PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller
Check for Samples: TMS570LS3134
1 TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller
1.1 Features
1
High-Performance Microcontroller for Safety Multiple Communication Interfaces
Critical Applications 10/100 Mbps Ethernet MAC (EMAC)
Dual CPUs running in lockstep IEEE 802.3 compliant (3.3V-I/O only)
ECC on flash and RAM interfaces Supports MII and MDIO
Built-In Self Test for CPU and on-chip RAMs Three CAN Controllers (DCAN)
Error Signaling Module with Error Pin 64 mailboxes with parity protection each
Voltage and Clock Monitoring Compliant to CAN protocol version 2.0B
ARM®Cortex R4F 32-bit RISC CPU Inter-Integrated Circuit (I2C)
Efficient 1.6DMIPS/MHz with 8-stage pipeline Three Multi-buffered Serial Peripheral
Floating-Point Unit with Single/Double Interfaces (MibSPI)
Precision 128 Words with Parity Protection each
12-Region Memory Protection Unit Two Standard Serial Peripheral Interfaces
Open Architecture with 3rd Party Support (SPI)
Operating Conditions Local Interconnect Network Interface (LIN)
Controller
Up to 180MHz System Clock Compliant to LIN protocol version 2.1
Core Supply Voltage (VCC): 1.2V nominal Standard Serial Communication Interface
I/O Supply Voltage (VCCIO): 3.3V nominal (SCI)
Integrated Memory Two High-End Timer Modules (N2HET)
Up to 3MB Program Flash with ECC N2HET1: 32 programmable channels
Up to 256KB RAM with ECC N2HET2: 20 programmable channels
64KB Flash for emulated EEPROM 160 Word Instruction RAM with parity
16- bit External Memory Interface protection each
Common Platform Architecture Each includes Hardware Angle Generator
Consistent memory map across family Dedicated Transfer Unit for each N2HET
Real-Time Interrupt Timer (RTI) OS Timer (HTU)
96-channel Vectored Interrupt Module (VIM) Two 10/12-bit Multi-Buffered ADC Modules
2-channel Cyclic Redundancy Checker (CRC) ADC1: 24 channels
Direct Memory Access (DMA) Controller ADC2: 16 channels
16 Channels and 32 Control Packets 16 shared channels
Parity protection for control packet RAM 64 result buffers with parity protection each
DMA Accesses Protected by Dedicated MPU Packages
Frequency-Modulated Phase-Locked-Loop 144-pin Quad Flatpack (PGE) [Green]
(FMPLL) with Built-In Slip Detector 337-Ball Grid Array (ZWT) [Green]
Separate Non-Modulating PLL
IEEE 1149.1 JTAG, Boundary Scan and ARM
CoreSight Components
JTAG Security Module
Trace and Calibration Capabilities
Embedded Trace Macrocell (ETM-R4)
Data Modification Module (DMM)
RAM Trace Port (RTP)
Parameter Overlay Module (POM)
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCT PREVIEW information concerns products in the formative Copyright ©2011, Texas Instruments Incorporated
or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
1.2 Applications
Braking systems (ABS and ESC)
Electric power steering (EPS)
HEV/EV inverter systems
Battery management systems
Active driver assistance systems
Aerospace and avionics
Railway communications
Off road vehicles
2TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
1.3 Description
The TMS570LSxxx4 is a high performance automotive grade microcontroller family for safety systems.
The safety architecture includes Dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic,
ECC on both the Flash and the data SRAM, parity on peripheral memories, and loop back capability on
peripheral IOs.
The TMS570LSxxx4 integrates the ARM®Cortex-R4F Floating Point CPU which offers an efficient 1.6
DMIPS/MHz, and has configurations which can run up to 180MHz providing up to 288 DMIPS. The device
supports the big-endian [BE32] format.
The TMS570LSxxx4 has up to 3MB integrated Flash and up to 256KB data RAM configurations with
single bit error correction and double bit error detection. The flash memory on this device is a nonvolatile,
electrically erasable and programmable memory implemented with a 64-bit-wide data bus interface. The
flash operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase
operations. When in pipeline mode, the flash operates with a system clock frequency of up to 180MHz.
The SRAM supports single-cycle read/write accesses in byte, halfword, and word modes.
The TMS570LSxxx4 device features peripherals for real-time control-based applications, including two
Next Generation High End Timer (N2HET) timing coprocessors with up to 44 total IO terminals and a
12-bit Analog-to-Digital converter supporting up to 24 inputs.
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer
Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main
memory. A Memory Protection Unit (MPU) is built into the HET-TU.
The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected
buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for
sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are
three separate groupings. Each sequence can be converted once when triggered or configured for
continuous conversion mode.
The device has multiple communication interfaces: three MibSPIs, up to two SPIs, one LIN, one SCI, three
DCANs, one I2C, one Ethernet. The SPI provides a convenient method of serial interaction for high-speed
communications between similar shift-register type devices. The LIN supports the Local Interconnect
standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero
(NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster
communication protocol that efficiently supports distributed real-time control with robust communication
rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and
harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or
multiplexed wiring. The Ethernet module supports MII and MDIO interfaces.
The I2C module is a multi-master communication module providing an interface between the
microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and
400 Kbps speeds.
The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external
frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible
clock source inputs to the global clock module (GCM). The GCM module manages the mapping between
the available clock sources and the device clock domains.
The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous
external clock on the ECLK pin/ball. The ECLK frequency is a user-programmable ratio of the peripheral
interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of
the device operating frequency.
Copyright ©2011, Texas Instruments Incorporated TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller 3
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on
its memory. A Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous
transfers.
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or
external Error pin/ball is triggered when a fault is detected. The nERROR can be monitored externally as
an indicator of a fault condition in the microcontroller.
The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous
memories or other slave devices.
Several interfaces are implemented to enhance the debugging capabilities of application code. In addition
to the built in ARM Cortex-R4F CoreSightdebug features. An External Trace Macrocell (ETM)
provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port
Module (RTP) is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU
or any other master. A Data Modification Module (DMM) gives the ability to write external data into the
device memory. Both the RTP and DMM have no or only minimum impact on the program execution time
of the application code. A Parameter Overlay Module (POM) can re-route Flash accesses to internal
memory or to the EMIF, thus avoiding the re-programming steps necessary for parameter updates in
Flash.
With integrated safety features and a wide choice of communication and control peripherals, the
TMS570LSxxx4 is an ideal solution for high performance real time control applications with safety critical
requirements.
4TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
DMA POM DMM HTU1 HTU2 EMAC
SwitchedCentralResource SwitchedCentralResource
MainCrossBar: ArbitrationandPrioritizationControl
CRC SwitchedCentralResource PeripheralCentralResourceBridge
DualCortex-R4F
CPUsinLockstep
EMACSlaves
SwitchedCentralResource
MibADC1 MibADC2 I2CN2HET1 GION2HET2
64KBFlash
forEEPROM
Emulation
withECC
MDIO
MII
IOMM
PMM
VIM
RTI
DCC1
DCC2
3M
Flash
with
ECC ETM-R4
RTP
64K
64K
64K
64K
RTPCLK
RTPnENA
RTPSYNC
RTPDATA[15:0]
TRACECLKIN
TRACECLK
TRACECTL
ETMDATA[31:0]
DMMCLK
DMMnENA
DMMSYNC
DMMDATA[15:0]
256K
RAM
with
ECC
MDCLK
MDIO
MII_RXD[3:0]
MII_RXER
MII_TXD[3:0]
MII_TXEN
MII_TXCLK
MII_RXCLK
MII_CRS
MII_RXDV
MII_COL
EMIF
EMIF_CLK
EMIF_CKE
EMIF_nCS[4:2]
EMIF_nCS[0]
EMIF_ADDR[21:0]
EMIF_BA[1:0]
EMIF_DATA[15:0]
EMIF_nDQM[1:0]
EMIF_nOE
EMIF_nWE
EMIF_nRAS
EMIF_nCAS
EMIF_nRW
EMIF_nWAIT
VSSAD
VCCAD
I2C_SCL
I2C_SDA
GIOB[7:0]
GIOA[7:0]
N2HET2[18,16]
N2HET2[15:0]
N2HET1[31:0]
VCCAD
VSSAD
ADREFHI
ADREFLO
AD1EVT
AD1IN[7:0]
AD1IN[23:8]
AD2IN[15:0]
AD2EVT
ADREFHI
ADREFLO
#2
#3
#4
# 1
# 2
# 1
alwayson
Core/RAM RAM
Core
# 5
# 3
ColorLegendforPowerDomains
DCAN1
DCAN2
DCAN3
LIN
SCI
SPI4
MibSPI1
CAN1_RX
CAN1_TX
CAN2_RX
CAN2_TX
CAN3_RX
CAN3_TX
MIBSPI1_CLK
MIBSPI1_SIMO[1:0]
MIBSPI1_SOMI[1:0]
MIBSPI1_nCS[5:0]
MIBSPI1_nENA
SPI2
SPI2_CLK
SPI2_SIMO
SPI2_SOMI
SPI2_nCS[1:0]
SPI2_nENA
MibSPI3
MIBSPI3_CLK
MIBSPI3_SIMO
MIBSPI3_SOMI
MIBSPI3_nCS[5:0]
MIBSPI3_nENA
SPI4_CLK
SPI4_SIMO
SPI4_SOMI
SPI4_nCS0
SPI4_nENA
MibSPI5
MIBSPI5_SIMO[3:0]
MIBSPI5_SOMI[3:0]
MIBSPI5_nCS[3:0]
MIBSPI5_nENA
LIN_RX
LIN_TX
SCI_RX
SCI_TX
SYS
nPORRST
nRST
ECLK
ESM nERROR
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
1.4 Functional Block Diagram
Figure 1-1. Functional Block Diagram
Copyright ©2011, Texas Instruments Incorporated TMS570LSxxx4 16/32-Bit RISC Flash Microcontroller 5
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
1 TMS570LSxxx4 16/32-Bit RISC Flash 4.6 Clocks .............................................. 57
Microcontroller .......................................... 14.7 Clock Monitoring .................................... 65
1.1 Features .............................................. 14.8 Glitch Filters ........................................ 67
1.2 Applications .......................................... 24.9 Device Memory Map ................................ 68
4.10 Flash Memory ...................................... 75
1.3 Description ........................................... 34.11 Tightly-Coupled RAM Interface Module ............ 78
1.4 Functional Block Diagram ............................ 54.12 Parity Protection for Accesses to peripheral RAMs
1.1 Device Configuration ................................. 7...................................................... 78
2 Device Package and Terminal Functions ......... 10 4.13 On-Chip SRAM Initialization and Testing ........... 80
2.2 PGE QFP Package Pinout (144-Pin) ............... 10 4.14 External Memory Interface (EMIF) ................. 82
2.3 ZWT BGA Package Ball-Map (337 Ball Grid Array) 4.15 Vectored Interrupt Manager ........................ 89
...................................................... 11 4.16 DMA Controller ..................................... 92
2.4 Terminal Functions ................................. 12 4.17 Real Time Interrupt Module ........................ 94
3 Device Operating Conditions ....................... 40 4.18 Error Signaling Module ............................. 96
3.1 Absolute Maximum Ratings Over Operating 4.19 Reset / Abort / Error Sources ..................... 100
Free-Air Temperature Range, ...................... 40 4.20 Digital Windowed Watchdog ...................... 102
3.2 Device Recommended Operating Conditions ...... 40 4.21 Debug Subsystem ................................. 103
3.3 Switching Characteristics over Recommended 5 Peripheral Information and Electrical
Operating Conditions for Clock Domains ........... 41 Specifications ......................................... 114
3.4 Wait States Required ............................... 41 5.1 Peripheral Legend ................................. 114
3.5 Power Consumption Over Recommended 5.2 Multi-Buffered 12bit Analog-to-Digital Converter
Operating Conditions ............................... 42 ..................................................... 114
3.6 Input/Output Electrical Characteristics Over 5.3 General-Purpose Input/Output .................... 125
Recommended Operating Conditions .............. 43 5.4 Enhanced High-End Timer (N2HET) .............. 126
3.7 Output Buffer Drive Strengths ...................... 43 5.5 Controller Area Network (DCAN) .................. 130
3.8 Input Timings ....................................... 44 5.6 Local Interconnect Network Interface (LIN) ....... 131
3.9 Output Timings ..................................... 45 5.7 Serial Communication Interface (SCI) ............ 132
3.10 Low-EMI Output Buffers ............................ 47 5.8 Inter-Integrated Circuit (I2C) ...................... 133
5.9 Multi-Buffered / Standard Serial Peripheral Interface
4 System Information and Electrical Specifications ..................................................... 136
............................................................. 49 5.10 Ethernet Media Access Controller ................ 148
4.1 Device Power Domains ............................. 49 6 Mechanical Data ...................................... 151
4.2 Voltage Monitor Characteristics .................... 50 6.1 Thermal Data ...................................... 151
4.3 Power Sequencing and Power On Reset .......... 51 6.2 Packaging Information ............................ 151
4.4 Warm Reset (nRST) ................................ 53
4.5 ARM©Cortex-R4FCPU Information ............. 54
6Contents Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
FullPart# TMS 570 LS 31 3 4 A ZWT Q Q1 R
OrderablePart# TMX 570 31 3 4 A ZWT Q Q1 R
Prefix: TM
TMS=FullyQualified
TMP =Prototype
TMX=Samples
Core Technology:
570=CortexR4F
Architecture:
LS=DualCPUsinLockstep
(notincludedinorderablepart#)
FlashMemorySize:
31=3MB
21=2MB
RAMMemorySize:
3=256kB
2=192kB
PeripheralSet:
4=NoFlexRay,noEthernet
DieRevision:
Blank=InitialDie
A =1stDieRevision
Package Type:
ZWT =337BGA Package
PGE=144PinPackage
TemperatureRange:
Q=-40...+125 C
o
QualityDesignator:
Q1= Automotive
ShippingOptions:
R= TapeandReel
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
1.1 Device Configuration
1.1.1 Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
devices and support tools. Each commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g.,TMS570LS3137U). Texas Instruments recommends two of three possible prefix designators for its
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
The figure below illustrates the numbering and symbol nomenclature for the TMS570LSxxx4 .
Figure 1-1. TMS570LSxxx4 Device Numbering Conventions
Copyright ©2011, Texas Instruments Incorporated Contents 7
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
1.1.2 Orderable Part Numbers
Table 1-1. Orderable Part Numbers
Orderable Part # Part # Flash RAM EMAC FlexRay
TMX5702124APGEQQ1 TMS570LS2124 2MB 192kB - -
TMX5702124AZWTQQ1 TMS570LS2124 2MB 192kB - -
TMX5702134APGEQQ1 TMS570LS2134 2MB 256kB - -
TMX5702134AZWTQQ1 TMS570LS2134 2MB 256kB - -
TMS5703134APGEQQ1 TMS570LS3134 3MB 256kB - -
TMX5703134AZWTQQ1 TMS570LS3134 3MB 256kB - -
1.1.3 Device Identification
1.1.3.1 Device Identification Code Register
The device identification code register identifies several aspects of the device including the silicon version.
The details of the device identification code register are shown in Table 1-2. The device identification code
register value for this device is:
Rev 0 = 0x802AAD05
Figure 1-2. Device ID Bit Allocation Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CP-15 UNIQUE ID TECH
R-1 R-00000000010101 R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TECH I/O PERIPH FLASH ECC RAM VERSION 1 0 1
VOLT PARITY ECC
AGE
R-101 R-0 R-1 R-10 R-1 R-00000 R-1 R-0 R-1
LEGEND: R/W = Read/Write; R = Read only; -n= value after reset
8Contents Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 1-2. Device ID Bit Allocation Register Field Descriptions
Bit Field Value Description
31 CP15 Indicates the presence of coprocessor 15
1 CP15 present
30-17 UNIQUE ID 10101 Silicon version (revision) bits.
This bitfield holds a unique number for a dedicated device configuration (die).
16-13 TECH Process technology on which the device is manufactured.
0101 F021
12 I/O VOLTAGE I/O voltage of the device.
0 I/O are 3.3v
11 PERIPHERAL Peripheral Parity
PARITY 1 Parity on peripheral memories
10-9 FLASH ECC Flash ECC
10 Program memory with ECC
8 RAM ECC Indicates if RAM memory ECC is present.
1 ECC implemented
7-3 REVISION Revision of the Device.
2-0 101 The platform family ID is always 0b101
1.1.3.2 Die Identification Registers
The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a
128-bit dieid with the information as shown in Table Table 1-3.
Table 1-3. Die-ID Registers
Item # of Bits Bit Location
X Coord. on Wafer 8 7..0
Y Coord. on Wafer 8 15..8
Wafer # 6 21..16
Lot # 24 45..22
Reserved 82 127..46
Copyright ©2011, Texas Instruments Incorporated Contents 9
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
1108
2
3
4
5
FRAYTXEN2
nTRST 109
144
110
111
112
113
114
115
116
117
118
119
120
121
AD1IN[10]/ AD2IN[10]
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2323
24
25
26
2727
28
29
30
31
32
33
34
35
36
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
FRAYTX2
FRAYRX2
MIBSPI3NCS[3]
MIBSPI3NCS[2]
N2HET1[11]
FLTP1
FLTP2
GIOA[2]
VCCIO
VSS
CAN3RX
CAN3TX
GIOA[5]
N2HET1[22]
GIOA[6]
VCC
OSCIN
Kelvin_GND
OSCOUT
VSS
GIOA[7]
N2HET1[01]
N2HET1[03]
N2HET1[0]
VCCIO
VSS
VSS
VCC
N2HET1[02]
N2HET1[05]
MIBSPI5NCS[0]
N2HET1[07]
TEST
N2HET1[09]
N2HET1[4]
MIBSPI3NCS[1]
N2HET1[06]
N2HET1[13]
MIBSPI1NCS[2]
N2HET1[15]
VCCIO
VSS
VSS
VCC
nPORRST
VSS
VCC
VCC
VSS
MIBSPI3SOMI
MIBSPI3SIMO
MIBSPI3CLK
MIBSPI3NENA
MIBSPI3NCS[0]
VSS
VCC
AD1IN[16]/ AD2IN[0]
AD1IN[17]/ AD2IN[01]
AD1IN[0]
AD1IN[07]
AD1IN[18]/ AD2IN[02]
AD1IN[19]/ AD2IN[03]
AD1IN[20]/ AD2IN[04]
AD1IN[21]/ AD2IN[05]
ADREFHI
ADREFLO
VSSAD
VCCAD
AD1IN[09]/ AD2IN[09]
AD1IN[01]
AD1IN[02]
AD1IN[03]
AD1IN[11]/ AD2IN[11]
AD1IN[04]
AD1IN[12]/ AD2IN[12]
AD1IN[05]
AD1IN[13]/ AD2IN[13]
AD1IN[06]
AD1IN[22]/ AD2IN[06]
AD1IN[14]/ AD2IN[14]
AD1IN[08]/ AD2IN[08]
AD1IN[23]/ AD2IN[07]
AD1IN[15]/ AD2IN[15]
AD1EVT
VCC
VSS
CAN1TX
CAN1RX
N2HET1[24]
N2HET1[26]
MIBSPI1SIMO
MIBSPI1SOMI
MIBSPI1CLK
MIBSPI1NENA
MIBSPI5NENA
MIBSPI5SOMI[0]
MIBSPI5SIMO[0]
MIBSPI5CLK
VCC
VSS
VSS
VCCIO
N2HET1[08]
N2HET1[28]
TMS
TDI
TDO
TCK
RTCK
VCC
VSS
nRST
nERROR
N2HET1[10]
ECLK
VCCIO
VSS
VSS
VCC
N2HET1[12]
N2HET1[14]
FRAYRX1
N2HET1[30]
CAN2TX
CAN2RX
MIBSPI1NCS[1]
LINRX
LINTX
FRAYTX1
VCCP
VSS
VCCIO
VCC
VSS
N2HET1[16]
N2HET1[18]
N2HET1[20]
FRAYTXEN1
VCC
VSS
MIBSPI1NCS[0]
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2 Device Package and Terminal Functions
2.2 PGE QFP Package Pinout (144-Pin)
Figure 2-3. PGE QFP Package Pinout (144-Pin)
Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram.
10 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
VSS
VSS
TMS
N2HET1
[10]
MIBSPI5
NCS[0]
MIBSPI1
SIMO
MIBSPI1
NENA
MIBSPI5
CLK
MIBSPI5
SIMO[0]
N2HET1
[28]
DMM_
DATA[0]
CAN3RX
AD1EVT
AD1IN[15]
/
AD2IN[15]
AD1IN[22]
/
AD2IN[06]
AD1IN
[06]
AD1IN[11]
/
AD2IN[11]
VSSAD
VSSAD
19
VSS
TCK
TDO
nTRST
N2HET1
[08]
MIBSPI1
CLK
MIBSPI1
SOMI
MIBSPI5
NENA
MIBSPI5
SOMI[0]
N2HET1
[0]
DMM_
DATA[1]
CAN3TX
NC
AD1IN[08]
/
AD2IN[08]
AD1IN[14]
/
AD2IN[14]
AD1IN[13]
/
AD2IN[13]
AD1IN
[04]
AD1IN
[02]
VSSAD
18
TDI
RST
EMIF_
ADDR[21]
EMIF_
nWE
MIBSPI5
SOMI[1]
DMM_
CLK
MIBSPI5
SIMO[3]
MIBSPI5
SIMO[2]
N2HET1
[31]
EMIF_
nCS[3]
EMIF_
nCS[2]
EMIF_
nCS[4]
EMIF_
nCS[0]
NC
AD1IN
[05]
AD1IN
[03]
AD1IN[10]
/
AD2IN[10]
AD1IN
[01]
AD1IN[09]
/
AD2IN[09]
17
RTCK
FRAY
TXEN1
EMIF_
ADDR[20]
EMIF_
BA[1]
MIBSPI5
SIMO[1]
DMM_
NENA
MIBSPI5
SOMI[3]
MIBSPI5
SOMI[2]
DMM_
SYNC
NC
NC
NC
NC
NC
AD1IN[23]
/
AD2IN[07]
AD1IN[12]
/
AD2IN[12]
AD1IN[19]
/
AD2IN[03]
ADREFLO
VSSAD
16
FRAY
RX1
FRAY
TX1
EMIF_
ADDR[19]
EMIF_
ADDR[18]
ETM
DATA[06]
ETM
DATA[05]
ETM
DATA[04]
ETM
DATA[03]
ETM
DATA[02]
ETM
DATA[16] /
EMIF_
DATA[0]
ETM
DATA[17] /
EMIF_
DATA[1]
ETM
DATA[18] /
EMIF_
DATA[2]
ETM
DATA[19] /
EMIF_
DATA[3]
NC
NC
AD1IN[21]
/
AD2IN[05]
AD1IN[20]
/
AD2IN[04]
ADREFHI
VCCAD
15
N2HET1
[26]
nERROR
EMIF_
ADDR[17]
EMIF_
ADDR[16]
ETM
DATA[07]
VCCIO
VCCIO
VCCIO
VCC
VCC
VCCIO
VCCIO
VCCIO
VCCIO
NC
NC
AD1IN[18]
/
AD2IN[02]
AD1IN
[07]
AD1IN
[0]
14
N2HET1
[17]
N2HET1
[19]
EMIF_
ADDR[15]
NC
ETM
DATA[12] /
EMIF_BA[0]
VCCIO
VCCIO
ETM
DATA[01]
NC
AD1IN[17]
/
AD2IN[01]
AD1IN[16]
/
AD2IN[0]
NC
13
ECLK
N2HET1
[04]
EMIF_
ADDR[14]
NC
ETM
DATA[13] /
EMIF_nOE
VCCIO
VSS
VSS
VCC
VSS
VSS
VCCIO
ETM
DATA[0]
MIBSPI5
NCS[3]
NC
NC
NC
12
N2HET1
[14]
N2HET1
[30]
EMIF_
ADDR[13]
NC
ETM
DATA[14] /
EMIF_
nDQM[1]
VCCIO
VSS
VSS
VSS
VSS
VSS
VCCPLL
ETME
TRACE
CTL
NC
NC
NC
NC
11
CAN1TX
CAN1RX
EMIF_
ADDR[12]
NC
ETM
DATA[15] /
EMIF_
nDQM[0]
VCC
VCC
VSS
VSS
VSS
VCC
VCC
ETM
TRACE
CLKOUT
NC
NC
MIBSPI3
NCS[0]
GIOB[3]
10
N2HET1
[27]
FRAY
TXEN2
EMIF_
ADDR[11]
NC
ETM
DATA[08] /
EMIF_
ADDR[5]
VCC
VSS
VSS
VSS
VSS
VSS
VCCIO
ETM
TRACE
CLKIN
NC
NC
MIBSPI3
CLK
MIBSPI3
NENA
9
FRAY
RX2
FRAY
TX2
EMIF_
ADDR[10]
NC
ETM
DATA[09] /
EMIF_
ADDR[4]
VCCP
VSS
VSS
VCC
VSS
VSS
VCCIO
ETM
DATA[31] /
EMIF_
DATA[15]
NC
NC
MIBSPI3
SOMI
MIBSPI3
SIMO
8
LINRX
LINTX
EMIF_
ADDR[9]
NC
ETM
DATA[10] /
EMIF_
ADDR[3]
VCCIO
VCCIO
ETM
DATA[30] /
EMIF_
DATA[14]
NC
NC
N2HET1
[09]
nPORRST
7
GIOA[4]
MIBSPI5
NCS[1]
EMIF_
ADDR[8]
NC
ETM
DATA[11] /
EMIF_
ADDR[2]
VCCIO
VCCIO
VCCIO
VCCIO
VCC
VCC
VCCIO
VCCIO
VCCIO
ETM
DATA[29] /
EMIF_
DATA[13]
NC
NC
N2HET1
[05]
MIBSPI5
NCS[2]
6
GIOA[0]
GIOA[5]
EMIF_
ADDR[7]
EMIF_
ADDR[1]
ETM
DATA[20] /
EMIF_
DATA[4]
ETM
DATA[21] /
EMIF_
DATA[5]
ETM
DATA[22] /
EMIF_
DATA[6]
FLTP2
FLTP1
ETM
DATA[23] /
EMIF_
DATA[7]
ETM
DATA[24] /
EMIF_
DATA[8]
ETM
DATA[25] /
EMIF_
DATA[9]
ETM
DATA[26] /
EMIF_
DATA[10]
ETM
DATA[27] /
EMIF_
DATA[11]
ETM
DATA[28] /
EMIF_
DATA[12]
NC
NC
MIBSPI3
NCS[1]
N2HET1
[02]
5
N2HET1
[16]
N2HET1
[12]
EMIF_
ADDR[6]
EMIF_
ADDR[0]
NC
NC
NC
N2HET1
[21]
N2HET1
[23]
NC
NC
NC
NC
NC
EMIF_
nCAS
NC
NC
NC
NC
4
N2HET1
[29]
N2HET1
[22]
MIBSPI3
NCS[3]
SPI2
NENA
N2HET1
[11]
MIBSPI1
NCS[1]
MIBSPI1
NCS[2]
GIOA[6]
MIBSPI1
NCS[3]
EMIF_
CLK
EMIF_
CKE
N2HET1
[25]
SPI2
NCS[0]
EMIF_
nWAIT
EMIF_
nRAS
NC
NC
NC
N2HET1
[06]
3
VSS
MIBSPI3
NCS[2]
GIOA[1]
SPI2
SOMI
SPI2 CLK
GIOB[2]
GIOB[5]
CAN2TX
GIOB[6]
GIOB[1]
KELVIN_
GND
GIOB[0]
N2HET1
[13]
N2HET1
[20]
MIBSPI1
NCS[0]
NC
TEST
N2HET1
[01]
VSS
2
VSS
VSS
GIOA[2]
SPI2
SIMO
GIOA[3]
GIOB[7]
GIOB[4]
CAN2RX
N2HET1
[18]
OSCIN
OSCOUT
GIOA[7]
N2HET1
[15]
N2HET1
[24]
NC
N2HET1
[07]
N2HET1
[03]
VSS
VSS
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.3 ZWT BGA Package Ball-Map (337 Ball Grid Array)
Figure 2-4. ZWT Package Pinout. Top View
Note: Balls can have multiplexed functions. Only the default function is depicted in above diagram, except
for the EMIF signals that are multiplexed with ETM signals.
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 11
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4 Terminal Functions
Section 2.4.1 and Section 2.4.2 identify the external signal names, the associated pin/ball numbers along
with the mechanical package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether
the pin/ball has any internal pullup/pulldown, whether the pin/ball can be configured as a GIO, and a
functional pin/ball description. The first signal name listed is the primary function for that terminal. The
signal name in Bold is the function being described. Refer to the I/O Multiplexing Module (IOMM) User
Guide for information on how to select between different multiplexed functions.
NOTE
All I/O signals except nRST are configured as inputs while nPORRST is low and immediately
after nPORRST goes High.
All output-only signals are configured as inputs while nPORRST is low, and are configured
as outputs immediately after nPORRST goes High.
While nPORRST is low, the input buffers are disabled, and the output buffers are tri-stated.
2.4.1 PGE Package
2.4.1.1 Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
ADREFHI(1) 66 Input - - ADC high reference
supply
ADREFLO(1) 67 Input ADC low reference supply
VCCAD(1) 69 Power Operating supply for ADC
VSSAD(1) 68 Ground
AD1EVT/MII_RX_ER 86 Input Pull Down Programmable, ADC1 event trigger input,
20uA or GIO
MIBSPI3NCS[0]/AD2EVT 55 I/O Pull Up Programmable, ADC2 event trigger input,
20uA or GIO
AD1IN[0] 60 Input - - ADC1 analog input
AD1IN[01] 71
AD1IN[02] 73
AD1IN[03] 74
AD1IN[04] 76
AD1IN[05] 78
AD1IN[06] 80
AD1IN[07] 61
(1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
12 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
AD1IN[08] / AD2IN[08] 83 Input - - ADC1/ADC2 shared
analog inputs
AD1IN[09] / AD2IN[09] 70
AD1IN[10] / AD2IN[10] 72
AD1IN[11] / AD2IN[11] 75
AD1IN[12] / AD2IN[12] 77
AD1IN[13] / AD2IN[13] 79
AD1IN[14] / AD2IN[14] 82
AD1IN[15] / AD2IN[15] 85
AD1IN[16] / AD2IN[0] 58
AD1IN[17] / AD2IN[01] 59
AD1IN[18] / AD2IN[02] 62
AD1IN[19] / AD2IN[03] 63
AD1IN[20] / AD2IN[04] 64
AD1IN[21] / AD2IN[05] 65
AD1IN[22] / AD2IN[06] 81
AD1IN[23] / AD2IN[07] 84
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 13
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.1.2 Enhanced High-End Timer Modules (N2HET)
Table 2-5. PGE Enhanced High-End Timer Modules (N2HET)
Terminal Signal Default Pull Pull Type Description
Type State
Signal Name 144
PGE
N2HET1[0]/SPI4CLK 25 I/O Pull Down Programmable, N2HET1 time input
20uA
N2HET1[01]/SPI4NENA/N2HET2[8] 23 capture or output
compare, or GIO.
N2HET1[02]/SPI4SIMO 30 Each terminal has a
N2HET1[03]/SPI4NCS[0]/N2HET2[10] 24 suppression filter that
N2HET1[04] 36 ignores input pulses
N2HET1[05]/SPI4SOMI/N2HET2[12] 31 smaller than a
programmable duration.
N2HET1[06]/SCIRX 38
N2HET1[07]/N2HET2[14] 33
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ 106
N2HET1[09]/N2HET2[16] 35
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4 118
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] 6
N2HET1[12]/MII_CRS 124
N2HET1[13]/SCITX 39
N2HET1[14] 125
N2HET1[15]/MIBSPI1NCS[4] 41
N2HET1[16] 139
MIBSPI1NCS[1]/N2HET1[17]/MII_COL 130
N2HET1[18] 140
MIBSPI1NCS[2]/N2HET1[19]/MDIO 40
N2HET1[20] 141
N2HET1[22] 15
MIBSPI1NENA/N2HET1[23]/MII_RXD[2] 96
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 91
MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37
N2HET1[26]/MII_RXD[1] 92
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4
N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4 107
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3
N2HET1[30]/MII_RX_DV 127
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54
GIOA[2]/N2HET2[0] 9 I/O Pull Down Programmable, N2HET2 time input
20uA
GIOA[6]/N2HET2[4] 16 capture or output
compare, or GIO
GIOA[7]/N2HET2[6] 22 Each terminal has a
N2HET1[01]/SPI4NENA/N2HET2[8] 23 suppression filter that
N2HET1[03]/SPI4NCS[0]/N2HET2[10] 24 ignores input pulses
N2HET1[05]/SPI4SOMI/N2HET2[12] 31 smaller than a
programmable duration.
N2HET1[07]/N2HET2[14] 33
N2HET1[09]/N2HET2[16] 35
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] 6
14 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.1.3 General-Purpose Input / Output (GIO)
Table 2-6. PGE General-Purpose Input / Output (GIO)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
GIOA[2]/N2HET2[0] 9 I/O Pull Down Programmable, General-purpose I/O.
20uA All GIO terminals are
GIOA[5]/EXTCLKIN 14 capable of generating
GIOA[6]/N2HET2[4] 16 interrupts to the CPU on
rising / falling / both
GIOA[7]/N2HET2[6] 22 edges.
2.4.1.4 Controller Area Network Controllers (DCAN)
Table 2-7. PGE Controller Area Network Controllers (DCAN)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
CAN1RX 90 I/O Pull Up Programmable, CAN1 receive, or GIO
20uA
CAN1TX 89 CAN1 transmit, or GIO
CAN2RX 129 CAN2 receive, or GIO
CAN2TX 128 CAN2 transmit, or GIO
CAN3RX 12 CAN3 receive, or GIO
CAN3TX 13 CAN3 transmit, or GIO
2.4.1.5 Local Interconnect Network Interface Module (LIN)
Table 2-8. PGE Local Interconnect Network Interface Module (LIN)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
LINRX 131 I/O Pull Up Programmable, LIN receive, or GIO
20uA
LINTX 132 LIN transmit, or GIO
2.4.1.6 Standard Serial Communication Interface (SCI)
Table 2-9. PGE Standard Serial Communication Interface (SCI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
N2HET1[06]/SCIRX 38 I/O Pull Down Programmable, SCI receive, or GIO
20uA
N2HET1[13]/SCITX 39 SCI transmit, or GIO
2.4.1.7 Inter-Integrated Circuit Interface Module (I2C)
Table 2-10. PGE Inter-Integrated Circuit Interface Module (I2C)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 I/O Pull Up Programmable, I2C serial data, or GIO
20uA
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 I2C serial clock, or GIO
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 15
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.1.8 Standard Serial Peripheral Interface (SPI)
Table 2-11. PGE Standard Serial Peripheral Interface (SPI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
N2HET1[0]/SPI4CLK 25 I/O Pull Down Programmable, SPI4 clock, or GIO
20uA
N2HET1[03]/SPI4NCS[0]/N2HET2[10] 24 SPI4 chip select, or GIO
N2HET1[01]/SPI4NENA/N2HET2[8] 23 SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO 30 SPI4 slave-input
master-output, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12] 31 SPI4 slave-output
master-input, or GIO
2.4.1.9 Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-12. PGE Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
MIBSPI1CLK 95 I/O Pull Up Programmable, MibSPI1 clock, or GIO
20uA
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2] 105 MibSPI1 chip select, or
GIO
MIBSPI1NCS[1]/N2HET1[17]/MII_COL 130
MIBSPI1NCS[2]/N2HET1[19]/MDIO 40
N2HET1[15]/MIBSPI1NCS[4] 41 Pull Down Programmable, MibSPI1 chip select, or
20uA GIO
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 91
MIBSPI1NENA/N2HET1[23]/MII_RXD[2] 96 Pull Up Programmable, MibSPI1 enable, or GIO
20uA
MIBSPI1SIMO 93 MibSPI1 slave-in
master-out, or GIO
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3] 106 Pull Down Programmable, MibSPI1 slave-in
20uA master-out, or GIO
MIBSPI1SOMI 94 Pull Up Programmable, MibSPI1 slave-out
20uA master-in, or GIO
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2] 105
MIBSPI3CLK 53 I/O Pull Up Programmable, MibSPI3 clock, or GIO
20uA
MIBSPI3NCS[0]/AD2EVT/GIOB[2] 55 MibSPI3 chip select, or
GIO
MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] 6 Pull Up Programmable, MibSPI3 chip select, or
20uA GIO
MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31] 54 Pull Up Programmable, MibSPI3 chip select, or
20uA GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54 MibSPI3 enable, or GIO
MIBSPI3SIMO 52 MibSPI3 slave-in
master-out, or GIO
MIBSPI3SOMI 51 MibSPI3 slave-out
master-in, or GIO
16 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 2-12. PGE Multi-Buffered Serial Peripheral Interface Modules (MibSPI) (continued)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
MIBSPI5CLK/MII_TXEN 100 I/O Pull Up Programmable, MibSPI5 clock, or GIO
20uA
MIBSPI5NCS[0] 32 MibSPI5 chip select, or
GIO
MIBSPI5NENA/MII_RXD[3] 97 MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/MII_TXD[1] 99 MibSPI5 slave-in
master-out, or GIO
MIBSPI5SOMI[0]/MII_TXD[0] 98 MibSPI5 slave-out
master-in, or GIO
2.4.1.10 Ethernet Controller
Table 2-13. PGE Ethernet Controller: MDIO Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 Output Pull Up - Serial clock output
MIBSPI1NCS[2]/N2HET1[19]/MDIO 40 I/O Pull Up Fixed, 20uA Serial data input/output
Table 2-14. PGE Ethernet Controller: Media Independent Interface (MII)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
MIBSPI1NCS[1]/N2HET1[17]/MII_COL 130 Input Pull Up - Collision detect
N2HET1[12]/MII_CRS 124 Pull Down Fixed, 20uA Carrier sense and receive
valid
N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4 107 I/O Pull Down - MII output receive clock
N2HET1[30]/MII_RX_DV 127 Input Pull Down Fixed, 20uA Received data valid
AD1EVT/MII_RX_ER 86 Receive error
N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4 107 I/O Receive clock
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 92 Input Receive data
N2HET1[26]/MII_RXD[1] 92
MIBSPI1NENA/N2HET1[23]/MII_RXD[2] 96 Pull Up Fixed, 20uA
MIBSPI5NENA/MII_RXD[3] 97
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4 118 I/O Pull Down - MII output transmit clock
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4 118 Transmit clock
MIBSPI5SOMI[0]/MII_TXD[0] 98 Output Pull Up - Transmit data
MIBSPI5SIMO[0]/MII_TXD[1] 99
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2] 105
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3] 106 Pull Down -
MIBSPI5CLK/MII_TXEN 100 Pull Up - Transmit enable
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 17
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.1.11 System Module Interface
Table 2-15. PGE System Module Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
nPORRST 46 Input Pull Down 100uA Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
nRST 116 I/O Pull Up 100uA System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
nERROR 117 I/O Pull Down 20uA ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.4.1.12 Clock Inputs and Outputs
Table 2-16. PGE Clock Inputs and Outputs
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
OSCIN 18 Input - - From external
crystal/resonator, or
external clock input
KELVIN_GND 19 Input Kelvin ground for oscillator
OSCOUT 20 Output To external
crystal/resonator
ECLK 119 I/O Pull Down Programmable, External prescaled clock
20uA output, or GIO.
GIOA[5]/EXTCLKIN 14 Input Pull Down 20uA External clock input #1
18 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.1.13 Test and Debug Modules Interface
Table 2-17. PGE Test and Debug Modules Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
TEST 34 I/O Pull Down Fixed, 100uA Test enable
nTRST 109 Input JTAG test hardware reset
RTCK 113 Output - - JTAG return test clock
TCK 112 Input Pull Down Fixed, 100uA JTAG test clock
TDI 110 I/O Pull Up JTAG test data in
TDO 111 I/O Pull Down JTAG test data out
TMS 108 I/O Pull Up JTAG test select
2.4.1.14 Flash Supply and Test Pads
Table 2-18. PGE Flash Supply and Test Pads
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
VCCP 134 Input - - Flash pump supply
FLTP1 7 Flash test pads. These
terminals are reserved for
FLTP2 8TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
2.4.1.15 Supply for Core Logic: 1.2V nominal
Table 2-19. PGE Supply for Core Logic: 1.2V nominal
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
VCC 17 - - - Core supply
VCC 29
VCC 45
VCC 48
VCC 49
VCC 57
VCC 87
VCC 101
VCC 114
VCC 123
VCC 137
VCC 143
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 19
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.1.16 Supply for I/O Cells: 3.3V nominal
Table 2-20. PGE Supply for I/O Cells: 3.3V nominal
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
VCCIO 10 Input - - Operating supply for I/Os
VCCIO 26
VCCIO 42
VCCIO 104
VCCIO 120
VCCIO 136
2.4.1.17 Ground Reference for All Supplies Except VCCAD
Table 2-21. PGE Ground Reference for All Supplies Except VCCAD
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 144
PGE
VSS 11 Input - - Ground reference
VSS 21
VSS 27
VSS 28
VSS 43
VSS 44
VSS 47
VSS 50
VSS 56
VSS 88
VSS 102
VSS 103
VSS 115
VSS 121
VSS 122
VSS 135
VSS 138
20 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2 ZWT Package
2.4.2.1 Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-22. ZWT Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
ADREFHI(1) V15 Input - - ADC high reference
supply
ADREFLO(1) V16 Input ADC low reference supply
VCCAD(1) W15 Power Operating supply for ADC
VSSAD V19 Ground - - ADC supply power
W16
W18
W19
AD1EVT/MII_RX_ER N19 Input Pull Down Programmable, ADC1 event trigger input,
20uA or GIO
MIBSPI3NCS[0]/AD2EVT/GIOB[2] V10 I/O Pull Up Programmable, ADC2 event trigger input,
20uA or GIO
AD1IN[0] W14 Input - - ADC1 analog input
AD1IN[01] V17
AD1IN[02] V18
AD1IN[03] T17
AD1IN[04] U18
AD1IN[05] R17
AD1IN[06] T19
AD1IN[07] V14
AD1IN[08] / AD2IN[08] P18 Input - - ADC1/ADC2 shared
analog inputs
AD1IN[09] / AD2IN[09] W17
AD1IN[10] / AD2IN[10] U17
AD1IN[11] / AD2IN[11] U19
AD1IN[12] / AD2IN[12] T16
AD1IN[13] / AD2IN[13] T18
AD1IN[14] / AD2IN[14] R18
AD1IN[15] / AD2IN[15] P19
AD1IN[16] / AD2IN[0] V13
AD1IN[17] / AD2IN[01] U13
AD1IN[18] / AD2IN[02] U14
AD1IN[19] / AD2IN[03] U16
AD1IN[20] / AD2IN[04] U15
AD1IN[21] / AD2IN[05] T15
AD1IN[22] / AD2IN[06] R19
AD1IN[23] / AD2IN[07] R16
(1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 21
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.2 Enhanced High-End Timer Modules (N2HET)
Table 2-23. ZWT Enhanced High-End Timer Modules (N2HET)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
N2HET1[0]/SPI4CLK K18 I/O Pull Down Programmable, N2HET1 time input
20uA
N2HET1[01]/SPI4NENA/N2HET2[8] V2 capture or output
compare, or GIO.
N2HET1[02]/SPI4SIMO W5 Each terminal has a
N2HET1[03]/SPI4NCS[0]/N2HET2[10] U1 suppression filter that
N2HET1[04] B12 ignores input pulses
N2HET1[05]/SPI4SOMI/N2HET2[12] V6 smaller than a
programmable duration.
N2HET1[06]/SCIRX W3
N2HET1[07]/N2HET2[14] T1
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3] E18
N2HET1[09]/N2HET2[16] V7
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4 D19
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] E3
N2HET1[12]/MII_CRS B4
N2HET1[13]/SCITX N2
N2HET1[14] A11
N2HET1[15]/MIBSPI1NCS[4] N1
N2HET1[16] A4
N2HET1[17] A13
N2HET1[18] J1
N2HET1[19] B13
N2HET1[20] P2
N2HET1[21] H4
N2HET1[22] B3
N2HET1[23] J4
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] P1
N2HET1[25] M3
N2HET1[26]/MII_RXD[1] A14
N2HET1[27] A9
N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4 K19
N2HET1[29] A3
N2HET1[30]/MII_RX_DV B11
N2HET1[31] J17
22 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 2-23. ZWT Enhanced High-End Timer Modules (N2HET) (continued)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
GIOA[2]/N2HET2[0] C1 I/O Pull Down Programmable, N2HET2 time input
20uA
EMIF_ADDR[0]/N2HET2[1] D4 capture or output
compare, or GIO.
GIOA[3]/N2HET2[2] E1 Each terminal has a
EMIF_ADDR[1]/N2HET2[3] D5 suppression filter that
GIOA[6]/N2HET2[4] H3 ignores input pulses
EMIF_BA[1]/N2HET2[5] D16 smaller than a
programmable duration.
GIOA[7]/N2HET2[6] M1
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17
N2HET1[01]/SPI4NENA/N2HET2[8] V2
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17
N2HET1[03]/SPI4NCS[0]/N2HET2[10] U1
EMIF_ADDR[6]/RTP_DATA[13]/NHET2[11] C4
N2HET1[05]/SPI4SOMI/N2HET2[12] V6
EMIF_ADDR[7]/RTP_DATA[12]/NHET2[13] C5
N2HET1[07]/N2HET2[14] T1
EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15] C6
N2HET1[09]/N2HET2[16] V7
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] E3
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 23
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.3 General-Purpose Input / Output (GIO)
Table 2-24. ZWT General-Purpose Input / Output (GIO)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
GIOA[0] A5 I/O Pull Down Programmable, General-purpose I/O.
20uA All GIO terminals are
GIOA[1] C2 capable of generating
GIOA[2]/N2HET2[0] C1 interrupts to the CPU on
rising / falling / both
GIOA[3]/N2HET2[2] E1 edges.
GIOA[4] A6
GIOA[5]/EXTCLKIN B5
GIOA[6]/N2HET2[4] H3
GIOA[7]/N2HET2[6] M1
GIOB[0] M2
GIOB[1] K2
GIOB[2] F2
GIOB[3] W10
GIOB[4] G1
GIOB[5] G2
GIOB[6] J2
GIOB[7] F1
24 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.4 Controller Area Network Controllers (DCAN)
Table 2-25. ZWT Controller Area Network Controllers (DCAN)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
CAN1RX B10 I/O Pull Up Programmable, CAN1 receive, or GIO
20uA
CAN1TX A10 CAN1 transmit, or GIO
CAN2RX H1 CAN2 receive, or GIO
CAN2TX H2 CAN2 transmit, or GIO
CAN3RX M19 CAN3 receive, or GIO
CAN3TX M18 CAN3 transmit, or GIO
2.4.2.5 Local Interconnect Network Interface Module (LIN)
Table 2-26. ZWT Local Interconnect Network Interface Module (LIN)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
LINRX A7 I/O Pull Up Programmable, LIN receive, or GIO
20uA
LINTX B7 LIN transmit, or GIO
2.4.2.6 Standard Serial Communication Interface (SCI)
Table 2-27. ZWT Standard Serial Communication Interface (SCI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
N2HET1[06]/SCIRX W3 I/O Pull Down Programmable, SCI receive, or GIO
20uA
N2HET1[13]/SCITX N2 SCI transmit, or GIO
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 25
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.7 Inter-Integrated Circuit Interface Module (I2C)
Table 2-28. ZWT Inter-Integrated Circuit Interface Module (I2C)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 I/O Pull Up Programmable, I2C serial data, or GIO
20uA
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 I2C serial clock, or GIO
2.4.2.8 Standard Serial Peripheral Interface (SPI)
Table 2-29. ZWT Standard Serial Peripheral Interface (SPI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
SPI2CLK E2 I/O Pull Up Programmable, SPI2 clock, or GIO
20uA
SPI2NCS[0] N3 SPI2 chip select, or GIO
SPI2NENA/SPI2NCS[1] D3 SPI2 chip select, or GIO
SPI2NENA/SPI2NCS[1] D3 SPI2 enable, or GIO
SPI2SIMO D1 SPI2 slave-input
master-output, or GIO
SPI2SOMI D2 SPI2 slave-output
master-input, or GIO
N2HET1[0]/SPI4CLK K18 I/O Pull Down Programmable, SPI4 clock, or GIO
20uA
N2HET1[03]/SPI4NCS[0]/N2HET2[10] U1 SPI4 chip select, or GIO
N2HET1[01]/SPI4NENA/N2HET2[8] V2 SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO W5 SPI4 slave-input
master-output, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12] V6 SPI4 slave-output
master-input, or GIO
26 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.9 Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-30. ZWT Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
MIBSPI1CLK F18 I/O Pull Up Programmable, MibSPI1 clock, or GIO
20uA
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2] R2 MibSPI1 chip select, or
GIO
MIBSPI1NCS[1]/N2HET1[17]/MII_COL F3
MIBSPI1NCS[2]/N2HET1[19]/MDIO G3
MIBSPI1NCS[3]/N2HET1[21] J3
N2HET1[15]/MIBSPI1NCS[4] N1 Pull Down Programmable, MibSPI1 chip select, or
20uA GIO
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] P1
MIBSPI1NENA/N2HET1[23]/MII_RXD[2] G19 Pull Up Programmable, MibSPI1 enable, or GIO
20uA
MIBSPI1SIMO F19 MibSPI1 slave-in
master-out, or GIO
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3] E18 Pull Down Programmable, MibSPI1 slave-in
20uA master-out, or GIO
MIBSPI1SOMI G18 Pull Up Programmable, MibSPI1 slave-out
20uA master-in, or GIO
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2] R2
MIBSPI3CLK V9 I/O Pull Up Programmable, MibSPI3 clock, or GIO
20uA
MIBSPI3NCS[0]/AD2EVT/GIOB[2] V10 MibSPI3 chip select, or
GIO
MIBSPI3NCS[1]/N2HET1[25]/MDCLK V5
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] E3 Pull Up Programmable, MibSPI3 chip select, or
20uA GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 Pull Up Programmable, MibSPI3 chip select, or
20uA GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 MibSPI3 enable, or GIO
MIBSPI3SIMO W8 MibSPI3 slave-in
master-out, or GIO
MIBSPI3SOMI V8 MibSPI3 slave-out
master-in, or GIO
MIBSPI5CLK/DMM_DATA[4]/MII_TXEN H19 I/O Pull Up Programmable, MibSPI5 clock, or GIO
20uA
MIBSPI5NCS[0]/DMM_DATA[5] E19 MibSPI5 chip select, or
GIO
MIBSPI5NCS[1]/DMM_DATA[6] B6
MIBSPI5NCS[2]/DMM_DATA[2] W6
MIBSPI5NCS[3]/DMM_DATA[3] T12
MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3] H18 MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1] J19 MibSPI5 slave-in
master-out, or GIO
MIBSPI5SIMO[1]/DMM_DATA[9] E16
MIBSPI5SIMO[2]/DMM_DATA[10] H17
MIBSPI5SIMO[3]/DMM_DATA[11] G17
MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0] J18
MIBSPI5SOMI[1]/DMM_DATA[13] E17
MIBSPI5SOMI[2]/DMM_DATA[14] H16
MIBSPI5SOMI[3]/DMM_DATA[15] G16
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 27
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.10 Ethernet Controller
Table 2-31. ZWT Ethernet Controller: MDIO Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
MIBSPI3NCS[1]/N2HET1[25]/MDCLK V5 Output Pull Up - Serial clock output
MIBSPI1NCS[2]/N2HET1[19]/MDIO G3 I/O Pull Up Fixed, 20uA Serial data input/output
28 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.11 External Memory Interface (EMIF)
Table 2-32. External Memory Interface (EMIF)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
EMIF_CKE L3 Output Pull Down - EMIF Clock Enablen
EMIF_CLK K3 I/O EMIF clock. This is an
output signal in functional
mode. It is gated off by
default, so that the signal
is tri-stated. PINMUX29[8]
must be cleared to enable
this output.
EMIF_nWE/EMIF_RNW D17 Output Pull Up - EMIF Read-Not-Write
ETMDATA[13]/EMIF_nOE E12 Pull Down - EMIF Read Enable
EMIF_nWAIT P3 I/O Pull Up Fixed, 20uA EMIF Extended Wait
Signal
EMIF_nWE/EMIF_RNW D17 Output Pull Up - EMIF Write Enable.
EMIF_nCAS R4 Output EMIF column address
strobe
EMIF_nRAS R3 Output EMIF row address strobe
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 Output EMIF chip select,
synchronous
EMIF_nCS[2] L17 Output EMIF chip selects,
asynchronous
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 Output This applies to chip
EMIF_nCS[4]/RTP_DATA[07] M17 Output selects 2, 3 and 4
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 29
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 2-32. External Memory Interface (EMIF) (continued)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
ETMDATA[15]/EMIF_nDQM[0] E10 Output Pull Down - EMIF Data Mask or Write
Strobe.
ETMDATA[14]/EMIF_nDQM[1] E11 Output Data mask for SDRAM
devices, write strobe for
connected asynchronous
devices.
ETMDATA[12]/EMIF_BA[0] E13 Output EMIF bank address or
address line
EMIF_BA[1]/N2HET2[5] D16 Output EMIF bank address or
address line
EMIF_ADDR[0]/N2HET2[1] D4 Output EMIF address
EMIF_ADDR[1]/N2HET2[3] D5 Output
ETMDATA[11]/EMIF_ADDR[2] E6 Output
ETMDATA[10]/EMIF_ADDR[3] E7 Output
ETMDATA[09]/EMIF_ADDR[4 E8 Output
ETMDATA[08]/EMIF_ADDR[5] E9 Output
EMIF_ADDR[6]/RTP_DATA[13] C4 Output
EMIF_ADDR[7]/RTP_DATA[12] C5 Output
EMIF_ADDR[8]/RTP_DATA[11] C6 Output
EMIF_ADDR[9]/RTP_DATA[10] C7 Output
EMIF_ADDR[10]/RTP_DATA[09] C8 Output
EMIF_ADDR[11]/RTP_DATA[08] C9 Output
EMIF_ADDR[12]/RTP_DATA[06] C10 Output
EMIF_ADDR[13]/RTP_DATA[05] C11 Output
EMIF_ADDR[14]/RTP_DATA[04] C12 Output
EMIF_ADDR[15]/RTP_DATA[03] C13 Output
EMIF_ADDR[16]/RTP_DATA[02] D14 Output
EMIF_ADDR[17]/RTP_DATA[01] C14 Output Pull Down -
EMIF_ADDR[18]/RTP_DATA[0] D15 Output
EMIF_ADDR[19]/RTP_nENA C15 Output
EMIF_ADDR[20]/RTP_nSYNC C16 Output
EMIF_ADDR[21]/RTP_CLK C17 Output
ETMDATA[16]/EMIF_DATA[0] K15 I/O Pull Down Fixed, 20uA EMIF Data
ETMDATA[17]/EMIF_DATA[1] L15 I/O
ETMDATA[18]/EMIF_DATA[2] M15 I/O
ETMDATA[19]/EMIF_DATA[3] N15 I/O
ETMDATA[20]/EMIF_DATA[4] E5 I/O
ETMDATA[21]/EMIF_DATA[5] F5 I/O
ETMDATA[22]/EMIF_DATA[6] G5 I/O
ETMDATA[23]/EMIF_DATA[7] K5 I/O
ETMDATA[24]/EMIF_DATA[8] L5 I/O
ETMDATA[25]/EMIF_DATA[9] M5 I/O
ETMDATA[26]/EMIF_DATA[10] N5 I/O
ETMDATA[27]/EMIF_DATA[11] P5 I/O
ETMDATA[28]/EMIF_DATA[12] R5 I/O
ETMDATA[29]/EMIF_DATA[13] R6 I/O
ETMDATA[30]/EMIF_DATA[14] R7 I/O
ETMDATA[31]/EMIF_DATA[15] R8 I/O
30 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.12 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)
Table 2-33. Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
ETMTRACECLKIN/EXTCLKIN2 R9 Input Pull Down Fixed, 20uA ETM Trace Clock Input
ETMTRACECLKOUT R10 Output Pull Down - ETM Trace Clock Output
ETMTRACECTL R11 Output Pull Down - ETM trace control
ETMDATA[0] R12 ETM data
ETMDATA[01] R13
ETMDATA[02] J15
ETMDATA[03] H15
ETMDATA[04] G15
ETMDATA[05] F15
ETMDATA[06] E15
ETMDATA[07] E14
ETMDATA[08]/EMIF_ADDR[5] E9
ETMDATA[09]/EMIF_ADDR[4] E8
ETMDATA[10]/EMIF_ADDR[3] E7
ETMDATA[11]/EMIF_ADDR[2] E6
ETMDATA[12]/EMIF_BA[0] E13
ETMDATA[13]/EMIF_nOE E12
ETMDATA[14]/EMIF_nDQM[1] E11
ETMDATA[15]/EMIF_nDQM[0] E10
ETMDATA[16]/EMIF_DATA[0] K15
ETMDATA[17]/EMIF_DATA[1] L15
ETMDATA[18]/EMIF_DATA[2] M15
ETMDATA[19]/EMIF_DATA[3] N15
ETMDATA[20]/EMIF_DATA[4] E5
ETMDATA[21]/EMIF_DATA[5] F5
ETMDATA[22]/EMIF_DATA[6] G5
ETMDATA[23]/EMIF_DATA[7] K5
ETMDATA[24]/EMIF_DATA[8] L5
ETMDATA[25]/EMIF_DATA[9] M5
ETMDATA[26]/EMIF_DATA[10] N5
ETMDATA[27]/EMIF_DATA[11] P5
ETMDATA[28]/EMIF_DATA[12] R5
ETMDATA[29]/EMIF_DATA[13] R6
ETMDATA[30]/EMIF_DATA[14] R7
ETMDATA[31]/EMIF_DATA[15] R8
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 31
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.13 RAM Trace Port (RTP)
Table 2-34. RAM Trace Port (RTP)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
EMIF_ADDR[21]/RTP_CLK C17 I/O Pull Down Programmable, RTP packet clock, or GIO
20uA
EMIF_ADDR[19]/RTP_nENA C15 I/O RTP packet handshake,
or GIO
EMIF_ADDR[20]/RTP_nSYNC C16 I/O RTP synchronization, or
GIO
EMIF_ADDR[18]/RTP_DATA[0] D15 I/O RTP packet data, or GIO
EMIF_ADDR[17]/RTP_DATA[01] C14
EMIF_ADDR[16]/RTP_DATA[02] D14
EMIF_ADDR[15]/RTP_DATA[03] C13
EMIF_ADDR[14]/RTP_DATA[04] C12
EMIF_ADDR[13]/RTP_DATA[05] C11
EMIF_ADDR[12]/RTP_DATA[06] C10
EMIF_nCS[4]/RTP_DATA[07] M17 Pull Up Programmable,
20uA
EMIF_ADDR[11]/RTP_DATA[08] C9 Pull Down Programmable,
20uA
EMIF_ADDR[10]/RTP_DATA[09] C8
EMIF_ADDR[9]/RTP_DATA[10] C7
EMIF_ADDR[8]/RTP_DATA[11] C6
EMIF_ADDR[7]/RTP_DATA[12] C5
EMIF_ADDR[6]/RTP_DATA[13] C4
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 Pull Up Programmable,
20uA
32 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.14 Data Modification Module (DMM)
Table 2-35. Data Modification Module (DMM)
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
DMM_CLK F17 I/O Pull Up Programmable, DMM clock, or GIO
20uA
DMM_nENA F16 DMM handshake, or GIO
DMM_SYNC J16 DMM synchronization, or
GIO
DMM_DATA[0] L19 DMM data, or GIO
DMM_DATA[1] L18
MIBSPI5NCS[2]/DMM_DATA[2] W6
MIBSPI5NCS[3]/DMM_DATA[3] T12
MIBSPI5CLK/DMM_DATA[4]/MII_TXEN H19
MIBSPI5NCS[0]/DMM_DATA[5] E19
MIBSPI5NCS[1]/DMM_DATA[6] B6
MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3] H18
MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1] J19
MIBSPI5SIMO[1]/DMM_DATA[9] E16
MIBSPI5SIMO[2]/DMM_DATA[10] H17
MIBSPI5SIMO[3]/DMM_DATA[11] G17
MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0] J18
MIBSPI5SOMI[1]/DMM_DATA[13] E17
MIBSPI5SOMI[2]/DMM_DATA[14] H16
MIBSPI5SOMI[3]/DMM_DATA[15] G16
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 33
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.15 System Module Interface
Table 2-36. ZWT System Module Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
nPORRST W7 Input Pull Down 100uA Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
nRST B17 I/O Pull Up 100uA System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
nERROR B14 I/O Pull Down 20uA ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.4.2.16 Clock Inputs and Outputs
Table 2-37. ZWT Clock Inputs and Outputs
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
OSCIN K1 Input - - From external
crystal/resonator, or
external clock input
KELVIN_GND L2 Input Kelvin ground for oscillator
OSCOUT L1 Output To external
crystal/resonator
ECLK A12 I/O Pull Down Programmable, External prescaled clock
20uA output, or GIO.
GIOA[5]/EXTCLKIN B5 Input Pull Down 20uA External clock input #1
ETMTRACECLKIN/EXTCLKIN2 R9 Input External clock input #2
VCCPLL P11 Input - Dedicated core supply for
PLL's
34 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.17 Test and Debug Modules Interface
Table 2-38. ZWT Test and Debug Modules Interface
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
TEST U2 I/O Pull Down Fixed, 100uA Test enable
nTRST D18 Input JTAG test hardware reset
RTCK A16 Output - - JTAG return test clock
TCK B18 Input Pull Down Fixed, 100uA JTAG test clock
TDI A17 I/O Pull Up JTAG test data in
TDO C18 I/O Pull Down JTAG test data out
TMS C19 I/O Pull Up JTAG test select
2.4.2.18 Flash Supply and Test Pads
Table 2-39. ZWT Flash Supply and Test Pads
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
VCCP F8 Input - - Flash pump supply
FLTP1 J5 Flash test pads. These
terminals are reserved for
FLTP2 H5 TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 35
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.19 No Connects
Table 2-40. No Connects
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
NC D6 - - - No Connects. These balls
are not connected to any
NC D7 - - - internal logic and can be
NC D8 - - - connected to the PCB
ground without affecting
NC D9 - - - the functionality of the
NC D10 - - - device.
Any other ball marked as
NC D11 - - - "NC" may be internally
NC D12 - - - connected to some
functionality. It is
NC E4 - - - recommended for such
NC F4 - - - balls to be left
unconnected.
NC G4 - - -
NC K4 - - -
NC L4 - - -
NC M4 - - -
NC N4 - - -
NC N18 - - -
NC P4 -
NC P15 - - -
NC P16 - - -
NC P17 - - -
NC R1 - - -
NC R14 - - -
NC R15 - - -
NC T5 - - -
NC T6 - - -
NC T7 - - -
NC T8 - - -
NC T13 - - -
NC T14 - - -
NC V4 - - -
NC W4 - - -
36 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.20 Supply for Core Logic: 1.2V nominal
Table 2-41. ZWT Supply for Core Logic: 1.2V nominal
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
VCC F9 - - - Core supply
VCC F10
VCC H10
VCC J14
VCC K6
VCC -
VCC K8
VCC K12
VCC K14
VCC L6
VCC M10
VCC P10
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 37
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
2.4.2.21 Supply for I/O Cells: 3.3V nominal
Table 2-42. ZWT Supply for I/O Cells: 3.3V nominal
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
VCCIO F6 Input - - Operating supply for I/Os
VCCIO F7
VCCIO F11
VCCIO F12
VCCIO F13
VCCIO F14
VCCIO G6
VCCIO G14
VCCIO H6
VCCIO H14
VCCIO J6
VCCIO L14
VCCIO M6
VCCIO M14
VCCIO N6
VCCIO N14
VCCIO P6
VCCIO P7
VCCIO P8
VCCIO P9
VCCIO P12
VCCIO P13
VCCIO P14
38 Device Package and Terminal Functions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
2.4.2.22 Ground Reference for All Supplies Except VCCAD
Table 2-43. ZWT Ground Reference for All Supplies Except VCCAD
Terminal Signal Default Pull Type Description
Type Pull State
Signal Name 337
ZWT
VSS A1 Input - - Ground reference
VSS A2
VSS A18
VSS A19
VSS B1
VSS B19
VSS H8
VSS H9
VSS H11
VSS H12
VSS J8
VSS J9
VSS J10
VSS J11
VSS J12
VSS K9
VSS K10
VSS K11
VSS L8
VSS L9
VSS L10
VSS L11
VSS L12
VSS M8
VSS M9
VSS M11
VSS M12
VSS V1
VSS W1
VSS W2
Copyright ©2011, Texas Instruments Incorporated Device Package and Terminal Functions 39
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
3 Device Operating Conditions
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range, (1)
VCC(2) -0.3 V to 1.43 V
Supply voltage range: VCCIO, VCCP(2) -0.3 V to 4.1 V
VCCAD -0.3 V to 5.5 V
Input voltage range: All input pins -0.3 V to 4.1 V
IIK (VI<0 or VI>VCCIO)±20 mA
All pins, except AD1IN[23:0] and AD2IN[15:0]
Input clamp current: IIK (VI<0 or VI>VCCAD)±10 mA
AD1IN[23:0] and AD2IN[15:0]
Total ±40 mA
Operating free-air temperature range, TA: -40°C to 105°C
Operating junction temperature range, TJ: -40°C to 125°C
Storage temperature range, Tstg -65°C to 150°C
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated
grounds.
3.2 Device Recommended Operating Conditions(1)
MIN NOM MAX UNIT
VCC Digital logic supply voltage (Core) 1.14 1.2 1.32 V
VCCPLL PLL Supply Voltage 1.14 1.2 1.32 V
VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V
VCCAD MibADC supply voltage 3 3.3 3.6 V
4.5 5.0 5.25
VCCP Flash pump supply voltage 3 3.3 3.6 V
VSS Digital logic supply ground 0 V
VSSAD MibADC supply ground -0.1 0.1 V
VADREFHI A-to-D high-voltage reference source VSSAD VCCAD V
VADREFLO A-to-D low-voltage reference source VSSAD VCCAD V
TAOperating free-air temperature -40 105 °C
TJOperating junction temperature -40 150 °C
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD
40 Device Operating Conditions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
AddressWaitstates
DataWaitstates
RAM
AddressWaitstates
DataWaitstates
Flash
0MHz
0MHz
0MHz
0MHz
90MHz45MHz
0 1 3
0
0
0
135MHz
2
120MHz
1
fHCLK(max)
fHCLK(max)
fHCLK(max)
fHCLK(max)
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
3.3 Switching Characteristics over Recommended Operating Conditions for Clock Domains
Table 3-1. Clock Domain Timing Specifications
Parameter Description Conditions Min Max Unit
fHCLK HCLK - System clock frequency PGE Pipeline mode 160 MHz
enabled
Pipeline mode 45 MHz
disabled
ZWT Pipeline mode 180 MHz
enabled
Pipeline mode 45 MHz
disabled
fGCLK GCLK - CPU clock frequency fHCLK MHz
fVCLK VCLK - Primary peripheral clock 100 MHz
frequency
fVCLK2 VCLK2 - Secondary peripheral clock 100 MHz
frequency
fVCLK3 VCLK3 - Secondary peripheral clock 100 MHz
frequency
fVCLKA1 VCLKA1 - Primary asynchronous 100 MHz
peripheral clock frequency
fVCLKA2 VCLKA2 - Secondary asynchronous 100 MHz
peripheral clock frequency
fVCLKA4 VCLKA4 - Secondary asynchronous 50 MHz
peripheral clock frequency
fRTICLK RTICLK - clock frequency fVCLK MHz
3.4 Wait States Required
Figure 3-1. ZWT Wait States Scheme
As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without
any address or data wait states required.
The TCM flash can support zero address and data wait states up to a CPU speed of 45MHz in non-pipelined
mode. The flash supports a maximum CPU clock speed of 160MHz in pipelined mode for the PGE Package and
180MHz for the ZWT package, with one address wait state and three data wait states.
The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait
state.
Copyright ©2011, Texas Instruments Incorporated Device Operating Conditions 41
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
3.5 Power Consumption Over Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fHCLK = 160MHz for
PGE Package 350 for PGE
fHCLK = 180MHz for Package
VCC digital supply current (operating mode) ZWT Package mA
375 for ZWT
Package
fVCLK = 90MHz,
Flash in pipelined
ICC mode, VCCmax
LBIST clock rate =
VCC Digital supply current (LBIST mode) mA
400
90MHz
Peak PBIST ROM clock TBD
VCC Digital supply current frequency = 90MHz mA
(PBIST mode) RMS 405
ICCPLL VCCPLL digital supply current (operating mode) VCCPLL = VCCPLLmax 10 mA
ICCIO VCCIO Digital supply current (operating mode. No DC load, VCCmax 15 mA
Single ADC 15
operational,
VCCADmax
ICCAD VCCAD supply current (operating mode) mA
Both ADCs 30
operational,
VCCADmax
Single ADC 5
operational,
ADREFHImax
ICCREFHI ADREFHI supply current (operating mode) mA
Both ADCs 10
operational,
ADREFHImax
read operation 34
VCCPmax
program, VCCPmax 37
read from 1 bank 55
ICCP VCCP pump supply current mA
and program
another bank,
VCCPmax
erase, VCCPmax 27
42 Device Operating Conditions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
3.6 Input/Output Electrical Characteristics Over Recommended Operating Conditions(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input hysteresis All inputs (except 180
FRAYRX1, mV
Vhys FRAYRX2)
FRAYRX1, FRAYRX2 100 mV
All inputs(2) (except -0.3 0.8
FRAYRX1, V
VIL Low-level input voltage FRAYRX2)
FRAYRX1, FRAYRX2 0.4 VCCIO V
All inputs(2) (except 2 VCCIO + 0.3
FRAYRX1, V
VIH High-level input voltage FRAYRX2)
FRAYRX1, FRAYRX2 0.6 VCCIO V
IOL = IOLmax 0.2 VCCIO
IOL = 50 µA, standard 0.2
output mode
VOL Low-level output voltage V
IOL = 50 µA, low-EMI 0.2 VCCIO
output mode (see
Section 3.10)
IOH = IOHmax 0.8 VCCIO
IOH = 50 µA, standard VCCIO -0.2
output mode
VOH High-level output voltage V
IOH = 50 µA, low-EMI 0.8 VCCIO
output mode (see
Section 3.10)
VI<VSSIO - 0.3 or VI-2 2
IIC Input clamp current (I/O pins) mA
>VCCIO + 0.3
IIH Pulldown 20µA VI= VCCIO 5 40
IIH Pulldown 100µA VI= VCCIO 40 195
IIInput current (I/O pins) IIL Pullup 20µA VI= VSS -40 -5 µA
IIL Pullup 100µA VI= VSS -195 -40
All other pins No pullup or pulldown -1 1
CIInput capacitance 2 pF
COOutput capacitance 3 pF
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.
(2) This does not apply to the nPORRST pin.
3.7 Output Buffer Drive Strengths
Table 3-2. Output Buffer Drive Strengths
Low-level Output Current,
IOL for VI=VOLmax
or Signals
High-level Output Current,
IOH for VI=VOHmin
FRAYTX2, FRAYTX1, FRAYTXEN1, FRAYTXEN2,
MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3],
MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],
8mA TMS, TDI, TDO, RTCK,
SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,
N2HET2[1], N2HET2[3],
All EMIF Outputs and I/Os, All ETM Outputs
Copyright ©2011, Texas Instruments Incorporated Device Operating Conditions 43
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
VCCIO
VIH VIH
VIL 0
Input
tpw
VIL
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 3-2. Output Buffer Drive Strengths (continued)
Low-level Output Current,
IOL for VI=VOLmax
or Signals
High-level Output Current,
IOH for VI=VOHmin
TEST,
4mA MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,
nRST
AD1EVT,
CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,
DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC,
GIOA[0-7], GIOB[0-7],
LINRX, LINTX,
2mA zero-dominant MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA,
MIBSPI5NCS[0-3], MIBSPI5NENA,
N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7],
N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14],
N2HET2[15], N2HET2[16], N2HET2[18],
SPI2NCS[0], SPI2NENA, SPI4NCS[0], SPI4NENA
ECLK,
selectable 8mA / 2mA SPI2CLK, SPI2SIMO, SPI2SOMI
The default output buffer drive strength is 8mA for these signals.
3.8 Input Timings
Figure 3-2. TTL-Level Inputs
Table 3-3. Timing Requirements for Inputs(1)
Parameter MIN MAX Unit
tpw Input minimum pulse width tc(VCLK) + 10(2) ns
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
(2) The timing shown above is only valid for pin used in GIO mode.
44 Device Operating Conditions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
3.9 Output Timings
Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL)
Parameter MIN MAX Unit
Rise time, tr8mA low EMI pins CL = 15 pF 2.5 ns
(see Table 3-2)CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Fall time, tfCL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Rise time, tr4mA low EMI pins CL = 15 pF 5.6 ns
(see Table 3-2)CL = 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Fall time, tfCL = 15 pF 5.6 ns
CL= 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Rise time, tr2mA-z low EMI pins CL = 15 pF 8 ns
(see Table 3-2)CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tfCL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Rise time, trSelectable 8mA / 2mA-z 8mA mode CL = 15 pF 2 ns
pins CL = 50 pF 4
(see Table 3-2)CL = 100 pF 8
CL = 150 pF 11
Fall time, tfCL = 15 pF 2 ns
CL = 50 pF 4
CL = 100 pF 8
CL = 150 pF 11
Rise time, tr2mA-z mode CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tfCL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Copyright ©2011, Texas Instruments Incorporated Device Operating Conditions 45
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
tf
tr
VCCIO
VOH VOH
VOL VOL 0
Output
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 3-3. CMOS-Level Outputs
Table 3-5. Timing Requirements for Outputs(1)
Parameter MIN MAX UNIT
td(parallel_out) Delay between low to high, or high to low transition of general-purpose output signals 5 ns
that can be configured by an application in parallel, e.g. all signals in a GIOA port, or
all N2HET1 signals, etc.
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check
Table 3-2 for output buffer drive strength information on each signal.
46 Device Operating Conditions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
3.10 Low-EMI Output Buffers
The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of
emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of
the output buffer, and is particularly effective with capacitive loads.
This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the
system module GPCR1 register for the desired module or signal, as shown in . The adaptive impedance
control circuit monitors the DC bias point of the output signal. The buffer internally generates two
reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO,
respectively.
Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then
the output buffers impedance will increase to hi-Z. A high degree of decoupling between the internal
ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing,
e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull
the output voltage above VREFLOW will be opposed by the buffers output impedance so as to maintain
the output voltage at or below VREFLOW.
Conversely, once the output buffer has driven the output to a high level, if the output voltage is above
VREFHIGH then the output buffers impedance will again increase to hi-Z. A high degree of decoupling
between internal power bus ad output pin will occur with capacitive loads or any loads in which no current
is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which
attempt to pull the output voltage below VREFHIGH will be opposed by the buffers output impedance so
as to maintain the output voltage at or above VREFHIGH.
The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance
control mode cannot respond to high-frequency noise coupling into the buffers power buses. In this
manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.
Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will
allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a
negative current load will pull the output voltage down to VSSIO 0.6V without opposition. This is not an
issue since the actual clamp current capability is always greater than the IOH / IOL specifications.
The low-EMI output buffers are automatically configured to be in the standard buffer mode when the
device enters a low-power mode.
Table 3-6. Low-EMI Output Buffer Hookup
Module or Signal Name Control Register to Enable Low-EMI Mode
Module: MibSPI1 GPREG1.0
Module: SPI2 GPREG1.1
Module: MibSPI3 GPREG1.2
Reserved GPREG1.3
Module: MibSPI5 GPREG1.4
Module: FlexRay GPREG1.5
Module: SPI2 GPREG1.6
Module: SPI2 GPREG1.7
Signal: TMS GPREG1.8
Signal: TDI GPREG1.9
Signal: TDO GPREG1.10
Signal: RTCK GPREG1.11
Signal: TEST GPREG1.12
Signal: nERROR GPREG1.13
Reserved GPREG1.14
Module: RTP GPREG1.15
Copyright ©2011, Texas Instruments Incorporated Device Operating Conditions 47
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
48 Device Operating Conditions Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4 System Information and Electrical Specifications
4.1 Device Power Domains
The device core logic is split up into multiple power domains in order to optimize the power for a given
application use case. There are 8 core power domains in total: PD1, PD2, PD3, PD4, PD5, RAM_PD1,
RAM_PD2 and RAM_PD3.
The actual contents of these power domains are indicated in .
PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains
can be turned ON/OFF one time during device initialization as per the application requirement. Refer to
the Power Management Module (PMM) chapter of the device technical reference manual for more details.
NOTE
The clocks to a module must be turned off before powering down the core domain that
contains the module.
NOTE
The logic in the modules that are powered down loses its power completely. Any access to
modules that are powered down results in an abort being generated. When power is
restored, the modules power-up to their default states (after normal power-up). No register or
memory contents are preserved in the core domains that are turned off.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 49
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.2 Voltage Monitor Characteristics
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the
requirement for a specific sequence when powering up the core and I/O voltage supplies.
4.2.1 Important Considerations
The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the
device is held in reset when the voltage supplies are out of range.
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other
supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a
source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and
VCCP supplies.
4.2.2 Voltage Monitor Operation
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device
enters a low power mode.
The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 4.3.3.1 for the timing
information on this glitch filter.
Table 4-1. Voltage Monitoring Specifications
PARAMETER MIN TYP MAX UNIT
VCC low - VCC level below this 0.8 0.9 1.0 V
threshold is detected as too low.
Voltage monitoring VCC high - VCC level above this 1.40 1.7 2.1
VMON thresholds threshold is detected as too high.
VCCIO low - VCCIO level below this 1.9 2.4 2.9
threshold is detected as too low.
4.2.3 Supply Filtering
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the
maximum specification cannot be filtered.
Table 4-2. VMON Supply Glitch Filtering Capability
Parameter MIN MAX
Width of glitch on VCC that can be filtered 250ns 1us
Width of glitch on VCCIO that can be filtered 250ns 1us
50 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.3 Power Sequencing and Power On Reset
4.3.1 Power-Up Sequence
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The
power-up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see
Table 4-4 for more details), core voltage rising above the minimum core supply threshold and the release
of power-on reset. The high frequency oscillator will start up first and its amplitude will grow to an
acceptable level. The oscillator start up time is dependent on the type of oscillator and is provided by the
oscillator vendor. The different supplies to the device can be powered up in any order.
The device goes through the following sequential phases during power up.
Table 4-3. Power-Up Phases
Oscillator start-up and validity check 1032 oscillator cycles
eFuse autoload 1180 oscillator cycles
Flash pump power-up 688 oscillator cycles
Flash bank power-up 617 oscillator cycles
Total 3517 oscillator cycles
The CPU reset is released at the end of the above sequence and fetches the first instruction from address
0x00000000.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 51
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
3.3 V VCCIOPORH
1.2 V VCCPORH
VCCIOPORL
V (1.2 V)
V / V (3.3 V)
CC
CCIO CCP
nPORRST
8
66
7
7
93
VCCPORL
VIL(PORRST)
V / V
CCIO CCP
VCC
VCCPORL
VIL(PORRST)
VIL VIL VIL
VCCIOPORH
VCCPORH
VCCIOPORL
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.3.2 Power-Down Sequence
The different supplies to the device can be powered down in any order.
4.3.3 Power-On Reset: nPORRST
This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core
supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an
internal pulldown.
4.3.3.1 nPORRST Electrical and Timing Requirements
Table 4-4. Electrical Requirements for nPORRST
NO Parameter MIN MAX Unit
VCCPORL VCC low supply level when nPORRST must be active during 0.5 V
power-up
VCCPORH VCC high supply level when nPORRST must remain active during 1.14 V
power-up and become active during power down
VCCIOPORL VCCIO / VCCP low supply level when nPORRST must be active during 1.1 V
power-up
VCCIOPORH VCCIO / VCCP high supply level when nPORRST must remain active 3.0 V
during power-up and become active during power down
VIL(PORRST) Low-level input voltage of nPORRST VCCIO >2.5V 0.2 * VCCIO V
Low-level input voltage of nPORRST VCCIO <2.5V 0.5 V
3 tsu(PORRST) Setup time, nPORRST active before VCCIO and VCCP >VCCIOPORL 0 ms
during power-up
6 th(PORRST) Hold time, nPORRST active after VCC >VCCPORH 1 ms
7 tsu(PORRST) Setup time, nPORRST active before VCC <VCCPORH during power 2 µs
down
8 th(PORRST) Hold time, nPORRST active after VCCIO and VCCP >VCCIOPORH 1 ms
9 th(PORRST) Hold time, nPORRST active after VCC <VCCPORL 0 ms
tf(nPORRST) 500 2000 ns
Filter time nPORRST pin;
pulses less than MIN will be filtered out, pulses greater than MAX
will generate a reset.
Figure 4-1. nPORRST Timing Diagram
52 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.4 Warm Reset (nRST)
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.
This terminal has a glitch filter. It also has an internal pullup
4.4.1 Causes of Warm Reset
Table 4-5. Causes of Warm Reset
DEVICE EVENT SYSTEM STATUS FLAG
Power-Up Reset Exception Status Register, bit 15
Oscillator fail Global Status Register, bit 0
PLL slip Global Status Register, bits 8 and 9
Watchdog exception / Debugger reset Exception Status Register, bit 13
CPU Reset (driven by the CPU STC) Exception Status Register, bit 5
Software Reset Exception Status Register, bit 4
External Reset Exception Status Register, bit 3
4.4.2 nRST Timing Requirements
Table 4-6. nRST Timing Requirements(1)
PARAMETER MIN MAX UNIT
tv(RST) Valid time, nRST active after 1180 tc(OSC) + 1048tc(OSC) ns
nPORRST inactive
Valid time, nRST active (all other 8tc(VCLK)
System reset conditions)
tf(nRST) 500 2000 ns
Filter time nRST pin;
pulses less than MIN will be
filtered out, pulses greater than
MAX will generate a reset
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load
capacitance table.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 53
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
North Flip West
F
F
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.5 ARM©Cortex-R4FCPU Information
4.5.1 Summary of ARM Cortex-R4FCPU Features
The features of the ARM Cortex-R4FCPU include:
An integer unit with integral EmbeddedICE-RT logic.
High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)
for Level two (L2) master and slave interfaces.
Floating Point Coprocessor
Dynamic branch prediction with a global history buffer, and a 4-entry return stack
Low interrupt latency.
Non-maskable interrupt.
A Harvard Level one (L1) memory system with:
Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking
memories
ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions
Dual core logic for fault detection in safety-critical applications.
An L2 memory interface:
Single 64-bit master AXI interface
64-bit slave AXI interface to TCM RAM blocks
A debug interface to a CoreSight Debug Access Port (DAP).
A trace interface to a CoreSight ETM-R4.
A Performance Monitoring Unit (PMU).
A Vectored Interrupt Controller (VIC) port.
For more information on the ARM Cortex-R4FCPU please see www.arm.com.
4.5.2 ARM Cortex-R4FCPU Features Enabled by Software
The following CPU features are disabled on reset and must be enabled by the application if required.
ECC On Tightly-Coupled Memory (TCM) Accesses
Harware Vectored Interrupt (VIC) Port
Floating Point Coprocessor
Memory Protection Unit (MPU)
4.5.3 Dual Core Implementation
The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the
CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2
clock cycles as shown in Figure 4-3.
The CPUs have a diverse CPU placement given by following requirements:
different orientation; e.g. CPU1 = "north" orientation, CPU2 = "flip west" orientation
dedicated guard ring for each CPU
Figure 4-2. Dual - CPU Orientation
54 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
CPU 1 CPU 2
2cycledelay
2cycledelay
CCM-R4
CCM-R4
compare
CPU1CLK
CPU2CLK
compare
error
Input+Control
Output+Control
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.5.4 Duplicate clock tree after GCLK
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU
running at the same frequency and in phase to the clock of CPU1. See Figure 4-3.
4.5.5 ARM Cortex-R4FCPU Compare Module (CCM) for Safety
This device has two ARM Cortex-R4FCPU cores, where the output signals of both CPUs are compared
in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed
in a different way as shown in the figure below.
Figure 4-3. Dual Core Implementation
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of
both CPUs before the registers are used, including function calls where the register values are pushed
onto the stack.
4.5.6 CPU Self-Test
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the
Deterministic Logic BIST Controller as the test engine.
The main features of the self-test controller are:
Ability to divide the complete test run into independent test intervals
Capable of running the complete test as well as running few intervals at a time
Ability to continue from the last executed interval (test set) as well as ability to restart from the
beginning (First test set)
Complete isolation of the self-tested CPU core from rest of the system during the self-test run
Ability to capture the Failure interval number
Timeout counter for the CPU self-test run as a fail-safe feature
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 55
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.5.6.1 Application Sequence for CPU Self-Test
1. Configure clock domain frequencies.
2. Select number of test intervals to be run.
3. Configure the timeout period for the self-test run.
4. Enable self-test.
5. Wait for CPU reset.
6. In the reset handler, read CPU self-test status to identify any failures.
7. Retrieve CPU state if required.
For more information see the TMS570LS31X/21X Technical Reference Manual (SPNU499).
4.5.6.2 CPU Self-Test Clock Configuration
The maximum clock rate for the self-test is 90MHz. The STCCLK is divided down from the CPU clock.
This divider is configured by the STCCLKDIV register at address 0xFFFFE108.
For more information see the TMS570LS31X/21X Technical Reference Manual (SPNU499).
4.5.6.3 CPU Self-Test Coverage
Table 4-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.
Table 4-7. CPU Self-Test Coverage
INTERVALS TEST COVERAGE, % TEST CYCLES
000
1 62.13 1365
2 70.09 2730
3 74.49 4095
4 77.28 5460
5 79.28 6825
6 80.90 8190
7 82.02 9555
8 83.10 10920
9 84.08 12285
10 84.87 13650
11 85.59 15015
12 86.11 16380
13 86.67 17745
14 87.16 19110
15 87.61 20475
16 87.98 21840
17 88.38 23205
18 88.69 24570
19 88.98 25935
20 89.28 27300
21 89.50 28665
22 89.76 30030
23 90.01 31395
24 90.21 32760
56 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
OSCIN OSCOUT
C1
(see Note A)
C2
Crystal
(a)
OSCIN OSCOUT
(b)
External
(toggling 0-3.3V)
Clock Signal
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.
Kelvin_GND
Note B: Kelvin_GND should not be connected to any other GND.
(see Note B)
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.6 Clocks
4.6.1 Clock Sources
The table below lists the available clock sources on the device. Each of the clock sources can be enabled
or disabled using the CSDISx registers in the system module. The clock source number in the table
corresponds to the control bit in the CSDISx register for that clock source.
The table also shows the default state of each clock source.
Table 4-8. Available Clock Sources
Clock Name Description Default State
Source #
0 OSCIN Main Oscillator Enabled
1 PLL1 Output From PLL1 Disabled
2 Reserved Reserved Disabled
3 EXTCLKIN1 External Clock Input #1 Disabled
4 CLK80K Low Frequency Output of Internal Reference Oscillator Enabled
High Frequency Output of Internal Reference
5 CLK10M Enabled
Oscillator
6 PLL2 Output From PLL2 Disabled
7 EXTCLKIN2 External Clock Input #2 Disabled
4.6.1.1 Main Oscillator
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors
across the external OSCIN and OSCOUT pins as shown in Figure 4-4. The oscillator is a single stage
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test
measurement and low power modes.
TI strongly encourages each customer to submit samples of the device to the resonator/crystal
vendors for validation. The vendors are equipped to determine what load capacitors will best tune
their resonator/crystal to the microcontroller device for optimum start-up and operation over
temperature/voltage extremes.
An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving
the OSCOUT pin unconnected (open) as shown in the figure below.
Figure 4-4. Recommended Crystal/Clock Connection
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 57
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.6.1.1.1 Timing Requirements for Main Oscillator
Table 4-9. Timing Requirements for Main Oscillator
Parameter MIN Type MAX Unit
tc(OSC) Cycle time, OSCIN (when using a sine-wave input) 50 200 ns
tc(OSC_SQR) Cycle time, OSCIN, (when input to the OSCIN is a 12.5 200 ns
square wave )
tw(OSCIL) Pulse duration, OSCIN low (when input to the OSCIN 6 ns
is a square wave)
tw(OSCIH) Pulse duration, OSCIN high (when input to the OSCIN 6 ns
is a square wave)
58 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
BIAS_EN
Low
Power
Oscillator
LFEN
LF_TRIM
HFEN
HF_TRIM
CLK80K
CLK10M
CLK10M_VALID
nPORRST
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.6.1.2 Low Power Oscillator
The Low Power Oscillator (LPO) is comprised of two oscillators HF LPO and LF LPO, in a single
macro.
4.6.1.2.1 Features
The main features of the LPO are:
Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #
4 of the Global Clock Module.
Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5
of the Global Clock Module.
Provides a comparison clock for the crystal oscillator failure detection circuit.
Figure 4-5. LPO Block Diagram
Figure 4-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO)
and provides two clock sources: one nominally 80KHz and one nominally 10MHz.
4.6.1.2.2 LPO Electrical and Timing Specifications
Table 4-10. LPO Specifications
Parameter MIN Type MAX Unit
LPO - HF oscillator untrimmed frequency 5.5 9.6 19.5 MHz
startup time from STANDBY (LPO BIAS_EN High for 10 µs
at least 900µs)
cold startup time 900 µs
LPO - LF oscillator untrimmed frequency 36 85 180 kHz
startup time from STANDBY (LPO BIAS_EN High for 100 µs
at least 900µs)
cold startup time 2000 µs
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 59
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
/NR
/1 to /64
OSCIN
PLL
INTCLK /OD
/1 to /8
VCOCLK /R
/1 to /32
post_ODCLK
/NF
/1 to /256
PLLCLK
/NR2
/1 to /64
OSCIN
PLL#2
INTCLK2 /OD2
/1 to /8
VCOCLK2 /R2
/1 to /32
post_ODCLK2
/NF2
/1 to /256
PLL2CLK
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)
fPLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2)
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.6.1.3 Phase Locked Loop (PLL) Clock Modules
The PLL is used to multiply the input frequency to some higher frequency.
The main features of the PLL are:
Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The
frequency modulation capability of PLL2 is permanently disabled.
Configurable frequency multipliers and dividers.
Built-in PLL Slip monitoring circuit.
Option to reset the device on a PLL slip detection.
4.6.1.3.1 Block Diagram
Figure 4-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and
PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the
multiplier and dividers for PLL2.
Figure 4-6. ZWT PLLx Block Diagram
4.6.1.3.2 PLL Timing Specifications
Table 4-11. PLL Timing Specifications
PARAMETER MIN MAX UNIT
fINTCLK PLL1 Reference Clock frequency 1 f(OSC_SQR) MHz
fpost_ODCLK Post-ODCLK PLL1 Post-divider input 400 MHz
clock frequency
fVCOCLK VCOCLK PLL1 Output Divider (OD) input 550 MHz
clock frequency
fINTCLK2 PLL2 Reference Clock frequency 1 f(OSC_SQR) MHz
fpost_ODCLK2 Post-ODCLK PLL2 Post-divider input 400 MHz
clock frequency
fVCOCLK2 VCOCLK PLL2 Output Divider (OD) input 550 MHz
clock frequency
60 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.6.1.4 External Clock Inputs
The device supports up to two external clock inputs. This clock input must be a square wave input. The
electrical and timing requirements for these clock inputs are specified below.
Table 4-12. External Clock Timing and Electrical Specifications
Parameter Description Min Max Unit
fEXTCLKx External clock input frequency 80 MHz
tw(EXTCLKIN)H EXTCLK high-pulse duration 6 ns
tw(EXTCLKIN)L EXTCLK low-pulse duration 6 ns
viL(EXTCLKIN) Low-level input voltage -0.3 0.8 V
viH(EXTCLKIN) High-level input voltage 2 VCCIO + 0.3 V
4.6.2 Clock Domains
4.6.2.1 Clock Domain Descriptions
The table below lists the device clock domains and their default clock sources. The table also shows the
system module control register that is used to select an available clock source for each clock domain.
Table 4-13. Clock Domain Descriptions
Clock Domain Name Default Clock Clock Source Description
Source Selection Register
HCLK OSCIN GHVSRC Is disabled via the CDDISx registers bit 1
Used for all system modules including DMA, ESM
GCLK OSCIN GHVSRC Always the same frequency as HCLK
In phase with HCLK
Is disabled separately from HCLK via the CDDISx registers bit 0
Can be divided by 1up to 8 when running CPU self-test (LBIST)
using the CLKDIV field of the STCCLKDIV register at address
0xFFFFE108
GCLK2 OSCIN GHVSRC Always the same frequency as GCLK
2 cycles delayed from GCLK
Is disabled along with GCLK
Gets divided by the same divider setting as that for GCLK when
running CPU self-test (LBIST)
VCLK OSCIN GHVSRC Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 2
VCLK2 OSCIN GHVSRC Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Frequency must be an integer multiple of VCLK frequency
Is disabled separately from HCLK via the CDDISx registers bit 3
VCLK3 OSCIN GHVSRC Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 8
VCLKA1 VCLK VCLKASRC Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 4
VCLKA2 VCLK VCLKASRC Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 5
VCLKA3_S VCLK VCLKACON Defaults to VCLK as the source
Frequency can be as fast as HCLK frequency.
Is disabled via the CDDISx registers bit 10
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 61
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-13. Clock Domain Descriptions (continued)
Clock Domain Name Default Clock Clock Source Description
Source Selection Register
VCLKA3_DIVR VCLK VCLKACON1 Divided down from the AVCLK3_S using the VCLKA3R field of
the VCLKACON1 register at address 0xFFFFE140
Frequency can be VCLKA3_S/1, VCLKA3_S/2, ..., or
VCLKA3_S/8
Default frequency is VCLKA3_S/2
Is disabled separately via the VCLKACON1 register
VCLKA3_DIV_CDDIS bit only if the VCLKA3_S clock is not
disabled
VCLKA4 VCLK VCLKACON1 Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 11
RTICLK VCLK RCLKSRC Defaults to VCLK as the source
If a clock source other than VCLK is selected for RTICLK, then
the RTICLK frequency must be less than or equal to VCLK/3
Application can ensure this by programming the RTI1DIV
field of the RCLKSRC register, if necessary
Is disabled via the CDDISx registers bit 6
62 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
HCLK (toSYSTEM)
GCLK,GCLK2 (toCPU)
GCM
VCLK_peri (VCLK to peripherals onPCR1)
VCLK2(toNHETx andHTUx)
VCLKA1(to D CANx)
0
/1..16
/1..16
RTICLK (toRTI,DWWD)
/1,2,4,or8
VCLK
OSCIN
LowPower
Oscillator 10MHz
80kHz
FMzPLL
1
0
4
5
/1..64 X1..256 /1..8 /1..32
6
PLL #2
*
VCLK
/1,2,..1024
Phase_seg2
CANBaudRate
Phase_seg1
VCLKA1
/1,2,..256
SPIx,MibSPIx
/2,3..224
LIN,SCI
SPI LIN /SCI
/1,2..32
MibADCx
ADCLK
/1,2..65536
ExternalClock
ECLK
VCLK2
NHETx
HRP
/1..64
LRP
/20..25
Loop
ResolutionClock
High
BaudRate BaudRate
NHETx
VCLK2
TU
Ethernet
VCLKA4
(SSPLL)
(SSPLL)
/1..64 X1..256 /1..8 /1..32 *
1
4
5
6
VCLK
VCLKA4(toEthernet,asalternate
EXTCLKIN1
EXTCLKIN2
3
7
3
7
0
1
4
5
6
VCLK
3
7
0
1
4
5
6
3
7
VCLK3
EMIF
VCLK3(toEMIF,andEthernet)
/1..16
VCLK_sys (VCLK to systemmodules)
*thefrequencyatthisnodemustnot
exceedthemaximumHCLKspecifiation.
/1,2..256
I2C
I2Cbaud
rate
for MIITXCLKand/or MIIRXCLK)
VCLKA2(toFlexRay)
0
1
4
5
6
VCLK
3
7
/1,2,..4
VCLKA2
GTUC1,2
NTU[1]
NTU[0]
NTU[2]
NTU[3]
RTI
Macro Tick
Start ofcycle
PLL#2output
EXTCLKIN1
VCLKA2
Prop_seg
DCANx
FlexRay
Baud
Rate
FlexRay
TU
FlexRay
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.6.2.2 Mapping of Clock Domains to Device Modules
Each clock domain has a dedicated functionality as shown in the figures below.
Figure 4-7. Device Clock Domains
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 63
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.6.3 Clock Test Mode
The TMS570 platform architecture defines a special mode that allows various clock signals to be brought
out on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is
very useful for debugging purposes and can be configured via the CLKTEST register in the system
module.
Table 4-14. Clock Test Mode Options
SEL_ECP_PIN SEL_GIO_PIN
= SIGNAL ON ECLK = SIGNAL ON N2HET1[12]
CLKTEST[3-0] CLKTEST[11-8]
0000 Oscillator 0000 Oscillator Valid Status
0001 Main PLL free-running clock output 0001 Main PLL Valid status
0010 Reserved 0010 Reserved
0011 EXTCLKIN1 0011 Reserved
0100 CLK80K 0100 Reserved
0101 CLK10M 0101 CLK10M Valid status
0110 Secondary PLL free-running clock output 0110 Secondary PLL Valid Status
0111 EXTCLKIN2 0111 Reserved
1000 GCLK 1000 CLK80K
1001 RTI Base 1001 Reserved
1010 Reserved 1010 Reserved
1011 VCLKA1 1011 Reserved
1100 VCLKA2 1100 Reserved
1101 Reserved 1101 Reserved
1110 VCLKA4 1110 Reserved
1111 Reserved 1111 Reserved
64 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
f[MHz]
1.375 4.875 22 78
guaranteed fail lower
threshold guaranteed pass upper
threshold guaranteed fail
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.7 Clock Monitoring
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low
power oscillator (LPO).
The LPO provides two different clock sources a low frequency (CLK80K) and a high frequency
(CLK10M).
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the CLK10M clock (limp
mode clock).
The valid OSCIN frequency range is defined as: fCLK10M / 4 <fOSCIN <fCLK10M * 4.
4.7.1 Clock Monitor Timings
Table 4-15. LPO and Clock Detection
Parameter MIN Type MAX Unit
Clock Detection oscillator fail frequency - lower threshold, using 1.375 2.4 4.875 MHz
untrimmed LPO output
oscillator fail frequency - higher threshold, using 22 38.4 78 MHz
untrimmed LPO output
LPO - HF oscillator untrimmed frequency 5.5 9.6 19.5 MHz
startup time from STANDBY (LPO BIAS_EN High for 10 µs
at least 900ms)
cold startup time 900 µs
ICC, CLK10M and CLK80K active 150 µA
LPO - LF oscillator untrimmed frequency 36 85 180 kHz
startup time from STANDBY (LPO BIAS_EN High for 100 µs
at least 900ms)
cold startup time 2000 µs
ICC, only CLK80K active 27 µA
LPO total ICC STANDBY current 20 µA
Figure 4-8. LPO and Clock Detection, Untrimmed CLK10M
4.7.2 External Clock (ECLK) Output Functionality
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.
This output can be externally monitored as a safety diagnostic.
4.7.3 Dual Clock Comparators
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of
spec, an error signal is generated. For example, the DCC1 can be configured to use CLK10M as the
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration
allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 65
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
An additional use of this module is to measure the frequency of a selectable clock source, using the input
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1
does not reach 0 within the counting window generated by counter 0.
4.7.3.1 Features
Takes two different clock sources as input to two independent counter blocks.
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock
under test."
Each counter block is programmable with initial, or seed values.
The counter blocks start counting down from their seed values at the same time; a mismatch from the
expected frequency for the clock under test generates an error signal which is used to interrupt the
CPU.
4.7.3.2 Mapping of DCC Clock Source Inputs
Table 4-16. DCC1 Counter 0 Clock Sources
CLOCK SOURCE [3:0] CLOCK NAME
others oscillator (OSCIN)
0x5 high frequency LPO
0xA test clock (TCK)
Table 4-17. DCC1 Counter 1 Clock Sources
KEY [3:0] CLOCK SOURCE [3:0] CLOCK NAME
others - N2HET1[31]
0x0 Main PLL free-running clock output
0x1 PLL #2 free-running clock output
0x2 low frequency LPO
0xA 0x3 high frequency LPO
0x4 flash HD pump oscillator
0x5 EXTCLKIN1
0x6 EXTCLKIN2
0x7 ring oscillator
0x8 - 0xF VCLK
Table 4-18. DCC2 Counter 0 Clock Sources
CLOCK SOURCE [3:0] CLOCK NAME
others oscillator (OSCIN)
0xA test clock (TCK)
Table 4-19. DCC2 Counter 1 Clock Sources
KEY [3:0] CLOCK SOURCE [3:0] CLOCK NAME
others - N2HET2[0]
0xA 00x0 - 0x7 Reserved
0x8 - 0xF VCLK
66 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.8 Glitch Filters
A glitch filter is present on the following signals.
Table 4-20. Glitch Filter Timing Specifications
Pin Parameter MIN MAX Unit
nPORRST tf(nPORRST) 500 2000 ns
Filter time nPORRST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset(1)
nRST tf(nRST) 500 2000 ns
Filter time nRST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset
TEST tf(TEST) 500 2000 ns
Filter time TEST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will pass through
(1) The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,
I/O pins, etc.) without also generating a valid reset signal to the CPU.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 67
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
Flash(3MB)
RAM(256KB)
0x00000000
0x002FFFFF
0x08000000
0x0803FFFF
CRC
0xFE000000
Peripherals -Frame1
0xFF000000
SYSTEMModules
0xFFFFFFFF
0xF07FFFFF
RAM-ECC
0x08400000
0x0843FFFF
RESERVED
RESERVED
RESERVED
0xF0000000
Flash(3MB)(MirroredImage)
0x20000000
0x202FFFFF
RESERVED
RESERVED
Peripherals -Frame2
0xFC000000
0xFFF80000
RESERVED
FlashModuleBus2Interface
(FlashECC,OTP andEEPROMaccesses)
0xFCFFFFFF
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.9 Device Memory Map
4.9.1 Memory Map Diagram
The figure below shows the device memory map.
Figure 4-9. Memory Map
The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash
image is 0x2000 0000.
68 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.9.2 Memory Map Table
Please refer to and for a block diagrams showing the devices interconnect.
Table 4-21. Device Memory Map
FRAME ADDRESS RANGE RESPNSE FOR ACCESS TO
FRAME CHIP FRAME ACTUA
MODULE NAME UNIMPLEMENTED LOCATIONS IN
SELECT SIZE L SIZE
START END FRAME
Memories tightly coupled to the ARM Cortex-R4F CPU
TCM Flash CS0 0x0000_0000 0x00FF_FFFF 16MB 3MB
TCM RAM + RAM CSRAM0 0x0800_0000 0x0BFF_FFFF 64MB 256KB
ECC Abort
Flash mirror
Mirrored Flash 0x2000_0000 0x20FF_FFFF 16MB 3MB
frame
External Memory Accesses
EMIF Chip Select EMIF select 2 0x6000_0000 0x63FF_FFFF 64MB 16MB
2 (asynchronous)
EMIF Chip Select EMIF select 3 0x6400_0000 0x67FF_FFFF 64MB 16MB
3 (asynchronous) Access to "Reserved" space will
generate Abort
EMIF Chip Select EMIF select 4 0x6800_0000 0x6BFF_FFFF 64MB 16MB
4 (asynchronous)
EMIF Chip Select EMIF select 0 0x8000_0000 0x87FF_FFFF 128MB 128MB
0 (synchronous)
Flash Module Bus2 Interface
Customer OTP, 0xF000_0000 0xF000_FFFF 64KB 16KB
TCM Flash Banks
Customer OTP, 0xF000_E000 0xF000_FFFF 8KB 4KB
EEPROM Bank
Customer
OTPECC, TCM 0xF004_0000 0xF004_1FFF 8KB 2KB
Flash Banks
Customer
OTPECC, 0xF004_1C00 0xF004_1FFF 1KB 1KB
EEPROM Bank
TI OTP, TCM 0xF008_0000 0xF008_FFFF 64KB 16KB
Flash Banks Abort
TI OTP, EEPROM 0xF008_E000 0xF008_FFFF 8KB 4KB
Bank
TI OTPECC, 0xF00C_0000 0xF00C_1FFF 8KB 2KB
TCM Flash Banks
TI OTPECC, 0xF00C_1C00 0xF00C_1FFF 1KB 1KB
EEPROM Bank
EEPROM 0xF010_0000 0xF013_FFFF 256KB 8KB
BankECC
EEPROM Bank 0xF020_0000 0xF03F_FFFF 2MB 64KB
Flash Data Space 0xF040_0000 0xF04F_FFFF 1MB 384KB
ECC
Ethernet and EMIF slave interfaces
CPPI Memory
Slave (Ethernet 0xFC52_0000 0xFC52_1FFF 8KB 8KB Abort
RAM)
CPGMAC Slave 0xFCF7_8000 0xFCF7_87FF 2KB 2KB No error
(Ethernet Slave)
CPGMACSS
Wrapper 0xFCF7_8800 0xFCF7_88FF 256B 256B No error
(Ethernet
Wrapper)
EMIF Registers 0xFCFF_E800 0xFCFF_E8FF 256B 256B Abort
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 69
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-21. Device Memory Map (continued)
FRAME ADDRESS RANGE RESPNSE FOR ACCESS TO
FRAME CHIP FRAME ACTUA
MODULE NAME UNIMPLEMENTED LOCATIONS IN
SELECT SIZE L SIZE
START END FRAME
Cyclic Redundancy Checker (CRC) Module Registers
CRC CRC frame 0xFE00_0000 0xFEFF_FFFF 16MB 512B Accesses above 0x200 generate abort.
Peripheral Memories
MIBSPI5 RAM PCS[5] 0xFF0A_0000 0xFF0B_FFFF 128KB 2KB Abort for accesses above 2KB
MIBSPI3 RAM PCS[6] 0xFF0C_0000 0xFF0D_FFFF 128KB 2KB Abort for accesses above 2KB
MIBSPI1 RAM PCS[7] 0xFF0E_0000 0xFF0F_FFFF 128KB 2KB Abort for accesses above 2KB
Wrap around for accesses to
unimplemented address offsets lower
DCAN3 RAM PCS[13] 0xFF1A_0000 0xFF1B_FFFF 128KB 2KB than 0x7FF. Abort generated for
accesses beyond offset 0x800.
Wrap around for accesses to
unimplemented address offsets lower
DCAN2 RAM PCS[14] 0xFF1C_0000 0xFF1D_FFFF 128KB 2KB than 0x7FF. Abort generated for
accesses beyond offset 0x800.
Wrap around for accesses to
unimplemented address offsets lower
DCAN1 RAM PCS[15] 0xFF1E_0000 0xFF1F_FFFF 128KB 2KB than 0x7FF. Abort generated for
accesses beyond offset 0x800.
Wrap around for accesses to
unimplemented address offsets lower
MIBADC2 RAM PCS[29] 0xFF3A_0000 0xFF3B_FFFF 128KB 8KB than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
Wrap around for accesses to
unimplemented address offsets lower
MIBADC1 RAM PCS[31] 0xFF3E_0000 0xFF3F_FFFF 128KB 8KB than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
Wrap around for accesses to
unimplemented address offsets lower
N2HET2 RAM PCS[34] 0xFF44_0000 0xFF45_FFFF 128KB 16KB than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
Wrap around for accesses to
unimplemented address offsets lower
N2HET1 RAM PCS[35] 0xFF46_0000 0xFF47_FFFF 128KB 16KB than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
N2HET2 TU2 PCS[38] 0xFF4C_0000 0xFF4D_FFFF 128KB 1KB Abort
RAM
N2HET1 TU1 PCS[39] 0xFF4E_0000 0xFF4F_FFFF 128KB 1KB Abort
RAM
Debug Components
CoreSight Debug Reads return zeros, writes have no
CSCS0 0xFFA0_0000 0xFFA0_0FFF 4KB 4KB
ROM effect
Cortex-R4F Reads return zeros, writes have no
CSCS1 0xFFA0_1000 0xFFA0_1FFF 4KB 4KB
Debug effect
Reads return zeros, writes have no
ETM-R4 CSCS2 0xFFA0_2000 0xFFA0_2FFF 4KB 4KB effect
Reads return zeros, writes have no
CoreSight TPIU CSCS3 0xFFA0_3000 0xFFA0_3FFF 4KB 4KB effect
POM CSCS4 0xFFA0_4000 0xFFA0_4FFF 4KB 4KB Abort
Peripheral Control Registers
Reads return zeros, writes have no
HTU1 PS[22] 0xFFF7_A400 0xFFF7_A4FF 256B 256B effect
Reads return zeros, writes have no
HTU2 PS[22] 0xFFF7_A500 0xFFF7_A5FF 256B 256B effect
Reads return zeros, writes have no
N2HET1 PS[17] 0xFFF7_B800 0xFFF7_B8FF 256B 256B effect
70 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-21. Device Memory Map (continued)
FRAME ADDRESS RANGE RESPNSE FOR ACCESS TO
FRAME CHIP FRAME ACTUA
MODULE NAME UNIMPLEMENTED LOCATIONS IN
SELECT SIZE L SIZE
START END FRAME
Reads return zeros, writes have no
N2HET2 PS[17] 0xFFF7_B900 0xFFF7_B9FF 256B 256B effect
Reads return zeros, writes have no
GIO PS[16] 0xFFF7_BC00 0xFFF7_BCFF 256B 256B effect
Reads return zeros, writes have no
MIBADC1 PS[15] 0xFFF7_C000 0xFFF7_C1FF 512B 512B effect
Reads return zeros, writes have no
MIBADC2 PS[15] 0xFFF7_C200 0xFFF7_C3FF 512B 512B effect
Reads return zeros, writes have no
I2C PS[10] 0xFFF7_D400 0xFFF7_D4FF 256B 256B effect
Reads return zeros, writes have no
DCAN1 PS[8] 0xFFF7_DC00 0xFFF7_DDFF 512B 512B effect
Reads return zeros, writes have no
DCAN2 PS[8] 0xFFF7_DE00 0xFFF7_DFFF 512B 512B effect
Reads return zeros, writes have no
DCAN3 PS[7] 0xFFF7_E000 0xFFF7_E1FF 512B 512B effect
Reads return zeros, writes have no
LIN PS[6] 0xFFF7_E400 0xFFF7_E4FF 256B 256B effect
Reads return zeros, writes have no
SCI PS[6] 0xFFF7_E500 0xFFF7_E5FF 256B 256B effect
Reads return zeros, writes have no
MibSPI1 PS[2] 0xFFF7_F400 0xFFF7_F5FF 512B 512B effect
Reads return zeros, writes have no
SPI2 PS[2] 0xFFF7_F600 0xFFF7_F7FF 512B 512B effect
Reads return zeros, writes have no
MibSPI3 PS[1] 0xFFF7_F800 0xFFF7_F9FF 512B 512B effect
Reads return zeros, writes have no
SPI4 PS[1] 0xFFF7_FA00 0xFFF7_FBFF 512B 512B effect
Reads return zeros, writes have no
MibSPI5 PS[0] 0xFFF7_FC00 0xFFF7_FDFF 512B 512B effect
System Modules Control Registers and Memories
DMA RAM PPCS0 0xFFF8_0000 0xFFF8_0FFF 4KB 4KB Abort
Wrap around for accesses to
unimplemented address offsets lower
VIM RAM PPCS2 0xFFF8_2000 0xFFF8_2FFF 4KB 1KB than 0x3FF. Abort generated for
accesses beyond 0x3FF.
RTP RAM PPCS3 0xFFF8_3000 0xFFF8_3FFF 4KB 4KB Abort
Flash Module PPCS7 0xFFF8_7000 0xFFF8_7FFF 4KB 4KB Abort
eFuse Controller PPCS12 0xFFF8_C000 0xFFF8_CFFF 4KB 4KB Abort
Power
Management PPSE0 0xFFFF_0000 0xFFFF_01FF 512B 512B Abort
Module (PMM)
Test Controller Reads return zeros, writes have no
PPSE1 0xFFFF_0400 0xFFFF_07FF 1KB 1KB
(FMTM) effect
Reads return zeros, writes have no
PCR registers PPS0 0xFFFF_E000 0xFFFF_E0FF 256B 256B effect
System Module - Reads return zeros, writes have no
Frame 2 (see PPS0 0xFFFF_E100 0xFFFF_E1FF 256B 256B effect
device TRM) Reads return zeros, writes have no
PBIST PPS1 0xFFFF_E400 0xFFFF_E5FF 512B 512B effect
Generates address error interrupt, if
STC PPS1 0xFFFF_E600 0xFFFF_E6FF 256B 256B enabled
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 71
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-21. Device Memory Map (continued)
FRAME ADDRESS RANGE RESPNSE FOR ACCESS TO
FRAME CHIP FRAME ACTUA
MODULE NAME UNIMPLEMENTED LOCATIONS IN
SELECT SIZE L SIZE
START END FRAME
IOMM Reads return zeros, writes have no
Multiplexing PPS2 0xFFFF_EA00 0xFFFF_EBFF 512B 512B effect
Control Module Reads return zeros, writes have no
DCC1 PPS3 0xFFFF_EC00 0xFFFF_ECFF 256B 256B effect
Reads return zeros, writes have no
DMA PPS4 0xFFFF_F000 0xFFFF_F3FF 1KB 1KB effect
Reads return zeros, writes have no
DCC2 PPS5 0xFFFF_F400 0xFFFF_F4FF 256B 256B effect
Reads return zeros, writes have no
ESM PPS5 0xFFFF_F500 0xFFFF_F5FF 256B 256B effect
Reads return zeros, writes have no
CCMR4 PPS5 0xFFFF_F600 0xFFFF_F6FF 256B 256B effect
Reads return zeros, writes have no
DMM PPS5 0xFFFF_F700 0xFFFF_F7FF 256B 256B effect
Reads return zeros, writes have no
RAM ECC even PPS6 0xFFFF_F800 0xFFFF_F8FF 256B 256B effect
Reads return zeros, writes have no
RAM ECC odd PPS6 0xFFFF_F900 0xFFFF_F9FF 256B 256B effect
Reads return zeros, writes have no
RTP PPS6 0xFFFF_FA00 0xFFFF_FAFF 256B 256B effect
Reads return zeros, writes have no
RTI + DWWD PPS7 0xFFFF_FC00 0xFFFF_FCFF 256B 256B effect
Reads return zeros, writes have no
VIM Parity PPS7 0xFFFF_FD00 0xFFFF_FDFF 256B 256B effect
Reads return zeros, writes have no
VIM PPS7 0xFFFF_FE00 0xFFFF_FEFF 256B 256B effect
System Module - Reads return zeros, writes have no
Frame 1 (see PPS7 0xFFFF_FF00 0xFFFF_FFFF 256B 256B effect
device TRM)
72 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.9.3 Master/Slave Access Privileges
The table below lists the access permissions for each bus master on the device. A bus master is a module
that can initiate a read or a write transaction on the device.
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed
in the "MASTERS" column can access that slave module.
Table 4-22. Master / Slave Access Matrix
MASTERS ACCESS MODE SLAVES ON MAIN SCR
Flash Module Non-CPU CRC EMIF, Ethernet, Peripheral
Bus2 Interface: Accesses to Slave Interfaces Control
OTP, ECC, Program Flash Registers, All
EEPROM Bank and CPU Data Peripheral
RAM Memories, And
All System
Module Control
Registers And
Memories
CPU READ User/Privilege Yes Yes Yes Yes Yes
CPU WRITE User/Privilege No Yes Yes Yes Yes
DMA User Yes Yes Yes Yes Yes
POM User Yes Yes Yes Yes Yes
DMM User Yes Yes Yes Yes Yes
DAP Privilege Yes Yes Yes Yes Yes
HTU1 Privilege No Yes Yes Yes Yes
HTU2 Privilege No Yes Yes Yes Yes
EMAC User No Yes No Yes No
4.9.3.1 Special Notes on Accesses to Certain Slaves
Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU
(master id = 1). The other masters can only read from these registers.
A debugger can also write to the PMM registers. The master-id check is disabled in debug mode.
The device contains dedicated logic to generate a bus error response on any access to a module that is in
a power domain that has been turned OFF.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 73
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.9.4 POM Overlay Considerations
The POM overlay can map onto up to 8MB of the internal or external memory space. The starting
address and the size of the memory overlay are configurable via the POM module control registers.
Care must be taken to ensure that the overlay is mapped on to available memory.
ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors
will be generated.
POM overlay must not be enabled when the flash and internal RAM memories are swapped via the
MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1).
When POM is used to overlay the flash on to internal or external RAM, there is a bus contention
possibility when another master accesses the TCM flash. This results in a system hang.
The POM module implements a timeout feature to detect this exact scenario. The timeout needs to
be enabled whenever POM overlay is enabled.
The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global
Control register (POMGLBCTRL, address = 0xFFA04000).
In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO)
flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is
generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a
data fetch.
The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM module
is set. If so, then the application can assume that the timeout is caused by a bus contention
between the POM transaction and another master accessing the same memory region. The abort
handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been
caused due to a timeout from the POM.
74 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.10 Flash Memory
4.10.1 Flash Memory Configuration
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense
amplifiers, and control logic.
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical
construction constraints.
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or
erasing the flash banks.
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.
Table 4-23. Flash Memory Banks and Sectors
Memory Arrays (or Banks)(1) Sector Segment Low Address High Address
No.
BANK0 (1.5MBytes) 0 32K Bytes 0x0000_0000 0x0000_7FFF
1 32K Bytes 0x0000_8000 0x0000_FFFF
2 32K Bytes 0x0001_0000 0x0001_7FFF
3 32K Bytes 0x0001_8000 0x0001_FFFF
4 128K Bytes 0x0002_0000 0x0003_FFFF
5 128K Bytes 0x0004_0000 0x0005_FFFF
6 128K Bytes 0x0006_0000 0x0007_FFFF
7 128K Bytes 0x0008_0000 0x0009_FFFF
8 128K Bytes 0x000A_0000 0x000B_FFFF
9 128K Bytes 0x000C_0000 0x000D_FFFF
10 128K Bytes 0x000E_0000 0x000F_FFFF
11 128K Bytes 0x0010_0000 0x0011_FFFF
12 128K Bytes 0x0012_0000 0x0013_FFFF
13 128K Bytes 0x0014_0000 0x0015_FFFF
14 128K Bytes 0x0016_0000 0x0017_FFFF
BANK1 (1.5MBytes) 0 128K Bytes 0x0018_0000 0x0019_FFFF
1 128K Bytes 0x001A_0000 0x001B_FFFF
2 128K Bytes 0x001C_0000 0x001D_FFFF
3 128K Bytes 0x001E_0000 0x001F_FFFF
4 128K Bytes 0x0020_0000 0x0021_FFFF
5 128K Bytes 0x0022_0000 0x0023_FFFF
6 128K Bytes 0x0024_0000 0x0025_FFFF
7 128K Bytes 0x0026_0000 0x0027_FFFF
8 128K Bytes 0x0028_0000 0x0029_FFFF
9 128K Bytes 0x002A_0000 0x002B_FFFF
10 128K Bytes 0x002C_0000 0x002D_FFFF
11 128K Bytes 0x002E_0000 0x002F_FFFF
BANK7 (64kBytes) for EEPROM emulation(2)(3) 0 16K Bytes 0xF020_0000 0xF020_3FFF
1 16K Bytes 0xF020_4000 0xF020_7FFF
2 16K Bytes 0xF020_8000 0xF020_BFFF
3 16K Bytes 0xF020_C000 0xF020_FFFF
(1) The Flash banks are 144-bit wide bank with ECC support.
(2) The flash bank7 can be programmed while executing code from flash bank0 or bank1.
(3) Code execution is not allowed from flash bank7.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 75
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.10.2 Main Features of Flash Module
Support for multiple flash banks for program and/or data storage
Simultaneous read access on a bank while performing program or erase operation on any other bank
Integrated state machines to automate flash erase and program operations
Software interface for flash program and erase operations
Pipelined mode operation to improve instruction access interface bandwidth
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU
Error address is captured for host system debugging
Support for a rich set of diagnostic features
4.10.3 ECC Protection for Flash Accesses
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on
the 64 bits received and compares it with the ECC code returned by the flash module. A signle-bit error is
corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error
via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the
"X" bit of the Performance Monitor Control Register, c9.
MRC p15,#0,r1,c9,c12,#0 ;Enabling Event monitor states
ORR r1, r1, #0x00000010
MCR p15,#0,r1,c9,c12,#0 ;Set 4th bit (‘X’) of PMNC register
MRC p15,#0,r1,c9,c12,#0
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN
bits of the System Control coprocessor's Auxiliary Control Register, c1.
MRC p15, #0, r1, c1, c0, #1
ORR r1, r1, #0x0e000000 ;Enable ECC checking for ATCM and BTCMs
DMB
MCR p15, #0, r1, c1, c0, #1
4.10.4 Flash Access Speeds
For information on flash memory access speeds and the relevant wait states required, refer to Section 3.4.
76 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.10.5 Flash Program and Erase Timings
Table 4-24. Timing Specifications for Flash
Parameter MIN NOM MAX Unit
tprog (144bit) Wide Word (144bit) programming time 40 tbd µs
tprog (Total) 3MByte programming time(1) -40°C to 125°C tbd s
0°C to 60°C, for first 8 tbd s
25 cycles
tprog (Total) EEPROM Emulation 64kByte programming -40°C to 12°5C tbd ms
time(1) 0°C to 60°C, for first 165 tbd ms
25 cycles
terase (sector) Sector erase time -40°C to 125°C tbd ms
0°C to 60°C, for first 30 tbd ms
25 cycles
terase (bank) Bank erase time(2) Flash Bank 0 300 tbd ms
terase (bank) Bank erase time(2) Flash Bank 1 240 tbd ms
terase (bank) EEPROM Emulation Bank erase time(2) Flash Bank 7 80 tbd ms
twec Write/erase cycles Flash Bank 0 1000 cycles
Flash Bank 1
twec Write/erase cycles Flash Bank 7 100000 cycles
(1) This programming time includes overhead of state machine, but does not include data transfer time.
(2) Nominal conditions for the above specifications mean the first 25 program / erase cycles at an ambient temperature between 0c to 60c
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 77
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
EVEN Address
TCMBUS
ODD Address
TCMBUS
64Bitdatabus
64Bitdatabus
Upper32bits data&
4ECCbits
Lower 32bits data&
4ECCbits
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
Upper32bits data&
4ECCbits
Lower 32bits data&
4ECCbits
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
36Bit
wide
RAM
TCRAM
Interface1
PMT I/FVBUSP I/F
CortexR4F™
B0
TCM
B1
TCM
A
TCM
TCRAM
Interface2
PMT I/FVBUSP I/F
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.11 Tightly-Coupled RAM Interface Module
Figure 4-10 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4FCPU.
Figure 4-10. TCRAM Block Diagram
4.11.1 Features
The features of the Tightly Coupled RAM (TCRAM) Module are:
Acts as slave to the Cortex-R4F CPU's BTCM interface
Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code
Monitors CPU Event Bus and generates single or multi-bit error interrupts
Stores addresses for single and multi-bit errors
Supports RAM trace module
Provides CPU address bus integrity checking by supporting parity checking on the address bus
Performs redundant address decoding for the RAM bank chip select and ECC select generation logic
Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved
RAM banks and generating independent RAM access control signals to the two banks
Supports auto-initialization of the RAM banks along with the ECC bits
No support for bit-wise RAM accesses
4.11.2 TCRAMW ECC Support
The TCRAMW passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also
stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The
TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and
also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC
checking for the RAM accesses must be enabled inside the CPU.
For more information see the TMS570LS31X/21X Technical Reference Manual (SPNU499).
4.12 Parity Protection for Accesses to peripheral RAMs
Accesses to all peripheral RAMs are protected by odd/even parity checking. During a read access the
parity is calculated based on the data read from the peripheral RAM and compared with the good parity
value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates
a parity error signal that is mapped to the Error Signaling Module. The module also captures the
peripheral RAM address that caused the parity error.
78 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the
application. Each individual peripheral contains control registers to enable the parity protection for
accesses to its RAM.
NOTE
The CPU read access gets the actual data from the peripheral. The application can choose
to generate an interrupt whenever a peripheral RAM parity error is detected.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 79
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.13 On-Chip SRAM Initialization and Testing
4.13.1 On-Chip SRAM Self-Test Using PBIST
4.13.1.1 Features
Extensive instruction set to support various memory test algorithms
ROM-based algorithms allow application to run TI production-level memory tests
Independent testing of all on-chip SRAM
4.13.1.2 PBIST RAM Groups
Table 4-25. PBIST RAM Grouping
Test Pattern (Algorithm)
March 13N(1) March 13N(1)
triple read triple read two port single port
Memory RAM Group Test Clock MEM Type slow read fast read (cycles) (cycles)
ALGO MASK ALGO MASK ALGO MASK ALGO MASK
0x1 0x2 0x4 0x8
PBIST_ROM 1 ROM CLK ROM X X
STC_ROM 2 ROM CLK ROM X X
DCAN1 3 VCLK Dual Port 25200
DCAN2 4 VCLK Dual Port 25200
DCAN3 5 VCLK Dual Port 25200
ESRAM1 6 HCLK Single Port 266280
MIBSPI1 7 VCLK Dual Port 33440
MIBSPI3 8 VCLK Dual Port 33440
MIBSPI5 9 VCLK Dual Port 33440
VIM 10 VCLK Dual Port 12560
MIBADC1 11 VCLK Dual Port 4200
DMA 12 HCLK Dual Port 18960
N2HET1 13 VCLK Dual Port 31680
HET TU1 14 VCLK Dual Port 6480
RTP 15 HCLK Dual Port 37800
MIBADC2 18 VCLK Dual Port 4200
N2HET2 19 VCLK Dual Port 31680
HET TU2 20 VCLK Dual Port 6480
ESRAM5 21 HCLK Single Port 266280
ESRAM6 22 HCLK Single Port 266280
23 8700
Dual Port
ETHERNET 24 VCLK3 6360
25 Single Port 133160
ESRAM8 28 HCLK Single Port 266280
(1) There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for
application testing.
The PBIST ROM clock frequency is limited to 90MHz, if 90MHz <HCLK <= HCLKmax, or HCLK, if HCLK
<= 90MHz.
The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV
field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.
80 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.13.2 On-Chip SRAM Auto Initialization
This microcontroller allows some of the on-chip memories to be initialized via the Memory Hardware
Initialization mechanism in the System module. This hardware mechanism allows an application to
program the memory arrays with error detection capability to a known state based on their error detection
scheme (odd/even parity or ECC).
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects
the memories that are to be initialized.
For more information on these registers see the TMS570LS31X/21X Technical Reference Manual
(SPNU499).
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in
Table 4-26.
Table 4-26. Memory Initialization
ADDRESS RANGE
CONNECTING MODULE MSINENA REGISTER BIT #
BASE ADDRESS ENDING ADDRESS
RAM (PD#1) 0x08000000 0x0800FFFF 0(1)
RAM (RAM_PD#1) 0x08010000 0x0801FFFF 0(1)
RAM (RAM_PD#2) 0x08020000 0x0802FFFF 0(1)
RAM (RAM_PD#3) 0x08030000 0x0803FFFF 0(1)
MIBSPI5 RAM 0xFF0A0000 0xFF0BFFFF 12(2)
MIBSPI3 RAM 0xFF0C0000 0xFF0DFFFF 11(2)
MIBSPI1 RAM 0xFF0E0000 0xFF0FFFFF 7(2)
DCAN3 RAM 0xFF1A0000 0xFF1BFFFF 10
DCAN2 RAM 0xFF1C0000 0xFF1DFFFF 6
DCAN1 RAM 0xFF1E0000 0xFF1FFFFF 5
MIBADC2 RAM 0xFF3A0000 0xFF3BFFFF 14
MIBADC1 RAM 0xFF3E0000 0xFF3FFFFF 8
N2HET2 RAM 0xFF440000 0xFF57FFFF 15
N2HET1 RAM 0xFF460000 0xFF47FFFF 3
HET TU2 RAM 0xFF4C0000 0xFF4DFFFF 16
HET TU1 RAM 0xFF4E0000 0xFF4FFFFF 4
DMA RAM 0xFFF80000 0xFFF80FFF 1
VIM RAM 0xFFF82000 0xFFF82FFF 2
RTP RAM 0xFFF83000 0xFFF83FFF n/a
Ethernet RAM (CPPI Memory 0xFC520000 0xFC521FFF n/a
Slave)
(1) The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized.
(2) The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multi-buffered mode is enabled. This is
independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization method.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 81
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
EMIF_nCS[3:2]
EMIF_BA[1:0]
13
12
EMIF_ADDR[21:0]
EMIF_nOE
EMIF_DATA[15:0]
EMIF_nWE
10
5
9
7
4
8
6
3
1
EMIF_nDQM[1:0]
30
29
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.14 External Memory Interface (EMIF)
4.14.1 Features
The EMIF includes many features to enhance the ease and flexibility of connecting to external
asynchronous memories or SDRAM devices. The EMIF features includes support for:
3 addressable chip select for asynchronous memories of up to 16MB each
1 addressable chip select space for SDRAMs up to 128MB
8 or 16-bit data bus width
Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time
Select strobe mode
Extended Wait mode
Data bus parking
4.14.2 Electrical and Timing Specifications
4.14.2.1 Read Timing (Asynchronous RAM)
Figure 4-11. Asynchronous Memory Read Timing
82 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
EMIF_nCS[3:2]
11
Asserted Deasserted
2
2
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
EMIF_nOE
EMIF_WAIT
SETUP Extended Due to EMIF_WAIT STROBE HOLD
14
STROBE
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_nWE
EMIF_DATA[15:0]
EMIF_nOE
15
1
16
18
20
22 24
17
19
21
23
26
27
EMIF_nDQM[1:0]
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 4-12. EMIFnWAIT Read Timing Requirements
4.14.2.2 Write Timing (Asynchronous RAM)
Figure 4-13. Asynchronous Memory Write Timing
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 83
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
EMIF_nCS[3:2]
25
Asserted
2
2
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
EMIF_nWE
EMIF_WAIT
SETUP Extended Due to EMIF_WAIT
28
Deasserted
STROBE STROBE HOLD
EMIF_CLK
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
1
2 2
4
6
8
8
12
14
19
20
3
5
7
7
11
13
17 18
2 EM_CLK Delay
BASIC SDRAM
READ OPERATION
EMIF_nCS[0]
EMIF_nDQM[1:0]
EMIF_nRAS
EMIF_nCAS
EMIF_nWE
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 4-14. EMIFnWAIT Write Timing Requirements
4.14.2.3 Read Timing (Synchronous RAM)
Figure 4-15. Basic SDRAM Read Operation
84 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
EMIF_CLK
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
1
2 2
4
6
8
8
12
10
16
3
5
7
7
11
13
15
9
BASIC SDRAM
WRITE OPERATION
EMIF_CS[0]
EMIF_DQM[1:0]
EMIF_nRAS
EMIF_nCAS
EMIF_nWE
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.14.2.4 Write Timing (Synchronous RAM)
Figure 4-16. Basic SDRAM Write Operation
4.14.2.5 EMIF Asynchronous Memory Timing
Table 4-27. EMIF Asynchronous Memory Timing Requirements
NO. Value Unit
MIN NOM MAX
Reads and Writes
2 tw(EM_WAIT) Pulse duration, EMIFnWAIT 2E ns
assertion and deassertion
Reads
12 tsu(EMDV-EMOEH) Setup time, EMIFDATA[15:0] 3 ns
valid before EMIFnOE high
13 th(EMOEH-EMDIV) Hold time, EMIFDATA[15:0] 0.5 ns
valid after EMIFnOE high
14 tsu(EMOEL-EMWAIT) Setup Time, EMIFnWAIT 4E+3 ns
asserted before end of Strobe
Phase(1)
Writes
28 tsu(EMWEL-EMWAIT) Setup Time, EMIFnWAIT 4E+3 ns
asserted before end of Strobe
Phase(1)
(1) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended
wait states. Figure Figure 4-12 and Figure Figure 4-14 describe EMIF transactions that include extended wait states inserted during the
STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start
of where the HOLD phase would begin if there were no extended wait cycles.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 85
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3)
NO Parameter Value Unit
MIN NOM MAX
Reads and Writes
1 td(TURNAROUND) Turn around time (TA)*E -3 (TA)*E (TA)*E + 3 ns
Reads
3 tc(EMRCYCLE) EMIF read cycle time (EW = 0) (RS+RST+RH)* (RS+RST+RH)* (RS+RST+RH)* ns
E -3 E E + 3
EMIF read cycle time (EW = 1) (RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+( ns
EWC*16))*E -3 EWC*16))*E EWC*16))*E +
3
4 tsu(EMCEL-EMOEL) Output setup time, (RS)*E-3 (RS)*E (RS)*E+3 ns
EMIFnCS[4:2] low to EMIFnOE
low (SS = 0)
Output setup time, -3 0 +3 ns
EMIFnCS[4:2] low to EMIFnOE
low (SS = 1)
5 th(EMOEH-EMCEH) Output hold time, EMIFnOE high (RH)*E -3 (RH)*E (RH)*E + 3 ns
to EMIFnCS[4:2] high (SS = 0)
Output hold time, EMIFnOE high -3 0 +3 ns
to EMIFnCS[4:2] high (SS = 1)
6 tsu(EMBAV-EMOEL) Output setup time, EMIFBA[1:0] (RS)*E-3 (RS)*E (RS)*E+3 ns
valid to EMIFnOE low
7 th(EMOEH-EMBAIV) Output hold time, EMIFnOE high (RH)*E-3 (RH)*E (RH)*E+3 ns
to EMIFBA[1:0] invalid
8 tsu(EMBAV-EMOEL) Output setup time, (RS)*E-3 (RS)*E (RS)*E+3 ns
EMIFADDR[21:0] valid to
EMIFnOE low
9 th(EMOEH-EMAIV) Output hold time, EMIFnOE high (RH)*E-3 (RH)*E (RH)*E+3 ns
to EMIFADDR[21:0] invalid
10 tw(EMOEL) EMIFnOE active low width (EW (RST)*E-3 (RST)*E (RST)*E+3 ns
= 0)
EMIFnOE active low width (EW (RST+(EWC*16 (RST+(EWC*16 (RST+(EWC*16 ns
= 1) )) *E-3 ))*E )) *E+3
11 td(EMWAITH-EMOEH) Delay time from EMIFnWAIT 3E-3 4E 4E+3 ns
deasserted to EMIFnOE high
Writes
15 tc(EMWCYCLE) EMIF write cycle time (EW = 0) (WS+WST+WH (WS+WST+WH (WS+WST+WH ns
)* E-3 )*E )* E+3
EMIF write cycle time (EW = 1) (WS+WST+WH (WS+WST+WH (WS+WST+WH ns
+( EWC*16))*E +(E WC*16))*E +( EWC*16))*E
-3 + 3
16 tsu(EMCEL-EMWEL) Output setup time, (WS)*E -3 (WS)*E (WS)*E + 3 ns
EMIFnCS[4:2] low to EMIFnWE
low (SS = 0)
Output setup time, -3 0 +3 ns
EMIFnCS[4:2] low to EMIFnWE
low (SS = 1)
17 th(EMWEH-EMCEH) Output hold time, EMIFnWE (WH)*E-3 (WH)*E (WH)*E+3 ns
high to EMIFnCS[4:2] high (SS =
0)
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following ranges of values: TA[41], RS[161], RST[641], RH[81], WS[161], WST[641],
WH[81], and MEWC[1256]. See the EMIF Users guide for more information.
(2) E = EMIF_CLK period in ns.
(3) EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[2561]. Note
that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See
the EMIF Users Guide for more information.
86 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)
NO Parameter Value Unit
MIN NOM MAX
Output hold time, EMIFnWE -3 0 +3 ns
high to EMIFCS[4:2] high (SS =
1)
18 tsu(EMDQMV-EMWEL) Output setup time, EMIFBA[1:0] (WS)*E-3 (WS)*E (WS)*E+3 ns
valid to EMIFnWE low
19 th(EMWEH-EMDQMIV) Output hold time, EMIFnWE (WH)*E-3 (WH)*E (WH)*E+3 ns
high to EMIFBA[1:0] invalid
20 tsu(EMBAV-EMWEL) Output setup time, EMIFBA[1:0] (WS)*E-3 (WS)*E (WS)*E+3 ns
valid to EMIFnWE low
21 th(EMWEH-EMBAIV) Output hold time, EMIFnWE (WH)*E-3 (WH)*E (WH)*E+3 ns
high to EMIFBA[1:0] invalid
22 tsu(EMAV-EMWEL) Output setup time, (WS)*E-3 (WS)*E (WS)*E+3 ns
EMIFADDR[21:0] valid to
EMIFnWE low
23 th(EMWEH-EMAIV) Output hold time, EMIFnWE (WH)*E-3 (WH)*E (WH)*E+3 ns
high to EMIFADDR[21:0] invalid
24 tw(EMWEL) EMIFnWE active low width (EW (WST)*E-3 (WST)*E (WST)*E+3 ns
= 0)
EMIFnWE active low width (EW (WST+(EWC*1 (WST+(EWC*1 (WST+(EWC*1 ns
= 1) 6)) *E-3 6))*E 6)) *E+3
25 td(EMWAITH-EMWEH) Delay time from EMIFnWAIT 3E-3 4E 4E+3 ns
deasserted to EMIFnWE high
26 tsu(EMDV-EMWEL) Output setup time, (WS)*E-3 (WS)*E (WS)*E+3 ns
EMIFDATA[15:0] valid to
EMIFnWE low
27 th(EMWEH-EMDIV) Output hold time, EMIFnWE (WH)*E-3 (WH)*E (WH)*E+3 ns
high to EMIFDATA[15:0] invalid
Table 4-29. EMIF Synchronous Memory Timing Requirements
NO. Parameter MIN MAX Unit
19 tsu(EMIFDV-EM_CLKH) Input setup time, read data valid on 1 ns
EMIFDATA[15:0] before EMIF_CLK
rising
20 th(CLKH-DIV) Input hold time, read data valid on 1.5 ns
EMIFDATA[15:0] after EMIF_CLK
rising
Table 4-30. EMIF Synchronous Memory Switching Characteristics
NO. Parameter MIN MAX Unit
1 tc(CLK) Cycle time, EMIF clock EMIF_CLK 15 ns
2 tw(CLK) Pulse width, EMIF clock EMIF_CLK 5 ns
high or low
3 td(CLKH-CSV) Delay time, EMIF_CLK rising to 7 ns
EMIFnCS[0] valid
4 toh(CLKH-CSIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFnCS[0] invalid
5 td(CLKH-DQMV) Delay time, EMIF_CLK rising to 7 ns
EMIFnDQM[1:0] valid
6 toh(CLKH-DQMIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFnDQM[1:0] invalid
7 td(CLKH-AV) Delay time, EMIF_CLK rising to 7 ns
EMIFADDR[21:0] and EMIFBA[1:0]
valid
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 87
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-30. EMIF Synchronous Memory Switching Characteristics (continued)
NO. Parameter MIN MAX Unit
8 toh(CLKH-AIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFADDR[21:0] and EMIFBA[1:0]
invalid
9 td(CLKH-DV) Delay time, EMIF_CLK rising to 7 ns
EMIFDATA[15:0] valid
10 toh(CLKH-DIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFDATA[15:0] invalid
11 td(CLKH-RASV) Delay time, EMIF_CLK rising to 7 ns
EMIFnRAS valid
12 toh(CLKH-RASIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFnRAS invalid
13 td(CLKH-CASV) Delay time, EMIF_CLK rising to 7 ns
EMIFnCAS valid
14 toh(CLKH-CASIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFnCAS invalid
15 td(CLKH-WEV) Delay time, EMIF_CLK rising to 7 ns
EMIFnWE valid
16 toh(CLKH-WEIV) Output hold time, EMIF_CLK rising to 1 ns
EMIFnWE invalid
17 tdis(CLKH-DHZ) Delay time, EMIF_CLK rising to 7 ns
EMIFDATA[15:0] tri-stated
18 tena(CLKH-DLZ) Output hold time, EMIF_CLK rising to 1 ns
EMIFDATA[15:0] driving
88 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.15 Vectored Interrupt Manager
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow
of program execution. Normally, these events require a timely response from the central processing unit
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to
an interrupt service routine (ISR).
4.15.1 VIM Features
The VIM module has the following features:
Supports 96 interrupt channels.
Provides programmable priority and enable for interrupt request lines.
Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.
Provides two software dispatch mechanisms when the CPU VIC port is not used.
Index interrupt
Register vectored interrupt
Parity protected vector interrupt table against soft errors.
4.15.2 Interrupt Request Assignments
Table 4-31. Interrupt Request Assignments
Modules Interrupt Sources Default VIM Interrupt
Channel
ESM ESM High level interrupt (NMI) 0
Reserved Reserved 1
RTI RTI compare interrupt 0 2
RTI RTI compare interrupt 1 3
RTI RTI compare interrupt 2 4
RTI RTI compare interrupt 3 5
RTI RTI overflow interrupt 0 6
RTI RTI overflow interrupt 1 7
RTI RTI timebase interrupt 8
GIO GIO interrupt A 9
N2HET1 N2HET1 level 0 interrupt 10
HET TU1 HET TU1 level 0 interrupt 11
MIBSPI1 MIBSPI1 level 0 interrupt 12
LIN LIN level 0 interrupt 13
MIBADC1 MIBADC1 event group interrupt 14
MIBADC1 MIBADC1 sw group 1 interrupt 15
DCAN1 DCAN1 level 0 interrupt 16
SPI2 SPI2 level 0 interrupt 17
Reserved Reserved 18
CRC CRC Interrupt 19
ESM ESM Low level interrupt 20
SYSTEM Software interrupt (SSI) 21
CPU PMU Interrupt 22
GIO GIO interrupt B 23
N2HET1 N2HET1 level 1 interrupt 24
HET TU1 HET TU1 level 1 interrupt 25
MIBSPI1 MIBSPI1 level 1 interrupt 26
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 89
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-31. Interrupt Request Assignments (continued)
Modules Interrupt Sources Default VIM Interrupt
Channel
LIN LIN level 1 interrupt 27
MIBADC1 MIBADC1 sw group 2 interrupt 28
DCAN1 DCAN1 level 1 interrupt 29
SPI2 SPI2 level 1 interrupt 30
MIBADC1 MIBADC1 magnitude compare interrupt 31
Reserved Reserved 32
DMA FTCA interrupt 33
DMA LFSA interrupt 34
DCAN2 DCAN2 level 0 interrupt 35
DMM DMM level 0 interrupt 36
MIBSPI3 MIBSPI3 level 0 interrupt 37
MIBSPI3 MIBSPI3 level 1 interrupt 38
DMA HBCA interrupt 39
DMA BTCA interrupt 40
EMIF AEMIFINT3 41
DCAN2 DCAN2 level 1 interrupt 42
DMM DMM level 1 interrupt 43
DCAN1 DCAN1 IF3 interrupt 44
DCAN3 DCAN3 level 0 interrupt 45
DCAN2 DCAN2 IF3 interrupt 46
FPU FPU interrupt 47
Reserved Reserved 48
SPI4 SPI4 level 0 interrupt 49
MIBADC2 MibADC2 event group interrupt 50
MIBADC2 MibADC2 sw group1 interrupt 51
Reserved Reserved 52
MIBSPI5 MIBSPI5 level 0 interrupt 53
SPI4 SPI4 level 1 interrupt 54
DCAN3 DCAN3 level 1 interrupt 55
MIBSPI5 MIBSPI5 level 1 interrupt 56
MIBADC2 MibADC2 sw group2 interrupt 57
Reserved Reserved 58
MIBADC2 MibADC2 magnitude compare interrupt 59
DCAN3 DCAN3 IF3 interrupt 60
FMC FSM_DONE interrupt 61
Reserved Reserved 62
N2HET2 N2HET2 level 0 interrupt 63
SCI SCI level 0 interrupt 64
HET TU2 HET TU2 level 0 interrupt 65
I2C I2C level 0 interrupt 66
Reserved Reserved 67-72
N2HET2 N2HET2 level 1 interrupt 73
SCI SCI level 1 interrupt 74
HET TU2 HET TU2 level 1 interrupt 75
Ethernet C0_MISC_PULSE 76
Ethernet C0_TX_PULSE 77
Ethernet C0_THRESH_PULSE 78
90 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-31. Interrupt Request Assignments (continued)
Modules Interrupt Sources Default VIM Interrupt
Channel
Ethernet C0_RX_PULSE 79
HWAG1 HWA_INT_REQ_H 80
HWAG2 HWA_INT_REQ_H 81
DCC1 DCC done interrupt 82
DCC2 DCC2 done interrupt 83
Reserved Reserved 84-87
HWAG1 HWA_INT_REQ_L 88
HWAG2 HWA_INT_REQ_L 89
Reserved Reserved 90-95
NOTE
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR
entry; therefore only request channels 0..94 can be used and are offset by 1 address in the
VIM RAM.
NOTE
The EMIF_nWAIT signal has a pull-up on it. The EMIF module generates a "Wait Rise"
interrupt whenever it detects a rising edge on the EMIF_nWAIT signal. This interrupt
condition is indicated as soon as the device is powered up. This can be ignored if the
EMIF_nWAIT signal is not used in the application. If the EMIF_nWAIT signal is actually used
in the application, then the external slave memory must always drive the EMIF_nWAIT signal
such that an interrupt is not caused due to the default pull-up on this signal.
NOTE
The lower-order interrupt channels are higher priority channels than the higher-order interrupt
channels.
NOTE
The application can change the mapping of interrupt sources to the interrupt channels via the
interrupt channel control registers (CHANCTRLx) inside the VIM module.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 91
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.16 DMA Controller
The DMA controller is used to transfer data between two locations in the memory map in the background
of CPU operations. Typically, the DMA is used to:
Transfer blocks of data between external and internal data memories
Restructure portions of internal data memory
Continually service a peripheral
4.16.1 DMA Features
CPU independent data transfer
One master port - PortB (64 bits wide) that interfaces to the TMS570 Memory System.
FIFO buffer(4 entries deep and each 64bit wide)
Channel control information is stored in RAM protected by parity
16 channels with individual enable
Channel chaining capability
32 peripheral DMA requests
Hardware and Software DMA requests
8, 16, 32 or 64-bit transactions supported
Multiple addressing modes for source/destination (fixed, increment, offset)
Auto-initiation
Power-management mode
Memory Protection with four configurable memory regions
92 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.16.2 Default DMA Request Map
The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The
module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By
default, channel 0 is mapped to request 0, channel 1 to request 1, and so on.
Some DMA requests have multiple sources, as shown in Table 4-32. The application must ensure that
only one of these DMA request sources is enabled at any time.
Table 4-32. DMA Request Line Connection
Modules DMA Request Sources DMA Request
MIBSPI1 MIBSPI1[1](1) DMAREQ[0]
MIBSPI1 MIBSPI1[0](2) DMAREQ[1]
SPI2 SPI2 receive DMAREQ[2]
SPI2 SPI2 transmit DMAREQ[3]
MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3 DMAREQ[4]
MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2 DMAREQ[5]
DCAN1 / MIBSPI5 DCAN1 IF2 / MIBSPI5[2] DMAREQ[6]
MIBADC1 / MIBSPI5 MIBADC1 event / MIBSPI5[3] DMAREQ[7]
MIBSPI1 / MIBSPI3 / DCAN1 MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1 DMAREQ[8]
MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1 DMAREQ[9]
MIBADC1 / I2C / MIBSPI5 MIBADC1 G1 / I2C receive / MIBSPI5[4] DMAREQ[10]
MIBADC1 / I2C / MIBSPI5 MIBADC1 G2 / I2C transmit / MIBSPI5[5] DMAREQ[11]
RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6] DMAREQ[12]
RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7] DMAREQ[13]
MIBSPI3 / MibADC2 / MIBSPI5 MIBSPI3[1](1) / MibADC2 event / MIBSPI5[6] DMAREQ[14]
MIBSPI3 / MIBSPI5 MIBSPI3[0](2) / MIBSPI5[7] DMAREQ[15]
MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2 MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1 DMAREQ[16]
MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2 MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2 DMAREQ[17]
RTI / MIBSPI5 RTI DMAREQ2 / MIBSPI5[8] DMAREQ[18]
RTI / MIBSPI5 RTI DMAREQ3 / MIBSPI5[9] DMAREQ[19]
N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3 DMAREQ[20]
IF2
N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3 DMAREQ[21]
IF3
MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10] DMAREQ[22]
MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11] DMAREQ[23]
N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4 DMAREQ[24]
receive / MIBSPI5[12]
N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4 DMAREQ[25]
transmit / MIBSPI5[13]
CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12] DMAREQ[26]
CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13] DMAREQ[27]
LIN / MIBSPI5 LIN receive / MIBSPI5[14] DMAREQ[28]
LIN / MIBSPI5 LIN transmit / MIBSPI5[15] DMAREQ[29]
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[14] / MIBSPI3[14] / SCI receive / DMAREQ[30]
MIBSPI5[1](1)
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[15] / MIBSPI3[15] / SCI transmit / DMAREQ[31]
MIBSPI5[0](2)
(1) SPI1, SPI3, SPI5 receive in standard SPI mode
(2) SPI1, SPI3, SPI5 transmit in standard SPI mode
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 93
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
310
310
RTICLK
310
310
310
External
control
CAP eventsource0
CAP eventsource1
=
Upcounter
Capture
upcounter
Compare
upcounter
Freerunningcounter
Capture
RTIFRCx
freerunningcounter
RTICAFRCx
OVLINTx
RTICPUCx
RTIUCx
RTICAUCx
ToCompare
Unit
NTU0
NTU1
NTU2
NTU3
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.17 Real Time Interrupt Module
The real-time interrupt (RTI) module provides timer functionality for operating systems and for
benchmarking code. The RTI module can incorporate several counters that define the timebases needed
for scheduling an operating system.
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the
beginning and the end of the desired code range and calculating the difference between the values.
4.17.1 Features
The RTI module has the following features:
Two independent 64 bit counter blocks
Four configurable compares for generating operating system ticks or DMA requests. Each event can
be driven by either counter block 0 or counter block 1.
Fast enabling/disabling of events
Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block
4.17.2 Block Diagrams
Figure 4-17 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI
module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only
available as time base inputs for the counter block 0.
Figure 4-17. Counter Block Diagram
94 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
31 0
Compare
control
INTy
DMAREQy
Compare
Update
compare
From counter
block 0
From counter
block 1
RTIUDCPy
RTICOMPy
31 0
=
+
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 4-18. Compare Block Diagram
4.17.3 Clock Source Options
The RTI module uses the RTI1CLK clock domain for generating the RTI time bases.
The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the
System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK.
For more information on clock sources refer to Table 4-8 and Table 4-13.
4.17.4 Network Time Synchronization Inputs
The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which
can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are
connected as shown below.
Table 4-33. Network Time Synchronization Inputs
NTU Input Source
0 Macrotick
1 Start of Cycle
2 PLL2 Clock output
3 EXTCLKIN1 clock input
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 95
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.18 Error Signaling Module
The Error Signaling Module (ESM) manages the various error conditions on the TMS570 microcontroller.
The error condition is handled based on a fixed severity level assigned to it. Any severe error condition
can be configured to drive a low level on a dedicated device terminal called nERROR. This can be used
as an indicator to an external monitor circuit to put the system into a safe state.
4.18.1 Features
The features of the Error Signaling Module are:
128 interrupt/error channels are supported, divided into 3 different groups
64 channels with maskable interrupt and configurable error pin behavior
32 error channels with non-maskable interrupt and predefined error pin behavior
32 channels with predefined error pin behavior only
Error pin to signal severe device failure
Configurable timebase for error signal
Error forcing capability
4.18.2 ESM Channel Assignments
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest
severity. The device response to each error is determined by the severity group it is connected to.
Table 4-35 shows the channel assignment for each group.
Table 4-34. ESM Groups
ERROR GROUP INTERRUPT CHARACTERISTICS INFLUENCE ON ERROR PIN
Group1 maskable, low or high priority configurable
Group2 non-maskable, high priority fixed
Group3 no interrupt generated fixed
Table 4-35. ESM Channel Assignments
ERROR SOURCES GROUP CHANNELS
Reserved Group1 0
MibADC2 - parity Group1 1
DMA - MPU Group1 2
DMA - parity Group1 3
Reserved Group1 4
DMA - imprecise read error Group1 5
FMC - correctable error: bus1 and bus2 interfaces Group1 6
(does not include accesses to EEPROM bank)
N2HET1/N2HET2 - parity Group1 7
HET TU1/HET TU2 - parity Group1 8
HET TU1/HET TU2 - MPU Group1 9
PLL - Slip Group1 10
Clock Monitor - interrupt Group1 11
Reserved Group1 12
DMA - imprecise write error Group1 13
Reserved Group1 14
VIM RAM - parity Group1 15
Reserved Group1 16
MibSPI1 - parity Group1 17
96 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-35. ESM Channel Assignments (continued)
ERROR SOURCES GROUP CHANNELS
MibSPI3 - parity Group1 18
MibADC1 - parity Group1 19
Reserved Group1 20
DCAN1 - parity Group1 21
DCAN3 - parity Group1 22
DCAN2 - parity Group1 23
MibSPI5 - parity Group1 24
Reserved Group1 25
RAM even bank (B0TCM) - correctable error Group1 26
CPU - selftest Group1 27
RAM odd bank (B1TCM) - correctable error Group1 28
Reserved Group1 29
DCC1 - error Group1 30
CCM-R4 - selftest Group1 31
Reserved Group1 32
Reserved Group1 33
Reserved Group1 34
FMC - correctable error (EEPROM bank access) Group1 35
FMC - uncorrectable error (EEPROM bank access) Group1 36
IOMM - Mux configuration error Group1 37
Power domain controller compare error Group1 38
Power domain controller self-test error Group1 39
eFuse Controller Error this error signal is generated when any bit in the eFuse
controller error status register is set. The application can choose to generate an Group1 40
interrupt whenever this bit is set to service any eFuse controller error conditions.
eFuse Controller - Self Test Error. This error signal is generated only when a self
test on the eFuse controller generates an error condition. When this error signal is Group1 41
set, group 1 channel 40 error signal will also be set.
PLL2 - Slip Group1 42
Ethernet Controller master interface Group1 43
Reserved Group1 44
Reserved Group1 45
Reserved Group1 46
Reserved Group1 47
Reserved Group1 48
Reserved Group1 49
Reserved Group1 50
Reserved Group1 51
Reserved Group1 52
Reserved Group1 53
Reserved Group1 54
Reserved Group1 55
Reserved Group1 56
Reserved Group1 57
Reserved Group1 58
Reserved Group1 59
Reserved Group1 60
Reserved Group1 61
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 97
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-35. ESM Channel Assignments (continued)
ERROR SOURCES GROUP CHANNELS
DCC2 - error Group1 62
Reserved Group1 63
Reserved Group2 0
Reserved Group2 1
CCMR4 - compare Group2 2
Reserved Group2 3
FMC - uncorrectable error (address parity on bus1 accesses) Group2 4
Reserved Group2 5
RAM even bank (B0TCM) - uncorrectable error Group2 6
Reserved Group2 7
RAM odd bank (B1TCM) - uncorrectable error Group2 8
Reserved Group2 9
RAM even bank (B0TCM) - address bus parity error Group2 10
Reserved Group2 11
RAM odd bank (B1TCM) - address bus parity error Group2 12
Reserved Group2 13
Reserved Group2 14
Reserved Group2 15
Flash (ATCM) - ECC live lock detect Group2 16
Reserved Group2 17
Reserved Group2 18
Reserved Group2 19
Reserved Group2 20
Reserved Group2 21
Reserved Group2 22
Reserved Group2 23
RTI_WWD_NMI Group2 24
Reserved Group2 25
Reserved Group2 26
Reserved Group2 27
Reserved Group2 28
Reserved Group2 29
Reserved Group2 30
Reserved Group2 31
Reserved Group3 0
eFuse Controller - autoload error Group3 1
Reserved Group3 2
RAM even bank (B0TCM) - ECC uncorrectable error Group3 3
Reserved Group3 4
RAM odd bank (B1TCM) - ECC uncorrectable error Group3 5
Reserved Group3 6
FMC - uncorrectable error: bus1 and bus2 interfaces Group3 7
(does not include address parity error and errors on accesses to EEPROM bank)
Reserved Group3 8
Reserved Group3 9
Reserved Group3 10
Reserved Group3 11
98 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-35. ESM Channel Assignments (continued)
ERROR SOURCES GROUP CHANNELS
Reserved Group3 12
Reserved Group3 13
Reserved Group3 14
Reserved Group3 15
Reserved Group3 16
Reserved Group3 17
Reserved Group3 18
Reserved Group3 19
Reserved Group3 20
Reserved Group3 21
Reserved Group3 22
Reserved Group3 23
Reserved Group3 24
Reserved Group3 25
Reserved Group3 26
Reserved Group3 27
Reserved Group3 28
Reserved Group3 29
Reserved Group3 30
Reserved Group3 31
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 99
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.19 Reset / Abort / Error Sources
Table 4-36. Reset/Abort/Error Sources
ESM HOOKUP
ERROR SOURCE SYSTEM MODE ERROR RESPONSE group.channel
CPU TRANSACTIONS
Precise write error (NCNB/Strongly Ordered) User/Privilege Precise Abort (CPU) n/a
Precise read error (NCB/Device or Normal) User/Privilege Precise Abort (CPU) n/a
Imprecise write error (NCB/Device or Normal) User/Privilege Imprecise Abort (CPU) n/a
Undefined Instruction Trap
Illegal instruction User/Privilege n/a
(CPU)(1)
MPU access violation User/Privilege Abort (CPU) n/a
SRAM
B0 TCM (even) ECC single error (correctable) User/Privilege ESM 1.26
Abort (CPU), ESM =>
B0 TCM (even) ECC double error (non-correctable) User/Privilege 3.3
nERROR
B0 TCM (even) uncorrectable error (i.e. redundant address User/Privilege ESM =>NMI 2.6
decode)
B0 TCM (even) address bus parity error User/Privilege ESM =>NMI 2.10
B1 TCM (odd) ECC single error (correctable) User/Privilege ESM 1.28
Abort (CPU), ESM =>
B1 TCM (odd) ECC double error (non-correctable) User/Privilege 3.5
nERROR
B1 TCM (odd) uncorrectable error (i.e. redundant address User/Privilege ESM =>NMI 2.8
decode)
B1 TCM (odd) address bus parity error User/Privilege ESM =>NMI 2.12
FLASH
FMC correctable error - Bus1 and Bus2 interfaces (does not User/Privilege ESM 1.6
include accesses to EEPROM bank)
FMC uncorrectable error - Bus1 accesses Abort (CPU), ESM =>
User/Privilege 3.7
(does not include address parity error) nERROR
FMC uncorrectable error - Bus2 accesses
(does not include address parity error and EEPROM bank User/Privilege ESM =>nERROR 3.7
accesses)
FMC uncorrectable error - address parity error on Bus1 User/Privilege ESM =>NMI 2.4
accesses
FMC correctable error - Accesses to EEPROM bank User/Privilege ESM 1.35
FMC uncorrectable error - Accesses to EEPROM bank User/Privilege ESM 1.36
DMA TRANSACTIONS
External imprecise error on read (Illegal transaction with ok User/Privilege ESM 1.5
response)
External imprecise error on write (Illegal transaction with ok User/Privilege ESM 1.13
response)
Memory access permission violation User/Privilege ESM 1.2
Memory parity error User/Privilege ESM 1.3
DMM TRANSACTIONS
External imprecise error on read (Illegal transaction with ok User/Privilege ESM 1.5
response)
External imprecise error on write (Illegal transaction with ok User/Privilege ESM 1.13
response)
HET TU1 (HTU1)
NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt =>VIM n/a
External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt =>VIM n/a
Memory access permission violation User/Privilege ESM 1.9
(1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage
of the CPU.
100 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 4-36. Reset/Abort/Error Sources (continued)
ESM HOOKUP
ERROR SOURCE SYSTEM MODE ERROR RESPONSE group.channel
Memory parity error User/Privilege ESM 1.8
HET TU2 (HTU2)
NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt =>VIM n/a
External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt =>VIM n/a
Memory access permission violation User/Privilege ESM 1.9
Memory parity error User/Privilege ESM 1.8
N2HET1
Memory parity error User/Privilege ESM 1.7
N2HET2
Memory parity error User/Privilege ESM 1.7
ETHERNET MASTER INTERFACE
Any error reported by slave being accessed User/Privilege ESM 1.43
MIBSPI
MibSPI1 memory parity error User/Privilege ESM 1.17
MibSPI3 memory parity error User/Privilege ESM 1.18
MibSPI5 memory parity error User/Privilege ESM 1.24
MIBADC
MibADC1 Memory parity error User/Privilege ESM 1.19
MibADC2 Memory parity error User/Privilege ESM 1.1
DCAN
DCAN1 memory parity error User/Privilege ESM 1.21
DCAN2 memory parity error User/Privilege ESM 1.23
DCAN3 memory parity error User/Privilege ESM 1.22
PLL
PLL slip error User/Privilege ESM 1.10
PLL #2 slip error User/Privilege ESM 1.42
CLOCK MONITOR
Clock monitor interrupt User/Privilege ESM 1.11
DCC
DCC1 error User/Privilege ESM 1.30
DCC2 error User/Privilege ESM 1.62
CCM-R4
Self test failure User/Privilege ESM 1.31
Compare failure User/Privilege ESM =>NMI 2.2
VIM
Memory parity error User/Privilege ESM 1.15
VOLTAGE MONITOR
VMON out of voltage range n/a Reset n/a
CPU SELFTEST (LBIST)
CPU Selftest (LBIST) error User/Privilege ESM 1.27
PIN MULTIPLEXING CONTROL
Mux configuration error User/Privilege ESM 1.37
POWER DOMAIN CONTROL
PSCON compare error User/Privilege ESM 1.38
PSCON self-test error User/Privilege ESM 1.39
eFuse Controller
eFuse Controller error User/Privilege ESM 3.1
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 101
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-36. Reset/Abort/Error Sources (continued)
ESM HOOKUP
ERROR SOURCE SYSTEM MODE ERROR RESPONSE group.channel
eFuse Controller - Any bit set in the error status register User/Privilege ESM 1.40
eFuse Controller self-test error User/Privilege ESM 1.41
WINDOWED WATCHDOG
WWD Non-Maskable Interrupt exception n/a ESM 2.24
ERRORS REFLECTED IN THE SYSESR REGISTER
Power-Up Reset n/a Reset n/a
Oscillator fail / PLL slip(2) n/a Reset n/a
Watchdog exception n/a Reset n/a
CPU Reset (driven by the CPU STC) n/a Reset n/a
Software Reset n/a Reset n/a
External Reset n/a Reset n/a
(2) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.
4.20 Digital Windowed Watchdog
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code
execution.
The DWWD module allows the application to configure the time window within which the DWWD module
expects the application to service the watchdog. A watchdog violation occurs if the application services the
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to
generate a system reset or a non-maskable interrupt to the CPU in case of a watchdog violation.
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog
can only be disabled upon a system reset.
102 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TRST
TMS
TCK
TDI
TDO
RTCK
ICEPICK_C
BoundaryScan
BSR/BSDL
BoundaryScanI/F
SecondaryTap0 DAP
Debug APB
Debug
ROM1
APBslave
Cortex
R4F
APBMux
AHB-AP
POM ETM TPIU
toSCR1via A2A from
PCR1/Bridge
SecondaryTap1
DMM
RTP
TAP 0
TAP 1
SecondaryTap2 AJSM
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21 Debug Subsystem
4.21.1 Block Diagram
The device contains an ICEPICK module to allow JTAG access to the scan chains.
Figure 4-19. ZWT Debug Subsystem Block Diagram
4.21.2 Debug Components Memory Map
Table 4-37. Debug Components Memory Map
FRAME ADDRESS RANGE RESPNSE FOR ACCESS TO
FRAME CHIP FRAME ACTUA
MODULE NAME UNIMPLEMENTED LOCATIONS IN
SELECT SIZE L SIZE
START END FRAME
CoreSight Debug Reads return zeros, writes have no
CSCS0 0xFFA0_0000 0xFFA0_0FFF 4KB 4KB
ROM effect
Cortex-R4F Reads return zeros, writes have no
CSCS1 0xFFA0_1000 0xFFA0_1FFF 4KB 4KB
Debug effect
Reads return zeros, writes have no
ETM-R4 CSCS2 0xFFA0_2000 0xFFA0_2FFF 4KB 4KB effect
Reads return zeros, writes have no
CoreSight TPIU CSCS3 0xFFA0_3000 0xFFA0_3FFF 4KB 4KB effect
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 103
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.21.3 JTAG Identification Code
The JTAG ID code for this device is 0x0D8A002F. This is the same as the device ICEPick Identification
Code.
4.21.4 Debug ROM
The Debug ROM stores the location of the components on the Debug APB bus:
Table 4-38. Debug ROM table
ADDRESS DESCRIPTION VALUE
0x000 pointer to Cortex-R4F 0x0000 1003
0x001 ETM-R4 0x0000 2003
0x002 TPIU 0x0000 3003
0x003 POM 0x0000 4003
0x004 end of table 0x0000 0000
104 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
11
2
3
4
5
TMS
TDI
TDO
RTCK
TCK
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21.5 JTAG Scan Interface Timings
Table 4-39. JTAG Scan Interface Timing(1)
No. Parameter Min MAX Unit
fTCK TCK frequency (at HCLKmax) 12 MHz
fRTCK RTCK frequency (at TCKmax and HCLKmax) 10 MHz
1 td(TCK -RTCK) Delay time, TCK to RTCK 24 ns
2 tsu(TDI/TMS - RTCKr) Setup time, TDI, TMS before RTCK rise (RTCKr) 15 ns
3 th(RTCKr -TDI/TMS) Hold time, TDI, TMS after RTCKr 0 ns
4 th(RTCKr -TDO) Hold time, TDO after RTCKf 0 ns
5 td(TCKf -TDO) Delay time, TDO valid after RTCK fall (RTCKf) 10 ns
(1) Timings for TDO are specified for a maximum of 50pF load on TDO
Figure 4-20. JTAG Timing
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 105
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
H L H L H L L H
...
...
128-bitcomparator
H L L H H L L H
UNLOCK
FlashModuleOutput
OTP Contents
UnlockByScan
Register
InternalTie-Offs
(exampleonly)
(example)
LH H L L
InternalTie-Offs
(exampleonly)
L H H
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
4.21.6 Advanced JTAG Security Module
This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to
the devices memory content by allowing users to secure the device after programming.
Figure 4-21. AJSM Unlock
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the
UNLOCK signal being asserted, so that the device is now unsecure.
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the
device.
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By
Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents
and the Unlock-By-Scan register contents results in the original visible unlock code.
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).
A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the
ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in
this state.
106 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
tr(ETM)
th(ETM)
tl(ETM)
tf(ETM)
tcyc(ETM)
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21.7 Embedded Trace Macrocell (ETM-R4)
The device contains a ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected
to a TPIU with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data, 3-bit control) external interface
for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification; for more details see
ARM CoreSight ETM-R4 TRM specification.
4.21.7.1 ETM TRACECLKIN Selection
The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The
selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'. The address of this
register is TPIU base address + 0x404.
Before you begin accessing TPIU registers, TPIU should be unlocked via coresight key and 1 or 2 should
be written to this register.
Table 4-40. TPIU / TRACECLKIN Selection
EXTCTRLOUT[1:0] TPIU/TRACECLKIN
00 tied-zero
01 VCLK
10 ETMTRACECLKIN
11 tied-zero
4.21.7.2 Timing Specifications
Figure 4-22. ETMTRACECLKOUT Timing
Table 4-41. ETMTRACECLK Timing
Parameter MIN Description
tcyc(ETM) t(HCLK) * 4 Clock period
tl(ETM) 20ns Low pulse width
th(ETM) 20ns High pulse width
tr(ETM) 3ns Clock and data rise time
tf(ETM) 3ns Clock and data fall time
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 107
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
tsu(ETM) th(ETM)
ETMTRACECLK
ETMDATA
tsu(ETM) th(ETM)
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 4-23. ETMDATA Timing
Table 4-42. ETMDATA Timing
Parameter MIN Description
tsu(ETM) 2.5ns Data setup time
th(ETM) 1.5ns Data hold time
NOTE
The ETMTRACECLK and ETMDATA timing is based on a 15pF load and for ambient
temperature lower than 85°C.
108 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
tcyc(RTP)
trtf
th(RTP)
tl(RTP)
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21.8 RAM Trace Port (RTP)
The RTP provides the ability to datalog the RAM contents of the TMS570 devices or accesses to
peripherals without program intrusion. It can trace all data write or read accesses to internal RAM. In
addition, it provides the capability to directly transfer data to a FIFO to support a CPU-controlled
transmission of the data. The trace data is transmitted over a dedicated external interface.
4.21.8.1 Features
The RTP offers the following features:
Two modes of operation - Trace Mode and Direct Data Mode
Trace Mode
Non-intrusive data trace on write or read operation
Visibility of RAM content at any time on external capture hardware
Trace of peripheral accesses
2 configurable trace regions for each RAM module to limit amount of data to be traced
FIFO to store data and address of data of multiple read/write operations
Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet
Direct Data Mode
Directly write data with the CPU or trace read operations to a FIFO, without transmitting header
and address information
Dedicated synchronous interface to transmit data to external devices
Free-running clock generation or clock stop mode between transmissions
Up to 100 Mbit per sec/pin transfer rate for transmitting data
Pins not used in functional mode can be used as GIOs
4.21.8.2 Timing Specifications
Figure 4-24. RTPCLK Timing
Table 4-43. RTPCLK Timing
Parameter MIN Description
tcyc(RTP) tc(HCLK) * 2 Clock period, prescaled from HCLK; must not be faster
than HCLK / 2
th(RTP) ((tcyc(RTP))/2) - ((tr+tf)/2) High pulse width
tl(RTP) ((tcyc(RTP))/2) - ((tr+tf)/2) Low pulse width
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 109
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
RTPSYNC
RTPCLK
RTPDATA
tssu(RTP) tsh(RTP)
tdsu(RTP) tdh(RTP)
HCLK
RTPCLK
RTPENA
RTPSYNC
RTPDATA
HCLK
RTPCLK
RTPENA
RTPSYNC
RTPDATA
tena(RTP)
tdis(RTP)
HCLK
RTPCLK
RTPnENA
RTPSYNC
RTPDATA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d1 d2 d3 d4 d5 d6 d7 d8
Divide by 1
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 4-25. RTPDATA Timing
Table 4-44. RTPDATA Timing
Parameter MIN Description
tdsu(RTP) 3ns Data setup time
tdh(RTP) 2ns Data hold time
tssu(RTP) 3ns SYNC setup time
tsh(RTP) 2ns SYNC hold time
Figure 4-26. RTPnENA timing
Table 4-45. RTPnENA timing
Parameter MIN MAX Description
tdis(RTP) 3tc(HCLK) + time RTPnENA must go high before what would be the next RTPSYNC,
tr(RTPSYNC) + to guarantee delaying the next packet
12ns
tena(RTP) 4tc(HCLK) + 5tc(HCLK) + time after RTPnENA goes low before a packet that has been halted,
tr(RTPSYNC) tr(RTPSYNC) + resumes
12ns
110 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
tcyc(DMM)
trtf
th(DMM)
tl(DMM)
DMMSYNC
DMMCLK
DMMDATA
tssu(DMM) tsh(DMM)
tdsu(DMM) tdh(DMM)
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21.9 Data Modification Module (DMM)
The Data Modification Module (DMM) provides the capability to modify data in the entire 4 GB address
space of the TMS570 devices from an external peripheral, with minimal interruption of the application.
4.21.9.1 Features
The DMM module has the following features:
Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention
Writes to memory locations specified in the received packet (leverages packets defined by trace mode
of the RAM trace port (RTP) module
Writes received data to consecutive addresses, which are specified by the DMM module (leverages
packets defined by direct data mode of RTP module)
Configurable port width (1, 2, 4, 8, 16 pins)
Up to 100 Mbit/s pin data rate
Unused pins configurable as GIO pins
4.21.9.2 Timing Specifications
Figure 4-27. DMMCLK Timing
Table 4-46. DMMCLK Timing
Parameter MIN Description
tcyc(DMM) tc(HCLK) * 2 Clock period
th(DMM) ((tcyc(DMM))/2) - ((tr+tf)/2) High pulse width
tl(DMM) ((tcyc(DMM))/2) - ((tr+tf)/2) Low pulse width
Figure 4-28. DMMDATA Timing
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 111
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
HCLK
DMMCLK
DMMSYNC
DMMDATA
DMMnENA
D00 D01 D10 D11 D20 D21 D30 D31 D40 D41 D50
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 4-47. DMMDATA Timing
Parameter MIN Description
tssu(DMM) 2ns SYNC active to clk falling edge setup time
tsh(DMM) 3ns clk falling edge to SYNC deactive hold time
tdsu(DMM) 2ns DATA to clk falling edge setup time
tdh(DMM) 3ns clk falling edge to DATA hold time
Figure 4-29. DMMnENA Timing
Figure 4-29 shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode, data
width = 8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to filling up
of the internal buffers. The DMMnENA signal is shown asserted, after the first two packets have been
received and synchronised to the HCLK domain. Here, the DMM has the capacity to accept packets D4x,
D5x, D6x, D7x. Packet D8 would result in an overflow. Once DMMnENA is asserted, the DMM expects to
stop receiving packets after 4 HCLK cycles; once DMMnENA is de-asserted, the DMM can handle
packets immediately (after 0 HCLK cycles).
112 System Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TRST
TMS
TCK
TDI
TDO
RTCK
IC E PICK
Boundary
BSDL
Boundary Scan Interface Scan
Device Pins (conceptual)
TDI
TDO
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
4.21.10 Boundary Scan Chain
The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary
scan chain is connected to the Boundary Scan Interface of the ICEPICK module.
Figure 4-30. Boundary Scan Implementation (Conceptual Diagram)
Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO.
Copyright ©2011, Texas Instruments Incorporated System Information and Electrical Specifications 113
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5 Peripheral Information and Electrical Specifications
5.1 Peripheral Legend
Table 5-1. Peripheral Legend
Abbreviation Full Name
MibADC Analog To Digital Converter
CCM-R4F CPU Compare Module - CortexR4F
CRC Cyclic Redundancy Check
DCAN Controller Area Network
DCC Dual Clock Comparator
DMA Direct Memory Access
DMM Data Modification Module
EMIF External Memory Interface
ESM Error Signaling Module
ETM-R4F Embedded Trace Macrocell - CortexR4F
FTU FlexRay Transfer Unit
GIO General-Purpose Input/Output
HTU High End Timer Transfer Unit
I2C Inter-Integrated Circuit
LIN Local Interconnect Network
MIBSPI Multibuffer Serial Peripheral Interface
N2HET Platform High-End Timer
POM Parameter Overlay Module
RTI Real-Time Interrupt Module
RTP RAM Trace Port
SCI Serial Communications Interface
SPI Serial Peripheral Interface
VIM Vectored Interrupt Manager
5.2 Multi-Buffered 12bit Analog-to-Digital Converter
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given
with respect to ADREFLO unless otherwise noted.
Table 5-2. MibADC Overview
Description Value
Resolution 12 bits
Monotonic Assured
Output conversion code 00h to FFFh [00 for VAI ADREFLO; FFF for VAI ADREFHI]
5.2.1 Features
10-/12-bit resolution
ADREFHI and ADREFLO pins (high and low reference voltages)
Total Sample/Hold/Convert time: 600ns Typical Minimum at 30MHz ADCLK
One memory region per conversion group is available (event, group 1, group 2)
Allocation of channels to conversion groups is completely programmable
Memory regions are serviced either by interrupt or by DMA
114 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Programmable interrupt threshold counter is available for each group
Programmable magnitude threshold interrupt for each group for any one channel
Option to read either 8-bit, 10-bit or 12-bit values from memory regions
Single or continuous conversion modes
Embedded self-test
Embedded calibration logic
Enhanced power-down mode
Optional feature to automatically power down ADC core when no conversion is in progress
External event pin (ADEVT) programmable as general-purpose I/O
5.2.2 Event Trigger Options
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3
groups can be configured to be hardware event-triggered. In that case, the application can select from
among 8 event sources to be the trigger for a group's conversions.
5.2.2.1 Default MIBADC1 Event Trigger Hookup
Table 5-3. MIBADC1 Event Trigger Hookup
Event # Source Select Bits For G1, G2 Or Event Trigger
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
1 000 ADEVT
2 001 N2HET1[8]
3 010 N2HET1[10]
4 011 RTI compare 0 interrupt
5 100 N2HET1[12]
6 101 N2HET1[14]
7 110 GIOB[0]
8 111 GIOB[1]
NOTE
For ADEVT, N2HET1 and GIOB trigger sources, the connection to the MibADC1 module
trigger input is made from the output side of the input buffer. This way, a trigger condition
can be generated either by configuring the function as output onto the pad (via the mux
control), or by driving the function from an external trigger source as input. If the mux control
module is used to select different functionality instead of the ADEVT, N2HET1[x] or GIOB[x]
signals, then care must be taken to disable these signals from triggering conversions; there
is no multiplexing on the input connections.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.2.2.2 Alternate MIBADC1 Event Trigger Hookup
Table 5-4. Alternate MIBADC1 Event Trigger Hookup
Event # Source Select Bits for G1, G2 or Event Trigger
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
1 000 ADEVT
2 001 N2HET2[5]
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 115
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 5-4. Alternate MIBADC1 Event Trigger Hookup (continued)
Event # Source Select Bits for G1, G2 or Event Trigger
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
3 010 N2HET1[27]
4 011 RTI compare 0 interrupt
5 100 N2HET1[17]
6 101 N2HET1[19]
7 110 N2HET1[11]
8 111 N2HET2[13]
The selection between the default MIBADC1 event trigger hook-up versus the alternate event trigger
hook-up is done by multiplexing control module register 30 bits 0 and 1.
If 30[0] = 1, then the default MibADC1 event trigger hook-up is used.
If 30[0] = 0 and 30[1] = 1, then the alternate MibADC1 event trigger hook-up is used.
NOTE
For ADEVT trigger source, the connection to the MibADC1 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
configuring ADEVT as an output function on to the pad (via the mux control), or by driving
the ADEVT signal from an external trigger source as input. If the mux control module is used
to select different functionality instead of the ADEVT signal, then care must be taken to
disable ADEVT from triggering conversions; there is no multiplexing on the input connection.
NOTE
For N2HETx trigger sources, the connection to the MibADC1 module trigger input is made
from the input side of the output buffer (at the N2HETx module boundary). This way, a
trigger condition can be generated even if the N2HETx signal is not selected to be output on
the pad.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.2.2.3 Default MIBADC2 Event Trigger Hookup
Table 5-5. MIBADC2 Event Trigger Hookup
Event # Source Select Bits for G1, G2 or Event Trigger
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
1 000 AD2EVT
2 001 N2HET1[8]
3 010 N2HET1[10]
4 011 RTI compare 0
5 100 N2HET1[12]
6 101 N2HET1[14]
7 110 GIOB[0]
8 111 GIOB[1]
116 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
NOTE
For AD2EVT, N2HET1 and GIOB trigger sources, the connection to the MibADC2 module
trigger input is made from the output side of the input buffer. This way, a trigger condition
can be generated either by configuring the function as output onto the pad (via the mux
control), or by driving the function from an external trigger source as input. If the mux control
module is used to select different functionality instead of the AD2EVT, N2HET1[x] or GIOB[x]
signals, then care must be taken to disable these signals from triggering conversions; there
is no multiplexing on the input connections.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.2.2.4 Alternate MIBADC2 Event Trigger Hookup
Table 5-6. Alternate MIBADC2 Event Trigger Hookup
Event # Source Select Bits for G1, G2 or Event Trigger
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
1 000 AD2EVT
2 001 N2HET2[5]
3 010 N2HET1[27]
4 011 RTI compare 0
5 100 N2HET1[17]
6 101 N2HET1[19]
7 110 N2HET1[11]
8 111 N2HET2[13]
The selection between the default MIBADC2 event trigger hook-up versus the alternate event trigger
hook-up is done by multiplexing control module register 30 bits 0 and 1.
If 30[0] = 1, then the default MibADC2 event trigger hook-up is used.
If 30[0] = 0 and 30[1] = 1, then the alternate MibADC2 event trigger hook-up is used.
NOTE
For AD2EVT trigger source, the connection to the MibADC2 module trigger input is made
from the output side of the input buffer. This way, a trigger condition can be generated either
by configuring AD2EVT as an output function on to the pad (via the mux control), or by
driving the AD2EVT signal from an external trigger source as input. If the mux control module
is used to select different functionality instead of the AD2EVT signal, then care must be
taken to disable AD2EVT from triggering conversions; there is no multiplexing on the input
connections.
NOTE
For N2HETx trigger sources, the connection to the MibADC2 module trigger input is made
from the input side of the output buffer (at the N2HETx module boundary). This way, a
trigger condition can be generated even if the N2HETx signal is not selected to be output on
the pad.
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 117
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
118 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.2.3 ADC Electrical and Timing Specifications
Table 5-7. MibADC Recommended Operating Conditions
Parameter MIN MAX Unit
ADREFHI A-to-D high-voltage reference source ADREFLO VCCAD V
ADREFLO A-to-D low-voltage reference source VSSAD ADREFHI V
VAI Analog input voltage ADREFLO ADREFHI V
IAIC Analog input clamp current - 2 2 mA
(VAI <VSSAD 0.3 or VAI >VCCAD + 0.3)
Table 5-8. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions(1)
Parameter Description/Conditions MIN Type MAX Unit
Rmux Analog input mux See Figure 5-1 250 Ω
on-resistance
Rsamp ADC sample switch See Figure 5-1 250 Ω
on-resistance
Cmux Input mux capacitance See Figure 5-1 16 pF
Csamp ADC sample capacitance See Figure 5-1 13 pF
IAIL Analog off-state input Off-state input leakage per VSSAD <VIN <VSSAD + 300 nA
leakage current, for VCCAD = ADC input pin 100mV
3.6V maximum VSSAD + 100mV <VIN <200 nA
VCCAD - 200mV
VCCAD - 200mV <VIN <500 nA
VCCAD
IAIL Analog off-state input Off-state input leakage per VIN >VSSAD, 1 µA
leakage current, for VCCAD = ADC input pin VIN <VSSAD + 300mV
5.5V maximum VIN >VSSAD + 300mV, 250 nA
VIN <VCCAD - 300mV
VIN >VCCAD - 300mV, 1 µA
VIN <VCCAD
IADREFHI ADREFHI input current ADREFHI = VCCAD, ADREFLO = VSSAD 3 mA
ICCAD Static supply current Normal operating mode 15 mA
ADC core in power down mode 5 µA
(1) 1 LSB = (ADREFHI ADREFLO)/ 212 for the MibADC
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 119
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
VS1
On-State
Leakage
Off-State
Leakages
VS2
VS24
39*IAIL
IAIL
IAIL
Rext
Rext
Rext
Pin Smux Rmux
Pin Smux Rmux
Pin Smux Rmux Ssamp Rsamp
Csamp
Cext IAIL
IAIL IAIL
IAIL
Cmux
Cext
Cext
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 5-1. MibADC Input Equivalent Circuit
Table 5-9. MibADC Timing Specifications
Parameter MIN NOM MAX Unit
tc(ADCLK)(1) Cycle time, MibADC clock 0.033 µs
td(SH)(2) Delay time, sample and hold 0.2 µs
time
12-bit mode
td©)Delay time, conversion time 0.4 µs
td(SHC)(3) Delay time, total sample/hold 0.6 µs
and conversion time
10-bit mode
td©)Delay time, conversion time 0.33 µs
td(SHC)(4) Delay time, total sample/hold 0.53 µs
and conversion time
(1) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits
4:0.
(2) The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as
well as the ADCs internal impedance.
(3) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
(4) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
120 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 5-10. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions
Parameter Description/Conditions MIN Type MAX Unit
CR Conversion range over ADREFHI - ADREFLO 3 5.5 V
which specified
accuracy is
maintained
ZSET Zero Scale Offset Difference between the first ideal transition 10-bit 1 LSB
(from code 000h to 001h) and the actual mode
transition 12-bit 2 LSB
mode
FSET Full Scale Offset Difference between the range of the 10-bit 2 LSB
measured code transitions (from first to last) mode
and the range of the ideal code transitions 12-bit 3 LSB
mode
EDNL Differential Difference between the actual step width and 10-bit ±1.5 LSB
nonlinearity error the ideal value. (See Figure 76) mode
12-bit ±2 LSB
mode
EINL Integral nonlinearity Maximum deviation from the best straight line 10-bit ±2 LSB
error through the MibADC. MibADC transfer mode
characteristics, excluding the quantization 12-bit ±2 LSB
error. mode
ETOT Total unadjusted error Maximum value of the difference between an 10-bit ±2 LSB
(after calibration) analog value and the ideal midstep value. mode
12-bit ±4 LSB
mode
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 121
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
Differential Linearity
Error (–½ LSB)
1 LSB
1 LSB
Differential Linearity
Error (–½ LSB)
0 ... 110
0 ... 101
0 ... 100
0 ... 011
0 ... 010
0 ... 001
0 ... 000
01 2 345
Digital Output Code
Analog Input Value (LSB)
NOTE A: 1 LSB = (AD AD )/2
REFHI REFLO
12
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.2.4 Performance (Accuracy) Specifications
5.2.4.1 MibADC Nonlinearity Errors
The differential nonlinearity error shown in Figure Figure 5-2 (sometimes referred to as differential
linearity) is the difference between an actual step width and the ideal value of 1 LSB.
Figure 5-2. Differential Nonlinearity (DNL) Error
122 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
0 ... 111
0 ... 101
0 ... 100
0 ... 011
0 ... 010
0 ... 001
0 ... 000
01 2 345
Digital Output Code
Analog Input Value (LSB)
0 ... 110
67
At Transition
011/100
(–½ LSB)
At Transition
001/010 (–1/4 LSB)
Actual
Transition
Ideal
Transition
End-Point Lin. Error
NOTE A: 1 LSB = (AD AD )/2
REFHI REFLO
12
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
The integral nonlinearity error shown in Figure Figure 5-3 (sometimes referred to as linearity error) is the
deviation of the values on the actual transfer function from a straight line.
Figure 5-3. Integral Nonlinearity (INL) Error
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 123
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
0 ... 111
0 ... 101
0 ... 100
0 ... 011
0 ... 010
0 ... 001
0 ... 000
01 2 345
Digital Output Code
Analog Input Value (LSB)
0 ... 110
67
Total Error
At Step
0 ... 001 (1/2 LSB)
Total Error
At Step 0 ... 101
(–1 1/4 LSB)
NOTE A: 1 LSB = (AD AD )/2
REFHI REFLO
12
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.2.4.2 MibADC Total Error
The absolute accuracy or total error of an MibADC as shown in Figure Figure 5-4 is the maximum value of
the difference between an analog value and the ideal midstep value.
Figure 5-4. Absolute Accuracy (Total) Error
124 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.3 General-Purpose Input/Output
The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and
bit-programmable. Both GIOA and GIOB support external interrupt capability.
5.3.1 Features
The GPIO module has the following features:
Each IO pin can be configured as:
Input
Output
Open Drain
The interrupts have the following characteristics:
Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)
Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)
Individual interrupt flags (set in GIOFLG register)
Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers
respectively
Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers
Internal pullup/pulldown allows unused I/O pins to be left unconnected
For information on input and output timings see Section 3.8 and Section 3.9
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 125
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
NHETx
3
4
2
1
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.4 Enhanced High-End Timer (N2HET)
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses.
5.4.1 Features
The N2HET module has the following features:
Programmable timer for input and output timing functions
Reduced instruction set (30 instructions) for dedicated time and angle functions
160 words of instruction RAM protected by parity
User defined number of 25-bit virtual counters for timer, event counters and angle counters
7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual
counters
Up to 32 pins usable for input signal measurements or output signal generation
Programmable suppression filter for each input pin with adjustable limiting frequency
Low CPU overhead and interrupt load
Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)
or DMA
Diagnostic capabilities with different loopback mechanisms and pin status readback functionality
5.4.2 N2HET RAM Organization
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are
split into three 32-bit fields (program, control, and data).
5.4.3 Input Timing Specifications
The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals.
Figure 5-5. N2HET Input Capture Timings
126 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
NHET1 NHET2
NHET_LOOP_SYNC EXT_LOOP_SYNC
EXT_LOOP_SYNC NHET_LOOP_SYNC
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Table 5-11. Dynamic Characteristics for the N2HET Input Capture Functionality
PARAMETER MIN(1) (2) MAX(1) (2) UNIT
1 Input signal period, PCNT or WCAP for rising edge 2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
to rising edge
2 Input signal period, PCNT or WCAP for falling edge 2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
to falling edge
3 Input signal high phase, PCNT or WCAP for rising (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
edge to falling edge
4 Input signal low phase, PCNT or WCAP for falling (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
edge to rising edge
(1) hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR).
(2) lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR)
Both N2HET1 and N2HET2 have three channels each that are enhanced to be able to capture inputs with
smaller pulse widths than that specified in Table 5-11. These are N2HET1 channels 15, 20 and 31, and
N2HET2 channels 12, 14 and 16.
The input capture capability for these channels is specified in the following table.
Table 5-12. Input Capture Capability for N2HET Channels with Enhancements
PARAMETER MIN MAX UNIT
1 Input signal period, PCNT or WCAP for rising edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
to rising edge
2 Input signal period, PCNT or WCAP for falling edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
to falling edge
3 Input signal high phase, PCNT or WCAP for rising 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
edge to falling edge
4 Input signal low phase, PCNT or WCAP for falling 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns
edge to rising edge
5.4.4 N2HET1-N2HET2 Interconnections
In some applications the N2HET resolutions must be synchronized. Some other applications require a
single time base to be used for all PWM outputs and input timing captures.
The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures
the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal
to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to
the loop resolution signal sent by the master. The slave does not require this signal after it receives the
first synchronization signal. However, anytime the slave receives the re-synchronization signal from the
master, the slave must synchronize itself again..
Figure 5-6. N2HET1 N2HET2 Synchronization Hookup
5.4.5 N2HET Checking
5.4.5.1 Internal Monitoring
To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be
used to monitor each others signals as shown in Figure 5-7. The direction of the monitoring is controlled
by the I/O multiplexing control module.
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 127
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
NHET1
NHET2
IOMM mux control signal x
NHET1[1,3,5,7,9,11] / NHET2[8,10,12,14,16,18]
NHET1[1,3,5,7,9,11]
NHET2[8,10,12,14,16,18]
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Figure 5-7. N2HET Monitoring
5.4.5.2 Output Monitoring using Dual Clock Comparator (DCC)
N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure
the frequency of the pulse-width modulated (PWM) signal on N2HET1[31].
Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to
measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0].
Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection
to the DCC module is made directly from the output of the N2HETx module (from the input of the output
buffer).
For more information on DCC see Section 4.7.3.
5.4.6 Disabling N2HET Outputs
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET
module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the
N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the
RM48x Technical Reference Manual (SPNU481) for more details on the "N2HET Pin Disable" feature.
GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin
Disable" input for N2HET2.
128 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.4.7 High-End Timer Transfer Unit (HET-TU)
A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to
or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU.
5.4.7.1 Features
CPU and DMA independent
Master Port to access system memory
8 control packets supporting dual buffer configuration
Control packet information is stored in RAM protected by parity
Event synchronization (HET transfer requests)
Supports 32 or 64 bit transactions
Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or
64bit)
One shot, circular and auto switch buffer transfer modes
Request lost detection
5.4.7.2 Trigger Connections
Table 5-13. HET TU1 Request Line Connection
Modules Request Source HET TU1 Request
N2HET1 HTUREQ[0] HET TU1 DCP[0]
N2HET1 HTUREQ[1] HET TU1 DCP[1]
N2HET1 HTUREQ[2] HET TU1 DCP[2]
N2HET1 HTUREQ[3] HET TU1 DCP[3]
N2HET1 HTUREQ[4] HET TU1 DCP[4]
N2HET1 HTUREQ[5] HET TU1 DCP[5]
N2HET1 HTUREQ[6] HET TU1 DCP[6]
N2HET1 HTUREQ[7] HET TU1 DCP[7]
Table 5-14. HET TU2 Request Line Connection
Modules Request Source HET TU2 Request
N2HET2 HTUREQ[0] HET TU2 DCP[0]
N2HET2 HTUREQ[1] HET TU2 DCP[1]
N2HET2 HTUREQ[2] HET TU2 DCP[2]
N2HET2 HTUREQ[3] HET TU2 DCP[3]
N2HET2 HTUREQ[4] HET TU2 DCP[4]
N2HET2 HTUREQ[5] HET TU2 DCP[5]
N2HET2 HTUREQ[6] HET TU2 DCP[6]
N2HET2 HTUREQ[7] HET TU2 DCP[7]
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 129
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.5 Controller Area Network (DCAN)
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh
environments (e.g., automotive and industrial fields) that require reliable serial communication or
multiplexed wiring.
5.5.1 Features
Features of the DCAN module include:
Supports CAN protocol version 2.0 part A, B
Bit rates up to 1 MBit/s
The CAN kernel can be clocked by the oscillator for baud-rate generation.
64 mailboxes on each DCAN
Individual identifier mask for each message object
Programmable FIFO mode for message objects
Programmable loop-back modes for self-test operation
Automatic bus on after Bus-Off state by a programmable 32-bit timer
Message RAM protected by parity
Direct access to Message RAM during test mode
CAN Rx / Tx pins configurable as general purpose IO pins
Message RAM Auto Initialization
DMA support
For more information on the DCAN see the TMS570LS31X/21X Technical Reference Manual (SPNU499).
5.5.2 Electrical and Timing Specifications
Table 5-15. Dynamic Characteristics for the DCANx TX and RX pins
Parameter MIN MAX Unit
td(CANnTX) Delay time, transmit shift register to CANnTX pin(1) 15 ns
td(CANnRX) Delay time, CANnRX pin to receive shift register 5 ns
(1) These values do not include rise/fall times of the output buffer.
130 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.6 Local Interconnect Network Interface (LIN)
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is
an SCI. The SCIs hardware features are augmented to achieve LIN compatibility.
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a
K-line.
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is
single-master/multiple-slave with a message identification for multi-cast transmission between any network
nodes.
5.6.1 LIN Features
The following are features of the LIN module:
Compatible to LIN 1.3, 2.0 and 2.1 protocols
Multi-buffered receive and transmit units DMA capability for minimal CPU intervention
Identification masks for message filtering
Automatic Master Header Generation
Programmable Synch Break Field
Synch Field
Identifier Field
Slave Automatic Synchronization
Synch break detection
Optional baudrate update
Synchronization Validation
231 programmable transmission rates with 7 fractional bits
Error detection
2 Interrupt lines with priority encoding
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 131
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.7 Serial Communication Interface (SCI)
5.7.1 Features
Standard universal asynchronous receiver-transmitter (UART) communication
Supports full- or half-duplex operation
Standard nonreturn to zero (NRZ) format
Double-buffered receive and transmit functions
Configurable frame format of 3 to 13 bits per character based on the following:
Data word length programmable from one to eight bits
Additional address bit in address-bit mode
Parity programmable for zero or one parity bit, odd or even parity
Stop programmable for one or two stop bits
Asynchronous or isosynchronous communication modes
Two multiprocessor communication formats allow communication between more than two devices.
Sleep mode is available to free CPU resources during multiprocessor communication.
The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate
selection.
Four error flags and Five status flags provide detailed information regarding SCI events.
Capability to use DMA for transmit and receive data.
132 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.8 Inter-Integrated Circuit (I2C)
The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface
between the TMS570 microcontroller and devices compliant with Philips Semiconductor I2C-bus
specification version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C
compatible device.
5.8.1 Features
The I2C has the following features:
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number
9398 393 40011)
Bit/Byte format transfer
7-bit and 10-bit device addressing modes
General call
START byte
Multi-master transmitter/ slave receiver mode
Multi-master receiver/ slave transmitter mode
Combined master transmit/receive and receive/transmit mode
Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate)
Free data format
Two DMA events (transmit and receive)
DMA event enable/disable capability
Seven interrupts that can be used by the CPU
Module enable/disable capability
The SDA and SCL are optionally configurable as general purpose I/O
Slew rate control of the outputs
Open drain control of the outputs
Programmable pullup/pulldown capability on the inputs
Supports Ignore NACK mode
NOTE
This I2C module does not support:
High-speed (HS) mode
C-bus compatibility mode
The combined format in 10-bit address mode (the I2C sends the slave address second
byte every time it sends the slave address first byte)
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 133
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
SDA
SCL
tw(SDAH)
tw(SCLL)
tw(SCLH)
tw(SP)
th(SCLL-SDAL)
th(SDA-SCLL)
th(SCLL-SDAL)
tsu(SCLH-SDAL)
tf(SCL)
tc(SCL)
tr(SCL)
tsu(SCLH-SDAH)
Stop Start Repeated Start Stop
tsu(SDA-SCLH)
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.8.2 I2C I/O Timing Specifications
Table 5-16. I2C Signals (SDA and SCL) Switching Characteristics(1)
Parameter Standard Mode Fast Mode Unit
MIN MAX MIN MAX
tc(I2CCLK) Cycle time, Internal Module clock for I2C, 75.2 149 75.2 149 ns
prescaled from VCLK
tc(SCL) Cycle time, SCL 10 2.5 ms
tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a 4.7 0.6 ms
repeated START condition)
th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated 4 0.6 ms
START condition)
tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms
tw(SCLH) Pulse duration, SCL high 4 0.6 ms
tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 ns
th(SDA-SCLL) Hold time, SDA valid after SCL low (for I2C bus 0 3.45(2) 0 0.9 ms
devices)
tw(SDAH) Pulse duration, SDA high between STOP and 4.7 1.3 ms
START conditions
tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP 4.0 0.6 ms
condition)
tw(SP) Pulse duration, spike (must be suppressed) 0 50 ns
Cb(3) Capacitive load for each bus line 400 400 pF
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered
down.
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL
signal.
(3) Cb= The total capacitance of one bus line in pF.
Figure 5-8. I2C Timings
134 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
NOTE
A device must internally provide a hold time of at least 300 ns for the SDA signal
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling
edge of SCL.
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW
period (tw(SCLL)) of the SCL signal.
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the
requirement tsu(SDA-SCLH) 250 ns must then be met. This will automatically be the case if
the device does not stretch the LOW period of the SCL signal. If such a device does
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
tr max + tsu(SDA-SCLH).
Cb= total capacitance of one bus line in pF. If mixed with fast-mode devices, faster
fall-times are allowed.
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 135
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.9 Multi-Buffered / Standard Serial Peripheral Interface
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display
drivers, and analog-to-digital converters.
5.9.1 Features
Both Standard and MibSPI modules have the following features:
16-bit shift register
Receive buffer register
8-bit baud clock generator, supports max up to 20Mhz baud rate
SPICLK can be internally-generated (master mode) or received from an external clock source (slave
mode)
Each word transferred can have a unique format
SPI I/Os not used in the communication can be used as digital input/output signals
Table 5-17. MibSPI/SPI Configurations
MibSPIx/SPIx I/Os
MibSPI1 MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA
MibSPI3 MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA
MibSPI5 MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA
SPI2 SPI2SIMO, ZSPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA
SPI4 SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA
5.9.2 MibSPI Transmit and Receive RAM Organization
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer
RAM can be partitioned into multiple transfer group with variable number of buffers each.
5.9.3 MibSPI Transmit Trigger Events
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event
and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low
level at a selectable trigger source. For example, up to 15 trigger sources are available which can be
utilized by each transfer group. These trigger options are listed in Table 5-18,Section 5.9.3.2 and
Section 5.9.3.3 for MibSPI1, MibSPi3 and MibSPI5 respectively.
136 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
5.9.3.1 MIBSPI1 Event Trigger Hookup
Table 5-18. MIBSPI1 Event Trigger Hookup
Event # TGxCTRL TRIGSRC[3:0] Trigger
Disabled 0000 No trigger source
EVENT0 0001 GIOA[0]
EVENT1 0010 GIOA[1]
EVENT2 0011 GIOA[2]
EVENT3 0100 GIOA[3]
EVENT4 0101 GIOA[4]
EVENT5 0110 GIOA[5]
EVENT6 0111 GIOA[6]
EVENT7 1000 GIOA[7]
EVENT8 1001 N2HET1[8]
EVENT9 1010 N2HET1[10]
EVENT10 1011 N2HET1[12]
EVENT11 1100 N2HET1[14]
EVENT12 1101 N2HET1[16]
EVENT13 1110 N2HET1[18]
EVENT14 1111 Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving
the GIOx pin from an external trigger source. If the mux control module is used to select
different functionality instead of the GIOx signal, then care must be taken to disable GIOx
from triggering MibSPI1 transfers; there is no multiplexing on the input connections.
5.9.3.2 MIBSPI3 Event Trigger Hookup
Table 5-19. MIBSPI3 Event Trigger Hookup
Event # TGxCTRL TRIGSRC[3:0] Trigger
Disabled 0000 No trigger source
EVENT0 0001 GIOA[0]
EVENT1 0010 GIOA[1]
EVENT2 0011 GIOA[2]
EVENT3 0100 GIOA[3]
EVENT4 0101 GIOA[4]
EVENT5 0110 GIOA[5]
EVENT6 0111 GIOA[6]
EVENT7 1000 GIOA[7]
EVENT8 1001 HET[8]
EVENT9 1010 N2HET1[10]
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 137
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 5-19. MIBSPI3 Event Trigger Hookup (continued)
Event # TGxCTRL TRIGSRC[3:0] Trigger
EVENT10 1011 N2HET1[12]
EVENT11 1100 N2HET1[14]
EVENT12 1101 N2HET1[16]
EVENT13 1110 N2HET1[18]
EVENT14 1111 Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving
the GIOx pin from an external trigger source. If the mux control module is used to select
different functionality instead of the GIOx signal, then care must be taken to disable GIOx
from triggering MibSPI3 transfers; there is no multiplexing on the input connections.
5.9.3.3 MIBSPI5 Event Trigger Hookup
Table 5-20. MIBSPI5 Event Trigger Hookup
Event # TGxCTRL TRIGSRC[3:0] Trigger
Disabled 0000 No trigger source
EVENT0 0001 GIOA[0]
EVENT1 0010 GIOA[1]
EVENT2 0011 GIOA[2]
EVENT3 0100 GIOA[3]
EVENT4 0101 GIOA[4]
EVENT5 0110 GIOA[5]
EVENT6 0111 GIOA[6]
EVENT7 1000 GIOA[7]
EVENT8 1001 N2HET1[8]
EVENT9 1010 N2HET1[10]
EVENT10 1011 N2HET1[12]
EVENT11 1100 N2HET1[14]
EVENT12 1101 N2HET1[16]
EVENT13 1110 N2HET1[18]
EVENT14 1111 Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
138 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
NOTE
For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin + selecting the pin to be a GIOx pin, or by driving the
GIOx pin from an external trigger source. If the mux control module is used to select different
functionality instead of the GIOx signal, then care must be taken to disable GIOx from
triggering MibSPI5 transfers; there is no multiplexing on the input connections.
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 139
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.9.4 MibSPI/SPI Master Mode I/O Timing Specifications
Table 5-21. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO
= output, and SPISOMI = input)(1)(2)(3)
NO. Parameter MIN MAX Unit
1 tc(SPC)M Cycle time, SPICLK(4) 40 256tc(VCLK) ns
2(5) tw(SPCH)M Pulse duration, SPICLK high (clock 0.5tc(SPC)M tr(SPC)M 3 0.5tc(SPC)M + 3 ns
polarity = 0)
tw(SPCL)M Pulse duration, SPICLK low (clock 0.5tc(SPC)M tf(SPC)M 3 0.5tc(SPC)M + 3
polarity = 1)
3(5) tw(SPCL)M Pulse duration, SPICLK low (clock 0.5tc(SPC)M tf(SPC)M 3 0.5tc(SPC)M + 3 ns
polarity = 0)
tw(SPCH)M Pulse duration, SPICLK high (clock 0.5tc(SPC)M tr(SPC)M 3 0.5tc(SPC)M + 3
polarity = 1)
4(5) td(SPCH-SIMO)M Delay time, SPISIMO valid before 0.5tc(SPC)M 5 ns
SPICLK low (clock polarity = 0)
td(SPCL-SIMO)M Delay time, SPISIMO valid before 0.5tc(SPC)M 5
SPICLK high (clock polarity = 1)
5(5) tv(SPCL-SIMO)M Valid time, SPISIMO data valid after 0.5tc(SPC)M tf(SPC) 3 ns
SPICLK low (clock polarity = 0)
tv(SPCH-SIMO)M Valid time, SPISIMO data valid after 0.5tc(SPC)M tr(SPC) 3
SPICLK high (clock polarity = 1)
6(5) tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK 0.5tf(SPC) + 2 ns
low (clock polarity = 0)
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK 0.5tf(SPC) + 2
high (clock polarity = 1)
7(5) th(SPCL-SOMI)M Hold time, SPISOMI data valid after 5 ns
SPICLK low (clock polarity = 0)
th(SPCH-SOMI)M Hold time, SPISOMI data valid after 5
SPICLK high (clock polarity = 1)
8(6) tC2TDELAY Setup time CS active CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) (C2TDELAY+2) * tc(VCLK) - ns
until SPICLK high - tf(SPICS) + tr(SPC) 15 tf(SPICS) + tr(SPC) + 3
(clock polarity = 0) CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) (C2TDELAY+3) * tc(VCLK) -
- tf(SPICS) + tr(SPC) 15 tf(SPICS) + tr(SPC) + 3
Setup time CS active CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) (C2TDELAY+2) * tc(VCLK) - ns
until SPICLK low - tf(SPICS) + tf(SPC) 15 tf(SPICS) + tf(SPC) + 3
(clock polarity = 1) CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) (C2TDELAY+3) * tc(VCLK) -
- tf(SPICS) + tf(SPC) 15 tf(SPICS) + tf(SPC) + 3
9(6) tT2CDELAY Hold time SPICLK low CS until inactive 0.5*tc(SPC)M + 0.5*tc(SPC)M + ns
(clock polarity = 0) T2CDELAY*tc(VCLK) + tc(VCLK) - T2CDELAY*tc(VCLK) + tc(VCLK) -
tf(SPC) + tr(SPICS) - 5 tf(SPC) + tr(SPICS) + 8
Hold time SPICLK high until CS 0.5*tc(SPC)M + 0.5*tc(SPC)M + ns
inactive (clock polarity = 1) T2CDELAY*tc(VCLK) + tc(VCLK) - T2CDELAY*tc(VCLK) + tc(VCLK) -
tr(SPC) + tr(SPICS) - 5 tr(SPC) + tr(SPICS) + 8
10 tSPIENA SPIENAn Sample point (C2TDELAY+1) * tc(VCLK) - (C2TDELAY+1)*tc(VCLK) ns
tf(SPICS) 25
11 tSPIENAW SPIENAn Sample point from write to (C2TDELAY+2)*tc(VCLK) ns
buffer
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance"table.
(4) When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns.
The external load on the SPICLK pin must be less than 60pF.
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
140 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
SPISOMI
SPISIMO
SPICLK
(clock polarity = 1)
SPICLK
(clock polarity = 0)
Master In Data
Must Be Valid
Master Out Data Is Valid
3
2
1
54
66
7
SPICLK
(clock polarity=0)
SPISIMO
SPICSn
Master Out Data Is Valid
9
SPICLK
(clock polarity=1)
SPIENAn
10
Write to buffer
11
8
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 5-9. SPI Master Mode External Timing (CLOCK PHASE = 0)
Figure 5-10. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 141
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 5-22. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO
= output, and SPISOMI = input)(1)(2)(3)
NO. Parameter MIN MAX Unit
1 tc(SPC)M Cycle time, SPICLK (4) 40 256tc(VCLK) ns
2(5) tw(SPCH)M Pulse duration, SPICLK high (clock 0.5tc(SPC)M tr(SPC)M 3 0.5tc(SPC)M + 3 ns
polarity = 0)
tw(SPCL)M Pulse duration, SPICLK low (clock 0.5tc(SPC)M tf(SPC)M 3 0.5tc(SPC)M + 3
polarity = 1)
3(5) tw(SPCL)M Pulse duration, SPICLK low (clock 0.5tc(SPC)M tf(SPC)M 3 0.5tc(SPC)M + 3 ns
polarity = 0)
tw(SPCH)M Pulse duration, SPICLK high (clock 0.5tc(SPC)M tr(SPC)M 3 0.5tc(SPC)M + 3
polarity = 1)
4(5) tv(SIMO-SPCH)M Valid time, SPICLK high after 0.5tc(SPC)M 5 ns
SPISIMO data valid (clock polarity =
0)
tv(SIMO-SPCL)M Valid time, SPICLK low after 0.5tc(SPC)M 5
SPISIMO data valid (clock polarity =
1)
5(5) tv(SPCH-SIMO)M Valid time, SPISIMO data valid after 0.5tc(SPC)M tr(SPC) 3 ns
SPICLK high (clock polarity = 0)
tv(SPCL-SIMO)M Valid time, SPISIMO data valid after 0.5tc(SPC)M tf(SPC) 3
SPICLK low (clock polarity = 1)
6(5) tsu(SOMI-SPCH)M Setup time, SPISOMI before tr(SPC) ns
SPICLK high (clock polarity = 0)
tsu(SOMI-SPCL)M Setup time, SPISOMI before tf(SPC)
SPICLK low (clock polarity = 1)
7(5) tv(SPCH-SOMI)M Valid time, SPISOMI data valid after 5 ns
SPICLK high (clock polarity = 0)
tv(SPCL-SOMI)M Valid time, SPISOMI data valid after 5
SPICLK low (clock polarity = 1)
8(6) tC2TDELAY Setup time CS CSHOLD = 0 0.5*tc(SPC)M + 0.5*tc(SPC)M + ns
active until SPICLK (C2TDELAY+2) * tc(VCLK) - (C2TDELAY+2) * tc(VCLK) -
high (clock polarity = tf(SPICS) + tr(SPC) 15 tf(SPICS) + tr(SPC) + 3
0) CSHOLD = 1 0.5*tc(SPC)M + 0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) - (C2TDELAY+3) * tc(VCLK) -
tf(SPICS) + tr(SPC) 15 tf(SPICS) + tr(SPC) + 3
Setup time CS CSHOLD = 0 0.5*tc(SPC)M + 0.5*tc(SPC)M + ns
active until SPICLK (C2TDELAY+2) * tc(VCLK) - (C2TDELAY+2) * tc(VCLK) -
low (clock polarity = tf(SPICS) + tf(SPC) 15 tf(SPICS) + tf(SPC) + 3
1) CSHOLD = 1 0.5*tc(SPC)M + 0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) - (C2TDELAY+3) * tc(VCLK) -
tf(SPICS) + tf(SPC) 15 tf(SPICS) + tf(SPC) + 3
9(6) tT2CDELAY Hold time SPICLK low CS until T2CDELAY*tc(VCLK) + T2CDELAY*tc(VCLK) + ns
inactive (clock polarity = 0) tc(VCLK) - tf(SPC) + tr(SPICS) - tc(VCLK) - tf(SPC) + tr(SPICS) +
4 8
Hold time SPICLK high until CS T2CDELAY*tc(VCLK) + T2CDELAY*tc(VCLK) + ns
inactive (clock polarity = 1) tc(VCLK) - tr(SPC) + tr(SPICS) - tc(VCLK) - tr(SPC) + tr(SPICS) +
4 8
10 tSPIENA SPIENAn Sample Point (C2TDELAY+1)* tc(VCLK) - (C2TDELAY+1)*tc(VCLK) ns
tf(SPICS) 25
11 tSPIENAW SPIENAn Sample point from write to (C2TDELAY+2)*tc(VCLK) ns
buffer
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance"table.
(4) When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns.
The external load on the SPICLK pin must be less than 60pF.
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
142 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
SPISOMI
SPISIMO
SPICLK
(clock polarity = 1)
SPICLK
(clock polarity = 0)
Data Valid
Master In Data
Must Be Valid
Master Out Data Is Valid
3
2
1
5
4
7
6
SPICLK
(clock polarity=0)
SPISIMO
SPICSn
Master Out Data Is Valid
9
SPICLK
(clock polarity=1)
SPIENAn
10
Write to buffer
11
8
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 5-11. SPI Master Mode External Timing (CLOCK PHASE = 1)
Figure 5-12. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 143
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.9.5 SPI Slave Mode I/O Timings
Table 5-23. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =
input, and SPISOMI = output)(1)(2)(3)(4)
NO. Parameter MIN MAX Unit
1 tc(SPC)S Cycle time, SPICLK(5) 40 256tc(VCLK) ns
2(6) tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 ns
tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14
3(6) tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 ns
tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14
4(6) td(SPCH-SOMI)S Delay time, SPISOMI valid after SPICLK high (clock trf(SOMI) + 18 ns
polarity = 0)
td(SPCL-SOMI)S Delay time, SPISOMI valid after SPICLK low (clock polarity trf(SOMI) + 18
= 1)
5(6) th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock 2 ns
polarity =0)
th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock 2
polarity =1)
6(6) tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 2 ns
0)
tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 2
1)
7(6) th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock 2 ns
polarity = 0)
th(SPCH-SIMO)S Hold time, SPISIMO data valid after S PICLK high (clock 2
polarity = 1)
8 td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) ns
polarity = 0)
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high (clock 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn)
polarity = 1)
9 td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data tf(ENAn) tc(VCLK)+tf(ENAn)+1 ns
has been written to the SPI buffer) 4
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance"table.
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
(5) When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
144 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
SPISOMI
SPICLK
(clockpolarity=1)
SPICLK
(clockpolarity=0)
3
2
1
5
4
7
SPISIMOData
MustBeValid
SPISOMIDataIsValid
666
SPISIMO
SPICLK
(clock polarity=0)
SPICSn
8
SPICLK
(clock polarity=1)
SPIENAn
9
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 5-13. SPI Slave Mode External Timing (CLOCK PHASE = 0)
Figure 5-14. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 145
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
Table 5-24. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =
input, and SPISOMI = output)(1)(2)(3)(4)
NO. Parameter MIN MAX Unit
1 tc(SPC)S Cycle time, SPICLK(5) 40 256tc(VCLK) ns
2(6) tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 ns
tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14
3(6) tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 ns
tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14
4(6) td(SOMI-SPCL)S Dealy time, SPISOMI data valid after SPICLK low trf(SOMI) + 18 ns
(clock polarity = 0)
td(SOMI-SPCH)S Delay time, SPISOMI data valid after SPICLK high trf(SOMI) + 18
(clock polarity = 1)
5(6) th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK high 2 ns
(clock polarity =0)
th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock 2
polarity =1)
6(6) tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock 2 ns
polarity = 0)
tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity 2
= 1)
7(6) tv(SPCH-SIMO)S High time, SPISIMO data valid after SPICLK high 2 ns
(clock polarity = 0)
tv(SPCL-SIMO)S High time, SPISIMO data valid after SPICLK low (clock 2
polarity = 1)
8 td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) ns
(clock polarity = 0)
td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn)
polarity = 1)
9 td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data tf(ENAn) tc(VCLK)+tf(ENAn)+14 ns
has been written to the SPI buffer)
10 td(SCSL-SOMI)S Delay time, SOMI valid after SPICSn low (if new data tc(VCLK) 2tc(VCLK)+trf(SOMI)+8 ns
has been written to the SPI buffer)
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance"table.
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
(5) When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
146 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
SPISIMO
SPISOMI
5
7
SPISIMO Data
Must Be Valid
SPISOMI Data Is Valid
666
SPICLK
(clock polarity = 1)
SPICLK
(clock polarity = 0)
3
2
1
4
SPISOMI Slave Out Data Is Valid
SPICLK
(clock polarity=0)
SPICSn
8
SPICLK
(clock polarity=1)
SPIENAn
9
10
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 5-15. SPI Slave Mode External Timing (CLOCK PHASE = 1)
Figure 5-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 147
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
1 2
MII_MRCLK
MII_MRXD
MII_MRXDV
MII_MRXER
VALID
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.10 Ethernet Media Access Controller
The Ethernet Media Access Controller (EMAC) provides an efficient interface between RM4x and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QoS) support.
The EMAC controls the flow of packet data from the RM4x device to the PHY. The MDIO module controls
PHY configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the RM4x device through a custom interface that
allows efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
5.10.1 Ethernet MII Electrical and Timing Specifications
Figure 5-17. MII Receive Timing
Table 5-25. MII Receive Timing
Parameter Description MIN MAX
tsu(GMIIMRXD) Setup time, GMIIMRXD to GMIIMRCLK rising edge 8ns
tsu(GMIIMRXDV) Setup time, GMIIMRXDV to GMIIMRCLK rising edge 8ns
tsu(GMIIMRXER) Setup time, GMIIMRXER to GMIIMRCLK rising edge 8ns
th(GMIIMRXD) Hold time, GMIIMRXD valid after GMIIRCLK rising 8ns
edge
th(GMIIMRXDV) Hold time, GMIIMRXDV valid after GMIIRCLK rising 8ns
edge
th(GMIIMRXER) Hold time, GMIIMRXDV valid after GMIIRCLK rising 8ns
edge
148 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
1
MII_MTCLK
MII_MTXD
MII_MTXEN VALID
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
Figure 5-18. MII Transmit Timing
Table 5-26. MII Transmit Timing
Parameter Description MIN MAX
td(GMIIMTXD) Delay time, GMIIMTCLK rising edge to GMIIMTXD 5ns 25ns
td(GMIIMTXEN) Delay time, GMIIMTCLK rising edge to GMIIMTXEN 5ns 25ns
Copyright ©2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 149
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
3
MDCLK
MDIO
(input)
1
3
4
5
MDCLK
MDIO
(output)
1
7
TMS570LS3134
TMS570LS2134
TMS570LS2124
SPNS165SEPTEMBER 2011
www.ti.com
5.10.2 Management Data Input/Output (MDIO)
Figure 5-19. MDIO Input Timing
Table 5-27. MDIO Input Timing Requirements
NO. Parameter Value Unit
MIN MAX
1 tc(MDCLK) Cycle time, MDCLK 400 - ns
2 tw(MDCLK) Pulse duration, MDCLK high/low 180 - ns
3 tt(MDCLK) Transition time, MDCLK - 5 ns
4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK 10 - ns
High
5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK 10 - ns
High
Figure 5-20. MDIO Output Timing
Table 5-28. MDIO Output Timing Requirements
NO. Parameter Value Unit
MIN MAX
1 tc(MDCLK) Cycle time, MDCLK 400 - ns
7 td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output 0 100 ns
valid
150 Peripheral Information and Electrical Specifications Copyright ©2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PRODUCTPREVIEW
TMS570LS3134
TMS570LS2134
TMS570LS2124
www.ti.com
SPNS165SEPTEMBER 2011
6 Mechanical Data
6.1 Thermal Data
Table 6-1 shows the thermal resistance characteristics for the QFP - PGE mechanical package.
Table 6-2 shows the thermal resistance characteristics for the BGA - ZWT mechanical package.
Table 6-1. Thermal Resistance Characteristics
(PGE Package)
PARAMETER °C / W
RΘJA 45
RΘJC 5
Table 6-2. Thermal Resistance Characteristics
(ZWT Package)
PARAMETER °C / W
RΘJA 18.8
RΘJC 7.1
6.2 Packaging Information
The following packaging information reflects the most current released data available for the designated
device(s). This data is subject to change without notice and without revision of this document.
Copyright ©2011, Texas Instruments Incorporated Mechanical Data 151
Submit Documentation Feedback
focus.ti.com: TMS570LS3134 TMS570LS2134 TMS570LS2124
PACKAGE OPTION ADDENDUM
www.ti.com 29-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TMS5702124BPGEQQ1 PREVIEW LQFP PGE 144 60 TBD Call TI Call TI
TMS5702124BZWTQQ1 PREVIEW NFBGA ZWT 337 90 TBD Call TI Call TI
TMS5702134BPGEQQ1 PREVIEW LQFP PGE 144 60 TBD Call TI Call TI
TMS5702134BZWTQQ1 PREVIEW NFBGA ZWT 337 90 TBD Call TI Call TI
TMS5703134BPGEQQ1 PREVIEW LQFP PGE 144 60 TBD Call TI Call TI
TMX5703134BPGEQQ1 ACTIVE LQFP PGE 144 1 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
MECHANICAL DATA
MTQF017AOCTOBER 1994 – REVISED DECEMBER 1996
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PGE (S-PQFP-G144) PLASTIC QUAD FLATPACK
4040147/C 10/96
0,27
72
0,17
37
73
0,13 NOM
0,25
0,75
0,45
0,05 MIN
36
Seating Plane
Gage Plane
108
109
144
SQ
SQ
22,20
21,80
1
19,80
17,50 TYP
20,20
1,35
1,45
1,60 MAX
M
0,08
0°–7°
0,08
0,50
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated