© Semiconductor Components Industries, LLC, 2009
April, 2009 Rev. 10
1Publication Order Number:
MC10EP446/D
MC10EP446, MC100EP446
3.3 V/5 V 8‐Bit
CMOS/ECL/TTL Data Input
Parallel/Serial Converter
Description
The MC10/100EP446 is an integrated 8bit parallel to serial data
converter. The device is designed with unique circuit topology to
operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence
from parallel data into a serial data stream is from bit D0 to D7. The
parallel input pins D0D7 are configurable to be threshold controlled by
CMOS, ECL, or TTL level signals. The serial data rate output can be
selected at internal clock data rate or twice the internal clock data rate
using the CKSEL pin.
Control pins are provided to reset (SYNC) and disable internal clock
circuitry (CKEN). In either CKSEL modes, the internal flipflops are
triggered on the rising edge for CLK and the multiplexers are switched
on the falling edge of CLK, therefore, all associated specification
limits are referenced to the negative edge of the clock input.
Additionally, VBB pin is provided for singleended input condition.
The 100 Series devices contain temperature compensation network.
Features
3.2 Gb/s Typical Data Rate Capability
Differential Clock and Serial Outputs
VBB Output for Single-ended Input Applications
Asynchronous Data Reset (SYNC)
PECL Mode Operating Range:
VCC = 3.0 V to 5.5 V with VEE = 0 V
NECL Mode Operating Range:
VCC = 0 V with VEE = 3.0 V to 5.5 V
Open Input Default State
Safety Clamp on Inputs
Parallel Interface Can Support PECL, TTL or CMOS
PbFree Packages are Available*
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
LQFP32
FA SUFFIX
CASE 873A
MARKING DIAGRAMS*
xxx = 10 or 100
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or G= PbFree Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 18 of this data sheet.
ORDERING INFORMATION
MCxxx
EP446
AWLYYWWG
QFN32
MN SUFFIX
CASE 488AM
32
1
MCxxx
EP446
AWLYYWWG
G
1
MC10EP446, MC100EP446
http://onsemi.com
2
25
26
27
28
29
30
31
32
15
14
13
12
11
10
9
12345678
24 23 22 21 20 19 18 17
16
Figure 1. LQFP32 Pinout (Top View)
Warning: All VCC and VEE pins must be externally connected
to Power Supply to guarantee proper operation.
D0
D1
D3
D4
D7
VCC
SOUT
VEE
VBB2
VCC
CKSEL
VEF
VEE
PCLK
PCLK
D2
D5
D6
SOUT
VCF
SYNC
SYNC
VCC
CLK
CLK
VBB1
CKEN
CKEN
VEE
VCC
VCC
VCC
MC10EP446
MC100EP446
Figure 2. QFN32 Pinout (Top View)
32
31
30
29
28
27
26
25
9
10
11
12
13
14
15
16
12345678
24 23 22 21 20 19 18 17
Exposed Pad (EP)
D0
D1
D3
D4
D7
VCC
CKSEL
D2
D5
D6
CLK
CLK
VBB1
CKEN
CKEN
VEE
SOUT
VEE
PCLK
PCLK
SOUT
VCC
VCC
VCC
VCC
VEE
VBB2
VEF
VCF
SYNC
SYNC
VCC
Table 1. PIN DESCRIPTION
PIN FUNCTION
D0*D7* ECL, CMOS, or TTL Parallel Data Input
SOUT
, SOUT ECL Differential Serial Data Output
CLK*, CLK*ECL Differential Clock Input
PCLK, PCLK ECL Differential Parallel Clock Output
SYNC*, SYNC** ECL Conversion Synchronizing Differential Input (Reset)***
CKSEL* ECL Clock Input Selector
CKEN*, CKEN*ECL Clock Enable Differential Input
VCF ECL, CMOS, or TTL Input Selector
VEF ECL Reference Mode Connection
VBB1, VBB2 Reference Voltage Output
VCC Positive Supply
VEE Negative Supply
* Pins will default LOW when left open.
**Pins will default HIGH when left open.
***The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK
initiates the conversion process synchronously on the next rising edge of CLK.
MC10EP446, MC100EP446
http://onsemi.com
3
Table 2. TRUTH TABLE
Pin
Function
HIGH LOW
CKSEL SOUT
: PCLK = 8:1
CLK: SOUT = 1:1
SOUT
CLK
SOUT
: PCLK = 8:1
CLK: SOUT = 1:2
SOUT
CLK
CKEN Synchronously Disables Normal Parallel to Serial
Conversion
Synchronously Enables Normal Parallel to Serial Conversion
SYNC Asynchronously Resets Internal FlipFlops* Synchronous Enable
*The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates
the conversion process synchronously on the next rising edge of CLK.
Table 3. INPUT VOLTAGE LEVEL SELECTION TABLE
Input Function Connect To VCF Pin
ECL Mode VEF Pin
CMOS Mode No Connect
TTL Mode* 1.5 V $ 100 mV
*For TTL Mode, if no external voltage can be provided, the reference
voltage can be provided by connecting the appropriate resistor
between VCF and VEE pins.
Table 4. DATA INPUT OPERATING VOLTAGE TABLE
Power Supply
(VCC,VEE)
Data Inputs (D [0:7])
CMOS TTL PECL NECL
PECL p p p N/A
NECL N/A N/A N/A p
Power Supply Resistor Value 10% (Tolerance)
3.3 V 1.5 kW
5.0 V 500 W
MC10EP446, MC100EP446
http://onsemi.com
4
SYNC
Figure 3. Logic Diagram
D0 D Q
R
C
DQ
R
C
D4
DQ
R
C
DQ
R
C
DQ
R
C
DQ
R
C
DQ
R
C
DQ
R
C
D2
D6
D1
D5
D3
D7
MUX
2:1
MUX
2:1
MUX
2:1
MUX
2:1
DQ
R
C
DQ
R
C
DQ
R
C
DQ
R
C
÷2
MUX
2:1
MUX
2:1
DQ
R
C
DQ
R
C
MUX
2:1
÷2
÷2
DQ
R
C
SOUT
SOUT
PCLK
PCLK
MUX
2:1
CKEN
CKEN
CLK
CLK
CKSEL
SYNC
VBB
VCF
VEF
VEE
Control
Logic
VCC
MC10EP446, MC100EP446
http://onsemi.com
5
Table 5. ATTRIBUTES
Characteristics Value
Internal Input Pulldown Resistor 75 kW
Internal Input Pullup Resistor 37.5 kW
ESD Protection Human Body Model
Machine Model
Charged Device Model
> 2 kV
> 100 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Pb Pkg PbFree Pkg
LQFP32
QFN32
Level 2
Level 2
Level 1
Flammability Rating Oxygen Index: 28 to 34 UL 94 V0 @ 0.125 in
Transistor Count 962 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
Table 6. MAXIMUM RATINGS
Symbol Parameter Condition 1 Condition 2 Rating Unit
VCC PECL Mode Power Supply VEE = 0 V 6 V
VEE NECL Mode Power Supply VCC = 0 V 6 V
VIPECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
VI VCC
VI VEE
6
6
V
Iout Output Current Continuous
Surge
50
100
mA
IBB VBB Sink/Source ± 0.5 mA
TAOperating Temperature Range 40 to +85 °C
Tstg Storage Temperature Range 65 to +150 °C
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
LQFP32
LQFP32
80
55
°C/W
qJC Thermal Resistance (JunctiontoCase) Standard Board LQFP32 12 to 17 °C/W
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
QFN32
QFN32
31
27
°C/W
qJC Thermal Resistance (JunctiontoCase) 2S2P QFN32 12 °C/W
Tsol Wave Solder Pb
PbFree
<2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C
265
265
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
MC10EP446, MC100EP446
http://onsemi.com
6
Table 7. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 140 90 110 140 95 115 145 mA
VOH Output HIGH Voltage (Note 3) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV
VOL Output LOW Voltage (Note 3) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV
VIH Input HIGH Voltage (SingleEnded)
CMOS
PECL
TTL
2000
2090
2000
3300
3300
3300
2000
2155
2000
3300
3300
3300
2000
2215
2000
3300
3300
3300
mV
VIL Input LOW Voltage (SingleEnded)
CMOS
PECL
TTL
0
1365
0
800
1690
800
0
1460
0
800
1755
800
0
1490
0
800
1815
800
mV
VBB Output Voltage Reference 1790 1840 1990 1855 1905 2055 1915 1965 2115 mV
VIHCMR Input HIGH Voltage Common Mode Range (Dif-
ferential Configuration) (Note 4)
2.0 3.3 2.0 3.3 2.0 3.3 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current (All Except SYNC, SYNC)
SYNC, SYNC
0.5
150 0.5
0.5
150 0.5
0.5
150 0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
3. All loading with 50 W to VCC 2.0 V.
4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP446, MC100EP446
http://onsemi.com
7
Table 8. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 140 90 110 140 95 115 145 mA
VOH Output HIGH Voltage (Note 6) 3865 3950 4115 3930 4055 4180 3990 4115 4240 mV
VOL Output LOW Voltage (Note 6) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV
VIH Input HIGH Voltage (SingleEnded)
CMOS
PECL
TTL
3500
3790
2000
5000
5000
5000
3500
3855
2000
5000
5000
5000
3500
3915
2000
5000
5000
5000
mV
VIL Input LOW Voltage (SingleEnded)
CMOS
PECL
TTL
0
3065
0
1500
3390
800
0
3130
0
1500
3455
800
0
3190
0
1500
3915
800
mV
VBB Output Voltage Reference 3490 3540 3690 3555 3605 3755 3615 3665 3815 mV
VIHCMR Input HIGH Voltage Common Mode Range (Dif-
ferential Configuration) (Note 7)
2.0 5.0 2.0 5.0 2.0 5.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current (All Except SYNC, SYNC)
SYNC, SYNC
0.5
150 0.5
0.5
150 0.5
0.5
150 0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to 0.5 V.
6. All loading with 50 W to VCC 2.0 V.
7. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP446, MC100EP446
http://onsemi.com
8
Table 9. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = 5.5 V to 3.0 V (Note 8)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 140 90 110 140 95 115 145 mA
VOH Output HIGH Voltage (Note 9) 1135 1010 885 1070 945 820 1010 885 760 mV
VOL Output LOW Voltage (Note 9) 1935 1810 1685 1870 1745 1620 1810 1685 1560 mV
VIH Input HIGH Voltage (SingleEnded) 1210 885 1145 820 1085 760 mV
VIL Input LOW Voltage (SingleEnded) 1935 1610 1870 1545 1810 1485 mV
VBB Output Voltage Reference 1510 1460 1310 1445 1395 1245 1385 1335 1185 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 10)
VEE+2.0 0.0 VEE+2.0 0.0 VEE+2.0 0.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current
(All Except SYNC, SYNC)
SYNC, SYNC
0.5
150 0.5
0.5
150 0.5
0.5
150 0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
8. Input and output parameters vary 1:1 with VCC.
9. All loading with 50 W to VCC 2.0 V.
10.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 10. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 11)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 130 90 110 130 95 115 135 mA
VOH Output HIGH Voltage (Note 12) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV
VOL Output LOW Voltage (Note 12) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV
VIH Input HIGH Voltage (SingleEnded)
CMOS
PECL
TTL
2000
2075
2000
3300
3300
3300
2000
2075
2000
3300
3300
3300
2000
2075
2000
3300
3300
3300
mV
VIL Input LOW Voltage (SingleEnded)
CMOS
PECL
TTL
0
1355
0
800
1675
800
0
1355
0
800
1675
800
0
1355
0
800
1675
800
mV
VBB Output Voltage Reference 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 13)
2.0 3.3 2.0 3.3 2.0 3.3 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current 0.5 0.5 0.5 mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
12.All loading with 50 W to VCC 2.0 V.
13.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP446, MC100EP446
http://onsemi.com
9
Table 11. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 14)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 130 90 110 130 95 115 135 mA
VOH Output HIGH Voltage (Note 15) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV
VOL Output LOW Voltage (Note 15) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV
VIH Input HIGH Voltage (SingleEnded)
CMOS
PECL
TTL
3500
3775
2000
5000
5000
5000
3500
3775
2000
5000
5000
5000
3500
3775
2000
5000
5000
5000
mV
VIL Input LOW Voltage (SingleEnded)
CMOS
PECL
TTL
0
3055
0
1500
3375
800
0
3055
0
1500
3375
800
0
3055
0
1500
3375
800
mV
VBB Output Voltage Reference 3475 3575 3675 3475 3575 3675 3475 3575 3675 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 16)
2.0 5.0 2.0 5.0 2.0 5.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current 0.5 0.5 0.5 mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
14.Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to 0.5 V.
15.All loading with 50 W to VCC 2.0 V.
16.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 12. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = 5.5 V to 3.0 V (Note 17)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
IEE Power Supply Current 90 110 130 90 110 130 95 115 135 mA
VOH Output HIGH Voltage (Note 18) 1145 1020 895 1145 1020 895 1145 1020 895 mV
VOL Output LOW Voltage (Note 18) 1945 1820 1695 1945 1820 1695 1945 1820 1695 mV
VIH Input HIGH Voltage (SingleEnded) 1225 880 1225 880 1225 880 mV
VIL Input LOW Voltage (SingleEnded) 1945 1625 1945 1625 1945 1625 mV
VBB Output Voltage Reference 1525 1425 1325 1525 1425 1325 1525 1425 1325 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 19)
VEE+2.0 0.0 VEE+2.0 0.0 VEE+2.0 0.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current 0.5 0.5 0.5 mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
17.Input and output parameters vary 1:1 with VCC.
18.All loading with 50 W to VCC 2.0 V.
19.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC10EP446, MC100EP446
http://onsemi.com
10
Table 13. AC CHARACTERISTICS VCC = 0 V; VEE = 3.0 V to 5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 20)
Symbol Characteristic
40°C 25°C 85°C
Unit
Min Typ Max Min Typ Max Min Typ Max
fmax Maximum Frequency
(Figure 15)
CKSEL High
CKSEL Low
3.2
1.6
3.4
1.7
3.2
1.6
3.4
1.7
3.2
1.6
3.4
1.7
GHz
tPLH,
tPHL
Propagation Delay to Output Differential
CKSEL = 0 CLK TO SOUT
,
CLK TO PCLK
650
700
750
800
850
900
700
750
800
850
900
950
725
775
850
900
975
1025
ps
CKSEL = 1 CLK TO SOUT
,
CLK TO PCLK
775
850
875
950
975
1050
825
900
925
1000
1025
1100
875
950
1000
1075
1125
1200
ps
tSSetup Time
D to CLK+ (Figure 4)
SYNC to CLK (Figure 5)
CKEN+ to CLK (Figure 6)
375
200
70
425
140
40
400
200
70
450
140
40
450
200
70
500
140
40
ps
thHold Time
D to CLK+ (Figure 4)
SYNC to CLK
CLK to CKEN (Figure 6)
525
0
75
575
45
550
0
75
600
45
600
0
75
650
45
ps
tpw Minimum Pulse Width (Note 22)
Data (D0D7)
SYNC
CKEN
150
200
145
150
200
145
150
200
145
ps
tJITTER Random Clock Jitter (RMS)
v fmax Typ
0.2 < 1 0.2 < 1 0.2 < 1 ps
VPP Input Differential Voltage Swing
(Note 21)
150 800 1200 150 800 1200 150 800 1200 mV
tr
tf
Output Rise/Fall Times SOUT
(20% 80%)
50 100 150 70 120 170 90 140 190 ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
20.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC 2.0 V.
21.VPP(min) is the minimum input swing for which AC parameters are guaranteed.
22.The minimum pulse width is valid only if the setup and hold times are respected.
MC10EP446, MC100EP446
http://onsemi.com
11
CLK
SYNC
SYNC
ts
CLK
tS
CLK
th
CKEN
Figure 4. Setup and Hold Time for Data
th
ts
Data
Setup Time
+ 0
CLK
Figure 5. Setup Time for SYNC Figure 6. Setup and Hold Time for CKEN
Data
Valid
MC10EP446, MC100EP446
http://onsemi.com
12
APPLICATION INFORMATION
The MC10/100EP446 is an integrated 8:1 parallel to serial
converter. An attribute for EP446 is that the parallel inputs
D0–D7 (Pins 17 – 24) can be configured to accept either
CMOS, ECL, or TTL level signals by a combination of
interconnects between VEF (Pin 27) and VCF (Pin 26) pins.
For CMOS input levels, leave VEF and VCF open. For ECL
operation, short VCF and VEF (Pins 26 and 27). For TTL
operation, connect a 1.5 V supply reference to VCF and leave
the VEF pin open. The 1.5 V reference voltage to VCF pin can
be accomplished by placing a 1.5 kW or 500 W between VCF
and VEE for 3.3 V or 5.0 V power supplies, respectively.
Note: all pins requiring ECL voltage inputs must have a
50 W terminating resistor to VTT (VTT = VCC – 2.0 V).
The CKSEL input (Pin 2) is provided to enable the user to
select the serial data rate output between internal clock data
rate or twice the internal clock data rate. For CKSEL LOW
operation, the time from when the parallel data is latched ¬
to when the data is seen on the SOUT is on the falling edge
of the 7th clock cycle plus internal propagation delay
(Figure 7). Note the PCLK switches on the falling edge of
CLK.
Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW
CLK
SOUT
PCLK
D0 D02
D1
D2
D3
D4
D5
D6
D7
D22
D32
D42
D52
D62
D72
D03
D13
D23
D33
D43
D53
D63
D73
D12
CKSEL
D01
D11
D21
D31
D41
D51
D61
D71
D02
D12
D22
D32
D62
D01
D21
D31
D41
D51
D61
D71
D11
D52
D04
D14
D24
D34
D44
D54
D64
D74
1234567
Number of Clock Cycles from Data Latch to SOUT
Data LatchedData Latched Data Latched Data Latched
D42
À
Á
MC10EP446, MC100EP446
http://onsemi.com
13
Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched ¬ to when the data is seen on the
SOUT is on the rising edge of the 14th clock cycle plus internal propagation delay (Figure 8). Furthermore, the PCLK switches
on the rising edge of CLK.
Data Latched Data Latched Data Latched
Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH
CLK
SOUT
PCLK
D0 D01
D1
D2
D3
D4
D5
D6
D7
D21
D31
D41
D51
D61
D71
D11
CKSEL
D02
D12
D22
D32
D42
D52
D62
D72
D03
D13
D23
D33
D43
D53
D63
D73
D01
D11
D21
D31
D41
D51
D61
D71
D02
D12
12345678910 12131411
À
Á
Number of Clock Cycles from Data Latch to SOUT
MC10EP446, MC100EP446
http://onsemi.com
14
The device also features a differential SYNC input (Pins 29 and 30), which asynchronously reset all internal flip–flops and
clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial
data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK initiates the start of the conversion
process on the next rising edge of CLK (Figures 9 and 10). As shown in the figures below, the device will start to latch the
parallel input data after the a falling edge of SYNC ¬, followed by the falling edge CLK , on the next rising of edge of CLK
® for CKSEL LOW
Figure 9. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC
CLK
SYNC
SOUT
PCLK
D0 D02
D1
D2
D3
D4
D5
D6
D7
D22
D32
D42
D52
D62
D72
D03
D13
D23
D33
D43
D53
D63
D73
D12
CKSEL
D01
D11
D21
D31
D41
D51
D61
D71
D02
D12
D22
D32
D42
D62
D01
D21
D31
D41
D51
D61
D71
D11
D52
D04
D14
D24
D34
D44
D54
D64
D74
12345 6 7
Data LatchedData Latched Data Latched Data Latched
Figure 10. Synchronous Release of SYNC for CKSEL LOW
CLK
SYNC
SYNC
(Asynchronous RESET)
À
Á
Â
À
Á
Â
SYNC
(Synchronous ENABLE)
Number of Clock Cycles from Data Latch to SOUT
MC10EP446, MC100EP446
http://onsemi.com
15
For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling
edge of SYNC ¬, followed by the falling edge CLK , on the second rising edge of CLK ® (Figures 11 and 12).
Figure 11. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC
CLK
SYNC
SOUT
PCLK
D0 D01
D1
D2
D3
D4
D5
D6
D7
D21
D31
D41
D51
D61
D71
D11
CKSEL
D02
D12
D22
D32
D42
D52
D62
D72
D03
D13
D23
D33
D43
D53
D63
D73
D04
D14
D24
D34
D44
D54
D64
D74
D01
D11
D21
D31
D41
D51
D61
D71
D02
D12
1234567
Data Latched
8 9 10 12 13 1411
Data LatchedData Latched
Figure 12. Synchronous Release of SYNC for CKSEL HIGH
CLK
SYNC
À
ÁÂ
SYNC
(Asynchronous RESET)
SYNC
(Synchronous ENABLE)
À
ÁÂ
Number of Clock Cycles from Data Latch to SOUT
MC10EP446, MC100EP446
http://onsemi.com
16
The differential synchronous CKEN inputs (Pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will
suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the
falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume
all activities (Figure 13).
Figure 13. Timing Diagram with CKEN with CKSEL HIGH
CLK
CKEN
SOUT
CKSEL
D11D01D21D31
PCLK
D41D51
Internal
C
lock
Disabled
Internal
C
lock
Enabled
The differential PCLK output (Pins 14 and 15) is a word
framer and can help the user synchronize the serial data
output, SOUT (Pins 11 and 12), in their applications.
Furthermore, PCLK can be used as a trigger for input
parallel data (Figure 14).
An internally generated voltage supply, the VBB pin, is
available to this device only. For single–ended input
conditions, the unused differential input is connected to VBB
as a switching reference voltage. VBB may also rebias AC
coupled inputs. When used, decouple VBB and VCC via a
0.01 mF capacitor and limit current sourcing or sinking to
0.5 mA. When not used, VBB should be left open. Also, both
outputs of the differential pair must be terminated (50 W to
VTT) even if only one output is used.
Figure 14. PCLK as Trigger Application
TRIGGER
Pattern Generator
Data Format Logic
(FPGA, ASIC)
PARALLEL
DATA OUTPUT
CLK
PCLK
EP446
PARALLEL
DATA INPUT
SYNC
SOUT SERIAL DATA
CLK RESET
MC10EP446, MC100EP446
http://onsemi.com
17
0
100
200
300
400
500
600
700
800
0 500 1000 1500 2000 2500 3000 3500
Figure 15. Typical VOUTPP versus Input Clock Frequency, 255C
INPUT CLOCK FREQUENCY (MHz)
VOUTpp (mV)
CKSEL Low
CKSEL High
Figure 16. SOUT System Jitter Measurement
(Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT
MC10EP446, MC100EP446
http://onsemi.com
18
Figure 17. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D Termination of ECL Logic Devices.)
Driver
Device
Receiver
Device
QD
Q D
Zo = 50 W
Zo = 50 W
50 W50 W
VTT
VTT = VCC 2.0 V
ORDERING INFORMATION
Device Package Shipping
MC10EP446FA LQFP32 250 Units / Tray
MC10EP446FAG LQFP32
(PbFree)
250 Units / Tray
MC10EP446FAR2 LQFP32 2000 / Tape & Reel
MC10EP446FAR2G LQFP32
(PbFree)
2000 / Tape & Reel
MC100EP446FA LQFP32 250 Units / Tray
MC100EP446FAG LQFP32
(PbFree)
250 Units / Tray
MC100EP446FAR2 LQFP32 2000 / Tape & Reel
MC100EP446FAR2G LQFP32
(PbFree)
2000 / Tape & Reel
MC10EP446MNG QFN32
(PbFree)
74 Units / Rail
MC100EP446MNG QFN32
(PbFree)
74 Units / Rail
MC10EP446MNR4G QFN32
(PbFree)
1000 / Tape & Reel
MC100EP446MNR4G QFN32
(PbFree)
1000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D ECL Clock Distribution Techniques
AN1406/D Designing with PECL (ECL at +5.0 V)
AN1503/D ECLinPSt I/O SPiCE Modeling Kit
AN1504/D Metastability and the ECLinPS Family
AN1568/D Interfacing Between LVDS and ECL
AN1672/D The ECL Translator Guide
AND8001/D Odd Number Counters Design
AND8002/D Marking and Date Codes
AND8020/D Termination of ECL Logic Devices
AND8066/D Interfacing with ECLinPS
AND8090/D AC Characteristics of ECL Devices
MC10EP446, MC100EP446
http://onsemi.com
19
PACKAGE DIMENSIONS
ÉÉ
ÉÉ
ÉÉ
DETAIL Y
A
S1
VB
1
8
9
17
25
32
AE
AE
P
DETAIL Y BASE
N
J
DF
METAL
SECTION AEAE
G
SEATING
PLANE
R
Q_
WK
X
0.250 (0.010)
GAUGE PLANE
E
C
H
DETAIL AD
DETAIL AD
A1
B1 V1
4X
S
4X
9
T
Z
U
T-U0.20 (0.008) ZAC
T-U0.20 (0.008) ZAB
0.10 (0.004) AC
AC
AB
M_
8X
T, U, Z
T-U
M
0.20 (0.008) ZAC
32 LEAD LQFP
CASE 873A02
ISSUE C
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DATUM PLANE AB IS LOCATED AT
BOTTOM OF LEAD AND IS COINCIDENT
WITH THE LEAD WHERE THE LEAD
EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS T, U, AND Z TO BE
DETERMINED AT DATUM PLANE AB.
5. DIMENSIONS S AND V TO BE
DETERMINED AT SEATING PLANE AC.
6. DIMENSIONS A AND B DO NOT
INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.250
(0.010) PER SIDE. DIMENSIONS A AND
B DO INCLUDE MOLD MISMATCH AND
ARE DETERMINED AT DATUM PLANE
AB.
7. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. DAMBAR
PROTRUSION SHALL NOT CAUSE THE
D DIMENSION TO EXCEED 0.520 (0.020).
8. MINIMUM SOLDER PLATE THICKNESS
SHALL BE 0.0076 (0.0003).
9. EXACT SHAPE OF EACH CORNER
MAY VARY FROM DEPICTION.
DIM
A
MIN MAX MIN MAX
INCHES
7.000 BSC 0.276 BSC
MILLIMETERS
B7.000 BSC 0.276 BSC
C1.400 1.600 0.055 0.063
D0.300 0.450 0.012 0.018
E1.350 1.450 0.053 0.057
F0.300 0.400 0.012 0.016
G0.800 BSC 0.031 BSC
H0.050 0.150 0.002 0.006
J0.090 0.200 0.004 0.008
K0.450 0.750 0.018 0.030
M12 REF 12 REF
N0.090 0.160 0.004 0.006
P0.400 BSC 0.016 BSC
Q1 5 1 5
R0.150 0.250 0.006 0.010
V9.000 BSC 0.354 BSC
V1 4.500 BSC 0.177 BSC
__
___ _
B1 3.500 BSC 0.138 BSC
A1 3.500 BSC 0.138 BSC
S9.000 BSC 0.354 BSC
S1 4.500 BSC 0.177 BSC
W0.200 REF 0.008 REF
X1.000 REF 0.039 REF
MC10EP446, MC100EP446
http://onsemi.com
20
PACKAGE DIMENSIONS
QFN32 5*5*1 0.5 P
CASE 488AM01
ISSUE O
SEATING
32 X
K
0.15 C
(A3)
A
A1
D2
b
1
916 17
32
2 X
2 X
E2
32 X
8
24
32 X
L
32 X
BOTTOM VIEW
EXPOSED PAD
TOP VIEW
SIDE VIEW
D
A
B
E
0.15 C
ÉÉ
PIN ONE
LOCATION
0.10 C
0.08 C
C
25
e
A0.10 BC
0.05 C
NOTES:
1. DIMENSIONS AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
PLANE
DIM MIN NOM MAX
MILLIMETERS
A0.800 0.900 1.000
A1 0.000 0.025 0.050
A3 0.200 REF
b0.180 0.250 0.300
D5.00 BSC
D2 2.950 3.100 3.250
E5.00 BSC
E2
e0.500 BSC
K0.200 −−− −−−
L0.300 0.400 0.500
2.950 3.100 3.250
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.50 PITCH
3.20
0.28
3.20
32 X
28 X
0.63
32 X
5.30
5.30
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
MC10EP446/D
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca
l
Sales Representative