NCP1937
www.onsemi.com
14
DETAILED OPERATING DESCRIPTION
Introduction
The NCP1937 is a combination critical mode (CrM)
power factor correction (PFC) and quasi−resonant (QR)
flyback controller optimized for off−line adapter
applications. This device includes all the features needed to
implement a highly efficient adapter with extremely low
input power in no−load conditions.
This device reduces standby input power by integrating an
active input filter capacitor discharge circuit and
disconnecting the PFC feedback resistor divider when the
PFC is disabled.
High Voltage Startup Circuit
The NCP1937 integrates two high voltage startup circuits
accessible by the HV_X2 and BO_X2 pins. The startup
circuits are also used for input filter capacitor discharge. The
BO_X2 input is also used for monitoring the ac line voltage
and detecting brown−out faults. The startup circuits are
rated at a maximum voltage of 700 V.
A startup regulator consists of a constant current source
that supplies current from the ac input terminals (Vin) to the
supply capacitor on the VCC pin (CCC). The startup circuit
currents (Istart2A/B) are typically 3.75 mA. Istart2A/B are
disabled if the VCC pin is below VCC(inhibit). In this
condition the startup current is reduced to Istart1A/B,
typically 0.5 mA. The internal high voltage startup circuits
eliminate the need for external startup components. In
addition, these regulators reduce no load power and increase
the system efficiency as they use negligible power in the
normal operation mode.
Once CCC is charged to the startup threshold, VCC(on),
typically 17 V, the startup regulators are disabled and the
controller is enabled. The startup regulators remain disabled
until VCC falls below the minimum operating voltage
threshold, VCC(off), typically 8.8 V. Once reached, the PFC
and flyback controllers are disabled reducing the bias
current consumption of the IC. Both startup circuits are then
enabled allowing VCC to charge back up.
In power savings mode VCC is regulated by enabling the
startup circuits once the supply voltage decays below
VCC(PS_on), typically 11 V. The startup circuit is disabled
once VCC exceeds VCC(PS_on). This provides enough
headroom from VCC(off) to maintain a supply voltage and
allow the controller to detect the line voltage removal in
order to discharge the input filter capacitor(s). In this mode,
the supply capacitor is charged by the startup circuit on the
HV_X2 and BO_X2 pins once the voltage on these pin
exceeds 30 V, typically. This reduces the average voltage
during which the startup circuit is enabled reducing power
consumption. Both startup circuits are enabled once the
controller exits power savings mode in order to quickly
charge V CC. A new startup sequence commences once VCC
reaches VCC(on).
A dedicated comparator monitors VCC when the QR stage
is enabled and latches off the controller if VCC exceeds
VCC(OVP), typically 28 V.
The controller is disabled once a fault is detected. The
controller will restart the next time VCC reaches VCC(on) and
all non−latching faults have been removed.
The supply capacitor provides power to the controller
during power up. The capacitor must be sized such that a
VCC voltage greater than VCC(off) is maintained while the
auxiliary supply voltage is building up. Otherwise, VCC will
collapse and the controller will turn off. The operating IC
bias current, ICC4, and gate charge load at the drive outputs
must be considered to correctly size CCC. The increase in
current consumption due to external gate charge is
calculated using Equation 1.
ICC(gate charge) +f@QG(eq. 1)
where f i s the operating frequency and QG is the gate char ge
of the external MOSFETs.
Line Voltage Sense
The BO/X2 pin provides access to the brown−out and line
voltage detectors. It also provides access to the input filter
capacitor discharge circuit. The brown−out detector detects
mains interruptions and the line voltage detector determines
the presence of either 1 10 V or 220 V ac mains. Depending
on the detected input voltage range device parameters are
internally adjusted to optimize the system performance.
This pin connects to either line or neutral to achieve
half−wave rectification as shown in Figure 3. A diode is used
to prevent the pin from going below ground. A resistor in
series with the BO/X2 pin can be used for protection, but a
low value (< 3 kW) resistor should be used to reduce the
voltage offset while sensing the line voltage.
Figure 3. Brown−out and Line Voltage Detectors
Configuration
The flyback stage is enabled once VBO_X2 is above the
brown−out threshold, VBO(start), and VCC reaches VCC(on).
The high voltage startups are immediately enabled when the
voltage on VBO_X2 crosses over the brown−out start
threshold, V BO(start), to ensure that device is enabled quickly
upon exiting a brown−out state. Figure 4 shows typical
power up waveforms.