver power ground
21 SOFTMUTE INPUT Soft mute
22 VDD3V3 POWER +3 V LDO power supply
23 CPVSS POWER -3.3 V charge pump pin
24 CPM FILTER CHP Cfly negative
25 GNDPSUB POWER Charge pump ground
26 CPP FILTER CHP Cfly positive
27 VDD3V3CHP POWER Charge pump power supply
28 VDDDIG1 POWER I/O ring power supply
29 GNDDIG1 POWER Digital core ground
30 FFX3A OUTPUT Digital PWM line out
31 FFX3B OUTPUT Digital PWM line out
Pin connections STA381BW
20/171 Doc ID 018835 Rev 7
32 EAPD/FFX4B OUTPUT Digital PWM line out
33 TWARN/FFX4A OUTPUT Digital PWM line out
34 VREGFILT POWER Digital VDD from core
35 AGNDPLL POWER PLL analog ground
36 MCLK INPUT PLL input clock
37 BICKI INPUT IIS serial clock
38 LRCKI INPUT IIS left/right clock
39 SDI INPUT IIS serial data input
40 RESET INPUT Reset
41 PWDN INPUT
Device power-down
0 = power-down
1 = normal operation
42 INTLINE OUTPUT Fault interrupt
43 SDA I/O IIC serial data
44 SCL INPUT IIC serial clock
45 SA INPUT IIC select address (pull-down)
46 TEST_MODE INPUT This pin must be connected to
ground (pull-down)
47 GNDDIG2 POWER Digital I/O ground
48 VDDDIG2 POWER Digital core LDO supply
Table 2. Pin list (continued)
VQFN 48-pin Name Type Description
STA381BW Electrical specifications
Doc ID 018835 Rev 7 21/171
3 Electrical specifications
3.1 Absolute maximum ratings
Warning: Stresses beyond those listed in Table 3 above may cause
permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated under
“Recommended operating conditions” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, power supplies with nominal values rated within
the recommended operating conditions may rise beyond the
maximum operating conditions for a short time when no or
very low current is sunk (amplifier in mute state). In this case
the reliability of the device is guaranteed, provided that the
absolute maximum ratings are not exceeded.
3.2 Thermal data
Table 3. Absolute maximum ratings
Symbol Parameter Min Typ Max Unit
Vcc Power supply voltage (VCCxA, VCCxB) -0.3 30 V
VDD_DIG Digital supply voltage -0.3 4 V
VDD3V3
VDD3V3CHP Charge pump and analog path LDO supply -0.3 4 V
Top Operating junction temperature 0 150 °C
Tstg Storage temperature -40 150 °C
RLine Load impedance - line driver mode 1 kΩ
RHp Load impedance - headphone driver mode 16 Ω
RBtl Load impedance - power output-BTL mode 5 Ω
Table 4. Thermal data
Symbol Parameter Min Typ Max Unit
Rth j-case Thermal resistance junction-case (thermal pad) 1.5 °C/W
Tth-sdj Thermal shutdown junction temperature 150 °C
Tth-w Thermal warning temperature 130 °C
Tth-sdh Thermal shutdown hysteresis 20 °C
Electrical specifications STA381BW
22/171 Doc ID 018835 Rev 7
3.3 Recommended operating conditions
Table 5. Recommended operating conditions
3.4 Electrical specifications for the digital section
The specifications given in this section are valid for the operating conditions:
VDD_DIG = 3.3 V, Tamb = 25 °C.
(shou
Symbol Parameter Min Typ Max Unit
Vcc Power supply voltage (VCCxA, VCCxB) 4.5 26 V
VDD_DIG Digital supply voltage 2.7 3.3 3.6 V
VDD3V3
VDD3V3CHP Charge pump and analog path LDO supply 2.7 3.3 3.6 V
Tamb Ambient temperature 0 70 °C
RLine Load impedance - line driver mode 5 10 kΩ
RHp Load impedance - headphone driver mode 16 32 Ω
RBtl Load impedance - power output-BTL mode 5 8 Ω
Table 6. Electrical specifications - digital section
Symbol Parameter Conditions Min Typ Max Unit
Iil
Low level input current without
pull-up/down device Vi = 0 V 0.5 µA
Iih
High level input current without
pull-up/down device
Vi = VDD_DIG
= 3.3 V 0.1 µA
Vil Low level input voltage 0.8 V
Vih High level input voltage 2.0 V
Vol Low level output voltage Iol = 2 mA 0.15 V
Voh High level output voltage Ioh = 2 mA VDD_DIG
-0.15 V
Rpu Pull-up/down resistance 50 kΩ
STA381BW Electrical specifications
Doc ID 018835 Rev 7 23/171
3.5 Electrical specifications for the power section
The specifications given in this section are valid for the operating conditions: VCC =24V,
f=1kHz, f
sw = 384 kHz, Tamb = 25° C and RL = 8 Ω, unless otherwise specified.
Table 7. Electrical specifications - power section
Symbol Parameter Conditions Min Typ Max Unit
Po
Output power BTL Digital limited(1) 20
WOutput power SE Digital limited(1) 5
Output power SE RL = 4 ΩDigital limited(1) 9
RdsON Power Pchannel/Nchannel MOSFET ld = 1.5 A 120 mΩ
gP Power Pchannel RdsON matching ld = 1.5 A 95 %
gN Power Nchannel RdsON matching ld = 1.5 A 95 %
Idss Power Pchannel/Nchannel leakage 10 µA
ILDT Low current dead time (static) Resistive load(2) 815ns
trRise time Resistive load(2) 10 18 ns
tfFall time Resistive load(2) 10 18 ns
Ivcc
Supply current from Vcc in power-down PWRDN = 0 0.1 1 µA
Supply current from Vcc in operation
PCM Input signal = -60 dBfs,
Switching frequency = 384 kHz,
No LC filters
52 60 mA
Ilim Overcurrent limit 4 5 6.5 A
UVL Undervoltage protection 3.5 4.3 V
VOV Overvoltage protection 28.25 V
tmin Output minimum pulse width No load 20 30 60 ns
DR Dynamic range 100 dB
SNR Signal-to-noise ratio, ternary mode A-weighted 100 dB
Signal-to-noise ratio, binary mode A-weighted 90 dB
THD+N Total harmonic distortion + noise FFX stereo mode, Po = 1 W,
f=1kHz 0.2 %
XTA L K Crosstalk
FFX stereo mode,
<5 kHz, one channel driven at
1 W and other channel
measured
80 dB
ηPeak efficiency, FFX mode Po = 2 x 20 W into 8 Ω90 %
1. The related THD can be defined through appropriate DRC settings (see section: 4.3: STCompressorTM)
2. Refer to Figure 3: Test circuit.
Electrical specifications STA381BW
24/171 Doc ID 018835 Rev 7
Figure 3. Test circuit
3.6 Electrical specifications for the analog section
The specifications given in this section are valid for the operating conditions: VCC = 24 V
f=1kHz, T
amb = 25 °C, VDD3V3 = 3.3 V, RLine= 5 kΩ, RHp = 32 Ω, unless otherwise specified.
Table 8. Electrical specifications for the analog section
Symbol Parameter Conditions Min Typ Max Unit
Vout Output voltage for line out Gv = 2.5, THD < 1%, Rload = 5 kΩ1.9 2.1 Vrms
Pout Output voltage for HP out THD+N = 10%, Gv = 2.5, Rload = 32 Ω40 mW
DR Dynamic range for line out Vout = 2 VRMS, Fin = 200 Hz,
Vin = 0.8 mV (-60 dBFs) 100 dB
X-Talk Channel separation for line out Vout = 2 Vrms, Gv = 2.5 75 dB
PSRR Power supply rejection ratio HP mode, P0 = 15 mW 70 dB
Line out mode, VOut = 2 Vrms 70
Rin Line input resistance 30(1)
1. Refer to 8.2: Headphone and 2 Vrms line out, Figure 47: Headphone and line out block diagram, Rin = R1
kΩ
THD+N Total harmonic distortion + noise HP mode, Vout = 200 mVRMS, Gv = 2.5 0.03 %
Line out mode, VOut = 0.2 Vrms, Gv = 2.5 0.03 %
STA381BW Device overview
Doc ID 018835 Rev 7 25/171
4 Device overview
The mentioned hyperlink in this section relates to the default New Map Section 6: Register
description: New Map.
4.1 Processing data path
The whole STA381BW processing chain is composed of two consecutive sections. In the
first one dual-channel processing is implemented (Figure 4) and then each channel is fed
into the post-mixing block allowing to generate either a third channel (typically used in 2.1
output configurations together with crossover filters) or to have the channels processed by
the dual-band DRC block (2.0 output configuration with crossover filters used to define the
cutoff frequency of the two bands).
The first section begins with a 2x oversampling FIR filter allowing 2*Fs audio processing.
Then a selectable high-pass filter removes the DC level (enabled if HFB = 0). The channel 1
and 2 processing chain can include up to 8 filters, depending on the selected configuration
(bits BQL, BQ5, BQ6, BQ7 and XO[3:0]). By default, 4 independent filters per channel are
enabled, plus the pre-configured Bass and Treble controls (BQL=0, BQ5=0, BQ6=0,
BQ7=0).
The STA381BW offers the possibility to share the filter coefficients between the two
processing channels. When this option is set (BQL=1), filters from the 1st to the 4th have the
same coeffcients set. Under these conditions, filters from the 5th to 7th can be used as
custom filters as well (provided the relevant BQx bits are set). Once again filter coefficients
are shared between the two processing channels.
Moreover the common 8th filter, from the subsequent processing section, can be available
on both channels (provided the pre-defined crossover frequencies are not used, XO[3:0]=0,
and the dual-band DRC is not used).
Figure 4. Processing path, first part
L
R
I2S Input
Interface
X2Ov er-
-sampling
FIR
Pre-
-scale
Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4
Userd Defined Filters
De-emph
Or
Biquad#5
Bass
Or
Biquad#6
Treble
Or
Biquad#7
Tone Control
X2Ov er-
-sampling
FIR
Pre-
-scale
Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4
Userd Defined Filters
De-emph
Or
Biquad#5
Bass
Or
Biquad#6
Treble
Or
Biquad#7
Tone Control
Sampling Frequency = Fs
Samp lin g Frequency = 2xFs
Samp lin g Frequency = 2xFs
Device overview STA381BW
26/171 Doc ID 018835 Rev 7
The second processing stage embeds a mixing block, a biquadratic/crossover filter, a DRC
stage, the volume control, a DC cut filter and a post scaler. Depending on the device
settings, the following configuration and features are available:
2.1 output with individually configurable anticlipper/DRCs (Figure 5): two individually
configurable DRC/anticlippers are available while the eighth biquadratic filter, jointly
with the mixer block, can be used to perform LFE. This configuration and features
ensure the backward compatibility with previous Sound Terminal® products.
Figure 5. Processing path, second part: 2.1 output with individually configurable
anticlipper/DRCs
Crossover Frequency
Determined by XO Setting
(User Defined If
XO=0000)
C1Mx1
User-Defined
Mix Coefficients
+
Channel ½
Biquad#8
--------------
Hi-pass XO
Filter
Channel 1
Volume
Anti-clipper
/
DRC
DC Cut
Filter Po st Scale
C1Mx2
L
R
C2Mx1
+
Channel ½
Biquad#8
--------------
Hi-pass XO
Filter
Channel 2
Volume
Anti-clipper
/
DRC
DC Cut
Filter Po st Scale
C2Mx2
C3Mx1
+
Channel 3
Biquad#8
-- ------ ---- --
Low-p ass XO
filter
Anti-clipper
/
DRC
DC Cut
Filter Post Scale
C3Mx2
Channel 3
Volume
STA381BW Device overview
Doc ID 018835 Rev 7 27/171
2.0 output with B2DRC (Figure 6): the mixer and the eighth biquadratic filter are used to
divide the channel into two sub-bands, then each sub-band is independently processed
by a DRC block. The two bands are then re-composed and fed to the following
processing blocks. The crossover frequency is user-selectable. This configuration and
features ensure the backward compatibility with the previous Sound Terminal®
products. For further information please refer to Chapter 6.11.1: Dual-band DRC.
Figure 6. Processing path, second part: 2.0 output with B2DRC
2.1 output with STCompressorTM (Figure 7): the STA381BW embeds the latest, state-
of-the-art multi-band dynamic, range compressor, called STCompressorTM. When
using this configuration, up to 10 biquad filters are available for dedicated processing.
Please refer to Section 4.3: STCompressorTM for further information about this feature.
Figure 7. Processing path, second part: 2.1 output configuration with
STCompressorTM
Crossover Frequency
Determined by XO Setting
(User Defin ed If
XO=0000)
C1Mx1
User-Defined
Mix Coefficients
+
B2DRC
Hi-p ass XO
filter
DC Cut
Filter
C1Mx2
L
R
C2Mx1
+
B2DRC
Hi-p ass XO
filter
C2Mx2
C3Mx1
+
C3Mx2
-Channel 1
Vol ume DRC 1
Channel 3
Vo l ume DRC 2
Post Scale
++
-+
DC Cut
Filter
Channel 3
Vol ume DRC 2
Channel 2
Vo l ume DRC 1
Post Scale
+
Crossover Frequency
Determined by XO Setting
(User Defin ed If
XO=0000)
C1Mx1
User-Defined
Mix Coefficients
+
Channel ½
Biquad#8
--------------
Hi-p ass XO
Filter
STCompressor
Vo l ume
And
Limiter
DC Cut
Filter Post Scale
C1Mx2
L
R
C2Mx1
+
Channel ½
Biquad#8
--------------
Hi-p ass XO
Filter
STCompressor
Vo l ume
And
Limiter
DC Cut
Filter Post Scale
C2Mx2
C3Mx1
+
Channel 3
Biquad#8
--------------
Low-pass XO
filter
Vo l ume
And
Limiter
DC Cut
Filter Post Scale
C3Mx2
Device overview STA381BW
28/171 Doc ID 018835 Rev 7
4.2 Input oversampling
Figure 4 shows the input oversampling block in front of the main processing. When 32 kHz
Fs is used, the default x2 oversampling ratio can be increased to a x3.
Activating this feature, it is possible to have a 384 kHz PWM switching frequency (instead of
the default 256 kHz) when 32 kHz Fs is used.
When bit 0 of register PLLCFG1 is set to one, the feature is activated so that the PLL ratio is
modified to generate 49.152 MHz internal clock and the audio data path (after the input
oversampling block) is running at 96 kHz.
It is not recommended to use the x3 oversampling feature when Fs > 32 kHz because of the
PLL maximum frequency constraint.
4.3 STCompressorTM
The STCompressorTM (STC from now on) is a stereo, dual-band Dynamic Range Control
(DRC) and its main purpose is to provide optimum output power level control for speaker
protection, preserving as much as possible the original audio quality of the signal.
Two m a in I 2C registers control the STC behavior: STCCFG0 and STCCFG1. On top of the
data flow control bits, these registers also allow enabling the checksum engine to protect the
STC filters from erroneous coefficients downloads, thus improving the final application
circuitry and safety of the speakers.
STA381BW Device overview
Doc ID 018835 Rev 7 29/171
4.3.1 STC block diagram
Figure 8. STCompressorTM block diagram
The STC takes as input 2 channels and every channel is processed independently (i.e. an
independent DRC for each band of each channel) following the steps listed below
(Figure 8):
1. Splits the input signal into 2 bands (band splitter)
2. Measures the level of the signal (level meter)
3. Computes the attenuation (mapper)
4. Applies the attenuation and offset (attenuator)
The band splitter settings are common to both the processing channels while the settings of
the remaining blocks can be independently set for each band of each processing channel.
Caution: All the settings explained hereafter apply only to the behavior of the STCompressorTM. For
the settings concerning other device operating configurations (see Chapter 4.1: Processing
data path) please refer to the appropriate paragraphs and registers.
4.3.2 Band splitter
The band splitter block is used to divide the signal into 2 sub-bands (typically low- and high-
frequency bands). This is done through two 2nd order biquads (IIR filters) for each band,
thus allowing to have up to a 4th order filter per band. This feature guarantees a totally flat
band recombination (see Figure 9). Using different filtering orders, indeed, causes a non-
negligible gain around the filter’s cutoff frequency, endangering the overall audio fidelity and,
eventually, also the safety of the speaker. The sub-band recombination can be enabled or
disabled.
Level
Meter Mapper Attenuator
Offset
X
Level
Meter Mapper Atten uator X
Offset
+
Band
Sp li tter
Band 0
(Low freqs)
Band 1
(High freqs)
Input
Ch 0
Output
Ch 0
DRC 0
DRC 1
Level
Meter Mapper Attenuato r
Offset
X
Level
Meter Mapper Attenuato r X
Offset
+
Band
Sp li tter
Band 0
(Low freqs)
Band 1
(High freqs)
Input
Ch 1
Outp ut
Ch 1
DRC 2
DRC 3
Device overview STA381BW
30/171 Doc ID 018835 Rev 7
The band splitter filter coefficients have a user-selectable range [-1, 1), [-2, 2) and [-4, 4).
The RAM coefficient 0x7 is responsible for these settings according to Ta bl e 9 . The range
default value is [-4, 4).
Table 9. Coefficients extended-range configuration 0x74h
Please refer to Section 6.24: User-defined coefficient control registers (addr 0x27 - 0x37)
and to Ta bl e 1 3 for further details.
Figure 9. Band splitter with 4th order filtering
4.3.3 Level meter
The level meter block measures the input signal level (in dB). Two kinds of measures are
performed: peak and RMS. The mapper configuration and the input signal automatically
determine which measurement to take into account.
4.3.4 Mapper
The mapper block computes the appropriate attenuation value (expressed in dB) to be
applied to the signal, basing its calculations on the level meter output value, on the
compressor threshold and on the limiter threshold.The attenuation value is then passed to
the attenuator block.
CEXT_Bx[1] CEXT_Bx[0] Range
00
[-1;1)
01
[-2;2)
10
[-4;4)
1 1 Reserved
+=
BQ 0
BQ 0
BQ 1
BQ 1
Band Splitter
Band 1
Band 0
Input
Ch x
Output
Ch x
STA381BW Device overview
Doc ID 018835 Rev 7 31/171
The STC reacts differently depending on these three parameters (Figure 10):
level meter output value < compressor threshold < limiter threshold: under these
circumstances the signal level is small enough to not require any type of
limiting/compressing action. The signal remains unchanged.
compressor threshold < level meter output value < limiter threshold: under these
circumstances the signal level is compressed to a ratio determined by the compressor
rate.
compressor threshold < limiter threshold < level meter output value: under these
circumstances the signal level exceeds the limiter threshold which represents the
maximum output power allowed. The signal is limited to avoid unpredictable effects and
damages.
The compressor threshold, the limiter threshold and the compressor rate are all user-
selectable parameters. The compressor threshold range of value is [-48, 0] dB with a
0.25 dB step. The limiter threshold range of values is [-24, +12] dB with a 0.25 dB step. The
compressor ratio range of value is [0, 15], the meaning of these values is specified in
Ta bl e 1 0 . For further details please refer to Ta bl e 1 2 . Either setting the compressor rate to
1:1 or setting the compressor threshold greater than the limiter threshold makes the STC
behave as a pure limiter (Figure 11).
Figure 10. STCompressorTM behavior
INPUT
[dB]
[dB]
OUTPUT
C.T. L.T. L.T. comp
C.R.
C.T.
L.T.
Compression Zone
Limiting Zone
Linear Zone
Device overview STA381BW
32/171 Doc ID 018835 Rev 7
Figure 11. STCompressorTM behavior as a limiter
Table 10. Compressor ratio
Compressor ratio Ratio value
01:1
1 1:1.25
21:1.5
3 1:1.75
41:2
51:2.5
61:3
71:3.5
81:4
91:4.5
10 1:5
11 1:5.5
12 1.6
13 1:7
14 1:8
15 1:16
INPUT
L.T.
[dB]
[dB]
OUTPUT
L.T.
Limiting Zone
Linear Zone
STA381BW Device overview
Doc ID 018835 Rev 7 33/171
4.3.5 Attenuator
The attenuation is characterized by two different phases: attack and release.
Given an input signal above the limiter threshold, during the attack phase the STC
decreases the gain in order to reach the output level determined by the mapper. In this
process the key parameter is the attack rate (dB/ms) which determines how fast the STC
reacts according to the following equation:
where:
Output Signal Level is the attenuated signal coming from the attenuator block itself and
used as feedback
Mapper Level is the target signal level to be reached
The attack rate is user-selectable and its range is [0, +16] dB/ms with a 0.25 dB/ms step.
Given an input signal moving below the limiter threshold, during the release phase the STC
increases the gain in order to return the original input signal dynamic. In this process the key
parameter is the release rate (dB/ms) which determines how fast the STC releases the
attenuation on the input signal according to the following equation:
The release rate is user-selectable and its range is [0.0078, 1) dB/ms with a 0.0039 dB/ms
step.
4.3.6 Dynamic attack
Due to its dynamic, the input signal may exceed the limiter threshold by a variable amount of
decibels. In such different situations it might be useful to be able to tune the attack rate to
make the STC react slower or faster depending on the context. The attack rate value, set by
the user, can be dynamically varied through the dynamic attack rate (DAR). It is a parameter
(expressed in ms/dB) acting as a weighted coefficient, multiplying the difference between
the attenuator output signal and the mapper target level. The dynamic attack rate affects the
user-programmed attack rate according to the following equations:
The DAR is user-definable and its range of values is [0, +1) ms/dB, (Ta bl e 1 2 ) with a
0.0039 ms/dB step. The DAR is the same for all 4 sub-bands.
AttackTime OutputSignalLevel MapperLevel
AttackRate
---------------------------------------------------------------------------------------------------=
ReleaseTime OutputSignalLevel MapperLevel
ReleaseRate
---------------------------------------------------------------------------------------------------=
DynamicAttackTime OutputSignalLevel MapperLevel()DAR×=
AttackTime OutputSignalLevel MapperLevel
AttackRate
---------------------------------------------------------------------------------------------------DynamicAttackTime+=
AttackRateOutputSignalLevel MapperLevel
AttackTime DynamicAttackTime
---------------------------------------------------------------------------------------------------=
Device overview STA381BW
34/171 Doc ID 018835 Rev 7
4.3.7 Offset
The offset is a user-selectable gain or volume control. When using the STC it is advised to
use the offset to tune the output volume instead of the regular volume controls. The offset is
located before the attenuator block, ensuring that the output power limit (limiter threshold) is
never exceeded (Figure 12). On the other side, the traditional volume control is located after
the STC attenuator, thus a wrong setting of this control could nullify the STC effect.
Each sub-band has its own and independent offset. Its range is [0, +48] dB with a 0.25 dB
step (Ta b le 1 2 ).
Figure 12. Offset effect
4.3.8 Stereo link
The stereo link feature allows applying the same attenuation to the corresponding band of
each channel (i.e. band 0 left channel and band 0 right or band 1 left channel and band 1
right channel). This should help to prevent image shifting that could occur when individually
compressing each channel and causing a volume mismatch between left and right.
When the stereo link is active, the proper attenuation for each band is independently
computed, then the highest one for each band is applied (Figure 13).
STA381BW Device overview
Doc ID 018835 Rev 7 35/171
Figure 13. Stereo link block diagram
4.3.9 Programming of coefficients
The coefficients are expressed in different value ranges and in decimal notation (refer to the
previous paragraphs). In order to be programmed they must be converted into a
[-1, +1) range and in hexadecimal notation (Ta bl e 1 1 ). This can be achieved with the
following procedure:
if CoeffDecValue>0
if CoeffDecValue<0
where CoeffI2CValue is the final decimal value to be converted into hexadecimal notation
while CoeffDecValue is the coefficient value (in decimal notation) to start from.
+Output
Ch 0
Attenuator
From mapper
Ch 0 – Band 0
Attenuator
From mapper
Ch 0 – Band 1
Attenuator
Attenuator
X
X
Ch 0 – Band 1
Ch 0 – Band 0
+Output
Ch 1
Attenuator
From mapper
Ch 1 – Band 0
Attenuator
From mapper
Ch 1 – Band 1
Attenuator
Attenuator
X
X
Ch 1 – Band 1
Ch 1 – Band 0
Max
Atten uation
Band 0
Max
Atten uation
Band 1
CoeffI2CValue rnd CoeffDecValue 26
()223
×()=
CoeffI2CValue 224 rnd CoeffDecValue 26
()223
×()=
Device overview STA381BW
36/171 Doc ID 018835 Rev 7
Table 11. Conversion example
Original value (dec) I2C value (hex)
+48.00 0x600000
+24.00 0x300000
+16.00 0x200000
+12.00 0x180000
+06.00 0x0C0000
+02.00 0x040000
+01.00 0x020000
-01.00 0xFE0000
-02.00 0xFC0000
-06.00 0xF40000
-12.00 0xE80000
-24.00 0xD00000
-48.00 0xA00000
STA381BW Device overview
Doc ID 018835 Rev 7 37/171
4.3.10 Memory map
All the control parameters listed in the previous paragraphs are stored in the internal device
memory. Please refer to Ta b le 1 2 and Ta b le 1 3 for a complete list of their addresses.
For the programming procedure please refer to Section 6.24: User-defined coefficient
control registers (addr 0x27 - 0x37). Be aware that the read-all operation is not available for
the STC coefficients memory.
Table 12. STC coefficients memory map
Function Address Parameter Range Precision Unit Default
CH0
Band 0
DRC 0
0x54 RR: release rate [0.0078,1) 0.0039 dB/ms 0x200000
0x55 AR: attack rate [0,16] 0.25 dB/ms 0x200000
0x56 LT: limiter threshold [-24, +12] 0.25 dB 0x000000
0x57 CR: compressor ratio [0,15] 1 index 0x000000
0x58 CT: compressor threshold [-48, 0] 0.25 dB 0x000000
Band 1
DRC 1
0x59 RR: release rate [0.0078,1) 0.0039 dB/ms 0x200000
05A AR: attack rate [0,16] 0.25 dB/ms 0x200000
0x5B LT: limiter threshold [-24, +12] 0.25 dB 0x000000
0x5C CR: compressor ratio [0,15] 1 index 0x000000
0x5D CT: compressor threshold [-48, 0] 0.25 dB 0x000000
CH1
Band 0
DRC 2
0x5E RR: release rate [0.0078,1) 0.0039 dB/ms 0x200000
0x5F AR: attack rate [0,16] 0.25 dB/ms 0x200000
0x60 LT: limiter threshold [-24, +12] 0.25 dB 0x000000
0x61 CR: compressor ratio [0,15] 1 index 0x000000
0x62 CT: compressor threshold [-48, 0] 0.25 dB 0x000000
Band 1
DRC 3
0x63 RR: release rate [0.0078,1) 0.0039 dB/ms 0x200000
0x64 AR: attack rate [0,16] 0.25 dB/ms 0x200000
0x65 LT: limiter threshold [-24, +12] 0.25 dB 0x000000
0x66 CR: compressor ratio [0,15] 1 index 0x000000
0x67 CT: compressor threshold [-48, 0] 0.25 dB 0x000000
OFFSET
0X68 OFS0: offset DRC 0 [0, +48] 0.25 dB 0x000000
0X69 OFS1: offset DRC 1 [0, +48] 0.25 dB 0x000000
0X6A OFS2: offset DRC 2 [0, +48] 0.25 dB 0x000000
0X6B OFS3: offset DRC 3 [0, +48] 0.25 dB 0x000000
Dynamic attack rate 0x71 DAR: dynamic attack rate [0, 1) 0.0039 ms/dB 0x000000
CRC expected 0x72
CRC computed 0x73
Biquads CTRL 0x74 Band splitter filter
coefficients range 0x0000AA
Device overview STA381BW
38/171 Doc ID 018835 Rev 7
Table 13. STC band splitter filters memory map
Function Address Coefficient Range Default
Band 0
BQ0
0x40 B1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x41 B2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x42 -A1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x43 -A2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x44 B0/2 [-1, 1), [-2, 2), [-4, 4) 0x100000
BQ1
0x45 B1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x46 B2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x47 -A1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x48 -A2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x49 B0/2 [-1, 1), [-2, 2), [-4, 4) 0x100000
Band 1
BQ0
0x4A B1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x4B B2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x4C -A1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x4D -A2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x4E B0/2 [-1, 1), [-2, 2), [-4, 4) 0x100000
BQ1
0x4F B1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x50 B2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x51 -A1/2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x52 -A2 [-1, 1), [-2, 2), [-4, 4) 0x000000
0x53 B0/2 [-1, 1), [-2, 2), [-4, 4) 0x100000
STA381BW I2C bus specification
Doc ID 018835 Rev 7 39/171
5 I2C bus specification
The STA381BW supports the I2C protocol via the input ports SCL and SDA_IN (master to
slave) and the output port SDA_OUT (slave to master). This protocol defines any device that
sends data on to the bus as a transmitter and any device that reads the data as a receiver.
The device that controls the data transfer is known as the master and the other as the slave.
The master always starts the transfer and provides the serial clock for synchronization. The
STA381BW is always a slave device in all of its communications. It supports up to
400 kb/sec rate (fast-mode bit rate). The STA381BW I2C is a slave-only interface. The I2C
interface works properly only in the case that the master clock generated by the PLL has a
frequency 10 times higher compared to the frequency of the applied SCL signal.
5.1 Communication protocol
5.1.1 Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. An SDA transition
while the clock is high is used to identify a START or STOP condition.
5.1.2 Start condition
START is identified by a high-to-low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
5.1.3 Stop condition
STOP is identified by a low-to-high transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A STOP condition terminates communication between
the STA381BW and the bus master.
5.1.4 Data input
During the data input the STA381BW samples the SDA signal on the rising edge of clock
SCL. For correct device operation, the SDA signal must be stable during the rising edge of
the clock and the data can change only when the SCL line is low.
5.2 Device addressing
To start communication between the master and the STA381BW, the master must initiate
with a start condition. Following this, the master sends to the SDA line 8 bits (MSB first)
corresponding to the device select address and read or write mode.
The seven most significant bits are the device address identifiers, corresponding to the I2C
bus definition. In the STA381BW the I2C interface has two device addresses depending on
the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The eighth bit (LSB) identifies read or write operation RW, this bit is set to 1 for read mode
and to 0 for write mode. After a START condition the STA381BW identifies on the bus the
device address and if a match is found, it acknowledges the identification on SDA bus during
I2C bus specification STA381BW
40/171 Doc ID 018835 Rev 7
the 9th bit time. The byte following the device identification byte is the internal space
address.
5.3 Write operation
Following the START condition, the master sends a device select code with the RW bit set
to 0. The STA381BW acknowledges this and then waits for the byte of the internal address.
After receiving the internal byte address the STA381BW again responds with an
acknowledgement.
5.3.1 Byte write
In the byte write mode the master sends one data byte which is acknowledged by the
STA381BW. The master then terminates the transfer by generating a STOP condition.
5.3.2 Multi-byte write
The multi-byte write mode can start from any internal address. The master generating a
STOP condition terminates the transfer.
5.4 Read operation
5.4.1 Current address byte read
Following the START condition, the master sends a device select code with the RW bit set
to 1. The STA381BW acknowledges this and then responds by sending one byte of data.
The master then terminates the transfer by generating a STOP condition.
5.4.2 Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA381BW. The master acknowledges each
data byte read and then generates a STOP condition, terminating the transfer.
5.4.3 Random address byte read
Following the START condition, the master sends a device select code with the RW bit set
to 0. The STA381BW acknowledges this and then the master writes the internal address
byte. After receiving the internal byte address, the STA381BW again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA381BW acknowledges this and then responds
by sending one byte of data. The master then terminates the transfer by generating a STOP
condition.
5.4.4 Random address multi-byte read
The multi-byte read mode can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA381BW. The master acknowledges each
data byte read and then generates a STOP condition, terminating the transfer.
STA381BW I2C bus specification
Doc ID 018835 Rev 7 41/171
5.4.5 Write mode sequence
Figure 14. Write mode sequence
5.4.6 Read mode sequence
Figure 15. Read mode sequence
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE
DATA IN
ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE
DATA IN
ACK
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ
DATA
NO ACK
WRTRATS
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ
DATA
NO ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ
DATA
ACK
WRTRATS
DATA
ACK NO ACK
STOP
DATA
RW=
HIGH
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ
DATA
NO ACK
WRTRATS
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ
DATA
NO ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ
DATA
ACK
WRTRATS
DATA
ACK NO ACK
STOP
DATA
RW=
HIGH
Register description: New Map STA381BW
42/171 Doc ID 018835 Rev 7
6 Register description: New Map
Mapping of two registers is available on the STA381BW, the selection is done by setting
register 0x7E bit D7. By default, 0x7E is set to 1 and refers to a map that is not compatible
with previous Sound Terminal devices. This register’s mapping is also called “New Map”.
To keep compatibility with previous Sound Terminal devices, 0x7E bit D7 must be set to 0
after device turn-on and after any reset (via SW or via external pin). Please refer to
Section 7: Register description: Sound Terminal compatibility for all the information about
device compatibility.
Missing addresses are to be considered as reserved.
Table 14. Default register map table: NEW MAP
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 CLK CLK_CFG[3:0] I2S
0x01 STATUS FAULT DRCCRC EQCRC BADPWM I2SERR PLLUL
0x02 RESET SRESET
0x03 SVOL SVOL[1:0]
0x04 MVOL MVOL[7:0]
0x05 FINEVOL FINE[1:0]
0x06 CH1VOL CH1VOL[7:0]
0x07 CH2VOL CH2VOL[7:0]
0x08 POST POST[7:0]
0x09 OPER OPER[1:0]
0x0A FUNCT CRC APEQ PEQ AMDRC MDRCE DRC
0x10 HPCFG MUTE
0x11 CONFA FDRB IR1 IR0 MCS2 MCS1 MCS0
0x12 CONFB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
0x13 CONFC CSZ3 CSZ2 CSZ1 CSZ0
0x14 CONFD SME ZDE BQL PSL DSPB
0x15 CONFE ZCE PWMS AME NSBW
0x16 CONFF EAPD PWDN LDTE BCLE IDE
0x17 MUTELOC LOC1 LOC0 C3M C2M C1M MMUTE
0x1B CH3VOL CH3VOL[7:0]
0x1D AUTO XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
0x1F C1CFG C1BO C1VBP C1EQBP C1TCB
0x20 C2CFG C2BO C2VBP C2EQBP C2TCB
0x21 C3CFG C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP
0x22 TONE TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
0x23 L1AR L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
0x24 L1ATRT L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
STA381BW Register description: New Map
Doc ID 018835 Rev 7 43/171
0x25 L2AR L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
0x26 L2ATRT L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
0x27 CFADDR CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
0x28 B1CF1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
0x29 B1CF2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
0x2A B1CF3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
0x2B B2CF1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
0x2C B2CF2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
0x2D B2CF3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
0x2E A1CF1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
0x2F A1CF2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
0x30 A1CF3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
0x31 A2CF1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
0x32 A2CF2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
0x33 A2CF3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
0x34 B0CF1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
0x35 B0CF2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
0x36 B0CF3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
0x37 CFUD RA R1 WA W1
0x3C FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
0x3D FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
0x3F MTH2 MTH[21:16]
0x40 MTH1 MTH[15:8]
0x43 EATH1 EATHEN1 EATH1[6:0]
0x44 ERTH1 ERTHEN1 ERTH1[6:0]
0x45 EATH2 EATHEN2 EATH2[6:0]
0x46 ERTH2 ERTHEN2 ERTH2[6:0]
0x47 CONFX PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
0x52 PLLFRAC1 PLL_FRAC[15:8]
0x53 PLLFRAC2 PLL_FRAC[7:0]
0x54 PLLDIV PLL_DITH[1:0] PLL_NDIV[5:0]
0x55 PLLCFG0 PLL_DPD PLL_FCT PLL_STB PLL_
STBBYP PLL_IDIV[3:0]
0x56 PLLCFG1 PLL_DIRP PLL_PWD PLL_BYP OSC_PD BOOST32K
0x57 PLLSTATE BYPSTATE PDSTATE OSCOK LOWCK
0x58 SHOK GNDSH VCCSH OUTSH
0x5A CXT41 CEXT_B4[1:0] CEXT_B3[1:0] CEXT_B2[1:0] CEXT_B1[1:0]
Table 14. Default register map table: NEW MAP (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
Register description: New Map STA381BW
44/171 Doc ID 018835 Rev 7
0x5B CXT75 CEXT_B7[1:0] CEXT_B6[1:0] CEXT_B5[1:0]
0x5C MISC1 RPDNEN BRIDGOFF CPWMEN
0x5D MISC2 LPDP LPD LPDE PNDLSL[2:0] SHEN
0x5E BPTH BPTH[5:0]
0x60 BPTIM BPTIM[7:0]
0x61 ZCCFG0 WTHH WTHL FINETH HSEL[1:0] ZMTH[2:0]
0x62 ZCCFG1 RMS_CH0[7:0]
0x63 ZCCFG2 RMS_CH0[15:8]
0x64 ZCCFG3 RMS_CH1[7:0]
0x65 ZCCFG4 RMS_CH1[15:8]
0x66 HPCFG HPLN CPFEN CPOK ABFAULT DCROK
0x69 F3XCFG1 F3XLNK
0x6A F3XCFG2 F3X_FAULT F3X_SM_SLOPE[2:0] F3X_MUTE F3X_ENA
0x6B STCCFG0 NP_
CRCRES
0x6C STCCFG1 STC_LNK
0x6F MTH0 MTH[7:0]
0x70 CHPSINC CHPI INITCNT[3:0] CHPRD
0x71 BQCHKE0 BQ_CKE[7:0]
0x72 BQCHKE1 BQ_CKE[15:8]
0x73 BQCHKE2 BQ_CKE[23:16]
0x74 XCCHKE0 XC_CKE[7:0]
0x75 XCCHKE1 XC_CKE[15:8]
0x76 XCCHKE2 XC_CKE[23:16]
0x77 BQCHKR0 BQ_CKR[7:0]
0x78 BQCHKR1 BQ_CKR[15:8]
0x79 BQCHKR2 BQ_CKR[23:16]
0x7A XCCHKR0 XC_CKR[7:0]
0x7B XCCHKR1 XC_CKR[15:8]
0x7C XCCHKR2 XC_CKR[23:16]
0x7D CHKCTRL XCAUTO BCAUTO
0x7E MISC4 SMAP WRA CH12
Table 14. Default register map table: NEW MAP (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
STA381BW Register description: New Map
Doc ID 018835 Rev 7 45/171
6.1 CLK register (addr 0x00)
Table 15. CLK register
6.2 STATUS register (addr 0x01)
D7 D6 D5 D4 D3 D2 D1 D0
CLK_CFG[3:0] Reserved Reserved Reserved I2S
00000000
Bit R/W RST Name Description
7R/W 0
CLK_CFG[3:0]
0000: 44.1/48 kHz BITCLK = 64 Fs
0001: 32 kHz BITCLK = 64 Fs
0010: 96 kHz BITCLK = 64 Fs
0011: 48/44.1/32 kHz MCK = 256 Fs
others: clock configuration depends on IR/MCS bits
6R/W 0
5R/W 0
4R/W 0
0R/W 0 I2S
‘0’ = SAI configured in I2S mode
‘1’ = SAI configuration depends on CONFB register
status
D7 D6 D5 D4 D3 D2 D1 D0
FAULT DRCCRC EQCRC BADPWM Reserved Reserved I2SERR PLLUL
NA NA NA NA NA NA NA NA
Table 16. STATUS register
Bit R/W RST Name Description
7R FAULT
(1)
1. Fault status is set to 1 once the power bridge goes to tri-state mode.
‘0’ = the power bridge is in fault condition
‘1’ = the power bridge is in normal condition
6 R DRCCRC ‘0’ = normal operation
‘1’ = CRC error on DRC BIQUADS
5 R EQCRC ‘0’ = normal operation
‘1’ = CRC error on BIQUADS
4R BADPWM
‘0’ = normal operation
‘1’ = PWM outputs are invalid
1 R I2SERR
‘0’ = normal operation
‘1’ = SAI interface error detected (see Section 6.14:
Configuration register B (addr 0x12))
0 R PLLUL ‘0’ = PLL is locked
‘1’ = PLL is not locked
Register description: New Map STA381BW
46/171 Doc ID 018835 Rev 7
6.3 RESET register (addr 0x02)
After SRESET is written, the last IC acknowledge is skipped and the EAPD bit (reg 0x16 bit
D7) is set to 1 instead of the 0 default value obtained after hardware reset.
6.4 Soft volume register (addr 0x03)
Values are specified for fs = 48 kHz, 96 kHz or 192 kHz.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved SRESET
00000000
Table 17. RESET register
Bit R/W RST Name Description
0 R/W 0 SRESET ‘0’: normal operation
‘1’: reset the device
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved SVOL[1:0]
00000001
Table 18. Soft volume register
Bit R/W RST Name Description
1R/W
SVOL[1:0]
00: 30 ms
01: 100 ms (default)
10: 100 ms
11: Soft-mute disabled
0R/W
STA381BW Register description: New Map
Doc ID 018835 Rev 7 47/171
6.5 MVOL register (addr 0x04)
6.6 FINEVOL register (addr 0x05)
D7 D6 D5 D4 D3 D2 D1 D0
MVOL[7:0]
00000000
Table 19. Master volume register
Bit R/W RST Name Description
7R/W 0
MVOL[7:0]
0x00: Hard mute (immediate switchoff)
0x01: Mute
0x02: Mute (PWM on)
0x03: Mute (PWM on)
others: volume = [(MVOL-255)/2] dB(1)
1. If the volume is below -60 dB, the level will be approximated to 1 dB step.
6R/W 0
5R/W 0
4R/W 0
3R/W 0
2R/W 0
1R/W 0
0R/W 0
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved FINE[1:0]
00000000
Table 20. Fine volume register
Bit R/W RST Name Description
1R/W
FINE[1:0]
00 = 0 dB
01 = -0.125 dB
10 = -0.25 dB
11 = -0.375 dB
0R/W
Register description: New Map STA381BW
48/171 Doc ID 018835 Rev 7
6.7 CH1VOL register (addr 0x06)
Table 21. Channel 1 volume register
6.8 CH2VOL register (addr 0x07)
D7 D6 D5 D4 D3 D2 D1 D0
CH1VOL[7:0]
10011111
Bit R/W RST Name Description
7R/W 1
CH1VOL[7:0] 0x00: mute
others: volume = [(CH1VOL-159)/2] dB(1)
1. If the volume is below -60 dB, the level will be approximated to 1 dB step.
6R/W 0
5R/W 0
4R/W 1
3R/W 1
2R/W 1
1R/W 1
0R/W 1
D7 D6 D5 D4 D3 D2 D1 D0
CH2VOL[7:0]
10011111
Table 22. Channel 2 volume register
Bit R/W RST Name Description
7R/W 1
CH2VOL[7:0] 0x00: mute
others: volume = [(CH2VOL-159)/2] dB(1)
1. If the volume is below -60 dB, the level will be approximated to 1 dB step.
6R/W 0
5R/W 0
4R/W 1
3R/W 1
2R/W 1
1R/W 1
0R/W 1
STA381BW Register description: New Map
Doc ID 018835 Rev 7 49/171
6.9 POST scaler register (addr 0x08)
Post scaler is set to POST/128 for both CH1 and CH2.
6.10 OPER register (addr 0x09)
D7 D6 D5 D4 D3 D2 D1 D0
POST[7:0]
10000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved OPER[1:0]
00000000
Table 23. OPER register
Bit R/W RST Name Description
1R/W 0 OPER[1:0] output configuration modes
0R/W 0
Table 24. OPER configuration selection
OPER[1:0] Output configuration PBTL enable
00
2-channel (full-bridge) power, 2-channel data-out:
1A/1B 1A/1B
2A/2B 2A/2B
LineOut1 3A/3B
LineOut2 4A/4B
Line out configuration determined by LOC register
No
11
2-channel (full-bridge) power, 1-channel FFX:
1A/1B 1A/1B
2A/2B 2A/2B
3A/3B 3A/3B
EAPDEXT and TWARNEXT Active
Ye s
10
2(half-bridge).1(full-bridge) on-board power:
1A 1A Binary 0°
2A 1B Binary 90°
3A/3B 2A/2B Binary 45°
1A/B 3A/B Binary 0°
2A/B 4A/B Binary 90°
No
01
1 channel mono-parallel:
3A 1A/1B w/ C3BO 45°
3B 2A/2B w/ C3BO 45°
1A/1B 3A/3B
2A/2B 4A/4B
CH3 downmixed on all the PWM channels.
No
Register description: New Map STA381BW
50/171 Doc ID 018835 Rev 7
Figure 16. OPER = 00 (default value)
Figure 17. OPER = 11
Figure 18. OPER = 10
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
STA381BW Register description: New Map
Doc ID 018835 Rev 7 51/171
Figure 19. OPER = 01
The STA381BW can be configured to support different output configurations. For each PWM
output channel, a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The
PWM slot defines the maximum extension for the PWM rising and falling edge, that is, the
rising edge as well as the falling edge cannot range outside the PWM slot boundaries.
Figure 20. Output mapping scheme
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
TM
Register description: New Map STA381BW
52/171 Doc ID 018835 Rev 7
For each configuration the PWM signals from the digital driver are mapped in different ways
to the power stage.
2.0 channels, two full-bridges (OPER = 00)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
FFX4A -> OUT4A
FFX4B -> OUT4B
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as line out ternary
FFX4A/4B configured as line out ternary
On channel 3 line out (LOC bits = 00, reg 0x17 bit D7,D6) the same data as channel 1
processing is sent. On channel 4 line out (LOC bits = 00) the same data as channel 2
processing is sent. In this configuration, neither volume control nor EQ has any effect on
channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 21.
Figure 21. 2.0 channels (OPER = 00) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
STA381BW Register description: New Map
Doc ID 018835 Rev 7 53/171
2.1 channels, two half-bridges + one full-bridge (OPER = 11)
FFX1A -> OUT1A
FFX2A -> OUT1B
FFX3A -> OUT2A
FFX3B -> OUT2B
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
FFX1A/1B configured as binary
FFX2A/2B configured as binary
FFX3A/3B configured as binary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels, channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 22.
Figure 22. 2.1 channels (OPER = 11) PWM slots
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
Register description: New Map STA381BW
54/171 Doc ID 018835 Rev 7
2.1 channels, two full-bridges + one external full-bridge (OPER = 10)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
EAPD -> OUT4A
TWARN -> OUT4B
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as ternary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are muxed.
In this configuration the PWM slot phase is the following as shown in Figure 23.
Figure 23. 2.1 channels (OPER = 10) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
STA381BW Register description: New Map
Doc ID 018835 Rev 7 55/171
6.11 FUNCT register (addr 0x0A)
6.11.1 Dual-band DRC
The STA381BW device provides a dual-band DRC (B2DRC) on the left and right channels
data path, as depicted in Figure 24. Dual-band DRC is activated by setting MDRCE = 1.
Figure 24. B2DRC scheme
The low-frequency information (LFE) is extracted from the left and right channels, removing
the high frequencies using a programmable biquad filter, and then computing the difference
D7 D6 D5 D4 D3 D2 D1 D0
Reserved CRC APEQ PEQ Reserved AMDRC MDRCE DRC
00100000
Table 25. FUNCT register
Bit R/W RST Name Description
6R/W 0 CRC
‘0’: disable CRC computation and comparison
‘1’: enable CRC computation and comparison
5 R/W 1 APEQ ‘0’: extended BQ disabled, 8th biquadratic filter disabled
‘1’: extended BQ enabled, 8th biquadratic filter enabled
4 R/W 0 PEQ ‘0’: Normal operation
‘1’: PEQ disabled, disables all biquadratic filters
2 R/W 0 AMDRC ‘0’: STCompressor bypassed
‘1’: STCompressor enabled
1 R/W 0 MDRCE ‘0’: MDRCE bypassed
‘1’: MDRCE enabled
0R/W 0 DRC
‘0’: DRC disabled
‘1’: DRC enabled
B2DRC
Hi-pass XO
filter
L
R
B2DRC
Hi-pass XO
filter
-Channel 1
Volume DRC 1
Channel 3
Vo l ume DRC 2
++
-+
Channel 3
Volume DRC 2
Channel 2
Vo l ume DRC 1
+
Register description: New Map STA381BW
56/171 Doc ID 018835 Rev 7
with the original signal. Limiter 1 (DRC1) is then used to control the amplitude of the
left/right high-frequency components, while limiter 2 (DRC2) is used to control the low-
frequency components (see Section 6.23: Dynamic control registers (addr 0x23 - 0x26 /
addr 0x43 - 0x46)).
The cutoff frequency of the high-pass filters can be user-defined, XO[3:0] = 0, or selected
from the pre-defined values.
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE
channel amplitude (see Section 6.23: Dynamic control registers (addr 0x23 - 0x26 / addr
0x43 - 0x46)) as well as their volume control. To be noted that, in this configuration, the
dedicated channel 3 volume control can actually act as a bass boost enhancer as well (0.5
dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to
reconstruct the 2.0 output signal.
Sub-band decomposition
The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency.
The cutoff frequency can be programmed in two ways, using the XO bits in register 0x0C, or
using the “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).
For the user-programmable mode, use the formulas below to compute the high-pass filters:
where alpha = (1-sin(ω0))/cos(ω0), and ω0 is the cutoff frequency.
A first-order filter is recommended to guarantee that for every ω0 the corresponding
low-pass filter obtained as difference (as shown in Figure 24) will have a symmetric (relative
to the HP filter) frequency response, and the corresponding recombination after the DRC
has low ripple. Second-order filters can be used as well, but in this case the filter shape
must be carefully chosen to provide good low-pass response and minimum ripple
recombination. For second-order filters, it is not possible to give a closed formula to get the
best coefficients, but empirical adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Section 6.23: Dynamic
control registers (addr 0x23 - 0x26 / addr 0x43 - 0x46). B2DRC configure automatically the
DRC blocks in anticlipping mode. Attack and release thresholds can be selected using
registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are configured by registers
0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output.
Channel volume can be used to weight the bands recombination to fine-tune the overall
frequency response.
b0 = (1 + alpha) / 2 a0 = 1
b1 = -(1 + alpha) / 2 a1 = -alpha
b2 = 0 a2 = 0
STA381BW Register description: New Map
Doc ID 018835 Rev 7 57/171
6.12 HPCFG register (addr 0x10)
6.13 Configuration register A (addr 0x11)
6.13.1 Master clock select
The STA381BW supports sampling rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
32.768 MHz for 32 kHz
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin or BICKI pin (depending on the MCS
settings) must be a multiple of the input sampling frequency (fs).
The relationship between the input clock (either XTI or BICKI) and the input sampling rate is
determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine
the PLL factor generating the internal clock and the IR bit determines the oversampling ratio
used internally. In Ta bl e 2 8 MCS 111 and 110 indicate that BICKI has to be used as the
clock source, while XTI is used in all the other cases.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved MUTE
00000001
Table 26. HPCFG register
Bit R/W RST Name Description
0R/W 1 MUTE
‘0’: HP/Line out is ON
‘1’: HP/LIne out is muted
D7 D6 D5 D4 D3 D2 D1 D0
FDRB Reserved Reserved IR1 IR0 MCS2 MCS1 MCS0
01100111
Table 27. Master clock select
Bit R/W RST Name Description
0R/W 1 MCS0
Selects the ratio between the input I2S sampling
frequency and the input clock.
1R/W 1 MCS1
2R/W 1 MCS2
Register description: New Map STA381BW
58/171 Doc ID 018835 Rev 7
Note: (*): Clock is BICKI
6.13.2 Interpolation ratio selection
The STA381BW has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 3 times (Table 83: PLL register 0x56 bits D0), 2 times or 1 time (pass-through) or
provides a 2-times downsample. The oversampling ratio of this interpolation is determined
by the IR bits.
6.13.3 Fault-detect recovery bypass
Table 28. Input sampling rates
Input
sampling rate
fs (kHz)
IR MCS[2:0]
111 110 101 100 011 010 001 000
32, 44.1, 48 00 64*fs(*) NA 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs
88.2, 96 01 64*fs(*) 32*fs(*) NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs
176.4, 192 1X 64*fs(*) 32*fs(*) NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs
Table 29. Internal interpolation ratio
Bit R/W RST Name Description
4:3 R/W 00 IR [1:0] Selects internal interpolation ratio based on input I2S
sampling frequency
Table 30. IR bit settings as a function of the input sampling rate
Input sampling rate fs (kHz) IR 1st stage interpolation ratio
32 00 2-times oversampling
44.1 00 2-times oversampling
48 00 2-times oversampling
88.2 01 Pass-through
96 01 Pass-through
176.4 10 2-times downsampling
192 10 2-times downsampling
Table 31. Fault-detect recovery bypass
Bit R/W RST Name Description
7R/W 0 FDRB 0: fault-detect recovery enabled
1: fault-detect recovery disabled
STA381BW Register description: New Map
Doc ID 018835 Rev 7 59/171
The on-chip STA381BW power output block provides feedback to the digital controller using
inputs to the power control block. The FAULT input is used to indicate a fault condition (either
overcurrent or thermal). When FAULT is asserted (set to 0), the power control block attempts
a recovery from the fault by asserting the tri-state output (setting it to 0 which directs the
power output block to begin recovery), holds it at 0 for period of time in the range of 0.1 ms
to 1 second as defined by the fault-detect recovery constant register (FDRC registers 0x3C-
0x3D), then toggles it back to 1. This sequence is repeated as long as the fault indication
exists. This feature is enabled by default but can be bypassed by setting the FDRB control
bit to 1.
6.14 Configuration register B (addr 0x12)
6.14.1 Serial data interface
The STA381BW audio serial input was designed to interface with standard digital audio
components and to accept a number of serial data formats. The STA381BW always acts as
the slave when receiving audio input from standard digital audio components. Serial data for
two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and
serial data 1 and 2 SDI12.
The SAI bits (D3 to D0) and the SAIFB bit (D4) are used to specify the serial data format.
The default serial data format is I2S, MSB-first. Available formats are shown in the tables
that follow.
D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000
Register description: New Map STA381BW
60/171 Doc ID 018835 Rev 7
6.14.2 Serial data first bit
Table 32. Serial data first bit
SAIFB Format
0 MSB-first
1 LSB-first
Table 33. Support serial audio input formats for MSB-first (SAIFB = 0)
BICKI SAI [3:0] SAIFB Interface format
32 * fs 0000 0 I2S 15-bit data
0001 0 Left/right-justified 16-bit data
48 * fs
0000 0 I2S 16- to 23-bit data
0001 0 Left-justified 16- to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
64 * fs
0000 0 I2S 16- to 24-bit data
0001 0 Left-justified 16- to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
STA381BW Register description: New Map
Doc ID 018835 Rev 7 61/171
Table 34. Supported serial audio input formats for LSB-first (SAIFB = 1)
To make the STA381BW work properly, the serial audio interface LRCKI clock must be
synchronous to the PLL output clock. It means that:
the frequency of PLL clock / frequency of LRCKI = N ±4 cycles, where N depends on
the settings in Ta bl e 3 0
the PLL must be locked.
If these two conditions are not met, and the IDE bit (reg 0x05 bit 2) is set to 1, the
STA381BW will immediately mute the I2S PCM data out (provided to the processing block)
and it will freeze any active processing task.
BICKI SAI [3:0] SAIFB Interface format
32 * fs 1100 1 I2S 15-bit data
1110 1 Left/right-justified 16-bit data
48 * fs
0100 1 I2S 23-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
64 * fs
0000 1 I2S 24-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
Register description: New Map STA381BW
62/171 Doc ID 018835 Rev 7
To avoid any audio side effects (like pop noise), it is strongly recommended to soft mute any
audio streams flowing into the STA381BW data path before the desynchronization event
happens. At the same time any processing related to the I2C configuration should be issued
only after the serial audio interface and the internal PLL are synchronous again.
Note: Any mute or volume change causes some delay in the completion of the I2C operation due
to the soft volume feature. The soft volume phase change must be finished before any clock
desynchronization.
6.14.3 Delay serial clock enable
6.14.4 Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing. The default settings
of these registers map each I2S input channel to its corresponding processing channel.
6.15 Configuration register C (addr 0x13)
6.15.1 FFX compensating pulse size register
Table 35. Delay serial clock enable
Bit R/W RST Name Description
5R/W 0 DSCKE
0: No serial clock delay
1: Serial clock delay by 1 core clock cycle to tolerate
anomalies in some I2S master devices
Table 36. Channel input mapping
Bit R/W RST Name Description
6R/W 0 C1IM 0: Processing channel 1 receives left I2S input
1: Processing channel 1 receives right I2S input
7R/W 1 C2IM 0: Processing channel 2 receives left I2S input
1: Processing channel 2 receives right I2S input
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CSZ3 CSZ2 CSZ1 CSZ0 Reserved Reserved
10010111
Table 37. FFX compensating pulse size bits
Bit R/W RST Name Description
2R/W 1 CSZ0
When OM[1,0] = 11, this register determines the
size of the FFX compensating pulse from 0 clock
ticks to 15 clock periods.
3R/W 1 CSZ1
4R/W 1 CSZ2
5R/W 0 CSZ3
STA381BW Register description: New Map
Doc ID 018835 Rev 7 63/171
Table 6:
6.16 Configuration register D (addr 0x14)
6.16.1 DSP bypass
Setting the DSPB bit bypasses the EQ function of the STA381BW.
6.16.2 Post-scale link
Post-scale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power supply, the post-scale values can be linked to the
value of channel 1 for ease of use and in order to update the values faster.
6.16.3 Biquad coefficient link
For ease of use, all channels can use the biquad coefficients loaded into the channel 1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
Table 38. Compensating pulse size
CSZ[3:0] Compensating pulse size
0000 0 ns (0 ticks) compensating pulse size
0001 20 ns (1 tick) clock period compensating pulse size
……
1111 300 ns (15 ticks) clock period compensating pulse size
D7 D6 D5 D4 D3 D2 D1 D0
SME ZDE Reserved BQL PSL DSPB Reserved Reserved
00011000
Table 39. DSP bypass
Bit R/W RST Name Description
2 R/W 0 DSPB 0: Normal operation
1: Bypass of biquad and bass/treble functions
Table 40. Post-scale link
Bit R/W RST Name Description
3 R/W 1 PSL 0: Each channel uses individual post-scale values
1: Each channel uses channel 1 post-scale values
Table 41. Biquad coefficient link
Bit R/W RST Name Description
4R/W 1 BQL 0: Each channel uses coefficient values
1: Each channel uses channel 1 coefficient values
Register description: New Map STA381BW
64/171 Doc ID 018835 Rev 7
6.16.4 Zero-detect mute enable
Refer to 6.32: Enhanced zero-detect mute and input level measurement (address 0x61-
0x65, 0x3F, 0x40, 0x6F).
6.16.5 Submix mode enable
6.17 Configuration register E (addr 0x15)
6.17.1 Noise-shaper bandwidth selection
6.17.2 AM mode enable
The STA381BW features an FFX processing mode that minimizes the amount of noise
generated in the frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an active AM tuner. The SNR of the FFX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
Table 42. Zero-detect mute enable
Bit R/W RST Name Description
6R/W 0 ZDE Setting of 1 enables the automatic zero-detect mute
Setting of 0 disables the automatic zero-detect mute
Table 43. Submix mode enable
Bit R/W RST Name Description
7R/W 0 SME 0: Submix into left/right disabled
1: Submix into left/right enabled
D7 D6 D5 D4 D3 D2 D1 D0
Reserved ZCE Reserved PWMS AME NSBW Reserved Reserved
10000010
Table 44. Noise-shaper bandwidth selection
Bit R/W RST Name Description
2 R/W 0 NSBW 1: Third order NS
0: Fourth order NS
Table 45. AM mode enable
Bit R/W RST Name Description
3R/W 0 AME 0: Normal FFX operation
1: AM reduction mode FFX operation
STA381BW Register description: New Map
Doc ID 018835 Rev 7 65/171
6.17.3 PWM speed mode
6.17.4 Zero-crossing enable
The ZCE bit enables zero-crossing adjustment. When volume is adjusted on digital zero-
crossing, no clicks are audible
6.18 Configuration register F (addr 0x16)
6.18.1 Invalid input detect mute enable
Setting the IDE bit enables this function, which looks at the input I2S data and automatically
mutes if the signals are perceived as invalid.
6.18.2 Binary output mode clock loss detection
This bit detects loss of input MCLK in binary mode and will output 50% duty cycle.
Table 46. PWM speed mode
Bit R/W RST Name Description
4R/W 0 PWMS
0: Normal speed (384 kHz) all channels
1: Odd speed (341.3 kHz) all channels. Not suitable for
binary BTL mode.
Table 47. Zero-crossing enable
Bit R/W RST Name Description
6R/W 0 ZCE ‘1’: Volume adjustment only occurs at digital zero-crossing
‘0’: Volume adjustment occur immediately
D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN Reserved LDTE BCLE IDE Reserved Reserved
010111
Table 48. Invalid input detect mute enable
Bit R/W RST Name Description
2R/W 1 IDE Setting of 1 enables the automatic invalid input
detect mute
Table 49. Binary output mode clock loss detection
Bit R/W RST Name Description
3 R/W 1 BCLE Binary output mode clock loss detection enable
Register description: New Map STA381BW
66/171 Doc ID 018835 Rev 7
6.18.3 LRCK double trigger protection
This bit actively prevents double triggering of LRCLK.
6.18.4 Power-down
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
to power down the power stage, then the master clock to all internal hardware except the I2C
block is gated. This places the IC in a very low power consumption state.The register state
is preserved once the device recovers from power-down.
6.18.5 External amplifier power-down
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the EAPD/FFX4B output pin when OCFG = 11.
6.19 Volume control registers (addr 0x17 - 0x1B)
6.19.1 Mute/line output configuration register (addr 0x17)
Table 50. LRCK double trigger protection
Bit R/W RST Name Description
4 R/W 1 LDTE LRCLK double trigger protection enable
Table 51. IC power-down
Bit R/W RST Name Description
7R/W 1 PWDN 0: IC power-down low-power condition
1: IC normal operation
Table 52. External amplifier power-down
Bit R/W RST Name Description
7 R/W 0 EAPD 0: External power stage power-down active
1: Normal operation
D7 D6 D5 D4 D3 D2 D1 D0
LOC1 LOC0 Reserved Reserved C3M C2M C1M MMUTE
00000000
STA381BW Register description: New Map
Doc ID 018835 Rev 7 67/171
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
Table 54. Mute configuration
Table 53. Line output configuration
LOC[1:0] Line output configuration
00 Line output fixed - no volume, no EQ
01 Line output variable - CH3 volume effects line output, no EQ
10 Line output variable with EQ - CH3 volume effects line output
11 Reserved
Bit R/W RST Name Description
3R/W 0 C3M
Channel 3 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 3 in hardware mute
2R/W 0 C2M
Channel 2 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 2 in hardware mute
1R/W 0 C1M
Channel 1 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 1 in hardware mute
0 R/W 0 MMUTE
Master mute
0 - Normal operation
1 - All channels are in mute condition
Register description: New Map STA381BW
68/171 Doc ID 018835 Rev 7
6.19.2 Channel 3 / line output volume (addr 0x1B)
The volume structure of the STA381BW consists of individual volume registers for each
channel and a master volume register that provides an offset to each channel’s volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to
-80 dB.
As an example, if CH3VOL = 0x00 or +48 dB and MVOL= -12 dB, then the total gain for
channel 3 = +36 dB.
The master mute, when set to 1, mutes all channels at once, whereas the individual channel
mute (CxM) mutes only that channel. Both the master mute and the channel mutes provide
a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum
volume setting at the internal processing rate (approximately 96 kHz).
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) to
any channel volume register or the master volume register. When volume offsets are
provided via the master volume register, any channel whose total volume is less than -80 dB
is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (Section 6.17:
Configuration register E (addr 0x15)) on a per-channel basis as this creates the smoothest
possible volume transitions. When ZCE = 0, volume updates occur immediately.
D7 D6 D5 D4 D3 D2 D1 D0
CH3VOL
01100000
Table 55. Channel 3 volume as a function of CH3VOL[7:0]
CH3VOL[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01011111 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01100001 (0x61) -0.5 dB
……
11010111 (0xD7) -59.5 dB
11011000 (0xD8) -60 dB
11011001 (0xD9) -61 dB
11011010 (0xDA) -62 dB
……
11101100 (0xEC) -80 dB
11101101 (0xED) Hard channel mute
……
11111111 (0xFF) Hard channel mute
STA381BW Register description: New Map
Doc ID 018835 Rev 7 69/171
6.20 Audio preset registers (0x1D)
6.20.1 AM interference frequency switching
6.20.2 Bass management crossover
D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Table 56. AM interference frequency switching bits
Bit R/W RST Name Description
0 R/W 0 AMAME
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 57. Audio preset AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
Table 58. Bass management crossover
Bit R/W RST Name Description
4R/W 0 XO0
Selects the bass management crossover frequency.
A 1st-order high-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
5R/W 0 XO1
6R/W 0 XO2
7R/W 0 XO3
Register description: New Map STA381BW
70/171 Doc ID 018835 Rev 7
6.21 Channel configuration registers (addr 0x1F - 0x21)
6.21.1 Tone control bypass
Tone control (bass/treble) can be bypassed on a per-channel basis for channels 1 and 2.
Table 59. Bass management crossover frequency
XO[3:0] Crossover frequency
0000 Table 73.: RAM block for biquads, mixing, scaling and bass
management
0001 80 Hz
0010 100 Hz
0011 120 Hz
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved C1BO C1VPB C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved C2BO C2VPB C2EQBP C2TCB
01000000
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved
10000000
Table 60. Tone control bypass
CxTCB Mode
0 Perform tone control on channel x - normal operation
1 Bypass tone control on channel x
STA381BW Register description: New Map
Doc ID 018835 Rev 7 71/171
6.21.2 EQ bypass
EQ control can be bypassed on a per-channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel, the prescale and all filters (biquads, bass, treble in any
combination) are bypassed for that channel.
6.21.3 Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register, then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting will not affect that
channel.
Table 62. Volume bypass register
6.21.4 Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is the negative inverse.
6.21.5 Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits. CxLS bits are not considered in case of dual-band DRC (Section 6.11.1: Dual-band
DRC), EQ DRC (Section 6.26.1: Extended post-scale range) usage.
Table 61. EQ bypass
CxEQBP Mode
0 Perform EQ on channel x - normal operation
1 Bypass EQ on channel x
CxVBP Mode
0 Normal volume operations
1 Volume is bypassed
Table 63. Binary output enable registers
CxBO Mode
0 FFX 3-state output - normal operation
1 Binary output
Table 64. Channel limiter mapping as a function of C3LS bits
C3LS[1:0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Register description: New Map STA381BW
72/171 Doc ID 018835 Rev 7
6.21.6 Output mapping
Output mapping can be performed on a per-channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
6.22 Tone control register (addr 0x22)
6.22.1 Tone control
Table 65. Channel output mapping as a function of C3OM bits
C3OM[1:0] Channel x output source from
00 Channel1
01 Channel 2
10 Channel 3
D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111
Table 66. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0] Boost/cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB
STA381BW Register description: New Map
Doc ID 018835 Rev 7 73/171
6.23 Dynamic control registers (addr 0x23 - 0x26 / addr 0x43 -
0x46)
6.23.1 Limiter 1 attack/release rate (L1AR addr 0x23)
6.23.2 Limiter 1 attack/release threshold (L1ATRT addr 0x24)
6.23.3 Limiter 2 attack/release rate ( L2AR addr 0x25)
6.23.4 Limiter 2 attack/release threshold ( L2 ATRT addr 0x26)
The STA381BW includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anticlipping mode or to actively reduce the dynamic range for a better listening
environment such as a nighttime listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in Section 6.11: FUNCT register (addr 0x0A). Each
channel can be mapped to either limiter or not mapped, meaning that the channel will clip
when 0 dBfs is exceeded. Each limiter looks at the present value of each channel that is
mapped to it, selects the maximum absolute value of all these channels, performs the
limiting algorithm on that value, and then, if needed, adjusts the gain of the mapped
channels in unison.
The limiter attack thresholds are determined by the LxAT registers if the EATHx[7] (bit D7 of
register 0x43 or 0x45) bits are set to 0, else the thresholds are determined by EATHx[6:0]. It
is recommended in anticlipping mode to set this to 0 dBfs, which corresponds to the
maximum unclipped output power of an FFX amplifier. Since gain can be added digitally
within the STA381BW it is possible to exceed 0 dBfs or any other LxAT setting. When this
occurs, the limiter, when active, automatically starts reducing the gain. The rate at which the
gain is reduced when the attack threshold is exceeded is dependent upon the attack rate
register setting for that limiter. Gain reduction occurs on a peak-detect algorithm. Setting the
EATHx[7] bits to 1 selects the anticlipping mode.
The limiter release thresholds are determined by the LxRT registers if the ERTHx[7] (bit D7
of register 0x44 or 0x46) bits are set to 0, else the thresholds are determined by
D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001
D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
Register description: New Map STA381BW
74/171 Doc ID 018835 Rev 7
ERTHx[6:0]. Setting the ERTHx[7] bits to 1 automatically selects the anticlipping mode. The
release of the limiter, when the gain is again increased, is dependent on an RMS-detect
algorithm. The output of the volume/limiter block is passed through an RMS filter. The output
of this filter is compared to the release threshold, determined by the release threshold
register. When the RMS filter output falls below the release threshold, the gain is again
increased at a rate dependent upon the release rate register. The gain can never be
increased past its set value and, therefore, the release only occurs if the limiter has already
reduced the gain. The release threshold value can be used to set what is effectively a
minimum dynamic range, this is helpful as overlimiting can reduce the dynamic range to
virtually zero and cause program material to sound “lifeless”.
In anticlipping mode, the attack and release thresholds are set relative to full-scale. In DRC
mode (bit D0 reg 0x0A set to 1), the attack threshold is set relative to the maximum volume
setting of the channels mapped to that limiter and the release threshold is set relative to the
maximum volume setting plus the attack threshold.
STA381BW Register description: New Map
Doc ID 018835 Rev 7 75/171
Figure 25. Basic limiter and volume flow diagram
Table 67. Limiter attack rate as a
function of LxA bits
Table 68. Limiter release rate as a
function of LxR bits
LxA[3:0] Attack rate dB/ms LxR[3:0] Release rate dB/ms
0000 3.1584
Fast
Slow
0000 0.5116
Fast
Slow
0001 2.7072 0001 0.1370
0010 2.2560 0010 0.0744
0011 1.8048 0011 0.0499
0100 1.3536 0100 0.0360
0101 0.9024 0101 0.0299
0110 0.4512 0110 0.0264
0111 0.2256 0111 0.0208
1000 0.1504 1000 0.0198
1001 0.1123 1001 0.0172
1010 0.0902 1010 0.0147
1011 0.0752 1011 0.0137
1100 0.0645 1100 0.0134
1101 0.0564 1101 0.0117
1110 0.0501 1110 0.0110
1111 0.0451 1111 0.0104
Gain
+
Attenuatio n Saturatio n
RMS
Gain / Volume
Input
Limiter
Output
Register description: New Map STA381BW
76/171 Doc ID 018835 Rev 7
Anticlipping mode
Table 69. Limiter attack threshold
as a function of LxAT bits
(AC mode)
Table 70. Limiter release threshold
as a function of LxRT bits
(AC mode)
LxAT[3:0] AC (dB relative to fs) LxRT[3:0] AC (dB relative to fs)
0000 -12 0000 -
0001 -10 0001 -29 dB
0010 -8 0010 -20 dB
0011 -6 0011 -16 dB
0100 -4 0100 -14 dB
0101 -2 0101 -12 dB
0110 0 0110 -10 dB
0111 +2 0111 -8 dB
1000 +3 1000 -7 dB
1001 +4 1001 -6 dB
1010 +5 1010 -5 dB
1011 +6 1011 -4 dB
1100 +7 1100 -3 dB
1101 +8 1101 -2 dB
1110 +9 1110 -1 dB
1111 +10 1111 -0 dB
STA381BW Register description: New Map
Doc ID 018835 Rev 7 77/171
Dynamic range compression mode
6.23.5 Limiter 1 extended attack threshold (addr 0x43)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4
To enable this feature, the EATHEN1 bit must be set to 1.
6.23.6 Limiter 1 extended release threshold (addr 0x44)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
To enable this feature, the ERTHEN1 bit must be set to 1.
Table 71. Limiter attack threshold
as a function of LxAT
bits (DRC mode)
Table 72. Limiter release threshold
as a function of LxRT bits
(DRC mode)
LxAT[3:0] DRC (dB relative to volume) LxRT[3:0] DRC (dB relative to volume +
LxAT)
0000 -31 0000 -
0001 -29 0001 -38 dB
0010 -27 0010 -36 dB
0011 -25 0011 -33 dB
0100 -23 0100 -31 dB
0101 -21 0101 -30 dB
0110 -19 0110 -28 dB
0111 -17 0111 -26 dB
1000 -16 1000 -24 dB
1001 -15 1001 -22 dB
1010 -14 1010 -20 dB
1011 -13 1011 -18 dB
1100 -12 1100 -15 dB
1101 -10 1101 -12 dB
1110 -7 1110 -9 dB
1111 -4 1111 -6 dB
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
00110000
Register description: New Map STA381BW
78/171 Doc ID 018835 Rev 7
6.23.7 Limiter 2 extended attack threshold (addr 0x45)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4
To enable this feature, the EATHEN2 bit must be set to 1.
6.23.8 Limiter 2 extended release threshold (addr 0x46)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
To enable this feature, the ERTHEN2 bit must be set to 1.
Note: Attack/release threshold step is 0.125 dB in the range -12 dB to 0 dB.
6.24 User-defined coefficient control registers (addr 0x27 - 0x37)
6.24.1 Coefficient address register
6.24.2 Coefficient b1 data register bits 23:16
6.24.3 Coefficient b1 data register bits 15:8
6.24.4 Coefficient b1 data register bits 7:0
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
STA381BW Register description: New Map
Doc ID 018835 Rev 7 79/171
6.24.5 Coefficient b2 data register bits 23:16
6.24.6 Coefficient b2 data register bits 15:8
6.24.7 Coefficient b2 data register bits 7:0
6.24.8 Coefficient a1 data register bits 23:16
6.24.9 Coefficient a1 data register bits 15:8
6.24.10 Coefficient a1 data register bits 7:0
6.24.11 Coefficient a2 data register bits 23:16
D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
Register description: New Map STA381BW
80/171 Doc ID 018835 Rev 7
6.24.12 Coefficient a2 data register bits 15:8
6.24.13 Coefficient a2 data register bits 7:0
6.24.14 Coefficient b0 data register bits 23:16
6.24.15 Coefficient b0 data register bits 15:8
6.24.16 Coefficient b0 data register bits 7:0
6.24.17 Coefficient write/read control register
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA381BW via RAM. Access to this RAM is available to the user via an I2C
register interface. A collection of I2C registers is dedicated to this function. One contains a
coefficient base address, five sets of three store the values of the 24-bit coefficients to be
written or that were read, and one contains bits used to control the write/read of the
coefficient(s) to/from RAM.
Note: The read and write operation on RAM coefficients works only if the LRCKI pin is switching.
D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved RA R1 WA W1
0 0000
STA381BW Register description: New Map
Doc ID 018835 Rev 7 81/171
Reading a coefficient from RAM
1. Write 6 bits of the address to I2C register 0x27.
2. Write 1 to the R1 bit in I2C address 0x37.
3. Read the top 8 bits of the coefficient in I2C address 0x28.
4. Read the middle 8 bits of the coefficient in I2C address 0x29.
5. Read the bottom 8 bits of the coefficient in I2C address 0x2A.
Reading a set of coefficients from RAM
1. Write 6 bits of the address to I2C register 0x27.
2. Write 1 to the RA bit in I2C address 0x37.
3. Read the top 8 bits of the coefficient in I2C address 0x28.
4. Read the middle 8 bits of the coefficient in I2C address 0x29.
5. Read the bottom 8 bits of the coefficient in I2C address 0x2A.
6. Read the top 8 bits of coefficient b2 in I2C address 0x2B.
7. Read the middle 8 bits of coefficient b2 in I2C address 0x2C.
8. Read the bottom 8 bits of coefficient b2 in I2C address 0x2D.
9. Read the top 8 bits of coefficient a1 in I2C address 0x2E.
10. Read the middle 8 bits of coefficient a1 in I2C address 0x2F.
11. Read the bottom 8 bits of coefficient a1 in I2C address 0x30.
12. Read the top 8 bits of coefficient a2 in I2C address 0x31.
13. Read the middle 8 bits of coefficient a2 in I2C address 0x32.
14. Read the bottom 8 bits of coefficient a2 in I2C address 0x33.
15. Read the top 8 bits of coefficient b0 in I2C address 0x34.
16. Read the middle 8 bits of coefficient b0 in I2C address 0x35.
17. Read the bottom 8 bits of coefficient b0 in I2C address 0x36.
Writing a single coefficient to RAM
1. Write 6 bits of the address to I2C register 0x27.
2. Write the top 8 bits of the coefficient in I2C address 0x28.
3. Write the middle 8 bits of the coefficient in I2C address 0x29.
4. Write the bottom 8 bits of the coefficient in I2C address 0x2A.
5. Write 1 to the W1 bit in I2C address 0x37.
Register description: New Map STA381BW
82/171 Doc ID 018835 Rev 7
Writing a set of coefficients to RAM
1. Write 6 bits of the starting address to I2C register 0x27.
2. Write the top 8 bits of coefficient b1 in I2C address 0x28.
3. Write the middle 8 bits of coefficient b1 in I2C address 0x29.
4. Write the bottom 8 bits of coefficient b1 in I2C address 0x2A.
5. Write the top 8 bits of coefficient b2 in I2C address 0x2B.
6. Write the middle 8 bits of coefficient b2 in I2C address 0x2C.
7. Write the bottom 8 bits of coefficient b2 in I2C address 0x2D.
8. Write the top 8 bits of coefficient a1 in I2C address 0x2E.
9. Write the middle 8 bits of coefficient a1 in I2C address 0x2F.
10. Write the bottom 8 bits of coefficient a1 in I2C address 0x30.
11. Write the top 8 bits of coefficient a2 in I2C address 0x31.
12. Write the middle 8 bits of coefficient a2 in I2C address 0x32.
13. Write the bottom 8 bits of coefficient a2 in I2C address 0x33.
14. Write the top 8 bits of coefficient b0 in I2C address 0x34.
15. Write the middle 8 bits of coefficient b0 in I2C address 0x35.
16. Write the bottom 8 bits of coefficient b0 in I2C address 0x36.
17. Write 1 to the WA bit in I2C address 0x37.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA381BW generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
STA381BW Register description: New Map
Doc ID 018835 Rev 7 83/171
6.24.18 User-defined EQ
The STA381BW can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
Coefficients stored in the user-defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Additionally, the STA381BW can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass-
management crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Ta b l e 7 3 .
Channel 1 and channel 2 biquads use by default the extended coefficient range (-4, +4);
Xover filters use only the standard coefficients range (-1, +1).
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the channel 1 and 2 b0/2 coefficient which is set to 0x100000 (representing 0.5) and Xover
b0/2 coefficient which is set to 0x400000 (representing 0.5).
6.24.19 Pre-scale
The STA381BW provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiplication is loaded into RAM using the same I2C registers as the biquad
coefficients and the bass management. All channels can use the channel-1 pre-scale factor
by setting the biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF.
6.24.20 Post-scale
The STA381BW provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This post-scaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiplication is loaded into RAM using the same I2C registers as the
biquad coefficients and the bass management. This post-scale factor can be used in
conjunction with an ADC-equipped microcontroller to perform power-supply error correction.
All channels can use the channel-1 post-scale factor by setting the post-scale link bit. By
Register description: New Map STA381BW
84/171 Doc ID 018835 Rev 7
default, all post-scale factors are set to 0x7FFFFF. When line output is being used,
channel-3 post-scale will affect both channels 3 and 4.
Table 73. RAM block for biquads, mixing, scaling and bass management
Index (decimal) Index (hex) Description Coefficient Default
0 0x00
Channel 1 - Biquad 1
C1H10(b1/2) 0x000000
1 0x01 C1H11(b2) 0x000000
2 0x02 C1H12(a1/2) 0x000000
3 0x03 C1H13(a2) 0x000000
4 0x04 C1H14(b0/2) 0x100000
5 0x05 Channel 1 - Biquad 2 C1H20 0x000000
……
19 0x13 Channel 1 - Biquad 4 C1H44 0x100000
20 0x14 Channel 2 - Biquad 1 C2H10 0x000000
21 0x15 C2H11 0x000000
……
39 0x27 Channel 2 - Biquad 4 C2H44 0x100000
40 0x28
Channel 1/2 - Biquad 5
for XO = 000
High-pass 2nd order filter
for XO000
C12H0(b1/2) 0x000000
41 0x29 C12H1(b2) 0x000000
42 0x2A C12H2(a1/2) 0x000000
43 0x2B C12H3(a2) 0x000000
44 0x2C C12H4(b0/2) 0x400000
45 0x2D
Channel 3 - Biquad
for XO = 000
Low-pass 2nd order filter
for XO000
C3H0(b1/2) 0x000000
46 0x2E C3H1(b2) 0x000000
47 0x2F C3H2(a1/2) 0x000000
48 0x30 C3H3(a2) 0x000000
49 0x31 C3H4(b0/2) 0x400000
50 0x32 Channel 1 - Pre-Scale C1PreS 0x7FFFFF
51 0x33 Channel 2 - Pre-Scale C2PreS 0x7FFFFF
52 0x34 Channel 1 - Post-Scale C1PstS 0x7FFFFF
53 0x35 Channel 2 - Post-Scale C2PstS 0x7FFFFF
54 0x36 Channel 3 - Post-Scale C3PstS 0x7FFFFF
55 0x37 Reserved reserved 0x5A9DF7
56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - Mix 2 C1MX2 0x000000
58 0x3A Channel 2 - Mix 1 C2MX1 0x000000
59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - Mix 1 C3MX1 0x400000
61 0x3D Channel 3 - Mix 2 C3MX2 0x400000
62 0x3E UNUSED
63 0x3F UNUSED
STA381BW Register description: New Map
Doc ID 018835 Rev 7 85/171
6.25 Fault-detect recovery constant registers (addr 0x3C - 0x3D)
The FDRC bits specify the 16-bit fault-detect recovery time delay. When FAULT is asserted,
the TRISTATE output is immediately asserted low and held low for the time period specified
by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x300C gives approximately 1 sec.
0x0000 is a reserved value.
6.26 Extended configuration register (addr 0x47)
The extended configuration register provides access to biquad 5, 6 and 7.
6.26.1 Extended post-scale range
Table 74. Extended post-scale range
Post-scale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied
to the coefficient RAM value, so post-scale can act as a gain too.
6.26.2 Extended attack rate
The attack rate shown in Ta b l e 6 7 can be extended to provide up to an 8 dB/ms attack rate
on both limiters.
Table 75. Extended attack rate, limiter 1
D7 D6 D5 D4 D3 D2 D1 D0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00110000
D7 D6 D5 D4 D3 D2 D1 D0
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
0 000111
PS48DB Mode
0 Post-scale value is applied as defined in the coefficient RAM
1Post-scale value is applied with a +48 dB offset with respect to the
coefficient RAM value
XAR1 Mode
0 Limiter1 attack rate is configured using Ta b l e 6 7
1 Limiter1 attack rate is 8 dB/ms
Register description: New Map STA381BW
86/171 Doc ID 018835 Rev 7
Table 76. Extended attack rate, limiter 2
6.26.3 Extended biquad selector
Bass and treble controls can be configured as user-defined filters when the equalization
coefficients link is activated (BQL = 1) and the corresponding BQx bit is set to 1.
Table 77. Extended biquad selector, biquad 5
Table 78. Extended biquad selector, biquad 6
Table 79. Extended biquad selector, biquad 7
When filters from the 5th to 7th are configured as user-programmable, the corresponding
coefficients are stored respectively in addresses 0x20-0x24 (BQ5), 0x25-0x29 (BQ6), 0x2A-
0x2E (BQ7) as given in Ta b l e 7 3 .
Note: The BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1
(relevant for BQ6 and BQ7).
XAR2 Mode
0 Limiter2 attack rate is configured using Ta b l e 6 7
1 Limiter2 attack rate is 8 dB/ms
BQ5 Mode
0 Reserved
1 User-defined biquad 5 coefficients are selected
BQ6 Mode
0 Pre-set bass filter selected as per Ta b le 6 6
1 User-defined biquad 6 coefficients are selected
BQ7 Mode
0 Pre-set treble filter selected as per Ta b l e 6 6
1 User-defined biquad 7 coefficients are selected
STA381BW Register description: New Map
Doc ID 018835 Rev 7 87/171
6.27 PLL configuration registers (address 0x52; 0x53; 0x54; 0x55;
0x56; 0x57)
By default, the STA381BW is able to configure the embedded PLL automatically depending
on the MCS bits (reg 0x00). For certain applications and to provide flexibility to the user, a
manual PLL configuration can be used (setting PLL_DIRP to ‘1’)
The output PLL frequency formula is:
where Fin is the input clock frequency from the pad.
D7 D6 D5 D4 D3 D2 D1 D0
PLL_FRAC[15:8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_FRAC[7:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_DITH[1:0] PLL_NDIV[5:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_DPD PLL_FCT PLL_STB PLL_STBBYP PLL_IDIV[3:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved PLL_DIRP PLL_PWD PLL_BYP OSC_PD Reserved BOOST32K
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved BYPSTATE PDSTATE OSCOK LOWCK
NA NA NA NA NA NA NA NA
Table 80. PLL factors
PLL parameter Min Max
FRAC 0 65535
IDIV 0 3
NDIV 5 55
Fin NDIV()
IDIV 1+()
---------------------------FRAC
65536
-----------------
⎝⎠
⎛⎞
+
⎝⎠
⎛⎞
×
Register description: New Map STA381BW
88/171 Doc ID 018835 Rev 7
Table 81. PLL register 0x54 bits
Bit R/W RST Name Description
7R/W 0
PLL_DITH[1:0]
“00”: PLL clock dithering disabled
“01”: PLL clock dithering enabled (triangular)
“10”: PLL clock dithering enabled (rectangular)
“11”: reserved
6R/W 0
5R/W 0
PLL_NDIV PLL loop divider
4R/W 0
3R/W 0
2R/W 0
1R/W 0
0R/W 0
Table 82. PLL register 0x55 bits
Bit R/W RST Name Description
7 R/W 0 PLL_DPD
‘0’: any PLL dividers change is implemented via PLL
power-down
‘1’: PLL divider change will happen without PLL power-
down
6 R/W 0 PLL_FCT ‘0’: PLL use integer ratio
‘1’: PLL use fractional ratio
5 R/W 0 PLL_STB PLL synchronous divider changes strobe
4 R/W 0 PLL_STBBYP ‘0’: PLL_STB is active
‘1’: PLL_STB control is bypassed
3R/W 0
PLL_IDIV[3:0] Input PLL divider
2R/W 0
1R/W 0
0R/W 0
Table 83. PLL register 0x56 bits
Bit R/W RST Name Description
5 R/W 0 PLL_DIRP ‘0’: PLL configuration is determined by the MCS bits
‘1’: PLL configuration is determined by FRAC, IDIV and NDIV
4 R/W 0 PLL_PWD ‘0’: PLL normal behavior
‘1’: PLL is in power-down mode
3R/W 0PLL_BYP
‘0’: sys clock is from PLL
‘1’: sys clock is from external pin (PLL is bypassed)
2R/W 0OSC_PD
‘0’: Normal behavior
‘1’: Internal oscillator is in power-down
0 R/W 0 BOOST32K 0’: Input oversampling selected by the IR bits
‘1’: Input oversampling is selected x3
STA381BW Register description: New Map
Doc ID 018835 Rev 7 89/171
6.28 Short-circuit protection mode registers SHOK (address 0x58)
The following power bridge pins short-circuit protections are implemented in the
STA381BW:
OUTxx vs. GNDx
OUTxx vs. VCCx
OUT1B vs. OUT2A
The protection is enabled when reg. 0x50 bit 0 (SHEN) is set to ‘1’. The protection will check
the short-circuit when the EAPD bit is toggled from ‘0’ to ‘1’ (i.e. the power bridge is switched
on), and only if the test passes (no short), does the power bridge leave the tristate condition.
Register 0x58 (read-only registers) will give more information about the detected short type.
GNDSH equal to ‘0’ means that OUTxx is shorted to ground, while the same value on
VCCSH means that OUTxx is shorted to Vcc, finally OUTSH=’0’ means that OUT1B is
shorted to OUT2A.
To be noted that once the check is performed, and the tristate released, the short protection
is not active anymore until the next EAPD 0->1 toggling which means that shorts that
happened during normal operation cannot be detected.
To be noted that register SHOK is meaningful only after the EAPD bit is set to ‘1’ at least
once.
The short-circuit protections implemented are effective only in BTL configuration, and they
must not be activated if a single-ended application scheme is needed.
Table 84. PLL register 0x57 bits
Bit R/W RST Name Description
3 R/W BYPSTATE PLL bypass state
2 R/W PDSTATE PLL PD state
1 R/W OSCOK OSCI locked
0 R/W LOWCK Clock input low-frequency check
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved reserved reserved reserved GNDSH VCCSH OUTSH
NA NA NA NA NA NA NA NA
Register description: New Map STA381BW
90/171 Doc ID 018835 Rev 7
Figure 26. Short-circuit detection timing diagram (no short detected)
In Figure 26 the short protection timing diagram is shown. The time information is expressed
in clock cycles, where the clock frequency is defined as in section Section 6.13.1: Master
clock select. The gray color is used for the short status bits to indicate that the bits are
carrying the status of the previous EAPD 0->1 toggling (to be noted that after reset this state
is meaningless since no EAPD transition occurs). The GND-related SHOK bits are updated
as soon as the gnd test is completed, the VCC bits are updated after vcc test is completed,
and the SOUT bit is updated after the shorted output test is completed. The gnd test, vcc
test and output test, are always run (if the SHEN bit is active and EAPD toggled to ‘1’), and
only if both tests are successful (no short) do the bridge outputs leave the tristate (indicated
by dotted lines in the figure). If one of the three tests (or all) fail, the power bridge outputs
are kept in the tristate until the procedure is restarted with a new EAPD toggling.
In this figure EAPD is intended to be bit 7 of register 0x05.
6.29 Extended coefficient range up to -4...4 (address 0x5A)
Biquads from 1 to 7 have in the STA381BW the possibility to extend the coefficient range
from [-1,1) to [-4..4) which allows the use of high-shelf filters that may require a coefficient
dynamic greater in absolute value than 1.
Three ranges are available, [-1;1) [-2;2) [-4;4). By default, the extended range is activated.
Each biquad has its independent setting according to the following table.
EAPD
OUT1A
OUT1B
OUT2A
OUT2B
GNDSH]
VCCSH
OUTSH]
tset trohS fo dnEtset ccv tratStset dng tratS
44
cycles
50005 cycles
50005 cycles
1cycle
Start out test
TBD cycles
D7 D6 D5 D4 D3 D2 D1 D0
CEXT_B4[1] CEXT_B4[0] CEXT_B3[1] CEXT_B3[0] CEXT_B2[1] CEXT_B2[0] CEXT_B1[1] CEXT_B1[0]
10101010
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved CEXT_B7[1] CEXT_B7[0] CEXT_B6[1] CEXT_B6[0] CEXT_B51] CEXT_B5[0]
00101010
STA381BW Register description: New Map
Doc ID 018835 Rev 7 91/171
Table 85. Coefficients extended range configuration
In this case the user can decide, for each filter stage, the right coefficient range. Note that for
a given biquad the same range will be applied to the left and right (channel 1 and channel
2).
The crossover biquad does not have the availability of this feature, maintaining the [-1;1)
range unchanged.
6.30 Miscellaneous registers (address 0x5C, 0x5D)
6.30.1 Rate power-down enable (RPDNEN) bit
In the STA381BW, by default, the power-down pin and I2C power-down act on mute
commands to perform the fade-out. This default can be changed so that the fade-out can be
started using the master volume. The RPDNEN bit, when set, activates this feature.
6.30.2 Bridge immediately off (BRIDGOFF) bit (address 0x4B, bit D5)
A fade-out procedure is started in the STA381BW once the PWDN function is enabled, and
after 13 million clock cycles (PLL internal frequency) the bridge is put in power-down
(tristate mode). There is also the possibility to change this behavior so that the power bridge
will be switched off immediately after the PWDN pin is tied to ground, without waiting for the
13 million clock cycles. The BRIDGOFF bit, when set, activates this function. Obviously the
immediate power-down will generate a pop noise at the output, therefore this procedure
must be used only in cases where pop noise is not relevant in the application. Note that this
feature works only for hardware PWDN assertion and not for a power-down applied through
the IIC interface. Refer to Section 6.30.5 if programming a different number of clock cycles is
needed.
CEXT_Bx[1] CEXT_Bx[0] Range
00
[-1;1)
01
[-2;2)
10
[-4;4)
1 1 Reserved
D7 D6 D5 D4 D3 D2 D1 D0
RPDNEN Reserved BRIDGOFF Reserved Reserved CPWMEN Reserved Reserved
01100100
D7 D6 D5 D4 D3 D2 D1 D0
LPDP LPD LPDE PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved SHEN
01001100
Register description: New Map STA381BW
92/171 Doc ID 018835 Rev 7
6.30.3 Channel PWM enable (CPWMEN) bit
This bit, when set, activates a mute output in case the volume reaches a value lower
than -76 dBFS.
6.30.4 External amplifier hardware pin enabler (LPDP, LPD LPDE) bits
Pin 42 (INTLINE), normally indicating a fault condition, using the following 3 register settings
can be reconfigured as a hardware pin enabler for an external headphone or line amplifier.
In particular the LPDE bit, when set, activates this function. Accordingly, the LPD value (0 or
1) is exported on pin 42 and in case of power-down assertion, pin 42 is tied to LPDP.
The LPDP bit, when set, negates the value programmed as the LPD value, refer to the
following table.
Table 86. External amplifier enabler configuration bits
Figure 27. Alternate function for INTLINE pin
6.30.5 Power-down delay selector (PNDLSL[2:0]) bits
The assertion of PWDN activates a counter that, by default, after 13 million clock cycles puts
the power bridge in tristate mode, independently from the fade-out time. Using these
registers it is possible to program this counter according to the following table.
LPDP LPD LPDE Pin 42 output
xx0 INT_LINE
001 0
011 1
101 1
111 0
Y
N
‘0
LPD
is the device in powerdown?
0
1
LPDP
0
1
LPDE
Power Bridge Fault
INTLINE
STA381BW Register description: New Map
Doc ID 018835 Rev 7 93/171
Table 87. PNDLSL bits configuration
6.30.6 Short-circuit check enable bit
This bit, when enabled, will activate the short-circuit checks before any power bridge
activation (EAPD bit 0->1). See section Section 6.28: Short-circuit protection mode registers
SHOK (address 0x58) for more details.
6.31 Bad PWM detection registers (address 0x5E, 0x5F, 0x60)
The STA381BW implements a detection on PWM outputs able to verify if the output signal
has no zero-crossing in a configurable time window. This check can be useful to detect the
DC level in the PWM outputs. To be noted that the checks are performed on logic level PWM
(i.e. not the power bridge ones, nor the PWM on DDX3 and DDX4 IOs).
In case of ternary modulation, the detection threshold is computed as:
TH=[(BPTH*2+1)/128]*100%
If the measured PWM duty cycle is detected greater than or equal to TH for more than
BPTIM PWM periods, the corresponding PWM bit will be set in register 0x01.
In case of binary modulation, there are two thresholds:
TH1=[(64+BPTH)/128]*100%
TH2=[(64-BPTH)/128]*100%
In this case if the measured PWM duty cycle is outside the TH1-TH2 range for more than
BPTIM PWM periods, the corresponding bit will be set in register 0x4E.
PNDLSL[2] PNDLSL[1] PNDLSL[2] Fade-out time
00 0 Default time (13M PLL clock cycles)
00 1 Default time divided by 2
01 0 Default time divided by 4
01 1 Default time divided by 8
10 0 Default time divided by 16
10 1 Default time divided by 32
11 0 Default time divided by 64
11 1 Default time divided by 128
D7 D6 D5 D4 D3 D2 D1 D0
BPTH[5] BPTH[4] BPTH[3] BPTH[2] BPTH[1] BPTH[0] reserved reserved
00110010
D7 D6 D5 D4 D3 D2 D1 D0
BPTIM[7] BPTIM[6] BPTIM[5] BPTIM[4] BPTIM[3] BPTIM[2] BPTIM[1] BPTIM[0]
01011110
Register description: New Map STA381BW
94/171 Doc ID 018835 Rev 7
6.32 Enhanced zero-detect mute and input level measurement
(address 0x61-0x65, 0x3F, 0x40, 0x6F)
The STA381BW implements an RMS-based zero-detect function (on serial input interface
data) able to detect in a very reliable way the presence of an input signal, so that the power
bridge outputs can be automatically connected to ground.
When active, the function will mute the output PWM when the input level becomes less than
“threshold - hysteresis”. Once muted, the PWM will be unmuted when the input level is
detected greater than “threshold + hysteresis”.
The measured level is then reported (for each input channel) on registers ZCCCFG1 -
ZCCCFG2, ZCCCFG3 - ZCCCFG4 according to the following equation:
Value_in_dB = 20*Log10(Reg_value/(216*0.635))
D7 D6 D5 D4 D3 D2 D1 D0
WTHH WTHL FINETH HSEL[1:0] ZMTH[2:0]
00000111
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH0[7:0]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH0[15:8]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH1[7:0]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH1[15:8]
N/A N/A N/A N/A N/A N/A N/A N/A
Table 88. Zero-detect threshold
ZMTH[2:0] Equivalent input level (dB)
000 -78
001 -84
010 -90
011 -96
100 -102
101 -108
110 -114
111 -114
STA381BW Register description: New Map
Doc ID 018835 Rev 7 95/171
The thresholds and hysteresis table above can be overridden and the low-level threshold
and high-level threshold can be set by the MTH[21:0] bits.
To activate the manual thresholds the FINETH bit has to be set to ‘1’.
To configure the low threshold, the WTHL bit must be set to ‘1’ so that any write operation to
the MTH bits will set the low threshold.
To configure the low threshold, the WTHH bit must be set to ‘1’ so that any write operation to
the MTH bits will set the low threshold.
If the zero-mute block does not detect mute, it will mute the output when the current RMS
value falls below the low threshold.
If the zero-mute block does not detect mute, it will unmute the output when the current RMS
value rises above the high threshold.
Table 90. Manual threshold register 0x3F, 0x40 and 0x6F
Table 89. Zero-detect hysteresis
HSEL[1:0] Equivalent input level hysteresis(dB)
00 3
01 4
10 5
11 6
D7 D6 D5 D4 D3 D2 D1 D0
ReservedT Reserved MTH[21:16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
MTH[15:8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
MTH[7:0]
00000000
Register description: New Map STA381BW
96/171 Doc ID 018835 Rev 7
6.33 Headphone/Line out configuration register (address 0x66)
D7 D6 D5 D4 D3 D2 D1 D0
HPLN Reserved Reserved Reserved CPFEN CPOK ABFAULT DCROK
00100NANANA
Table 91. Headphone/Line out configuration bits
Bit R/W RST Name Description
7R/W 0 HPLN
When F3X is connected to the internal HP/Line
driver this bit selects the gain of the F3X->analog
out path.
‘0’: HP out. When the MVOL+Channel Vol is
0 dBFs, a 0 dBFs input will generate a 40 mW
output on a 32 ohm load (+/- 3.3V supply).
‘1’: Line out. When the MVOL+Channel Vol is
0 dBFs, a 0 dBFs input will generate a 2 Vrms
output (+/- 3.3 V supply)
3 R/W 0 CPFEN ‘0’: Charge pump auto-enable when unmute
‘1’: Charge pump is always enabled
2RNA CPOK
‘0’: Charge pump is not working
‘1’: Charge pump is working and it is OK
1 R NA ABFAULT ‘0’: No fault on class-AB
‘1’: Overcurrent fault detected on class-AB
0 R NA DCROK ‘1’: Core supply OK
STA381BW Register description: New Map
Doc ID 018835 Rev 7 97/171
6.34 F3XCFG (address 0x69; 0x6A)
D7 D6 D5 D4 D3 D2 D1 D0
F3XLNK reserved reserved reserved reserved reserved reserved reserved
00000000
D7 D6 D5 D4 D3 D2 D1 D0
F3X_FAULT reserved reserved F3X_SM_SLOPE[2:0] F3X_MUTE F3X_ENA
11101110
Table 92. F3X configuration register 1
Bit R/W RST Name Description
7R/W 0 F3XLNK ‘0’: F3X normal control mode
‘1’: F3X mute/unmute linked to HP/Line mute
Table 93. F3X configuration register 2
Bit R/W RST Name Description
7 R 1 F3X_FAULT ‘0’: Normal operation
4R/W 0
F3X_SM_SLOPE
‘000’: 0 ms
‘001’: 25 ms
‘010’: 50 ms
‘011’: 100 ms
‘100’: 200 ms
‘101’: 250 ms
‘110’: 500 ms
‘111’: 1000 ms
3R/W 1
2R/W 1
1 R/W 1 F3X_MUTE ‘1’: Mute
0 R/W 0 F3X_ENA ‘1’: F3X enable
Register description: New Map STA381BW
98/171 Doc ID 018835 Rev 7
6.35 STCompressorTM configuration register (address 0x6B;
0x6C)
Table 94. Register STCCFG0
Table 96. Register STCCFG1
6.36 Charge pump synchronization (address 0x70)
Table 98. Charge pump sync configuration bits
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved CRC_RES Reserved Reserved
00010000
Table 95. STCCFG0 register
Bit R/W RST Name Description
2 R/W 0 CRC_RES ‘0’ = CRC comparison successful
‘1’ = CRC comparison error
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved STC_LNK Reserved
00000000
Table 97. STCCFG1 register
Bit R/W RST Name Description
1R/W 0 STC_LNK
‘0’ = normal operations
‘1’ = stereo link enabled. See Section 4.3.8:
Stereo link
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CHPI INITCNT[3:0] CHPRD
00011001
Bit R/W RST Name Description
5 R/W 0 CHPI ‘0’: Charge pump phase: 0 deg
‘1’: Charge pump phase: 180 deg
4R/W 1
INITCNT[3:0] Change charge pump phase at one clock step
3R/W 1
2R/W 0
1R/W 0
0 R/W 1 CHPRD ‘0’: Charge pump synchronized with PWM frame
‘0’: Charge pump not synchronized with PWM frame
STA381BW Register description: New Map
Doc ID 018835 Rev 7 99/171
The charge pump can be synchronized with the PWM frame in order to minimize the
crosstalk between the charge pump and the PWM waveform.
This functionality cannot be activated when the PWMS bit (address 0x15 bit D4) is set to 1.
6.37 Coefficient RAM CRC protection (address 0x71-0x7D)
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[7] BQCKE[6] BQCKE[5] BQCKE[4] BQCKE[3] BQCKE[2] BQCKE[1] BQCKE[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[15] BQCKE[14] BQCKE[13] BQCKE[12] BQCKE[11] BQCKE[10] BQCKE[9] BQCKE[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[23] BQCKE[22] BQCKE[21] BQCKE[20] BQCKE[19] BQCKE[18] BQCKE[17] BQCKE[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[7] XCCKE[6] XCCKE[5] XCCKE[4] XCCKE[3] XCCKE[2] XCCKE[1] XCCKE[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[15] XCCKE[14] XCCKE[13] XCCKE[12] XCCKE[11] XCCKE[10] XCCKE[9] XCCKE[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[23] XCCKE[22] XCCKE[21] XCCKE[20] XCCKE[19] XCCKE[18] XCCKE[17] XCCKE[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[7] BQCKR[6] BQCKR[5] BQCKR[4] BQCKR[3] BQCKR[2] BQCKR[1] BQCKR[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[15] BQCKR[14] BQCKR[13] BQCKR[12] BQCKR[11] BQCKR[10] BQCKR[9] BQCKR[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[23] BQCKR[22] BQCKR[21] BQCKR[20] BQCKR[19] BQCKR[18] BQCKR[17] BQCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
Register description: New Map STA381BW
100/171 Doc ID 018835 Rev 7
The STA381BW implements an automatic CRC computation for the biquad and
MDRC/XOver coefficient memory (Ta b l e 7 3 ). Memory cell contents from address 0x00 to
0x27 will be bit XORed to obtain the BQCHKE checksum, while cells from 0x28 to 0x31 will
be XORed to obtain the XCCHKE checksum. Both checksums (24-bit wide) are exported on
I2C registers from 0x60 to 0x65. The checksum computation will start as soon as the BCGO
(for biquad RAM bank) or the XCGO bit (for MDRC/XOver coefficients) is set to 1. The
checksum is computed at the processing sample rate if the IR bits equal “01” or “10”,
otherwise the checksum is computed to half of the processing sample rate.
When BCCMP or XCCMP is set to ‘1’, the relative checksum (BQCHKE and XCCHKE) is
continuously compared with BQCHKR and XCCHKR respectively. If the checksum matches
its own reference value, the respective result bits (BCRES and XCRES) will be set to ‘0’.
The compare bits have no effect if the respective GO bit is not set.
In case of checksum errors (i.e. the internally computed didn’t match the reference), an
automatic device reset action can be activated. This function is enabled when the BCAUTO
or XCAUTO bit is set to ‘1’. The automatic reset bits have no effect if the respective compare
bits are not set.
The recommended procedure for automatic reset activation is the following:
Download the set of coefficients (RAM locations 0x00…0x27)
Download the externally computed biquad checksum into registers BQCHKR
Enable the checksum of the biquad coefficients by setting the BCGO bit. The
checksum will start to be automatically computed by the STA381BW and its value
exposed on registers BQCHECKE. The checksum value is computed and updated.
Enable the checksum comparison by setting the BCCMP bit. The internally computed
checksum will start to be compared with the reference one and the result will be
exposed on the BCRES bit. The following operation will be executed on each audio
frame:
if ((BQCHKE == BQCHKR))
{
BC_RES = 0;// Checksum is ok, reset the error bit
}
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCAUTO XCRES XCCMP XCGO BCAUTO BCCRES BCCMP BCCGO
00000000
D7 D6 D5 D4 D3 D2 D1 D0
STA381BW Register description: New Map
Doc ID 018835 Rev 7 101/171
else
{
BC_RES = 1;// Checksum error detected, set the error bit
}
Wait until the BCRES bit goes to 0, meaning that the checksum result bit has started to
be updated and everything is ok. Time-out of this operation (e.g. >1 ms) will indicate
checksum failure, and the MCU will handle this event
Enable automatic reset of the device in case of checksum error by setting the BCAUTO
bit. The BCRES bit will then be automatically checked by the STA381BW, on each
audio frame, and a reset event will be triggered in case of checksum mismatch.
Periodically check the BC_RES status. A value of 1 indicates a checksum mismatch
has occurred and, therefore, that the device went through a reset cycle.
The previous example is intended for biquad CRC bank calculation, but it can be easily
extended to MDRC/XOver CRC computation.
6.38 MISC4 (address 0x7E)
The STA381BW allows direct access to the RAM coefficients bypassing the indirect access
mechanism described in Section 6.24: User-defined coefficient control registers (addr 0x27
- 0x37). Direct access is implemented as follows.
D7 D6 D5 D4 D3 D2 D1 D0
SMAP reserved reserved reserved reserved reserved WRA CH12
10000000
Table 99. Misc register 4
Bit R/W RST Name Description
7R/W 1 SMAP ‘1’ = NEW MAP
‘0’ = STMAP
1R/W 0 WRA
‘0’ = normal operations
‘1’ = enables the write-all procedure when using the
RAM coefficients direct access
0R/W 0 CH12 ‘0’ = normal operations
‘1’ = enables the RAM coefficients direct access
Register description: New Map STA381BW
102/171 Doc ID 018835 Rev 7
Direct single-write procedure
1. Set reg 0x7E bit 0 to 1 and bit 1 to 0 to enable the direct RAM access in single-write
mode.
2. Write the coefficient value to the device using an I2C bus single-write operation as
discribed in Figure 28.
Figure 28. Coefficients direct access single-write operation
Direct multi-write procedure
1. Set the reg 0x7E bit 0 to 1 and bit 1 to 1 to enable direct RAM access in multi-write
mode.
2. Write the coefficients value to the device using an I2C bus multi-write operation as
discribed in Figure 29. Please note that by using the multi-write procedure, it is possible
to write the entire RAM contents at once.
Figure 29. Coefficients direct access multiple-write operation
Direct single-read procedure
1. Set reg 0x7E bit 0 to 1 and bit 1 to 0 to enable the direct RAM access in single-read
mode.
2. Read the coefficient value from the device using an I2C bus single-read operation as
discribed in Figure 30.
Figure 30. Coefficients direct access single-read operation
Please be aware that the STA381BW supports 24-bit coefficients, for this reason in the
above figures Coeff_x(0) is always equal to 0x00 when either reading or writing. The multi-
write procedure embeds a wrap-around mechanism: when trying to write into a location
exceeding the maximum coefficient address, the multi-write procedure will start from
location 0x00.
Slave addressS w A Mem Addr A
Coeff_0(3) ACoeff_0(2) ACoeff_0(1) ACoeff_0(0) A
Coeff_1(3) ACoeff_1(2) ACoeff_1(1) ACoeff_1(0) A
Coeff_n(3) ACoeff_n(2) ACoeff_n(1) ACoeff_n(0) A
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 103/171
7 Register description: Sound Terminal compatibility
To keep compatibility with previous Sound Terminal devices, the 0x7E bit D7 must be set to
0 after device turn-on and after any reset (via SW or via external pin).
Missing addresses are to be considered as reserved.
Table 100. I2C registers summary
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
00 CONFA FDRB IR1 IR0 MCS2 MCS1 MCS0
01 CONFB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
02 CONFC CSZ3 CSZ2 CSZ1 CSZ0
03 CONFD SME ZDE BQL PSL DSPB
04 CONFE SVE ZCE PWMS AME NSBW
05 CONFF EAPD PWDN LDTE BCLE IDE OCFG1 OCFG0
06 MUTE LOC LOC1 LOC0 BQB_ALL C3M C2M C1M MMUTE
07 MVOL MVOL[7:0]
08 CH1VOL CH1VOL[7:0]
09 CH2VOL CH2VOL[7:0]
0A CH3VOL CH3VOL[7:0]
0C AUTO XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
0E C1CFG C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
0F C2CFG C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
10 C3CFG C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP
11 TONE TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
12 L1AR L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
13 L1ATRT L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
14 L2AR L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
15 L2ATRT L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
16 CFADDR CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
17 B1CF1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
18 B1CF2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
19 B1CF3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
1A B2CF1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
1B B2CF2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
1C B2CF3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
1D A1CF1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
1E A1CF2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
Register description: Sound Terminal compatibility STA381BW
104/171 Doc ID 018835 Rev 7
1F A1CF3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
20 A2CF1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
21 A2CF2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
22 A2CF3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
23 B0CF1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
24 B0CF2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
25 B0CF3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
26 CFUD RA R1 WA W1
2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
2D STATUS PLLUL FAULT
2E MTH2 MTH[21:16]
2F MTH1 MTH[15:8]
31 EQCFG XOB
32 EATH1 EATHEN1 EATH1[6:0]
33 ERTH1 ERTHEN1 ERTH1[6:0]
34 EATH2 EATHEN2 EATH2[6:0]
35 ERTH2 ERTHEN2 ERTH2[6:0]
36 CONFX MDRCE PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
37 SVUP SVUP_
EN SVUP_RATE[4:0]
38 SVDN SVDN_
EN SVDN_RATE[4:0]
3F EVOLRES VRES_EN VRESTG
_EN EXVRES_CH3[1:0] EXVRES_CH2[1:0] EXVRES_CH1[1:0]
40 EVOLRES2 EXVRES_MVOL[1:0]
41 PLLFRAC1 PLL_FRAC[15:8]
42 PLLFRAC0 PLL_FRAC[7:0]
43 PLLDIV PLL_DITH[1:0] PLL_NDIV[5:0]
44 PLLCFG0 PLL_
DPD
PLL_
FCT PLL_STB PLL_
STBBYP PLL_IDIV[3:0]
45 PLLCFG1 PLL_
DIRP PLL_PWD PLL_BYP OSC_PD BOOST32K
46 PLLSTATE BYPSTATE PDSTATE OSCOK LOWCK
47 SHOK GNDSH VCCSH OUTSH
49 CXT41 CEXT_B4[1:0] CEXT_B3[1:0] CEXT_B2[1:0] CEXT_B1[1:0]
4A CXT75 CEXT_B7[1:0] CEXT_B6[1:0] CEXT_B5[1:0]
4B MISC1 RPDNEN BRIDGOFF CPWMEN
Table 100. I2C registers summary (continued)
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 105/171
4C MISC2 LPDP LPD LPDE PNDLSL[2:0] SHEN
4D BPTH BPTH(5:0)
4E BADPWM BP4B BP4A BP3B BP3A BP2B BP2A BP1B BP1A
4F BPTIM BPTIM[7:0]
50 ZCCFG0 WTHH WTHL FINETH HSEL[1:0] ZMTH[2:0]
51 ZCCFG1 RMS_CH0[7:0]
52 ZCCFG2 RMS_CH0[15:8]
53 ZCCFG3 RMS_CH1[7:0]
54 ZCCFG4 RMS_CH1[15:8]
55 HPCFG HPLN MUTE CPFEN CPOK ABFAULT DCROK
58 F3XCFG1 F3XLNK
59 F3XCFG2 F3X_
FAULT F3X_SM_SLOPE[2:0] F3X_
MUTE F3X_ENA
5A STCCFG0 LIM_
BYP STC_BYP STC_ENA NP_
CRCRES
NP_CRC_
GO
5B STCCFG1 STC_LNK BRC_EN
5E MTH0 MTH[7:0]
5F CHPSINC CHPI INITCNT[3:0] CHPRD
60 BQCHKE0 BQ_CKE[7:0]
61 BQCHKE1 BQ_CKE[15:8]
62 BQCHKE2 BQ_CKE[23:16]
63 XCCHKE0 XC_CKE[7:0]
64 XCCHKE1 XC_CKE[15:8]
65 XCCHKE2 XC_CKE[23:16]
66 BQCHKR0 BQ_CKR[7:0]
67 BQCHKR1 BQ_CKR[15:8]
68 BQCHKR2 BQ_CKR[23:16]
69 XCCHKR0 XC_CKR[7:0]
6A XCCHKR1 XC_CKR[15:8]
6B XCCHKR2 XC_CKR[23:16]
6C CHKCTRL XCAUTO XCRES XCCMP XCGO BCAUTO BCRES BCCMP BCGO
6E MISC3 SRESET
7E MISC4 SMAP
Table 100. I2C registers summary (continued)
Register description: Sound Terminal compatibility STA381BW
106/171 Doc ID 018835 Rev 7
7.1 Configuration register A (addr 0x00)
7.1.1 Master clock select
The STA381BW supports sampling rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
32.768 MHz for 32 kHz
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin or BICKI pin (depending on MCS
settings) must be a multiple of the input sampling frequency (fs).
The relationship between the input clock (either XTI or BICKI) and the input sampling rate is
determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine
the PLL factor generating the internal clock and the IR bit determines the oversampling ratio
used internally. In Ta b l e 1 0 2 MCS 111 and 110 indicate that BICKI has to be used as the
clock source, while XTI is used in all the other cases.
Note: (*) Clock is BICKI
D7 D6 D5 D4 D3 D2 D1 D0
FDRB Reserved Reserved IR1 IR0 MCS2 MCS1 MCS0
01100111
Table 101. Master clock select
Bit R/W RST Name Description
0R/W 1 MCS0
Selects the ratio between the input I2S sampling
frequency and the input clock.
1R/W 1 MCS1
2R/W 1 MCS2
Table 102. Input sampling rates
Input
sampling rate
fs (kHz)
IR MCS[2:0]
111 110 101 100 011 010 001 000
32, 44.1, 48 00 64*fs(*) NA 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs
88.2, 96 01 64*fs(*) 32*fs(*) NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs
176.4, 192 1X 64*fs(*) 32*fs(*) NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 107/171
7.1.2 Interpolation ratio select
The STA381BW has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 3 times (see Section 4.2), 2 times or 1 time (pass-through) or provides a 2 times
downsample. The oversampling ratio of this interpolation is determined by the IR bits.
7.1.3 Fault-detect recovery bypass
The on-chip STA381BW power output block provides feedback to the digital controller using
inputs to the power control block. The FAULT input is used to indicate a fault condition (either
overcurrent or thermal). When FAULT is asserted (set to 0), the power control block attempts
a recovery from the fault by asserting the tri-state output (setting it to 0 which directs the
power output block to begin recovery), holds it at 0 for period of time in the range of 0.1 ms
to 1 second as defined by the fault-detect recovery constant register (FDRC registers 0x2B-
0x2C), then toggles it back to 1. This sequence is repeated as long as the fault indication
exists. This feature is enabled by default, but can be bypassed by setting the FDRB control
bit to 1.
Table 103. Internal interpolation ratio
Bit R/W RST Name Description
4:3 R/W 00 IR [1:0] Selects internal interpolation ratio based on input I2S
sampling frequency
Table 104. IR bit settings as a function of the input sampling rate
Input sampling rate fs (kHz) IR 1st stage interpolation ratio
32 00 2-times oversampling
44.1 00 2-times oversampling
48 00 2-times oversampling
88.2 01 Pass-through
96 01 Pass-through
176.4 10 2-times downsampling
192 10 2-times downsampling
Table 105. Fault-detect recovery bypass
Bit R/W RST Name Description
7R/W 0 FDRB 0: fault-detect recovery enabled
1: fault-detect recovery disabled
Register description: Sound Terminal compatibility STA381BW
108/171 Doc ID 018835 Rev 7
7.2 Configuration register B (addr 0x01)
7.2.1 Serial data interface
The STA381BW audio serial input was designed to interface with standard digital audio
components and to accept a number of serial data formats. The STA381BW always acts as
the slave when receiving audio input from standard digital audio components. Serial data for
two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and
serial data 1 and 2 SDI12.
The SAI bits (D3 to D0) and the SAIFB bit (D4) are used to specify the serial data format.
The default serial data format is I2S, MSB-first. Available formats are shown in the tables
that follow.
7.2.2 Serial audio input interface format
7.2.3 Serial data first bit
D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000
Table 106. Serial audio input interface
Bit R/W RST Name Description
0 R/W 0 SAI0
Determines the interface format of the input serial
digital audio interface
1 R/W 0 SAI1
2 R/W 0 SAI2
3 R/W 0 SAI3
Table 107. Serial data first bit
SAIFB Format
0 MSB-first
1 LSB-first
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 109/171
Table 108. Support serial audio input formats for MSB-first (SAIFB = 0)
BICKI SAI [3:0] SAIFB Interface format
32 * fs 0000 0 I2S 15-bit data
0001 0 Left/right-justified 16-bit data
48 * fs
0000 0 I2S 16- to 23-bit data
0001 0 Left-justified 16- to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
64 * fs
0000 0 I2S 16- to 24-bit data
0001 0 Left-justified 16- to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
Register description: Sound Terminal compatibility STA381BW
110/171 Doc ID 018835 Rev 7
To make the STA381BW work properly, the serial audio interface LRCKI clock must be
synchronous to the PLL output clock which means that:
the frequency of PLL clock / frequency of LRCKI = N ±4 cycles, where N depends on
the settings in Table 30 on page 58
the PLL must be locked.
If these two conditions are not met, and the IDE bit (reg 0x05 bit 2) is set to 1, the
STA381BW will immediately mute the I2S PCM data out (provided to the processing block)
and it will freeze any active processing task.
To avoid any audio side effects (like pop noise), it is strongly recommended to soft-mute any
audio streams flowing into the STA381BW data path before the desynchronization event
Table 109. Supported serial audio input formats for LSB-first (SAIFB = 1)
BICKI SAI [3:0] SAIFB Interface format
32 * fs 1100 1 I2S 15-bit data
1110 1 Left/right-justified 16-bit data
48 * fs
0100 1 I2S 23-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
64 * fs
0000 1 I2S 24-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 111/171
happens. At the same time any processing related to the I2C configuration should be issued
only after the serial audio interface and the internal PLL are synchronous again.
Note: Any mute or volume change causes some delay in the completion of the I2C operation due
to the soft volume feature. The soft volume phase change must be finished before any clock
desynchronization.
7.2.4 Delay serial clock enable
7.2.5 Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing. The default settings
of these registers map each I2S input channel to its corresponding processing channel.
Table 110. Delay serial clock enable
Bit R/W RST Name Description
5R/W 0 DSCKE
0: No serial clock delay
1: Serial clock delay by 1 core clock cycle to tolerate
anomalies in some I2S master devices
Table 111. Channel input mapping
Bit R/W RST Name Description
6R/W 0 C1IM 0: Processing channel 1 receives left I2S input
1: Processing channel 1 receives right I2S input
7R/W 1 C2IM 0: Processing channel 2 receives left I2S input
1: Processing channel 2 receives right I2S input
Register description: Sound Terminal compatibility STA381BW
112/171 Doc ID 018835 Rev 7
7.3 Configuration register C (addr 0x02)
7.3.1 FFX compensating pulse size register
Table 6:
7.4 Configuration register D (addr 0x03)
7.4.1 DSP bypass
Setting the DSPB bit bypasses the EQ function of the STA381BW.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CSZ3 CSZ2 CSZ1 CSZ0 Reserved Reserved
10010111
Table 112. FFX compensating pulse size bits
Bit R/W RST Name Description
2R/W 1 CSZ0
When OM[1,0] = 11, this register determines the
size of the FFX compensating pulse from 0 clock
ticks to 15 clock periods.
3R/W 1 CSZ1
4R/W 1 CSZ2
5R/W 0 CSZ3
Table 113. Compensating pulse size
CSZ[3:0] Compensating pulse size
0000 0 ns (0 ticks) compensating pulse size
0001 20 ns (1 tick) clock period compensating pulse size
……
1111 300 ns (15 ticks) clock period compensating pulse size
D7 D6 D5 D4 D3 D2 D1 D0
SME ZDE Reserved BQL PSL DSPB Reserved Reserved
00011000
Table 114. DSP bypass
Bit R/W RST Name Description
2 R/W 0 DSPB 0: Normal operation
1: Bypass of biquad and bass/treble functions
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 113/171
7.4.2 Post-scale link
Post-scale functionality can be used for power supply error correction. For multi-channel
applications running off the same power supply, the post-scale values can be linked to the
value of channel 1 for ease of use and in order to update the values faster.
7.4.3 Biquad coefficient link
For ease of use, all channels can use the biquad coefficients loaded into the channel-1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
7.4.4 Zero-detect mute enable
Refer to 7.24: Enhanced zero-detect mute and input level measurement (address 0x50-
0x54, 0x2E, 0x2F and 0x5E).
7.4.5 Submix mode enable
7.5 Configuration register E (addr 0x04)
Table 115. Post-scale link
Bit R/W RST Name Description
3 R/W 1 PSL 0: Each channel uses individual post-scale value
1: Each channel uses channel 1 post-scale value
Table 116. Biquad coefficient link
Bit R/W RST Name Description
4R/W 1 BQL 0: Each channel uses coefficient values
1: Each channel uses channel 1 coefficient values
Table 117. Zero-detect mute enable
Bit R/W RST Name Description
6R/W 0 ZDE Setting of 1 enables the automatic zero-detect mute
Setting of 0 disables the automatic zero-detect mute
Table 118. Submix mode enable
Bit R/W RST Name Description
7R/W 0 SME 0: Submix into left/right disabled
1: Submix into left/right enabled
D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE Reserved PWMS AME NSBW Reserved Reserved
10000010
Register description: Sound Terminal compatibility STA381BW
114/171 Doc ID 018835 Rev 7
7.5.1 Noise-shaper bandwidth selection
7.5.2 AM mode enable
The STA381BW features an FFX processing mode that minimizes the amount of noise
generated in the frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an active AM tuner. The SNR of the FFX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
7.5.3 PWM speed mode
7.5.4 Zero-crossing enable
The ZCE bit enables zero-crossing adjustment. When volume is adjusted on digital zero-
crossing, no clicks are audible.
7.5.5 Soft volume update enable
Table 119. Noise-shaper bandwidth selection
Bit R/W RST Name Description
2 R/W 0 NSBW 1: Third order NS
0: Fourth order NS
Table 120. AM mode enable
Bit R/W RST Name Description
3R/W 0 AME 0: Normal FFX operation
1: AM reduction mode FFX operation
Table 121. PWM speed mode
Bit R/W RST Name Description
4R/W 0 PWMS
0: Normal speed (384 kHz) all channels
1: Odd speed (341.3 kHz) all channels. Not suitable for
binary BTL mode.
Table 122. Zero-crossing enable
Bit R/W RST Name Description
6R/W 0 ZCE ‘1’: Volume adjustments only occur at digital zero-crossing
‘0’: Volume adjustments occur immediately
Table 123. Soft volume update enable
Bit R/W RST Name Description
7R/W 1 SVE 1: Volume adjustments ramp according to SVR settings
0: Volume adjustments occur immediately
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 115/171
7.6 Configuration register F (addr 0x05)
7.6.1 Output configuration
Note: To the left of the arrow is the processing channel. When using channel output mapping, any
of the three processing channel outputs can be used for any of the three inputs.
D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN Reserved LDTE BCLE IDE OCFG1 OCFG0
01011100
Table 124. Output configuration
Bit R/W RST Name Description
0 R/W 0 OCFG0 Selects the output configuration
1 R/W 0 OCFG1
Table 125. Output configuration engine selection
OCFG[1:0] Output configuration PBTL enable
00
2-channel (full-bridge) power, 2-channel data-out:
1A/1B 1A/1B
2A/2B 2A/2B
LineOut1 3A/3B
LineOut2 4A/4B
Line Out configuration determined by LOC register
No
01
2(half-bridge).1(full-bridge) on-board power:
1A 1A Binary 0 °
2A 1B Binary 90°
3A/3B 2A/2B Binary 45°
1A/B 3A/B Binary 0°
2A/B 4A/B Binary 90°
No
10
2-channel (full-bridge) power, 1-channel FFX:
1A/1B 1A/1B
2A/2B 2A/2B
3A/3B 3A/3B
EAPDEXT and TWARNEXT active
No
11
1-channel mono-parallel:
3A 1A/1B w/ C3BO 45°
3B 2A/2B w/ C3BO 45°
1A/1B 3A/3B
2A/2B 4A/4B
Ye s
Register description: Sound Terminal compatibility STA381BW
116/171 Doc ID 018835 Rev 7
Figure 31. OCFG = 00 (default value)
Figure 32. OCFG = 01
Figure 33. OCFG = 10
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 117/171
Figure 34. OCFG = 11
The STA381BW can be configured to support different output configurations. For each PWM
output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The
PWM slot defines the maximum extension for the PWM rising and falling edge, that is, the
rising edge as well as the falling edge cannot range outside the PWM slot boundaries.
Figure 35. Output mapping scheme
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
TM
Register description: Sound Terminal compatibility STA381BW
118/171 Doc ID 018835 Rev 7
For each configuration the PWM signals from the digital driver are mapped in different ways
to the power stage:
2.0 channels, two full-bridges (OCFG = 00)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
FFX4A -> OUT4A
FFX4B -> OUT4B
FFX1A/1B configured as C1B0 (default: ternary)
FFX2A/2B configured as C2B0 (default: ternary)
FFX3A/3B configured as C3B0 (default: ternary) line out
FFX4A/4B configured as C4B0 (default: ternary) line out
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this
configuration, neither volume control nor EQ has any effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 36.
Figure 36. 2.0 channels (OCFG = 00) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 119/171
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)
FFX1A -> OUT1A
FFX2A -> OUT1B
FFX3A -> OUT2A
FFX3B -> OUT2B
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
FFX1A/1B configured as binary
FFX2A/2B configured as binary
FFX3A/3B configured as binary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 37.
Figure 37. 2.1 channels (OCFG = 01) PWM slots
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
Register description: Sound Terminal compatibility STA381BW
120/171 Doc ID 018835 Rev 7
2.1 channels, two full-bridges + one external full-bridge (OCFG = 10)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
EAPD -> OUT4A
TWARN -> OUT4B
FFX1A/1B configured as C1B0 (default: ternary)
FFX2A/2B configured as C2B0 (default: ternary)
FFX3A/3B configured as C3B0 (default: ternary)
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are muxed.
In this configuration the PWM slot phase is the following as shown in Figure 38.
Figure 38. 2.1 channels (OCFG = 10) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 121/171
7.6.2 Invalid input detect mute enable
Setting the IDE bit enables this function, which looks at the input I2S data and automatically
mutes if the signals are perceived as invalid.
7.6.3 Binary output mode clock loss detection
This bit detects loss of input MCLK in binary mode and will output 50% duty cycle.
7.6.4 LRCK double trigger protection
This bit actively prevents double triggering of LRCLK.
7.6.5 IC power-down
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
to power down the power stage, then the master clock to all internal hardware except the I2C
block is gated. This places the IC in a very low power consumption state.
7.6.6 External amplifier power-down
Table 126. Invalid input detect mute enable
Bit R/W RST Name Description
2 R/W 1 IDE Setting of 1 enables the automatic invalid input detect mute
Table 127. Binary output mode clock loss detection
Bit R/W RST Name Description
3 R/W 1 BCLE Binary output mode clock loss detection enable
Table 128. LRCK double trigger protection
Bit R/W RST Name Description
4 R/W 1 LDTE LRCLK double trigger protection enable
Table 129. IC power-down
Bit R/W RST Name Description
7R/W 1 PWDN
0: IC power-down low-power condition
1: IC normal operation
Table 130. External amplifier power-down
Bit R/W RST Name Description
7 R/W 0 EAPD 0: External power stage power-down active
1: Normal operation
Register description: Sound Terminal compatibility STA381BW
122/171 Doc ID 018835 Rev 7
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the EAPD/FFX4B output pin when OCFG = 10.
7.7 Volume control registers (addr 0x06 - 0x0A)
7.7.1 Mute/line output configuration register
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always channel 1 and 2 inputs.
Table 132. Mute configuration
D7 D6 D5 D4 D3 D2 D1 D0
LOC1 LOC0 Reserved BQBALL C3M C2M C1M MMUTE
00000000
Table 131. Line output configuration
LOC[1:0] Line output configuration
00 Line output fixed - no volume, no EQ
01 Line output variable - CH3 volume effects line output, no EQ
10 Line output variable with EQ - CH3 volume effects line output
11 Reserved
Bit R/W RST Name Description
4 R/W 0 BQBALL
Global biquad bypass
0: Biquad filters active
1: All the biquad filters are bypassed (pass-through)
Bit R/W RST Name Description
3R/W 0 C3M
Channel 3 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 3 in hardware mute
2R/W 0 C2M
Channel 2 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 2 in hardware mute
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 123/171
7.7.2 Master volume register
7.7.3 Channel 1 volume
7.7.4 Channel 2 volume
7.7.5 Channel 3 / line output volume
The volume structure of the STA381BW consists of individual volume registers for each
channel and a master volume register that provides an offset to each channel’s volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to
-80 dB.
As an example if CH3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain
for channel 3 = +36 dB.
The master mute, when set to 1, mutes all channels at once, whereas the individual channel
mute (CxM) mutes only that channel. Both the master mute and the channel mutes provide
a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum
volume setting at the internal processing rate (approximately 96 kHz).
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) to
any channel volume register or the master volume register. When volume offsets are
1R/W 0 C1M
Channel 1 mute
0 - No mute condition. It is possible to set the channel
volume
1 - Channel 1 in hardware mute
0 R/W 0 MMUTE
Master mute
0 - Normal operation
1 - All channels are in mute condition
Bit R/W RST Name Description
D7 D6 D5 D4 D3 D2 D1 D0
MVOL[7:0]
11111111
D7 D6 D5 D4 D3 D2 D1 D0
CH1VOL[7:0]
01100000
D7 D6 D5 D4 D3 D2 D1 D0
CH2VOL[7:0]
01100000
D7 D6 D5 D4 D3 D2 D1 D0
CH3VOL[7:0]
01100000
Register description: Sound Terminal compatibility STA381BW
124/171 Doc ID 018835 Rev 7
provided via the master volume register, any channel whose total volume is less than -80 dB
is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04)) on a per-channel basis as this creates the smoothest possible volume
transitions. When ZCE = 0, volume updates occur immediately.
7.8 Audio preset registers (addr 0x0C)
7.8.1 Audio preset register (addr 0x0C)
Table 133. Master volume offset as a function of MVOL[7:0]
MVOL[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127.5 dB
11111111 (0xFF) Hard master mute
Table 134. Channel volume as a function of CxVOL[7:0]
CxVOL[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01011111 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01100001 (0x61) -0.5 dB
……
11010111 (0xD7) -59.5 dB
11011000 (0xD8) -60 dB
11011001 (0xD9) -61 dB
11011010 (0xDA) -62 dB
……
11101100 (0xEC) -80 dB
11101101 (0xED) Hard channel mute
……
11111111 (0xFF) Hard channel mute
D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 125/171
7.8.2 AM interference frequency switching
7.8.3 Bass management crossover
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Table 135. AM interference frequency switching bits
Bit R/W RST Name Description
0 R/W 0 AMAME
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 136. Audio preset AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
Table 137. Bass management crossover
Bit R/W RST Name Description
4R/W 0 XO0
Selects the bass management crossover frequency.
A 1st-order high-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
5R/W 0 XO1
6R/W 0 XO2
7R/W 0 XO3
Register description: Sound Terminal compatibility STA381BW
126/171 Doc ID 018835 Rev 7
7.9 Channel configuration registers (addr 0x0E - 0x10)
7.9.1 Tone control bypass
Tone control (bass/treble) can be bypassed on a per-channel basis for channels 1 and 2.
Table 138. Bass management crossover frequency
XO[3:0] Crossover frequency
0000 User-defined
0001 80 Hz
0010 100 Hz
0011 120 Hz
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz
D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB
01000000
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved
10000000
Table 139. Tone control bypass
CxTCB Mode
0 Perform tone control on channel x - normal operation
1 Bypass tone control on channel x
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 127/171
7.9.2 EQ bypass
EQ control can be bypassed on a per-channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel, the prescale and all filters (biquads, bass, treble in any
combination) are bypassed for that channel.
7.9.3 Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register, then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting will not affect that
channel.
Table 141. Volume bypass register
7.9.4 Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is the negative inverse.
7.9.5 Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits. CxLS bits are considered in case of dual-band DRC and EQDRC usage (7.16.1).
Table 140. EQ bypass
CxEQBP Mode
0 Perform EQ on channel x - normal operation
1 Bypass EQ on channel x
CxVBP Mode
0 Normal volume operations
1 Volume is bypassed
Table 142. Binary output enable registers
CxBO Mode
0 FFX 3-state output - normal operation
1 Binary output
Table 143. Channel limiter mapping as a function of CxLS bits
CxLS[1:0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Register description: Sound Terminal compatibility STA381BW
128/171 Doc ID 018835 Rev 7
7.9.6 Output mapping
Output mapping can be performed on a per-channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
7.10 Tone control register (addr 0x11)
7.10.1 Tone control
Table 144. Channel output mapping as a function of CxOM bits
CxOM[1:0] Channel x output source from
00 Channel1
01 Channel 2
10 Channel 3
D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111
Table 145. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0] Boost/cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 129/171
7.11 Dynamic control registers (addr 0x12 - 0x15)
7.11.1 Limiter 1 attack/release rate
7.11.2 Limiter 1 attack/release threshold
7.11.3 Limiter 2 attack/release rate
7.11.4 Limiter 2 attack/release threshold
The STA381BW includes two independent limiter blocks (not to be mistaken with the
STCompressorTM, for further details about this feature please refer to Section 4.2). The
purpose of the limiters is to automatically reduce the dynamic range of a recording to
prevent the outputs from clipping in anticlipping mode or to actively reduce the dynamic
range for a better listening environment such as a nighttime listening mode which is often
needed for DVDs. The two modes are selected via the DRC bit in Configuration register E
(addr 0x04) on page 113. Each channel can be mapped to either limiter or not mapped,
meaning that the channel will clip when 0 dBfs is exceeded. Each limiter looks at the present
value of each channel that is mapped to it, selects the maximum absolute value of all these
channels, performs the limiting algorithm on that value, and then, if needed, adjusts the gain
of the mapped channels in unison.
The limiter attack thresholds are determined by the LxAT registers if the EATHx[7] bits are
set to 0, else the thresholds are determined by EATHx[6:0]. It is recommended in
anticlipping mode to set this to 0 dBfs, which corresponds to the maximum unclipped output
power of an FFX amplifier. Since gain can be added digitally within the STA381BW, it is
possible to exceed 0 dBfs or any other LxAT setting. When this occurs, the limiter, when
active, automatically starts reducing the gain. The rate at which the gain is reduced when
the attack threshold is exceeded is dependent upon the attack rate register setting for that
limiter. Gain reduction occurs on a peak-detect algorithm. Setting the EATHx[7] bits to 1
selects the anticlipping mode.
The limiter release thresholds are determined by the LxRT registers if the ERTHx[7] bits are
set to 0, else the thresholds are determined by ERTHx[6:0]. Settings the ERTHx[7] bits to 1
D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001
D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
Register description: Sound Terminal compatibility STA381BW
130/171 Doc ID 018835 Rev 7
automatically selects the anticlipping mode. The release of the limiter, when the gain is
again increased, is dependent on an RMS-detect algorithm. The output of the volume/limiter
block is passed through an RMS filter. The output of this filter is compared to the release
threshold, determined by the release threshold register. When the RMS filter output falls
below the release threshold, the gain is again increased at a rate dependent upon the
release rate register. The gain can never be increased past its set value and, therefore, the
release only occurs if the limiter has already reduced the gain. The release threshold value
can be used to set what is effectively a minimum dynamic range, this is helpful as
overlimiting can reduce the dynamic range to virtually zero and cause program material to
sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,
the attack threshold is set relative to the maximum volume setting of the channels mapped
to that limiter, and the release threshold is set relative to the maximum volume setting plus
the attack threshold.
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 131/171
Figure 39. Basic limiter and volume flow diagram
Table 146. Limiter attack rate as a
function of LxA bits
Table 147. Limiter release rate as a
function of LxR bits
LxA[3:0] Attack rate dB/ms LxR[3:0] Release rate dB/ms
0000 3.1584
Fast
Slow
0000 0.5116
Fast
Slow
0001 2.7072 0001 0.1370
0010 2.2560 0010 0.0744
0011 1.8048 0011 0.0499
0100 1.3536 0100 0.0360
0101 0.9024 0101 0.0299
0110 0.4512 0110 0.0264
0111 0.2256 0111 0.0208
1000 0.1504 1000 0.0198
1001 0.1123 1001 0.0172
1010 0.0902 1010 0.0147
1011 0.0752 1011 0.0137
1100 0.0645 1100 0.0134
1101 0.0564 1101 0.0117
1110 0.0501 1110 0.0110
1111 0.0451 1111 0.0104
Gain
+
Attenuatio n Saturatio n
RMS
Gain / Volume
Input
Limiter
Output
Register description: Sound Terminal compatibility STA381BW
132/171 Doc ID 018835 Rev 7
Anticlipping mode
Table 148. Limiter attack threshold
as a function of LxAT bits
(AC mode)
Table 149. Limiter release threshold
as a function of LxRT bits
(AC mode)
LxAT[3:0] AC (dB relative to fs) LxRT[3:0] AC (dB relative to fs)
0000 -12 0000 -
0001 -10 0001 -29 dB
0010 -8 0010 -20 dB
0011 -6 0011 -16 dB
0100 -4 0100 -14 dB
0101 -2 0101 -12 dB
0110 0 0110 -10 dB
0111 +2 0111 -8 dB
1000 +3 1000 -7 dB
1001 +4 1001 -6 dB
1010 +5 1010 -5 dB
1011 +6 1011 -4 dB
1100 +7 1100 -3 dB
1101 +8 1101 -2 dB
1110 +9 1110 -1 dB
1111 +10 1111 -0 dB
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 133/171
Dynamic range compression mode
7.11.5 Limiter 1 extended attack threshold (addr 0x32)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4
To enable this feature, the EATHEN1 bit must be set to 1.
7.11.6 Limiter 1 extended release threshold (addr 0x33)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
To enable this feature, the ERTHEN2 bit must be set to 1.
Table 150. Limiter attack threshold
as a function of LxAT
bits (DRC mode)
Table 151. Limiter release threshold
as a function of LxRT bits
(DRC mode)
LxAT[3:0] DRC (dB relative to volume) LxRT[3:0] DRC (db relative to volume +
LxAT)
0000 -31 0000 -
0001 -29 0001 -38 dB
0010 -27 0010 -36 dB
0011 -25 0011 -33 dB
0100 -23 0100 -31 dB
0101 -21 0101 -30 dB
0110 -19 0110 -28 dB
0111 -17 0111 -26 dB
1000 -16 1000 -24 dB
1001 -15 1001 -22 dB
1010 -14 1010 -20 dB
1011 -13 1011 -18 dB
1100 -12 1100 -15 dB
1101 -10 1101 -12 dB
1110 -7 1110 -9 dB
1111 -4 1111 -6 dB
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
00110000
Register description: Sound Terminal compatibility STA381BW
134/171 Doc ID 018835 Rev 7
7.11.7 Limiter 2 extended attack threshold (addr 0x34)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4
To enable this feature, the EATHEN2 bit must be set to 1.
7.11.8 Limiter 2 extended release threshold (addr 0x35)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
To enable this feature, the ERTHEN2 bit must be set to 1.
Note: Attack/release threshold step is 0.125 dB in the range -12 dB to 0 dB.
7.12 User-defined coefficient control registers (addr 0x16 - 0x26)
7.12.1 Coefficient address register
7.12.2 Coefficient b1 data register bits 23:16
7.12.3 Coefficient b1 data register bits 15:8
7.12.4 Coefficient b1 data register bits 7:0
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 135/171
7.12.5 Coefficient b2 data register bits 23:16
7.12.6 Coefficient b2 data register bits 15:8
7.12.7 Coefficient b2 data register bits 7:0
7.12.8 Coefficient a1 data register bits 23:16
7.12.9 Coefficient a1 data register bits 15:8
7.12.10 Coefficient a1 data register bits 7:0
7.12.11 Coefficient a2 data register bits 23:16
D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
Register description: Sound Terminal compatibility STA381BW
136/171 Doc ID 018835 Rev 7
7.12.12 Coefficient a2 data register bits 15:8
7.12.13 Coefficient a2 data register bits 7:0
7.12.14 Coefficient b0 data register bits 23:16
7.12.15 Coefficient b0 data register bits 15:8
7.12.16 Coefficient b0 data register bits 7:0
7.12.17 Coefficient write/read control register
Coefficients for user-defined EQ, mixing, scaling, bass management and STCompressorTM
(see Section 4.2) are handled internally in the STA381BW via RAM. Access to this RAM is
available to the user via an I2C register interface. A collection of I2C registers are dedicated
to this function. One contains a coefficient base address, five sets of three store the values
of the 24-bit coefficients to be written or that were read, and one contains bits used to
control the write/read of the coefficient(s) to/from RAM.
Note: The read and write operation on RAM coefficients works only if LRCKI (pin 29) is switching.
D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved RA R1 WA W1
0 0000
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 137/171
Reading a coefficient from RAM
1. Write 6 bits of the address to I2C register 0x16.
2. Write 1 to the R1 bit in I2C address 0x26.
3. Read the top 8 bits of the coefficient in I2C address 0x17.
4. Read the middle 8 bits of the coefficient in I2C address 0x18.
5. Read the bottom 8 bits of the coefficient in I2C address 0x19.
Reading a set of coefficients from RAM
1. Write 6 bits of the address to I2C register 0x16.
2. Write 1 to the RA bit in I2C address 0x26.
3. Read the top 8 bits of the coefficient in I2C address 0x17.
4. Read the middle 8 bits of the coefficient in I2C address 0x18.
5. Read the bottom 8 bits of the coefficient in I2C address 0x19.
6. Read the top 8 bits of coefficient b2 in I2C address 0x1A.
7. Read the middle 8 bits of coefficient b2 in I2C address 0x1B.
8. Read the bottom 8 bits of coefficient b2 in I2C address 0x1C.
9. Read the top 8 bits of coefficient a1 in I2C address 0x1D.
10. Read the middle 8 bits of coefficient a1 in I2C address 0x1E.
11. Read the bottom 8 bits of coefficient a1 in I2C address 0x1F.
12. Read the top 8 bits of coefficient a2 in I2C address 0x20.
13. Read the middle 8 bits of coefficient a2 in I2C address 0x21.
14. Read the bottom 8 bits of coefficient a2 in I2C address 0x22.
15. Read the top 8 bits of coefficient b0 in I2C address 0x23.
16. Read the middle 8 bits of coefficient b0 in I2C address 0x24.
17. Read the bottom 8 bits of coefficient b0 in I2C address 0x25.
Writing a single coefficient to RAM
1. Write 6 bits of the address to I2C register 0x16.
2. Write the top 8 bits of the coefficient in I2C address 0x17.
3. Write the middle 8 bits of the coefficient in I2C address 0x18.
4. Write the bottom 8 bits of the coefficient in I2C address 0x19.
5. Write 1 to the W1 bit in I2C address 0x26.
Register description: Sound Terminal compatibility STA381BW
138/171 Doc ID 018835 Rev 7
Writing a set of coefficients to RAM
1. Write 6 bits of the starting address to I2C register 0x16.
2. Write the top 8 bits of coefficient b1 in I2C address 0x17.
3. Write the middle 8 bits of coefficient b1 in I2C address 0x18.
4. Write the bottom 8 bits of coefficient b1 in I2C address 0x19.
5. Write the top 8 bits of coefficient b2 in I2C address 0x1A.
6. Write the middle 8 bits of coefficient b2 in I2C address 0x1B.
7. Write the bottom 8 bits of coefficient b2 in I2C address 0x1C.
8. Write the top 8 bits of coefficient a1 in I2C address 0x1D.
9. Write the middle 8 bits of coefficient a1 in I2C address 0x1E.
10. Write the bottom 8 bits of coefficient a1 in I2C address 0x1F.
11. Write the top 8 bits of coefficient a2 in I2C address 0x20.
12. Write the middle 8 bits of coefficient a2 in I2C address 0x21.
13. Write the bottom 8 bits of coefficient a2 in I2C address 0x22.
14. Write the top 8 bits of coefficient b0 in I2C address 0x23.
15. Write the middle 8 bits of coefficient b0 in I2C address 0x24.
16. Write the bottom 8 bits of coefficient b0 in I2C address 0x25.
17. Write 1 to the WA bit in I2C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA381BW generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 139/171
7.12.18 User-defined EQ
The STA381BW can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
Coefficients stored in the user-defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Additionally, the STA381BW can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass
management crossover when the XO setting is 000 (user-defined). Both of these filters,
when defined by the user (rather than using the preset crossover filters), are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Table 150.
Channel 1 and channel 2 biquads use by default the extended coefficient range (-4, +4);
Xover filters use only the standard coefficients range (-1, +1).
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the channel 1 and 2 b0/2 coefficient which is set to 0x100000 (representing 0.5) and xover
b0/2 coefficient which is set to 0x400000 (representing 0.5).
7.12.19 Pre-scale
The STA381BW provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiplication is loaded into RAM using the same I2C registers as the biquad
coefficients and the bass management. All channels can use the channel-1 pre-scale factor
by setting the biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF.
7.12.20 Post-scale
The STA381BW provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This post-scaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiplication is loaded into RAM using the same I2C registers as the
biquad coefficients and the bass management. This post-scale factor can be used in
conjunction with an ADC-equipped microcontroller to perform power-supply error correction.
All channels can use the channel-1 post-scale factor by setting the post-scale link bit. By
Register description: Sound Terminal compatibility STA381BW
140/171 Doc ID 018835 Rev 7
default, all post-scale factors are set to 0x7FFFFF. When line output is being used,
channel-3 post-scale will affect both channels 3 and 4.
Table 152. RAM block for biquads, mixing, scaling and bass management
Index (decimal) Index (hex) Description Coefficient Default
0 0x00
Channel 1 - Biquad 1
C1H10(b1/2) 0x000000
1 0x01 C1H11(b2) 0x000000
2 0x02 C1H12(a1/2) 0x000000
3 0x03 C1H13(a2) 0x000000
4 0x04 C1H14(b0/2) 0x400000
5 0x05 Channel 1 - Biquad 2 C1H20 0x000000
…… ……
19 0x13 Channel 1 - Biquad 4 C1H44 0x400000
20 0x14 Channel 2 - Biquad 1 C2H10 0x000000
21 0x15 C2H11 0x000000
…… ……
39 0x27 Channel 2 - Biquad 4 C2H44 0x400000
40 0x28
Channel 1/2 - Biquad 5
for XO = 000
High-pass 1st order filter
for XO000
C12H0(b1/2) 0x000000
41 0x29 C12H1(b2) 0x000000
42 0x2A C12H2(a1/2) 0x000000
43 0x2B C12H3(a2) 0x000000
44 0x2C C12H4(b0/2) 0x400000
45 0x2D
Channel 3 - Biquad
for XO = 000
Low-pass 2nd order filter
for XO000
C3H0(b1/2) 0x000000
46 0x2E C3H1(b2) 0x000000
47 0x2F C3H2(a1/2) 0x000000
48 0x30 C3H3(a2) 0x000000
49 0x31 C3H4(b0/2) 0x400000
50 0x32 Channel 1 - Pre-Scale C1PreS 0x7FFFFF
51 0x33 Channel 2 - Pre-Scale C2PreS 0x7FFFFF
52 0x34 Channel 1 - Post-Scale C1PstS 0x7FFFFF
53 0x35 Channel 2 - Post-Scale C2PstS 0x7FFFFF
54 0x36 Channel 3 - Post-Scale C3PstS 0x7FFFFF
55 0x37 Reserved Reserved 0x5A9DF7
56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - Mix 2 C1MX2 0x000000
58 0x3A Channel 2 - Mix 1 C2MX1 0x000000
59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - Mix 1 C3MX1 0x400000
61 0x3D Channel 3 - Mix 2 C3MX2 0x400000
62 0x3E UNUSED
63 0x3F UNUSED
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 141/171
7.13 Fault-detect recovery constant registers (addr 0x2B - 0x2C)
The FDRC bits specify the 16-bit fault-detect recovery time delay. When FAULT is asserted,
the TRISTATE output is immediately asserted low and held low for the time period specified
by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x300C gives approximately 1 sec.
0x0000 is a reserved value.
7.14 Device status register (addr 0x2D)
This read-only register provides fault and thermal-warning status information from the power
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.
7.15 EQ coefficients configuration register (addr 0x31)
The XOB bit can be used to bypass the crossover filters. Logic 1 means that the function is
not active. In this case, the high-pass crossover filter works as a pass-through on the data
path (b=0, all the other coefficients at logic 0 ) while the low-pass filter is configured to have
zero signal on channel 3 data processing (all the coefficients are at logic 0).
D7 D6 D5 D4 D3 D2 D1 D0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00110000
D7 D6 D5 D4 D3 D2 D1 D0
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
D7 D6 D5 D4 D3 D2 D1 D0
PLLUL FAULT Reserved Reserved Reserved Reserved Reserved Reserved
Table 153. Status register bits
Bit R/W RST Name Description
7 R - PLLUL 0: PLL locked
1: PLL not locked
6R - FAULT 0: fault detected on power bridge
1: normal operation
D7 D6 D5 D4 D3 D2 D1 D0
XOB Reserved Reserved Reserved Reserved Reserved Reserved Reserved
00000000
Register description: Sound Terminal compatibility STA381BW
142/171 Doc ID 018835 Rev 7
7.16 Extended configuration register (addr 0x36)
The extended configuration register provides access to B2DRC and biquad 5, 6 and 7.
7.16.1 Dual-band DRC
The STA381BW device provides a dual-band DRC (B2DRC) on the left and right channel
data path, as depicted in Figure 40. The dual-band DRC is activated by setting MDRCE = 1.
Figure 40. B2DRC scheme
The low-frequency information (LFE) is extracted from the left and right channels, removing
the high frequencies using a programmable biquad filter, and then computing the difference
with the original signal. Limiter 1 (DRC1) is then used to control the amplitude of the
left/right high-frequency components, while limiter 2 (DRC2) is used to control the low-
frequency components (see Chapter 7.11).
The cutoff frequency of the high-pass filters can be user-defined, XO[3:0] = 0, or selected
from the pre-defined values.
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE
channel amplitude (see Chapter 7.11) as well as their volume control. To be noted that, in
this configuration, the dedicated channel 3 volume control can actually act as a bass-boost
enhancer as well (0.5 dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to
reconstruct the 2.0 output signal.
D7 D6 D5 D4 D3 D2 D1 D0
MDRCE Reserved PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
00000000
B2DRC
Hi-pass XO
filter
L
R
B2DRC
Hi-pass XO
filter
-Channel 1
Volume DRC 1
Channel 3
Vo l ume DRC 2
++
-+
Channel 3
Volume DRC 2
Channel 2
Vo l ume DRC 1
+
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 143/171
Sub-band decomposition
The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency.
The cutoff frequency can be programmed in two ways, using the XO bits in register 0x0C, or
using the “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).
For the user-programmable mode, use the formulas below to compute the high-pass filters:
where alpha = (1-sin(ω0))/cos(ω0), and ω0 is the cutoff frequency.
A first-order filter is suggested to guarantee that for every ω0 the corresponding low-pass
filter obtained as difference (as shown in Figure 24) will have a symmetric (relative to the HP
filter) frequency response, and the corresponding recombination after the DRC has low
ripple. Second-order filters can be used as well, but in this case the filter shape must be
carefully chosen to provide good low-pass response and minimum ripple recombination. For
second-order filters, it is not possible to give a closed formula to get the best coefficients, but
empirical adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Chapter 7.11. B2DRC
configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds
can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are
configured by registers 0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output.
Channel volume can be used to weight the bands recombination to fine-tune the overall
frequency response.
7.16.2 Extended post-scale range
Table 154. Extended post-scale range
Post-scale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied
to the coefficient RAM value, so post-scale can act as a gain too.
b0 = (1 + alpha) / 2 a0 = 1
b1 = -(1 + alpha) / 2 a1 = -alpha
b2 = 0 a2 = 0
PS48DB Mode
0 Post-scale value is applied as defined in coefficient RAM
1Post-scale value is applied with +48 dB offset with respect to the
coefficient RAM value
Register description: Sound Terminal compatibility STA381BW
144/171 Doc ID 018835 Rev 7
7.16.3 Extended attack rate
The attack rate shown in Ta b l e 1 4 6 can be extended to provide up to an 8 dB/ms attack rate
on both limiters.
Table 155. Extended attack rate, limiter 1
Table 156. Extended attack rate, limiter 2
7.16.4 Extended BIQUAD selector
Bass and treble controls can be configured as user-defined filters when the equalization
coefficients link is activated (BQL = 1) and the corresponding BQx bit is set to 1.
Table 157. Extended biquad selector, biquad 5
Table 158. Extended biquad selector, biquad 6
Table 159. Extended biquad selector, biquad 7
When filters from the 5th to 7th are configured as user-programmable, the corresponding
coefficients are stored respectively in addresses 0x20-0x24 (BQ5), 0x25-0x29 (BQ6), 0x2A-
0x2E (BQ7) as given in Table 152.
Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for
BQ6 and BQ7).
XAR1 Mode
0 Limiter1 attack rate is configured using Ta b l e 1 4 6
1 Limiter1 attack rate is 8 dB/ms
XAR2 Mode
0 Limiter2 attack rate is configured using Ta b l e 1 4 6
1 Limiter2 attack rate is 8 dB/ms
BQ5 Mode
0 Reserved
1 User-defined biquad 5 coefficients are selected
BQ6 Mode
0 Pre-set bass filter selected as per Ta b le 1 4 5
1 User-defined biquad 6 coefficients are selected
BQ7 Mode
0 Pre-set treble filter selected as per Table 145
1 User-defined biquad 7 coefficients are selected
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 145/171
7.17 EQ soft volume configuration registers (addr 0x37 - 0x38)
The soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is
possible to override the default behavior, allowing different volume change rates.
It is also possible to independently define the fade-in (volume is increased) and fade-out
(volume is decreased) rates according to the desired behavior.
Table 160. Soft volume update enable, increase
When SVUPE = 1 the volume-up rate is defined by the SVUP[4:0] bits according to the
following formula:
volume-up rate = 48 / (N + 1) dB/ms
where N is the SVUP[4:0] value.
Table 161. Soft volume update enable, decrease
When SVDWE = 1 the volume-down rate is defined by the SVDW[4:0] bits according to the
following formula:
volume-down rate = 48 / (N + 1) dB/ms
where N is the SVDW[4:0] value.
Note: For volume-down rates greater than 6 dB/msec it is recommended to disable the CPWMEN
bit and ZCE bit in order to avoid any audible pop noise.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
00000000
SVUPE Mode
0 When volume is increased, use the default rate
1 When volume is increased, use the rates defined by SVUP[4:0].
SVDWE Mode
0 When volume is decreased, use the default rate
1 When volume is decreased, use the rates defined by SVDW[4:0].
Register description: Sound Terminal compatibility STA381BW
146/171 Doc ID 018835 Rev 7
7.18 Extra volume resolution configuration registers (address
0x3F; 0x40)
Extra volume resolution allows fine volume tuning by steps of 0.125 dB.
The feature is enabled when VRESEN=1, as depicted in Figure 41. The overall channel
volume in this case will be CxVol+CxVR (in dB), while the master volume will be
MVOL+MVR (in dB).
Figure 41. Extra resolution volume scheme
If VRESEN = 0 the channel volume will be defined only by the CxVol registers.
Fine tuning steps can be set according to the following table for channels 1, 2,3, and master
volume.
Table 162. Volume fine-tuning steps
D7 D6 D5 D4 D3 D2 D1 D0
VRESEN VRESTG C3VR[1] C3VR[0] C2VR[1] C2VR[0] C1VR[1] C1VR[0]
10000000
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved reserved reserved reserved reserved MVR[1] MVR[0]
00000000
CxVR/MVR Mode
00 0 dB
01 -0.125 dB
10 -0.25 dB
11 -0.375 dB
Audio Data Out
CxVOL Soft
Volume
X
X
Audio Data In
VRESEN
VRESTG
CxVR
MVOL or CxVOL’event
1
0
01
Audio Data Out
CxVOL Soft
Volume
X
X
Audio Data In
VRESEN
VRESTG
CxVR
MVOL or CxVOLevent
1
0
01
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 147/171
Two different behaviors can be configured by the VRESTG bit.
If VRESTG=’0’ the CxVR contribution will be applied immediately after the corresponding
I2C bits are written.
If VRESTG=’1’ the CxVR bits will be effective on channel volume only after the
corresponding CxVol register or master volume register is written (even to the previous
values).
Table 163. Extra volume resolution enable
7.19 PLL configuration registers (address 0x41; 0x42; 0x43; 0x44;
0x45; 0X46)
By default the STA381BW is able to configure the embedded PLL automatically depending
on the MCS bits (reg 0x00). For certain applications and to provide flexibility to the user, a
manual PLL configuration can be used (setting PLL_DIRP to ‘1’).
VRESEN VRESTG Mode
0 0 Extra volume resolution disabled
0 1 Extra volume resolution disabled
1 0 Fine volume tuning enabled and applied immediately
11
Fine volume tuning enabled and applied when master or
channel volume is updated
D7 D6 D5 D4 D3 D2 D1 D0
PLL_FRAC[15:8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_FRAC[7:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_DITH[1:0] PLL_NDIV[5:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
PLL_DPD PLL_FCT PLL_STB PLL_STBBYP PLL_IDIV(3:0)
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved PLL_DIRP PLL_PWD PLL_BYP OSC_PD Reserved BOOST32K
00000100
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved BYPSTATE PDSTATE OSCOK LOWCK
NA NA NA NA NA NA NA NA
Register description: Sound Terminal compatibility STA381BW
148/171 Doc ID 018835 Rev 7
The output PLL frequency formula is:
where Fin is the input clock frequency from the pad.
Table 164. PLL factors
PLL parameter Min Max
FRAC 0 65535
IDIV 0 3
NDIV 5 55
Table 165. PLL register 0x43 bits
Bit R/W RST Name Description
7R/W 0
PLL_DITH(1:0)
‘00’: PLL clock dithering disabled
‘01’: PLL clock dithering enabled (triangular))
‘10’: PLL clock dithering enabled (rectangular)
‘11’: Reserved
6R/W 0
5R/W 0
NDIV PLL loop divider
4R/W 0
3R/W 0
2R/W 0
1R/W 0
0R/W 0
Table 166. PLL register 0x44 bits
Bit R/W RST Name Description
7 R/W 0 PLL_DPD
‘0’: any PLL dividers change is implemented via PLL
power-down
‘1’: PLL divider change will happen without PLL
power-down
6 R/W 0 PLL_FCT ‘0’: PLL use integer ratio
‘1’: PLL use fractional ratio
5 R/W 0 PLL_STB PLL synchronous divider changes strobe
4 R/W 0 PLL_STBBYP ‘0’: PLL_STB is active
‘1’: PLL_STB control is bypassed
3R/W 0
PLL_IDIV (3:0) Input PLL divider
2R/W 0
1R/W 0
0R/W 0
Fin NDIV()
IDIV 1+()
---------------------------FRAC
65536
-----------------
⎝⎠
⎛⎞
+
⎝⎠
⎛⎞
×
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 149/171
7.20 Short-circuit protection mode registers SHOK (address 0x47)
The following power bridge pins short-circuit protections are implemented in the
STA381BW:
OUTxx vs GNDx
OUTxx vs VCCx
OUT1B vs OUT2A
The protection is enabled when reg. 0x4C bit 0 (SHEN) is set to ‘1’. The protection will check
the short-circuit when the EAPD bit is toggled from ‘0’ to ‘1’ (i.e. the power bridge is switched
on), and only if the test passes (no short) does the power bridge leave the tristate condition.
Register 0x47 (read-only registers) will give more information about the detected short type.
GNDSH equal to ‘0’ means that OUTxx is shorted to ground, while the same value on
VCCSH means that OUTxx is shorted to Vcc, finally OUTSH=’0’ means that OUT1B is
shorted to OUT2A.
Table 167. PLL register 0x45 bits
Bit R/W RST Name Description
5 R/W 0 PLL_DIRP
‘0’: PLL configuration is determined by MCS bits
‘1’: PLL configuration is determined by FRAC, IDIV
and NDIV
4 R/W 0 PLL_PWD ‘0’: PLL normal behavior
‘1’: PLL is in power-down mode
3 R/W 0 PLL_BYP ‘0’: sys clock is from PLL
‘1’: sys clock is from external pin (PLL is bypassed)
2R/W 0 OSC_PD ‘0’: Normal behavior
‘1’: Internal oscillator is in power-down
0 R/W 0 BOOST32K ‘0’: Input oversampling selected by IR bits
‘1’: Input oversampling is selected x3
Table 168. PLL register 0x46 bits
Bit R/W RST Name Description
3 R BYPSTATE PLL bypass state
2 R PDSTATE PLL PD state
1 R OSCOK OSCI locked
0 R LOWCK Clock input frequency check
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved reserved reserved reserved GNDSH VCCSH OUTSH
NA NA NA NA NA NA NA NA
Register description: Sound Terminal compatibility STA381BW
150/171 Doc ID 018835 Rev 7
To be noted that once the check is performed, and the tristate released, the short protection
is not active anymore until the next EAPD 0->1 toggling which means that shorts that
happened during normal operation cannot be detected.
To be noted that register 0x47 is meaningful only after the EAPD bit is set to ‘1’ at least
once.
The short-circuit protections implemented are effective only in BTL configuration, and they
must not be activated if a single ended-application scheme is needed.
Figure 42. Short-circuit detection timing diagram (no short detected)
In Figure 42 the short protection timing diagram is shown. The time information is expressed
in clock cycles, where the clock frequency is defined as in section 7.1.1. The gray color is
used for the SHOKx bits to indicate that the bits are carrying the status of the previous
EAPD 0->1 toggling (to be noted that after reset this state is meaningless since no EAPD
transition occurs). GND-related SHOK bits are updated as soon as the gnd test is
completed, VCC bits are updated after the vcc test is completed, and the SOUT bit is
updated after the shorted output test is completed. The gnd test, vcc test and output test are
always run (if the SHEN bit active and EAPD is toggled to ‘1’), and only if both tests are
successful (no short) do the bridge outputs leave the tristate (indicated by dotted lines in the
figure). If one of the three tests (or all) fail, the power bridge outputs are kept in tristate until
the procedure is restarted with a new EAPD toggling.
In this figure EAPD is intended to be bit 7 of register 0x05.
EAPD
OUT1A
OUT1B
OUT2A
OUT2B
SHOK1[7:4]
SHOK1[3:0]
SHOK2[0]
tset trohS fo dnEtset ccv tratStset dng tratS
44
cycles
50005 cycles
50005 cycles
1cycle
Start out test
TBD cycles
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 151/171
7.21 Extended coefficient range up to -4...4 (address 0x49, 0x4A)
Biquads from 1 to 7 have in the STA381BW the possibility to extend the coefficient range
from [-1,1) to [-4..4) which allows the implementation of high-shelf filters that may require a
coefficient dynamic greater in absolute value than 1.
Three ranges are available, [-1;1) [-2;2) [-4;4). By default, the extended range is activated
Each biquad has its independent setting according to the following table.
Table 169. Coefficients extended range configuration
In this case the user can decide, for each filter stage, the right coefficients range. Note that
for a given biquad, the same range will be applied to the left and right (channel 1 and
channel 2).
Crossover biquad does not have the availability of this feature, maintaining the [-1;1) range
unchanged.
7.22 Miscellaneous registers (address 0x4B, 0x4C)
7.22.1 Rate power-down enable (RPDNEN) bit (address 0x4B, bit D7)
In the STA381BW, by default, the power-down pin and I2C power-down act on mute
commands to perform the fade-out. This default can be changed so that the fade-out can be
started using master volume. The RPDNEN bit, when set, activates this feature.
D7 D6 D5 D4 D3 D2 D1 D0
CEXT_B4[1] CEXT_B4[0] CEXT_B3[1] CEXT_B3[0] CEXT_B2[1] CEXT_B2[0] CEXT_B1[1] CEXT_B1[0]
10101010
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved CEXT_B7[1] CEXT_B7[0] CEXT_B6[1] CEXT_B6[0] CEXT_B51] CEXT_B5[0]
00101010
CEXT_Bx[1] CEXT_Bx[0] Range
00
[-1;1)
01
[-2;2)
10
[-4;4)
1 1 Reserved
D7 D6 D5 D4 D3 D2 D1 D0
RPDNEN BRIDGOFF CPWMEN reserved
01100100
D7 D6 D5 D4 D3 D2 D1 D0
LPDP LPD LPDE PNDLSL[2] PNDLSL[1] PNDLSL[0] reserved SHEN
01001100
Register description: Sound Terminal compatibility STA381BW
152/171 Doc ID 018835 Rev 7
7.22.2 Bridge immediately off (BRIDGOFF) bit (address 0x4B, bit D5)
A fade-out procedure is started in the STA381BW once the PWDN function is enabled, and
after 13 million clock cycles (PLL internal frequency) the bridge is put in power-down
(tristate mode). There is also the possibility to change this behavior so that the power bridge
will be switched off immediately after the PWDN pin is tied to ground, without waiting for the
13 million clock cycles. The BRIDGOFF bit, when set, activates this function. Obviously the
immediate power-down will generate a pop noise at the output, therefore this procedure
must be used only in case pop noise is not relevant in the application. Note that this feature
works only for hardware PWDN assertion and not for a power-down applied through the IIC
interface. Refer to Section 7.22.5 if programming a different number of clock cycles is
needed.
7.22.3 Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2)
This bit, when set, activates a mute output in case the volume reaches a value lower
than -76 dBFS.
7.22.4 External amplifier hardware pin enabler (LPDP, LPD LPDE) bits
(address 0x4C, bit D7, D6, D5)
Pin 42 (INTLINE), normally indicating a fault condition, using the following 3 register
settings, can be reconfigured as hardware pin enabler for an external headphone or line
amplifier.
In particular the LPDE bit, when set, activates this function. Accordingly, the LPD value (0 or
1) is exported on pin 42 and in case of power-down assertion, pin 42 is tied to LPDP.
The LPDP bit, when set, negates the value programmed as the LPD value, refer to the
following table.
Table 170. External amplifier enabler configuration bits
LPDP LPD LPDE Pin 42 output
xx0 INT_LINE
001 0
011 1
101 1
111 0
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 153/171
Figure 43. Alternate function for INTLINE pin
7.22.5 Power-down delay selector (PNDLSL[2:0]) bits (address 0x4C, bit D4,
D3, D2)
As per Section 7.22.2, the assertion of PWDN activates a counter that, by default, after 13
million clock cycles puts the power bridge in tristate mode, independently from the fade-out
time. Using these registers it is possible to program this counter according to the following
table.
Table 171. PNDLSL bits configuration
7.22.6 Short-circuit check enable bit (address 0x4C, bit D0)
This bit, when enabled, will activate the short-circuit checks before any power bridge
activation (EAPD bit 0->1). See section 7.20 for more details.
Y
N
‘0
LPD
is the device in powerdown?
0
1
LPDP
0
1
LPDE
Power Bridge Fault
INTLINE
PNDLSL[2] PNDLSL[1] PNDLSL[2] Fade-out time
00 0 Default time (13M PLL clock cycles)
00 1 Default time divided by 2
01 0 Default time divided by 4
01 1 Default time divided by 8
10 0 Default time divided by 16
10 1 Default time divided by 32
11 0 Default time divided by 64
11 1 Default time divided by 128
Register description: Sound Terminal compatibility STA381BW
154/171 Doc ID 018835 Rev 7
7.23 Bad PWM detection registers (address 0x4D, 0x4E, 0x4F)
The STA381BW implements a detection on the PWM outputs able to verify if the output
signal has no zero-crossing in a configurable time window. This check can be useful to
detect DC levels in the PWM outputs. To be noted that the checks are performed on logic
level PWM (i.e. not the power bridge ones, nor the PWM on DDX3 and DDX4 I/Os).
In case of ternary modulation, the detection threshold is computed as:
TH=[(BPTH*2+1)/128]*100%
If the measured PWM duty cycle is detected greater than or equal to TH for more than
BPTIM PWM periods, the corresponding PWM bit will be set in register 0x4E.
In case of binary modulation, there are two thresholds:
TH1=[(64+BPTH)/128]*100%
TH2=[(64-BPTH)/128]*100%
In this case if the measured PWM duty cycle is outside the TH1-TH2 range for more than
BPTIM PWM periods, the corresponding bit will be set in register 0x4E.
D7 D6 D5 D4 D3 D2 D1 D0
BPTH[5] BPTH[4] BPTH[3] BPTH[2] BPTH[1] BPTH[0] reserved reserved
00110010
D7 D6 D5 D4 D3 D2 D1 D0
BP4B BP4A BP3B BP3A BP2B BP2A BP1B BP1A
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BPTIM[7] BPTIM[6] BPTIM[5] BPTIM[4] BPTIM[3] BPTIM[2] BPTIM[1] BPTIM[0]
01011110
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 155/171
7.24 Enhanced zero-detect mute and input level measurement
(address 0x50-0x54, 0x2E, 0x2F and 0x5E)
The STA381BW implements an RMS-based zero-detect function (on serial input interface
data) able to detect in a very reliable way the presence of an input signal, so that the power
bridge outputs can be automatically connected to ground.
When active, the function will mute the output PWM when the input level become less than
“threshold - hysteresis”. Once muted, the PWM will be unmuted when the input level is
detected greater than “threshold + hysteresis”.
The measured level is then reported (for each input channel) on registers 0x51 - 0x52, 0x53
- 0x54 according to the following equation:
Value_in_dB = 20*Log10(Reg_value/(216*0.635))
D7 D6 D5 D4 D3 D2 D1 D0
WTHH WTHL FINETH HSEL[1:0] ZMTH[2:0]
00000111
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH0[7:0]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH0[15:8]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH1[7:0]
N/A N/A N/A N/A N/A N/A N/A N/A
D7 D6 D5 D4 D3 D2 D1 D0
RMS_CH1[15:8]
N/A N/A N/A N/A N/A N/A N/A N/A
Register description: Sound Terminal compatibility STA381BW
156/171 Doc ID 018835 Rev 7
The above thresholds and hysteresis table can be overridden and the low-level threshold
and high-level threshold can be set by the MTH[21:0] bits.
To activate the manual thresholds the FINETH bit has to be set to ‘1’.
To configure the low threshold, the WTHL bit must be set to ‘1’ so that any write operation to
the MTH bits will set the low threshold.
To configure the low threshold, the WTHH bit must be set to ‘1’ so that any write operation to
the MTH bits will set the low threshold.
If the zero-mute block does not detect mute, it will mute the output when the current RMS
value falls below the low threshold.
If the zero-mute block does not detect mute, it will unmute the output when the current RMS
value rises above the high threshold.
Table 172. Zero-detect threshold
ZMTH[2:0] Equivalent input level (dB)
000 -78
001 -84
010 -90
011 -96
100 -102
101 -108
110 -114
111 -114
Table 173. Zero-detect hysteresis
HSEL[1:0] Equivalent input level hysteresis (dB)
00 3
01 4
10 5
11 6
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 157/171
Table 174. Manual threshold register 0x2E, 0x2F and 0x5E
7.25 Headphone/Line out configuration register (address 0x55)
D7 D6 D5 D4 D3 D2 D1 D0
ReservedT Reserved MTH[21:16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
MTH[15:8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
MTH[7:0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
HPLN Reserved MUTE Reserved CPFEN CPOK ABFAULT DCROK
00100NANANA
Table 175. Headphone/Line out configuration bits
Bit R/W RST Name Description
7R/W 0 HPLN
When F3X is connected to the internal HP/Line
driver this bit selects the gain of the F3X->analog out
path.
‘0’: HP out. When the MVOL+Channel Vol is 0 dBFs,
a 0 dBFs input will generate a 40 mW output on a
32 ohm load (+/- 3.3 V supply).
‘1’:Line out. When the MVOL+Channel Vol is
0 dBFs, a 0 dBFs input will generate a 2 Vrms output
(+/- 3.3 V supply)
5R/W 1 MUTE ‘1’: HP/Line out muted
‘0’: HP/Line out playing
3 R/W 0 CPFEN ‘0’: Charge pump auto enable when unmute
‘1’: Charge pump is always enabled
2 R NA CPOK ‘0’: Charge pump is not working
‘1’: Charge pump is working and it is OK
1 R NA ABFAULT ‘0’: No fault on class-AB
‘1’: Overcurrent fault detected on class-AB
0 R NA DCROK ‘1’: core supply OK
Register description: Sound Terminal compatibility STA381BW
158/171 Doc ID 018835 Rev 7
7.26 F3XCFG (address 0x58; 0x59)
D7 D6 D5 D4 D3 D2 D1 D0
F3XLNK Reserved Reserved Reserved Reserved Reserved Reserved Reserved
00000000
D7 D6 D5 D4 D3 D2 D1 D0
F3X_FAULT Reserved Reserved F3X_SM_SLOPE F3X_MUTE F3X_ENA
NA1101110
Table 176. F3X configuration register 1
Bit R/W RST Name Description
7R/W 0 F3XLNK ‘0’: F3X normal control mode
‘1’: F3X mute/unmute linked to HP/Line mute
Table 177. F3X configuration register 2
Bit R/W RST Name Description
7 R NA F3X_FAULT ‘0‘: Normal operation
4R/W 0
F3X_SM_SLOPE
‘000’: 0 ms
‘001’: 25 ms
‘010’: 50 ms
‘011’: 100 ms
‘100’: 200 ms
‘101’: 250 ms
‘110’: 500 ms
‘111’: 1000 ms
3R/W 1
2R/W 1
1 R/W 1 F3X_MUTE ‘1’: Mute
0 R/W 0 F3X_ENA ‘1’: F3X enable
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 159/171
7.27 STCompressorTM configuration register (address 0x5A;
0x5B)
D7 D6 D5 D4 D3 D2 D1 D0
reserved LIM_BYP STC_BYP STC_ENA reserved NP_CRES reserved NP_CRC-GO
00110000
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved reserved reserved reserved reserved STC_LNK BRC_EN
00000000
Table 178. STCompressorTM configuration bits1
Bit R/W RST Name Description
6 R/W 0 LIM_BYP 0’: STCompressorTM DRC active
‘1’: STCompressorTM DRC is bypassed
5 R/W 1 STC_BYP ‘0’: STCompressorTM processing activated
‘1’: STCompressorTM is in pass-through
4R/W 1 STC_EN
‘0’: STCompressorTM is switched off (no
configuration is possible in this state)
‘1’: STCompressorTM is enabled
2 R 0 NP_CRCRES ‘1’: CRC STCompressor ok
‘0’: CRC STCompressor error
0 R/W 0 NP_CRC_GO ‘1’: Start CRC STCompressor compute ON
‘0’: Idle
Table 179. STCompressorTM configuration bits 2
Bit R/W RST Name Description
1 R/W 0 STC_LNK
‘0’: Channel 0 and channel 1 attenuation are
applied indepenently
‘1’: Channel 0 and channel 1 attenuation are
linked so that the higher one is applied to both
channel 0 and channel 1
0 R/W 0 BRC_EN ‘1’: STCompressor band recombination enabled
‘0’: Disabled
Register description: Sound Terminal compatibility STA381BW
160/171 Doc ID 018835 Rev 7
7.28 Charge pump synchronization (address 0x5F)
Table 180. Charge pump sync configuration bits
The charge pump can be synchronized with the PWM frame in order to minimize the
crosstalk between the charge pump and the PWM waveform.
This functionality cannot be activated when the PWMS bit (address 0x15 bit D4) is set to 1.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CHPI INITCNT[3:0] CHPRD
00011001
Bit R/W RST Name Description
5 R/W 0 CHPI 0: Charge pump phase: 0 deg
1: Charge pump phase: 180 deg
4R/W 1
INITCNT[3:0] Change charge pump phase at one clock step
3R/W 1
2R/W 0
1R/W 0
0 R/W 1 CHPRD 0: Charge pump synchronized with PWM frame
0: Charge pump not synchronized with PWM frame
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 161/171
7.29 Coefficient RAM CRC protection (address 0x60-0x6C)
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[7] BQCKE[6] BQCKE[5] BQCKE[4] BQCKE[3] BQCKE[2] BQCKE[1] BQCKE[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[15] BQCKE[14] BQCKE[13] BQCKE[12] BQCKE[11] BQCKE[10] BQCKE[9] BQCKE[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKE[23] BQCKE[22] BQCKE[21] BQCKE[20] BQCKE[19] BQCKE[18] BQCKE[17] BQCKE[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[7] XCCKE[6] XCCKE[5] XCCKE[4] XCCKE[3] XCCKE[2] XCCKE[1] XCCKE[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[15] XCCKE[14] XCCKE[13] XCCKE[12] XCCKE[11] XCCKE[10] XCCKE[9] XCCKE[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKE[23] XCCKE[22] XCCKE[21] XCCKE[20] XCCKE[19] XCCKE[18] XCCKE[17] XCCKE[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[7] BQCKR[6] BQCKR[5] BQCKR[4] BQCKR[3] BQCKR[2] BQCKR[1] BQCKR[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[15] BQCKR[14] BQCKR[13] BQCKR[12] BQCKR[11] BQCKR[10] BQCKR[9] BQCKR[8]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
BQCKR[23] BQCKR[22] BQCKR[21] BQCKR[20] BQCKR[19] BQCKR[18] BQCKR[17] BQCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCCKR[23] XCCKR[22] XCCKR[21] XCCKR[20] XCCKR[19] XCCKR[18] XCCKR[17] XCCKR[16]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
XCAUTO XCRES XCCMP XCGO BCAUTO BCCRES BCCMP BCCGO
00000000
Register description: Sound Terminal compatibility STA381BW
162/171 Doc ID 018835 Rev 7
The STA381BW implements an automatic CRC computation for the biquad and
MDRC/XOver coefficient memory. Memory cell contents from address 0x00 to 0x27 will be
bit XORed to obtain the BQCHKE checksum, while cells from 0x28 to 0x31 will be XORed to
obtain the XCCHKE checksum. Both checksums (24-bit wide) are exported on I2C registers
from 0x60 to 0x65. The checksum computation will start as soon as the BCGO (for biquad
RAM bank) or the XCGO bit (for MDRC/XOver coefficients) is set to 1. The checksum is
computed at the processing sample rate if the IR bits equal “01” or “10”, otherwise the
checksum is computed to half the processing sample rate.
When BCCMP or XCCMP are set to ‘1’, the relative checksum (BQCHKE and XCCHKE) is
continuously compared with BQCHKR and XCCHKR respectively. If the checksum matches
its own reference value, the respective result bits (BCRES and XCRES) will be set to ‘0’.
The compare bits have no effect if the respective GO bit is not set.
In case of checksum errors (i.e. the internally computed didn’t match the reference), an
automatic device reset action can be activated. This function is enabled when the BCAUTO
or XCAUTO bit is set to ‘1’. The automatic reset bits have no effect if the respective compare
bits are not set.
The recommended procedure for the automatic reset activation is the following:
Download the set of coefficients (RAM locations 0x00…0x27)
Download the externally computed biquad checksum into registers BQCHKR
Enable the checksum of the biquad coefficients by setting the BCGO bit. The
checksum will start to be automatically computed by the STA381BW and its value
exposed on registers BQCHECKE. The checksum value is computed and updated.
Enable the checksum comparison by setting the BCCMP bit. The internally computed
checksum will start to be compared with the reference one and the result will be
exposed on the BCRES bit. The following operation will be executed on each audio
frame:
if ((BQCHKE == BQCHKR))
{
BC_RES = 0;// Checksum is ok, reset the error bit
}
else
{
BC_RES = 1;// Checksum error detected, set the error bit
}
Wait until the BCRES bit goes to 0, meaning that the checksum result bit has started to
be updated and everything is ok. Time-out of this operation (e.g. > 1 ms) will indicate
checksum failure, and the MCU will handle this event.
Enable automatic reset of the device in case of checksum error by setting the BCAUTO
bit. The BCRES bit will then be automatically checked by the STA381BW, on each
audio frame, and the reset event will be triggered in case of checksum mismatch.
Periodically check the BC_RES status. A value of 1 indicates that a checksum
mismatch has occurred and, therefore, the device went through a reset cycle.
The previous example is intended for biquad CRC bank calculation, but it can be easily
extended to MDRC/XOver CRC computation.
STA381BW Register description: Sound Terminal compatibility
Doc ID 018835 Rev 7 163/171
7.30 MISC3 (address 0x6E)
After SRESET is written, the last IC acknowledge is skipped and the EAPD bit (reg 0x16 bit
D7) is set to1 instead of the 0 default value obtained after the hardware reset.
7.31 MISC4 (address 0x7E)
D7 D6 D5 D4 D3 D2 D1 D0
reserved reserved reserved reserved reserved SRESET reserved reserved
00000000
Table 181. Misc register 3
Bit R/W RST Name Description
2 R/W 0 SRESET ‘0’: normal operation
‘1’: reset the device
D7 D6 D5 D4 D3 D2 D1 D0
SMAP reserved reserved reserved reserved reserved reserved reserved
10000000
Table 182. MISC4
Bit R/W RST Name Description
71SMAP
‘1’: NEWMAP
‘0’: STMAP
Applications STA381BW
164/171 Doc ID 018835 Rev 7
8 Applications
8.1 Application schemes
The following figures illustrate typical application schemes for the STA381BW. The
line/headphone out can be fed either with an external analog source (Figure 44), or with the
F3X output, allowing to have the audio content coming from the digital interface on both the
power output and on the line/headphone out (Figure 45). Regardless of the LINEINx pins
input, the F3Xx outputs can be connected to an external amplifier as an auxiliary analog
output (Figure 46). The F3X audio content is provided by the device digital audio interface.
Figure 44. External audio source to line/headphone out application scheme
Note: For further information, please refer to application note AN3959, 2.0-channel demonstration
board based on the STA381BW and STA381BWS.
STA381BW Applications
Doc ID 018835 Rev 7 165/171
Figure 45. F3X (from SAI) source to line/headphone out application scheme
Note: For further information, please refer to application note AN3959, 2.0-channel demonstration
board based on the STA381BW and STA381BWS.
Applications STA381BW
166/171 Doc ID 018835 Rev 7
Figure 46. F3X auxiliary analog output
Note: For further information, please refer to application note AN3959, 2.0-channel demonstration
board based on the STA381BW and STA381BWS.
8.2 Headphone and 2 Vrms line out
Figure 47. Headphone and line out block diagram
Note: For further information, please refer to application note AN3959, 2.0-channel demonstration
board based on the STA381BW and STA381BWS.
STA381BW Applications
Doc ID 018835 Rev 7 167/171
Besides the digital input to the power output path, a line in to the headphone / 2Vrms line out
path is provided. The headphone and line out block diagram is shown in Figure 47. The
overall gain is determined by the external resistors R1 and R2 as:
Gain=R2/R1*2
The LINEINR/LINEINL pins can be either connected to an external line in or to the
F3XL/F3XR pins as depicted in Figure 44 and Figure 45. Thanks to this latter option it is
possible to route the digital input (SAI) content on both the power and the line
out/headphone output.
Note: The charge pump of the headphone and line out cannot drive a purely capacitive load.
Please refer to AN3959 (2.0-channel demonstration board based on the STA381BW and
STA381BWS) for detailed information about headphone and line out filtering.
8.3 Typical output configuration
Figure 48 illustrates the typical output configuration used for BTL stereo mode. Please refer
to the application note for all the other schematics for the recommended output
configuration.
Figure 48. Output configuration for stereo BTL mode in filterlight configuration
Note: For further information, please refer to application note AN3959, 2.0-channel demonstration
board based on the STA381BW and STA381BWS.
Package information STA381BW
168/171 Doc ID 018835 Rev 7
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 49. VQFN48 (7 x 7 x 0.9 mm) package outline
8320060_wk
STA381BW Package information
Doc ID 018835 Rev 7 169/171
Table 183. VQFN48 (7 x 7 x 0.9 mm) package dimensions
Reference
mm
Min. Typ. Max
A 0.80 0.90 1.00
A1 0 0.05
D 6.90 7.00 7.10
D2 5.65 5.70 5.75
E 6.90 7.00 7.10
E2 5.65 5.70 5.75
b 0.25 0.30 0.35
b1 0.20 0.25 0.30
e (pad pitch) 0.50
L1 0.05 0.15
aaa 0.15
bbb 0.10
ddd 0.05
eee 0.08
fff 0.10
ccc 0.10
Revision history STA381BW
170/171 Doc ID 018835 Rev 7
10 Revision history
Table 184. Document revision history
Date Revision Changes
08-Jun-2011 1 Initial release
28-Jun-2011 2 Removed TQFP64 package option
02-Sep-2011 3 Added note to Figure 44, 45, 46, 47, 48, and
Section 8.2: Headphone and 2 Vrms line out, referencing AN3959
20-Dec-2011 4
Updated names of pin 32 and 33 in Figure 1: Block diagram, Figure 2: Pin connections
VQFN48 (top view) and Table 2: Pin list
Document promoted from preliminary to full datasheet
17-Jan-2012 5
Added “VDD3V3CHP” to Ta b l e 3 and Ta bl e 5
Updated footnotes in Ta bl e 7
Updated register names to “SVUP” and “SVDN” for addresses 37 and 38 in Ta b l e 1 0 0
Updated text in Ta b l e 4 6 andTable 121: PWM speed mode
Updated 2.0 channels, two full-bridges (OCFG = 00) on page 118
Updated 2.1 channels, two full-bridges + one external full-bridge (OCFG = 10) on
page 120
Updated high-pass filter in Table 152
Textual changes to formulas in Section 7.17: EQ soft volume configuration registers (addr
0x37 - 0x38)
20-Jun-2012 6 Added overvoltage protection threshold (VOV) to Table 7: Electrical specifications - power
section
03-Aug-2012 7
Removed ECLE bit and sections concerning “Auto EAPD on clock loss” from datasheet
Updated Table 14: Default register map table: NEW MAP on page 42
Updated Ta bl e 1 0 0 : I 2C registers summary on page 103
Updated Section 6.32: Enhanced zero-detect mute and input level measurement
(address 0x61-0x65, 0x3F, 0x40, 0x6F) on page 94
Added Table 90: Manual threshold register 0x3F, 0x40 and 0x6F on page 95
Added Section 6.36: Charge pump synchronization (address 0x70) on page 98
Added Table 98: Charge pump sync configuration bits on page 98
Updated Section 7.24: Enhanced zero-detect mute and input level measurement
(address 0x50-0x54, 0x2E, 0x2F and 0x5E) on page 155
Added Table 174: Manual threshold register 0x2E, 0x2F and 0x5E on page 157
Added Section 7.28: Charge pump synchronization (address 0x5F) on page 160
Added Table 180: Charge pump sync configuration bits on page 160
STA381BW
Doc ID 018835 Rev 7 171/171
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com