CC2510Fx / CC2511Fx
SWRS055F Page 32 of 241
certain pins or if they are under software
control. In the latter case, each pin can be
configured as an input or output and it is also
possible to configure the input mode to be pull-
up, pull-down, or tristate. Each peripheral that
connects to the I/O-pins can choose between
two different I/O pin locations to ensure
flexibility in various applications. See Section
12.4 for details.
The Sleep Timer is an ultra-low power timer
which uses a 32.768 kHz crystal oscillator or a
low power RC oscillator as clock source. The
Sleep Timer runs continuously in all operating
modes except active mode and PM3 and is
typically used to get out of PM0, PM1, or PM2.
See Section 12.8 for details.
A built-in watchdog timer allows the
CC2510Fx/CC2511Fx
to reset itself in case the
firmware hangs. When enabled, the watchdog
timer must be cleared periodically, otherwise it
will reset the device when it times out. See
Section 12.13 for details.
Timer 1 is a 16-bit timer which supports typical
timer/counter functions such as input capture,
output compare, and PWM functions. The
timer has a programmable prescaler, a 16-bit
period value, and three independent
capture/compare channels. Each of the
channels can be used as PWM outputs or to
capture the timing of edges on input signals. A
second order Delta-Sigma noise shaper mode
is also supported for audio applications. See
Section 12.6 for details.
Timer 2 (MAC timer) is specially designed to
support time-slotted protocols in software. The
timer has a configurable timer period and a
programmable prescaler range. See Section
12.7 for details.
Timers 3 and Timer 4 are two 8-bit timers
which supports typical timer/counter functions
such as output compare and PWM functions.
They have a programmable prescaler, an 8-bit
period value, and two compare channels each,
which can be used as PWM outputs. See
Section 12.9 for details.
USART 0 and USART 1 are each
configurable as either an SPI master/slave or
a UART. They provide hardware flow-control
and double buffering on both RX and TX and
are thus well suited for high-throughput, full-
duplex applications. Each has its own high-
precision baud-rate generator, hence leaving
the ordinary timers free for other uses. When
configured as an SPI slave they sample the
input signal using SCK directly instead of
using some over-sampling scheme and are
therefore well-suited for high data rates. See
Section 12.14 for details.
The AES encryption/decryption core allows
the user to encrypt and decrypt data using the
AES algorithm with 128-bit keys. See Section
12.12 for details.
The ADC supports 7 to 12 bits of resolution in
a 30 kHz to 4 kHz bandwidth respectively. DC
and audio conversions with up to eight input
channels (P0) are possible (
CC2511Fx
is limited
to six channels). The inputs can be selected
as single ended or differential. The reference
voltage can be internal, VDD, or a single
ended or differential external signal. The ADC
also has a temperature sensor input channel.
The ADC can automate the process of
periodic sampling or conversion over a
sequence of channels. See Section 12.10 for
details.
The USB allows the
CC2511Fx
to implement a
Full-Speed USB 2.0 compatible device. The
USB has a dedicated 1 KB SRAM that is used
for the endpoint FIFOs. 5 endpoints are
available in addition to control endpoint 0.
Each of these endpoints must be configured
as Bulk/Interrupt or Isochronous and can be
used as IN, OUT or IN/OUT. Double buffering
of packets is also supported for endpoints 1 -
5. The maximum FIFO memory available for
each endpoint is as follows: 32 bytes for
endpoint 0, 32 bytes for endpoint 1, 64 bytes
for endpoint 2, 128 bytes for endpoint 3, 256
bytes for endpoint 4, and 512 bytes for
endpoint 5. When an endpoint is used as
IN/OUT, the FIFO memory available for the
endpoint can be distributed between IN and
OUT depending on the demands of the
application. The USB does not exist on the
CC2510Fx
. See Section 12.16 for details.
The I2S can be used to send/receive audio
samples to/from an external sound processor
or DAC and may operate at full or half duplex.
Samples of up to 16-bits resolution can be
used although the I2S can be configured to
send more low order bits if necessary to be
compliant with the resolution of the receiver
(up to 32 bit). The maximum bit-rate supported
is 3.5 Mbps. The I2S can be configured as a
master or slave device and supports both
mono and stereo. Automatic µ-Law expansion
and compression can also be configured. See
Section 12.15 for details.