Exar
Corporation 48720 Kato Road, Fremont CA, 94538
(510) 668-7000
FAX (510) 668-7017
www.exar.com
XR16M680
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
SEPTEMBER 2008 REV. 1.0.0
GENERAL DESCRIPTION
The XR16M6801 (M680) is an enhanced Universal
Asynchronous Receiver and Transmitter (UART) with
32 bytes of transmit and receive FIFOs, selectable
transmit and receive FIFO trigger levels, automatic
hardware and software flow control, and data rates of
up to 16 Mbps at 3.3V, 12.5 Mbps at 2.5V and 7.5
Mbps at 1.8V with 4X data sampling rate.
The Auto RS-485 Half-Duplex Direction control
feature simp lifies both the hardware and software for
half-duplex RS-485 applications. In addition, the
Multidrop mode with Auto Address detection
increases the performance by simplifying the
softwar e routines.
The Independent TX/RX Baud Rate Generator
feature allows the transmitter and receiver to operate
at different baud rates. Power consumption of the
M680 can be minimized by enabling the sleep mode
and PowerSave mode.
The M680 has a 16550 compatible register set that
provide users with operating status and control,
receiver error indications, and modem serial interface
controls. An internal loopback capability allows
onboard diagnostics. The M680 is available in 32-pin
QFN, 48-pin TQFP and 25-pin BGA packages. All
three packages offer both the 16 mode (Intel bus)
interface and the 68 mode (Motorola bus) interface
which allows easy integration with Motorola
processors.
N
OTE
:
1 Covered by U.S. Patent #5,649,122.
FEATURES
Pin-to-pin compatible with XR16L580 in 32-QFN
and 48-TQFP packages
Intel or Motorola Bus Interface select
16Mbps maximum data rate
Selectable TX/RX trigger levels
TX/RX FIFO Level Counters
Independent TX/RX Baud Rate Generator
Fractional Baud Rate Generator
Auto RTS/CTS Hardware Flow Control
Auto XON/XOFF Software Flow Control
Auto RS-485 Half-Duplex Direction Control
Multidrop mode w/ Auto Address Detect
Sleep Mode with Automatic Wake-up
PowerSave mode
Infrared (IrDA 1.0 and 1.1) mode
1.62V to 3.63V supply operation
Crystal oscillator or external clock input
APPLICATIONS
Personal Digital Assistants (PDA)
Cellular Phones/Data Devices
Battery-Operated Devices
Global Positioning Syst em (G PS)
Bluetooth
FIGURE 1. XR16M680 BLOCK DIAGRAM
VCC
XTAL1
XTAL2
C ry s ta l Osc /Buffer
TX, RX,
RTS#, CTS#,
DTR#, DSR#,
In te l or
Motorola
D a ta B us
Interface
UART
32 Byte RX FIFO
BRG
IR
ENDEC
TX &
RX
UART
Regs
A2:A0
PwrSave
32 Byte TX FIFO
RI#, CD#
RESET
(RESET#)
D7:D0
IO W# (R /W#)
CS#
IN T (IR Q#)
IOR#
GND
(1.62 to 3.63 V)
16/68#
XR16M680
2
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
FIGURE 2. PIN OUT ASSIGNMENT FOR 32-PIN QFN AND 48-PIN TQFP PACKAGES IN 16 AND 68 MODE
12345678
24 23 22 21 20 19 18 17
VCC
32
31
30
29
28
27
26
25
11
12
13
14
15
16
9
10 1
2
#
#
11
12
13
14
15
16
9
10 XTAL 1
XTAL 2
R/W#
GND
IOR#
PwrSave
NC
NC
GND
RI#
D3
D2
D1
D0
VCC
DSR#
CD#
XTAL
XTAL
IOW
GND
IOR
PwrSave
NC
NC
D6
D7
RX
TX
CS
D4
D5
16/68#
32- pin QF N in
Intel Bus Mode
RESET
RTS#
INT
DTR#
A0
A1
A2
CTS#
RI#
D3
D2
D1
D0
VCC
DSR#
CD#
32
31
30
29
28
27
26
25
24 23 22 21 20 19 18 17
RESET#
RTS#
IRQ#
DTR#
A0
A1
A2
CTS#
32-pin QFN in
Motorola Bus
Mode
12345678
D6
D7
RX
TX
CS#
D4
D5
16/68#
VCC
36 35 34 33 32 31 30 29 28 2 7 26 25
24
23
22
21
20
19
18
17
16
15
14
13
37
38
39
40
41
42
43
44
45
46
47
48
48-TQFP in
Motorola Bus Mode
1 2 3 4 5 6 7 8 9 10 11 12
36 35 34 33 32 31 30 29 28 27 26 25
37
38
39
40
41
42
43
44
45
46
47
48
48-TQFP in
Intel Bus Mode
VCC GND
1 2 3 4 5 6 7 8 9 10 11 12
RESET
NC
DTR#
RTS#
NC
INT
NC
A0
A1
A2
NC
NC
24
23
22
21
20
19
18
17
16
15
14
13
NC
NC
CTS#
DSR#
CD#
RI#
VCC
D0
D1
D2
D3
D4
D5
D6
D7
NC
NC
RX
TX
NC
NC
CS#
NC
16/68# RESET#
NC
DTR#
RTS#
NC
IRQ#
NC
A0
A1
A2
NC
NC
D5
D6
D7
NC
NC
RX
TX
NC
NC
CS#
16/68#
NC
NC
NC
CTS#
DSR#
CD#
RI#
VCC
D0
D1
D2
D3
D4
NC
NC
NC
NC
IOR#
GND
NC
IOW#
XTAL2
XTAL1
PwrSave
NC
NC
NC
NC
NC
IOR#
GND
NC
R/W#
XTAL2
XTAL1
PwrSave
NC
VCC
XR16M680
3
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
FIGURE 3. PIN OUT ASSIGNMENT FOR 25-PIN BGA PACKAGE
ORDERING INFORMATION
P
ART
N
UMBER
P
ACKAGE
O
PERATING
T
EMPERATURE
R
ANGE
D
EVICE
S
TATUS
XR16M680IL32 32-pin QFN -40°C to +85°C Active
XR16M680IM48 48-Lead TQFP -40°C to +85°C Active
XR16M680IB25 25-Pin BGA -40°C to +85°C Active
1 2 3 4 5
A
B
C
D
E
Transparent Top View
A1 Corner
CTS# RESET INT A1 A2
VCC 16/68# RTS# A0 IOR#
D0 D6 D7 PwrSave IOW#
D3 D1 TX CS# XTAL1
D4 D2 D5 RX GND
XR16M680
4
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
PIN DESCRIPTIONS
Pin Description
N
AME
32-QFN
P
IN
#48-TQFP
PIN# 25-BGA
P
IN
#T
YPE
D
ESCRIPTION
DATA BUS INTERFACE
A2
A1
A0
17
18
19
26
27
28
A5
A4
B4
IAddress lines [2:0]. These 3 address lines select the internal regis-
ters in UART channel during a data bus transaction.
D7
D6
D5
D4
D3
D2
D1
D0
5
4
3
1
32
31
30
29
4
3
2
47
46
45
44
43
C3
C2
E3
E1
D1
E2
D2
C1
I/O Data bus lines [7:0] (bidirectional).
IOR# 14 19 B5 IWhen 16/68# pin is at logic 1, the Intel bus interface is selected and
this input becomes read strobe (active low). The falling edge insti-
gates an internal read cycle and retri eves the data byte from an
internal register pointed by the address lines [A2:A0], puts the data
byte on the data bus to allow the host processor to read it on the ris-
ing edge.
When 16/68# pin is at logic 0, the Motorola bus interface is selected
and this input should be connected to VCC.
IOW#
(R/W#) 12 16 C5 IWhen 16/68# pin is at logic 1, it selects Intel bus interface and this
input becomes write strobe (active low). The falling edge instigates
the internal write cycle and the rising edge transfers the data byte
on the data bus to an internal register pointed by the address lines.
When 16/68# pin is at logic 0, the Motorola bus interface is selected
and this input becomes read (logic 1) and write (logic 0) signal .
CS# 811 D4 IThis input is chip select (active low) to enable the devi ce.
INT
(IRQ#) 20 30 A3 O
(OD) When 16/68# pin is at logic 1 for Intel bus interface, this output
become the active high device interrupt output. The output state is
defined by the user through the software setting of MCR[3]. INT is
set to the active mode when MCR[3] is set to a logic 1. INT is set to
the three state mode when MCR[3] is set to a logic 0. See MCR[3].
When 16/68# pin is at logic 0 for Motorola bus interface, this output
becomes the active low device interrup t ou tput (open drain). An
external pull-up resistor is required for proper operation.
MODEM OR SERIAL I/O INTERFACE
TX 7 8 D3 OUART Transmit Data or infrared encoder data. Standard transmit
and receive interface is enabled when MCR[6] = 0. In this mode,
the TX signal will be a logic 1 during reset or idle (no data). Infrared
IrDA transmit and receive interface is enabled when MCR[6] = 1. In
the Infrared mode, the inactive state (no data) for the Infrared
encoder/decoder interface is a logic 0. If it is not used, leave it
unconnected.
XR16M680
5
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
RX 6 7 E4 IUART Receive Data or infrared receive data. Normal receive data
input must idle at logic 1 condition. The infrared receiver idles at
logic 0. This input should be connected to VCC when not used.
RTS# 21 32 B3 OUART Request-to-Send (active low) or gene ral purpose output.
This output must be asserted prior to using auto RTS flow control,
see EFR[6], MCR[1] and IER[6].
CTS# 24 38 A1 IUART Clear-to-Send (active low) or general purpose input. It can
be used for auto CTS flow control, see EFR[7], MSR[4] and IER[7].
This input should be connected to VCC when not used.
DTR# 22 33 - O UART Data -Terminal-Ready (active low) or general purpose output.
DSR# 25 39 - I UART Data-Set-Ready (active low) or general purpose input. This
input should be connected to VCC when not used.
CD# 26 40 - I UART Carrier-Detect (active low) or general purpose input. This
input should be connected to VCC when not used.
RI# 27 41 - I UART Ring-Indicator (active low) or general purpose input. This
input should be connected to VCC when not used.
ANCILLARY SIGNALS
XTAL1 10 14 D5 ICrystal or external clock input.
XTAL2 11 15 - O Crystal or buffered clock output.
PwrSave 913 C4 IPower-Save (active high). This feature isolates the M680’s data bus
interface from the host preventing other bus activities that cause
higher power drain during slee p mode. See Sleep Mode with Auto
W ake-up and Power-Save Feature section for details. This pin does
not have an internal pull-down resistor. This input should be con-
nected to GND when not used.
16/68# 2 1 B2 IIntel or Motorola Bus Select. When 16/68# pin is at logic 1, 16 or
Intel Mode, the device will operate in the Intel bus type of interfa c e.
When 16/68# pin is at logic 0, 68 or Motorola mode, the device will
operate in the Moto rola bus type of interface. This pin does not
have an internal pull-up or pull-down resistor.
RESET
(RESET#) 23 35 A2 IWhen 16/68# pin is at logic 1 for Intel bus interface, this inp ut
becomes RESET (active high). When 16/68# pin is at logic 0 for
Motorola bus interface, this input becomes RESET# (active low).
A 40 ns minimum active pulse on this pin will reset th e internal reg-
isters and all outputs of the UART. The UART transmitter output will
be held at logic 1, the receiver input will be ignored and outputs are
reset during reset period (see UART Reset Conditions).
VCC 28 42 B1 Pwr 1.62V to 3.63V power supply.
GND 13 18 E5 Pwr Power supply common, ground.
GND Center
Pad - - Pwr The center pad on the backside of the QFN package is metallic and
should be connected to GND on the PCB. The thermal pad size on
the PCB should be the approximate size of this center pad and
should be solder mask defined. The solder mask opening should be
at least 0.0025" inwards from the edge of the PCB thermal pad.
Pin Description
N
AME
32-QFN
P
IN
#48-TQFP
PIN# 25-BGA
P
IN
#T
YPE
D
ESCRIPTION
XR16M680
6
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
Pin type: I=Input, O=Ou tput, I/O= Input/ou t pu t, OD=Output Open Drain .
NC 15, 16 5, 6, 9,
10, 12,
17, 20-
25, 29,
31, 34,
36, 37, 48
--No Connects.
Pin Description
N
AME
32-QFN
P
IN
#48-TQFP
PIN# 25-BGA
P
IN
#T
YPE
D
ESCRIPTION
XR16M680
7
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
1.0 PRODUCT DESCRIPTION
The XR16M680 (M680) is a high performance single channel UART. It has its set of device configuration
registers. The configuration registers set is 16550 UART compatible for control, status and data transfer.
Additionally, the M680 channel has 32 bytes of transmit and receive FIFOs, Automatic RTS/CTS Hardware
Flow Control, Automat ic Xon/Xof f and Special Character Sof tware Flow Control, infrared en coder and de coder
(IrDA ver 1.0 and 1.1), programmable fractional baud rate generator with a prescaler of divide by 1 or 4, and
data rate up to 16 Mbps. The XR16M680 can operate from 1.62 to 3.63 volts. The M680 is fabricated with an
advanced CMOS process.
Larger FIFO
The M680 provides a soluti on that supp ort s 32 bytes of transmit and re ceive FIFO memory, instead of 16 bytes
in the XR16L580. The M680 is designed to work with high performance data communication systems, that
requires fast data processing time. Increased performance is realized in the M680 by the larger transmit and
receive FIFOs, FIFO trigger level control and automatic flow control mechanism. This allows the external
processor to handle more networking tasks within a given time. For example, the XR16L580 with a 16 byte
FIFO, unloads 16 bytes of receive data in 1.53 ms (This example uses a character length of 11 bits, including
start/stop bits at 115.2Kbps). This means the external CPU will have to service the receive FIFO at 1.53 ms
intervals. However with the 32 byte FIFO in the M680, the data buffer will not require unloading/loading for 6.1
ms. This increases the service interval giving the external CPU additional time for other applications and
reducing the overall UART interrupt servicing time. In addition, the selectable FIFO level trigger interrupt and
automatic hardware/software flow control is uniquely provided for maximum data throughput performance
especially when operating in a multi-channel system. The combination of the above greatly reduces the CPU’s
bandwidth requirement, increases performance, and reduces power consumption.
Data Rate
The M680 is capable of operation up to 16 Mbps at 3.3V with 4X internal sampling clock rate. The device can
operate at 3.3V with a 24 MHz crystal on pins XTAL1 and XTAL2, or external clock source of 32 MHz on
XTAL1 pin. With a typical cryst al of 14. 745 6 MHz and th ro ug h a software option, the user can set the pr escaler
bit and sampling rate for data rates of up to 3.68 Mbps.
Enhanced Features
The rich feature set of the M680 is available through the internal registers. Automatic hardware/software flow
control, selectable transmit and receive FIFO trigger levels, selectable baud rates, infrared encoder/decoder,
modem interface controls, and a sleep mode are all standard features. MCR bit-5 provides a facility for turning
off (Xon) software flow cont rol with any incoming (RX) character. The M680 includes new features such as 9-
bit (Multidrop) mode, auto RS-485 half-duplex direction control, different baud rate for TX and RX, fast IR mode
and fractional baud rate generator.
XR16M680
8
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.0 FUNCTIONAL DESCRIPTIONS
2.1 CPU Interface
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and
write transactions. The M680 data interface supports the Intel and Motorola compatible types of CPUs. No
clock (oscillator nor external clock) is required for a data bus transaction. Each bus cycle is asynchronous
using CS#, IOR# and IOW# or R/W# inputs. A typical data bus interconnection for Intel and Motorola mode is
shown in Figure 4.
FIGURE 4. XR16M680 TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS
VCCVCC
A0
A1
A2
UART_CS#
IOR#
IOW#
CS#
IOR#
IOW#
UART_INT INT
Intel Data Bus Interconnections
GND
UART_RESET RESET
16/68#
RI#
CD#
DSR#
CTS#
RTS#
DTR#
RX
TX
PwrSave
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
A0
A1
A2
Serial Transceivers of
RS-232
RS-485
RS-422
Or In frare d
POWERSAVE
VCCVCC
A0
A1
A2
UART_CS#
R/W#
D0
D1
D2
D3
D4
D5
D6
D7 A0
A1
A2
CS#
D0
D1
D2
D3
D4
D5
D6
D7
IOR#
IOW#
UART_IRQ# INT
M otorola Data Bus Interconnections
GND
UART_RESET# RESET
RI#
CD#
DSR#
CTS#
RTS#
DTR#
RX
TX
VCC
16/68#
vcc
POWERSAVE PwrSave
Serial Transceivers of
RS-232
RS-485
RS-422
Or Infrared
XR16M680
9
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
2.2 Serial Interface
The M680 is typically used with RS-232, RS-485 and IR transceivers. The following figure shows typical
connections from the UART to the different transceivers. For more information on RS-232 and RS-485/422
transceivers, go to www.exar.com or send an e-mail to uarttechsupport@exar.com.
FIGURE 5. XR16M680 TYPICAL SERIAL INTERFACE CONNECTIONS
VCC
VCC
RS-485 Full-Duplex Serial Interface
GND
CD#
DSR#
CTS#
DTR#
RTS#
RX
TX DI
RO
UART
RS-485
Transceiver
Full-duplex
TX+
TX-
RX+
RX-
RI#
NC
NC VCC
DE
RE#
VCC
VCCVCC
RS-2 3 2 Full-Mo dem Ser ia l In te r fa c e
GND
RI#
CD#
DSR#
CTS#
RTS#
DTR#
RX
TX T1IN
R1OUT
T2IN
T3IN
R2OUT
R3OUT
R4OUT
R5OUT
GND
UART
RS-232
Transceiver
XR16M680
10
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
FIGURE 6. XR16M680 TYPICAL SERIAL INTERFACE CONNECTIONS
VCC
VCC
RS-485 Half-Duplex Serial Interface
GND
CD#
DSR#
CTS#
DTR#
RTS#
RX
TX DI
RO
UART
RS-485
Transceiver
Half-duplex
Y
Z
A
B
RI#
NC VCC DE
RE#
VCCVCC
Infrared Co nnection
GND
RI#
CD#
DSR#
CTS#
RTS#
DTR#
RX
TX TXD
RXD
UART
IR
Transceiver
VCC
NC
NC
XR16M680
11
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
2.3 Device Reset
The RESET input resets the internal registers and the serial interface outputs to their default state (see
Table 16). An active high pulse of longer than 40 ns duration will be required to activate the reset function in
the device. Following a power-on reset or an external reset, the M680 is software compatible with previous
generation of UARTs, XR16L580 and ST16C550.
2.4 Internal Registers
The M680 has a set of 16550 compatible registers for controlling, monitoring and data loading and unloading.
These registers function as data holding registers (THR/RHR), interrupt status and control registers (ISR/IER),
a FIFO control register (FCR), receive line status and control registers (LSR/LCR), modem status and control
registers (MSR/ MCR), programm able dat a rate (clock) divisor registers (DLL/ DLM/DLD), and a us er accessible
scratchpad register (SPR) .
Beyond the gen eral 16C550 f eature s and ca pa bilities, t he M680 of fers enh anced featu re register s (EFR, Xon 1/
Xoff 1, Xon2/Xoff 2, DLD, FCTR, EMSR and FC) that provide automatic RTS and CTS hardware flow control,
automatic Xon/Xoff software flow control, 9-bit (Multidrop) mode, auto RS-485 half duplex control, different
baud rate for TX and RX and fractional baud rate generator. All the register functions are discussed in full
detail later in “Section 3.0, UART INTERNAL REGISTERS” on page 25.
2.5 INT Ouput
The interrupt outputs change according to the operating mode and enhanced features setup. Table 1 and 2
summarize the operating behavior for the transmitter and receiver. Also see Figure 22 through 25.
N
OTE
: The IRQ# pin requires a pull-up resistor for proper operation.
TABLE 1: INT PIN OPERATION FOR TRANSMITTER
FCR B
IT
-0 = 0 (FIFO D
ISABLED
)FCR B
IT
-0 = 1 (FIFO E
NABLED
)
INT Pin
(16/68# = 1) LOW = One byte in THR
HIGH = THR empty LOW = FIFO above trigger leve l
HIGH = FIFO below trigger level or FIFO empty
IRQ# Pin
(16/68# = 0) HIGH = One byte in THR
LOW = THR empty HIGH = FIFO above trigger level
LOW = FIFO below trigger level or FIFO empty
TABLE 2: INT PIN OPERATION FOR RECEIVER
FCR B
IT
-0 = 0 (FIFO D
ISABLED
)FCR B
IT
-0 = 1 (FIFO E
NABLED
)
INT Pin
(16/68# = 1) HIGH = One byte in RHR
LOW = RHR empty LOW = FIFO below trigger level
HIGH = FIFO above trigger level or RX Data Timeout
IRQ# Pin
(16/68# = 0) LOW = One byte in RHR
HIGH = RHR empty HIGH = FIFO below trigger level
LOW = FIFO above trigger level or RX Data Timeout
XR16M680
12
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.6 Crystal Oscillator or External Clock Input
The M680 includes an on-chip oscillator to produce a clock for the baud rate generators in the device when a
crystal is connect ed between XTAL1 and XTAL2 as show below. The CPU dat a bus does not req uire t his clock
for bus operation. The crystal oscillator provides a system clock to the Baud Rate Generators (BRGs) in the
UART. XTAL1 is the input to the oscillator or external clock buffer input with XTAL2 pin being the output. For
programm ing details, see “Sec tion 2.7, Programmable Baud Ra te Generator with Fractio nal Divisor” on
page 13.
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency
tolerance) connected externally between the XTAL1 and XTAL2 pins. Typical oscillator connections are shown
in Figure 7. Alternatively, an external clock can be connected to the XTAL1 pin to clock th e internal baud rate
generator for standard or custom rates. The BGA package has XTAL1 only, the external clock is required. For
further reading on oscillator circuit, see application note DAN108 on EXAR’s web site.
FIGURE 7. TYPICAL CRYSTAL CONNECTIONS
C1
22-47pF C2
22-47pF
Y1 1.8432 M H z
to
24 MH z
R1
0-120
(Optional)
R2
500K - 1M
XTAL1 XTAL2
XR16M680
13
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
2.7 Programmable Baud Rate Generator with Fractional Divisor
The M680 has independent Baud Rate Generators (BRGs) with prescalers for the transmitter and receiver.
The prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to
divide the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG
further divides this clock by a programmable divisor between 1 and (216 - 0.0625) in increments of 0.0625 (1/
16) to obtain a 16X or 8X or 4X sampling clock of the serial data rate. The sampling clock is used by the
transmitter for data bit s hifting an d receiver for data sampling. For transmitter and receiver, the M680 provides
respective BRG divisors. The BRG divisor (DLL, DLM, and DLD registers) defaults to the value of ’1’ (DLL =
0x01, DLM = 0x0 0 an d DL D = 0 x0 0) up o n re se t. Ther ef or e, th e BRG mu st be pr og ra m me d du ring in itia liza tio n
to the operating data rate. The DLL and DLM registers provide the integer part of the divisor and the DLD
registers provides the fractional part of the divisor. The four lower bits of the DLD are used to select a value
from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming the Baud Rate Generator
Registers DLL, DLM and DLD provides the capability for selecting the operating data rate. Table 3 shows the
standard data rates available with a 24MHz crystal or external clock at 16X clock rate. If the pre-scaler is used
(MCR bit-7 = 1), the output dat a ra te will be 4 times less th an that shown in Table 3. At 8X sampling rate, these
data rates would double. And at 4X sampling rate, they would quadruple. Also, when using 8X sampling mode,
please note th at the bit-time will have a jitter (+/- 1/16 ) whenever the DLD is non-zero and is an odd number.
When using a non-standard data rate crystal or external clock, the divisor value can be calculated with the
following equation(s):
The closest divisor that is obtainable in the M680 can be calculated using the following formula:
In the formulas above, please note that:
TRUNC (N) = Integer Part of N. For example, TRUNC (5.6) = 5.
ROUND (N) = N rounded towards the closest integer. For example, ROUND (7.3) = 7 and ROUND (9.9) = 10.
A >> B indicates right shifting the value ’A’ by ’B’ number of bits. For example, 0x78A3 >> 8 = 0x0078.
2.7.1 Independent TX/RX BRG
The XR16M680 has t wo indepen dent se t s of TX and RX baud rate ge nerator. Please see the Figure 8. TX and
RX can work in different baud rate by setting DLD, DLL and DLM register. For example, TX can transmit data
to the remote UART at 9600 bps while RX receives data from remote UART at 921.6 Kbps. For the baud rate
setting, please See ”Section 4.13, Baud Rate Generator Registers (DLL, DLM and DLD) - Read/Write” on
page 39..
Required Divisor (decimal)=(XTAL1 clock frequency / prescaler) /(serial data rate x 16), with 16X mode, DLD[5:4]=’00’
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8X mode, DLD[5:4] = ’01’
Required Divisor (decimal)= (XTAL1 clock frequency / prescaler / (serial data rate x 4), with 4X mode, DLD[5:4] = ’10’
ROUND( (Required Divisor - TRUNC(Required Divisor) )*16)/16 + TRUNC(Required Divisor), where
DLM = TRUNC(Required Divisor) >> 8
DLL = TRUNC(Required Divisor) & 0xFF
DLD = ROUND( (Required Divisor-TRUNC(Required Divisor) )*16)
XR16M680
14
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
FIGURE 8. BAUD RATE GENERATOR
TABLE 3: TYPICAL DATA RATES WITH A 24 MHZ CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING
Required
Output Data
Rate
D
IVISOR
FOR
16x
Clock
(Decimal)
D
IVISOR
O
BTAINABLE
IN
M680
DLM P
ROGRAM
V
ALUE
(HEX) DLL P
ROGRAM
V
ALUE
(HEX) DLD P
ROGRAM
V
ALUE
(HEX) D
ATA
E
RROR
R
ATE
(%)
400 3750 3750 EA6 0 0
2400 625 625 271 0 0
4800 312.5 312 8/16 138 8 0
9600 156.25 1 56 4/16 09C 4 0
10000 150 150 096 0 0
19200 78.125 78 2/16 04E 2 0
25000 60 60 03C 0 0
28800 52.0833 52 1/16 034 10.04
38400 39.0625 39 1/16 027 1 0
50000 30 30 01E 0 0
57600 26.0417 26 1/16 01A 10.08
75000 20 20 014 0 0
100000 15 15 0 F 0 0
115200 13.0208 13 0 D 0 0.16
153600 9.7656 9 12/16 0 9 C 0.16
200000 7.5 7 8/16 0 7 8 0
225000 6.6667 6 11/16 0 6 B 0.31
230400 6.5104 6 8/16 0 6 8 0.16
250000 66 0 6 0 0
300000 55 0 5 0 0
400000 3.75 3 12/16 0 3 C 0
460800 3.2552 3 4/16 0 3 4 0.16
500000 33 0 3 0 0
750000 22 0 2 0 0
921600 1.6276 1 10/16 0 1 A 0.16
1000000 1.5 1 8/16 0 1 8 0
XTAL1
XTAL2 /
-
(default)
16X or 8X or 4X
Sampling Rate Clock
to Transmitter
Prescaler
Divide by 1
Prescaler
Divide by 4
MCR Bit 7=0
MCR Bit-7=1
Crystal
Osc
Buffer
DLL
DLM
DLD[5:0]
DLL
DLM
DLD[5:0]
16X or 8X or 4X
Sampling Rate Clock
to Receiver
DLD[7]=0
DLD[7]=1
0
1
DLD[6]
XR16M680
15
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
2.8 Transmitter
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 32 bytes of FIFO which
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X/8X/4X
internal clock. A bit time is 16/8/4 clock periods. The transmitter sends the start-bit followed by the number of
data bits, inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are
reported in the Line Status Register (LSR bit-5 and bit-6).
2.8.1 Transmit Holding Register (THR) - Write Only
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input
register to the transmit FIFO of 32 bytes when FIFO operation is enabled by FCR bit-0. Every time a write
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data
location.
2.8.2 Transmitter Operation in non-FIFO Mode
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the
data byt e is transfe rred to TSR. THR flag can ge nerate a transm it empty inter rupt (ISR bit -1) when it is enabled
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.
FIGURE 9. TRANSMITTER OPERATION IN NON-FIFO MODE
Transmit
Holding
Register
(THR)
Transmit Shift Register (TSR)
Data
Byte
L
S
B
M
S
B
THR Interrupt (ISR bit-1)
Enabled by IER bit-1
TXNOFIFO1
16X or 8X or 4X
Clock
( DLD[5:4] )
XR16M680
16
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.8.3 Transmitter Operation in FIFO Mode
The host may fill the transmit FIFO with up to 32 bytes of transmit data. The THR empty flag (LSR bit-5) is set
whenever the FIFO is e mpty. The THR empty flag can gen erate a t ransmit empty int errupt (I SR bit-1) wh en th e
FIFO becomes empty. The transmit empty interrupt is enabled by IER bit-1. The TSR flag (LSR bit-6) is set
when TSR/FIFO becomes empty.
2.9 Receiver
The receiver section contains an 8-bit Receive Shift Register (RSR) and 32 bytes of FIFO which includes a
byte-wide Receive Holding Register (RHR). The RSR uses the 16X/8X/4X clock (DLD[5:4]) for timing. It
verifies and validates every bit on the incoming character in the middle of each data bit. On the falling edge of
a start or false start bit, an inter nal receiver coun ter starts counting at the 1 6X/8X/4X clock rate. After 8 clocks
(or 4 if 8X or 2 if 4X) the start bit period should be at the center of the start bit. At this time the start bit is
sampled and if it is still a logic 0 it is validated. Evaluating the start bit in this manner prevents the receiver from
assembling a false character. The rest of the data bits and stop bits are sampled and validated in this same
manner to pr event f alse framin g. If there were any err or(s), they are r eported in the LSR regist er bits 2-4. Upon
unloading the receive data byte from RHR, the receive FIFO pointer is bumped and the error tags are
immediately updated to reflect the status of the data byte in RHR register. RHR can generate a receive data
ready interrupt upon receiving a character or delay until it reaches the FIFO trigger level. Furthermore, data
delivery to the host is guaranteed by a receive data ready time-out interrupt when data is not received for 4
word lengths as defined by LCR[1:0] plus 12 bits time. This is equivalent to 3.7-4.6 character times. The RHR
interrupt is enabled by IER bit-0. See Figure 11 and Figure 12 below.
2.9.1 Receive Holding Register (RHR) - Read-Only
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive
FIFO of 32 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be re ported in LSR register. When
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data
byte are immediately updated in the LSR bits 2-4.
FIGURE 10. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE
Transmit Data Shift Register
(TSR)
Transmit
D ata B yte THR In ter ru p t (ISR b it-1 ) falls
below the programmed Trigger
Level and then when becomes
empty. FIFO is Enabled by FCR
bit-0=1
Transmit
FIFO
16X or 8X or 4X Clock
(DLD[5:4])
Auto CTS Flow Control (CTS# pin)
Auto Softwar e Flow Control
Flow Control Characters
(Xoff1/2 and Xon1/2 R eg.)
TXFIFO1
XR16M680
17
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
FIGURE 11. RECEIVER OPERATION IN NON-FIFO MODE
FIGURE 12. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE
Receive Data Shift
Register (RSR )
Receive
Da ta B y te
and Errors RH R Inte rrupt (ISR bit-2)
Receive Data
Holding Register
(RHR)
RXFIFO1
16X or 8X or 4X Clock
( DLD[5:4] )
Receive Data Characters
Da ta B it
Validation
Error
Tags in
LSR bits
4:2
Receive Data Shift
Register (R SR )
RXFIFO1
16X or 8X or 4X Clock
( DLD[5:4] )
Error Tags
(32-sets)
Error Tags in
LSR bits 4:2
Receive Data C haracters
D ata B it
Validation
Receive
D a ta F IF O
Receive
Data
Receive Data
B y te and E rr o r s
RH R Interrupt (ISR bit-2) program m ed for
desired FIFO trigger level.
FIFO is Enabled by FCR bit-0=1
RT S# de-asserts when data fills above the flow
control trig ger level to suspend remote transmitter.
Enable by EFR bit-6=1, M C R bit-1.
RT S # re - a s serts wh e n d ata fa lls b e lo w th e flow
contr o l tr ig g e r le v e l to restart re mote tra nsmitte r .
Enable by EFR bit-6=1, MCR bit-1.
32 bytes by 11-bit wide
FIFO
FIFO
Trigger=16
Data f a lls to
8
D a ta fills to
24
Example
: - RX FIFO trigger level selected at 16 bytes
(See Note Below )
XR16M680
18
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.10 Auto RTS (Hardware) Flow Control
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control
features is enab le d to fit sp ec if ic ap plic atio n req uir em e nt (see Figure 13):
Enable auto RTS flow control using EFR bit-6.
The auto R TS function must be st arted by asserting R TS# output pin (MCR bit -1 to logic 1 af ter it is enabled).
If using the Auto RTS interrupt:
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the
RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.
2.11 Auto RTS Hysteresis
With the Auto R TS funct ion enab led, an int errupt is gen erat ed when the r eceive FIFO reaches th e selected RX
trigger level. The RTS# pin will not be forced HIGH (RTS off) until the receive FIFO reaches one trigger level
above the selected trigger level in the trigger table (Table 9). The RTS# pin will return LOW after the RX FIFO
is unloaded to one level below the selected trigger level. Under the above described conditions, the M680 will
continue to accept data until the receive FIFO gets full. The Auto RTS function is initiated when the RTS#
output pin is asserted LOW (RTS On).
2.12 Auto CTS Flow Control
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific
application requirement (see Figure 13):
Enable auto CTS flow control using EFR bit-7.
If needed, the CTS interrupt can be enabled through IER bit-7 (after setting EFR bit-4). The UART issues an
interrupt when the CTS# pin is de-asserted (HIGH): ISR bit-5 will be set to 1, and UART will suspend
TABLE 4: AUTO RTS (HARDWARE) FLOW CONTROL
R
X
T
RIGGER
L
EVEL
INT P
IN
A
CTIVATION
RTS# D
E
-
ASSERTED
(H
IGH
)
(C
HARACTERS
IN
R
X
F
IFO
)RTS# A
SSERTED
(L
OW
)
(C
HARACTERS
IN
R
X
F
IFO
)
8 8 16 0
16 16 24 8
24 24 28 16
28 28 28 24
XR16M680
19
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
transmission as soon as the stop bit of the character in process is shifted out. Transmission is resumed after
the CTS# input is re-asserted (LOW), indicating more data may be sent.
FIGURE 13. AUTO RTS AND CTS FLOW CONTROL OPERATION
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB
with RTSB# and CTSA# controlling the data flow.
RTSA# CTSB#
RXA TXB Transmitter
Receiver FIFO
Trigger Reached
Auto RTS
Trigger Level
Auto CTS
Monitor
RTSA#
TXB
RXA FIFO
CTSB#
Remote UART
UARTB
Local UART
UARTA
ON OFF ON
Suspend Restart
RTS High
Threshold
Data Starts
ON OFF ON
Assert RTS# to Begin
Transmission
1
2
3
4
5
6
7
Receive
Data RTS Low
Threshold
9
10
11
Receiver FIFO
Trigger Reached
Auto RTS
Trigger Level
Transmitter
Auto CTS
Monitor
RTSB#CTSA#
RXBTXA
INTA
(RXA FIFO
Interrupt)
RX FIFO
Trigger Level
RX FIFO
Trigger Level
8
12
RTSCTS1
XR16M680
20
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.13 Auto Xon/Xoff (Software) Flow Control
When software flow control is enabled (See Table 15), the M680 compares one or two sequential receive data
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the
programmed values, the M680 will halt transmission (TX) as soon as the current character has completed
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output
pin will be activated. Following a suspension due to a match of the Xoff character, the M680 will monitor the
receive data stream for a match to the Xon-1,2 character. If a match is found, the M680 will resume operation
and clear the flags (ISR bit-4).
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/
Xoff characters (See Table 15) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters
are selected, the M680 compares two consecutive receive characters with two software flow control 8-bit
values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow
control mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or
FIFO.
In the event that the receive buffer is overfilling and flow control needs to be executed, the M680 automatically
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The M680 sends the
Xoff-1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate)
after the receive FIFO crosses the selected trigger level. To clear this condition, the M680 will transmit the
programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level below the selected
trigger level. Table 5 below explains this.
* Af ter the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2 characters);
for example, after 2.083ms has elapsed for 9600 baud and 10-bit word length setting.
2.14 Special Character Detect
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal
incoming RX data.
The M680 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will
be transferred to the RX FIFO and ISR bit-4 will be set to indicate detection of special character. Although the
Internal Register Table shows Xon , Xoff Registers with eight bits of character information, the actual number of
bits is dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also
determines the number of bits that will be used for the special character comparison. Bit-0 in the Xon, Xoff
Registers corresponds with the LSB bit for the receive character.
2.15 Normal Multidrop Mode
Normal multidrop mode is enabled when MSR[6] = 1 (requires EFR[4] = 1) and EFR[5] = 0 (Special Character
Detect disabled). The receiver is set to Force Parity 0 (LCR[5:3] = ’111’) in order to detect address bytes.
With the receiver initially disabled, it ignores all the data bytes (parity bit = 0) until an address byte is received
(parity bit = 1). This address byte will cause the UART to set the pa rity error. The UART will generate an LSR
TABLE 5: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL
RX T
RIGGER
L
EVEL
INT P
IN
A
CTIVATION
X
OFF
C
HARACTER
(
S
) S
ENT
(
CHARACTERS
IN
RX
FIFO
)X
ON
C
HARACTER
(
S
) S
ENT
(
CHARACTERS
IN
RX
FIFO
)
8 8 8* 0
16 16 16* 8
24 24 24* 16
28 28 28* 24
XR16M680
21
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
interrupt and place the address byte in the RX FIFO. The software then examines the byte and enables the
receiver if the address matches its slave address, otherwise, it does not enable the receiver.
If the receiver has been enabled, the receiver will receive the subsequent data. If an address byte is received,
it will generate an LSR interrupt. The software again examines the byte and if the address matches its slave
address, it does not have to do anything. If the address does not match its slave address, then the receiver
should be disabled.
2.15.1 Auto Address Detection
Auto address detection mode is enabled when MSR[6] = 1 (requires EFR[4] = 1) and EFR bit-5 = 1. The
desired slave address will need to be written into the XOFF2 register. The receiver will try to detect an address
byte that m atches the porgr ammed character in the XOFF2 register. If the received byte is a data byte or an
address byte that does not match the programmed character in the XOFF2 register, the receiver will discard
these data. Upon receiving an address byte that matches the XOFF2 character, the receiver will be
automatically enabled if not already enabled, and the address character is pushed into the RX FIFO along with
the parity bit (in p lace of the parity error bit). T he receiver also generates an LSR interrupt. The receiver will
then receive the subsequent data. If another address byte is received and this address does not match the
programmed XOFF2 character, then the receiver will automatically be disabled and the address byte is
ignored. If the address byte ma tches XOFF2, the receiver will put this byte in the RX FIFO along with the parity
bit in the parity error bit.
2.16 Infrared Mode
The M680 UAR T include s the infr ared en coder an d deco der co mp atible to the I rDA (Infra red Data Association)
version 1.0 and 1.1. The IrDA 1.0 standard that stipulates the infrared encoder sends out a
3/16 of a bit wide
HIGH-pulse for each “0” bit in the transmit data stream with a data rate up to 115.2 Kbps. For the IrDA 1.1
standard, the infrared encoder sends out a 1/4 of a bit time wide HIGH-pulse for each "0" bit in the transmit
data stream with a data rate up to 1.152 Mbps. This signal encoding reduces the on-time of the infrared LED,
hence reduces the power consumption. See
Figure 14
below.
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. With this bit enabled, the
infrared encoder and decoder is compatible to the IrDA 1.0 standard. For the infrared encoder and decoder to
be compatible to the IrDA 1.1 standard, MSR bit-7 will also need to be set to a ’1’ when EFR bit-4 is set to ’1’.
Likewise, the RX input assumes an idle level of logic zero from a reset and power up, see Figure 14.
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.
Each time it senses a light pulse, it returns a logic 1 to the data bit stream.
XR16M680
22
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.17 Sleep Mode with Auto Wake-Up and Power-Save feature
The M680 supports low voltage system designs, hence, a sleep mode with auto wake-up and power-save
feature is included to reduce its power consumption when the chip is not actively used.
2.17.1 Sleep mode
All of these conditions must be satisfied for the M680 to enter sleep mode:
no interrupts pending (ISR bit-0 = 1)
sleep mode is enabled (IER bit-4 = 1)
modem inputs are not toggling (MSR bits 0-3 = 0)
RX input pin is idling HIGH in normal mode or LOW in infrared mode
divisor is non-zero
TX and RX FIFOs are empty
The M680 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for
no clock output as an indication that the device has entered the sleep mode.
The M680 resumes normal operation by any of the following:
a receive data start bit transition (HIGH to LOW)
a data byte is loaded to the transmitter, THR or FIFO
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#
If the M680 is a wake ned by a ny one of t he a bove co nditio ns, it will r etur n to t he sleep m ode au tomat i cally after
all interrupting conditions have been serviced and cleared. If the M680 is awakened by the modem inputs, a
read to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while
FIGURE 14. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING
Character
Data B its
Start
Stop
0000 0
11 111
Bit Time
1/16 Clock Delay
IRdecoder-1
RX Data
Receive
IR Pu ls e
(RX pin)
Character
Data Bits
Start
Stop
0000 0
11 111
TX Data
Transmit
IR Pulse
(TX Pin) Bit Time 1/2 Bit Time
3/16 or 1/4 Bit Time
IrEncoder-1
XR16M680
23
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
an interrupt is pending from any channel. The M680 will stay in the sleep mode of operation until it is dis abled
by setting IER bit-4 to a logic 0.
A word of caution: owing to the starting up delay of the crystal oscillator after waking up from sleep mode, the
first few receive characters may be lost. Also, make sure the RX pin is idling HIGH or “marking” condition
during sleep mode. This may not occur when the external interface transceivers (RS-232, RS-485 or another
type) are also put to sleep mo de and cann ot maintain the “marking” condition. To avoid this, the system design
engineer can use a 47k ohm pull-up resistor on each of the RX input.
2.17.2 Power-Save Feature
If the address lines, data bus lines, IOW#, IOR#, CS# and modem input lines remain steady when the M680 is
in sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical
Characteristics on page 44. If the input lines are floating or are toggling while the M680 is in sleep mode, the
current can be up to 100 ti mes mo re. If not using the Power-Sa ve featur e, an exte rnal buffer would be required
to keep the address and data bus lines from toggling or floating to achieve the low current. But if the Power-
Save feature is enabled (PwrSave pin connected to VCC), this will eliminate the need for an external buffer by
internally isolating the addres s, data and control signals (see Figure 1 on page 1) from other bus act ivities th at
could cause wasteful p ower dr ain. The M6 80 ent ers Powe r-Save mo de when this pin is connected to VCC and
the M680 is in sleep mode (see Sleep Mode section above).
Since Power-Save mode isolates the address, data and control signals, the device will wake-up only by:
a receive data start bit transition (HIGH to LOW) at the RX input or
a change of logic state on the modem or general purpose serial input CTS#, DSR#, CD#, RI#
The M680 will return to the Power-Save mode automatically af ter a read to the MSR (to reset the modem input
CTS#) and all interrupting conditions have been serviced and cleared. The M680 will stay in the Power-Save
mode of operatio n unti l it is disabled by sett ing IER bit- 4 to a logic 0 a nd/or the Po wer-Save pin is conne cted to
GND.
2.17.3 Wake-up Interrupt
The M680 has the wake up interrupt. By setting the FCR bit-3, wake up interrupt is enabled or disabled. The
default status of wake up interrupt is disabled. Please See ”Section 4.5, FIFO Control Register (FCR) -
Write-Only” on page 31.
XR16M680
24
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
2.18 Internal Loopback
The M680 UART provides an internal loopback capability for system diagnostic purposes. The internal
loopback mode
is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate
normally. Figure 15 shows how the modem port sig nals are r e-configured . T ran smit dat a from the tr ansmit shif t
register output is internally routed to the receive shift register input allowing the system to receive the same
data that it was sending. The TX pin is held HIGH or mark condition while RTS# and DTR# are de-asserted,
and CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held HIGH during loopback
test else upon exiting the loopback test the UART may detect and report a false “break” signal.
FIGURE 15. INTERNAL LOOPBACK
TX
RX
Modem / General Purpose Control Logic
Internal Data Bus Lines and Control Signals
RTS#
MCR bit-4=1
VCC
VCC
Transmit Shift Register
(THR/FIFO)
Receive Shift Register
(RHR/FIFO)
CTS#
DTR#
DSR#
RI#
CD#
OP1#
RTS#
CTS#
DTR#
DSR#
RI#
CD#
VCC
OP2#
XR16M680
25
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
3.0 UART INTERNAL REGISTERS
The complete register set for the M680 is shown in Table 6 and Table 7.
TABLE 6: UART INTERNAL REGISTERS
A2 A1 A0
A
DDRESSES
R
EGISTER
R
EAD
/W
RITE
C
OMMENTS
16C550 C
OMPATIBLE
R
EGISTERS
0 0 0 DREV - Device Revision Read-only LCR[7] = 1, LCR 0xBF,
DLL = 0x00, DLM = 0x00
0 0 1 DVID - Device Identification Register Read-only
0 0 0 DLL - Divisor LSB Register Read/Write LCR[7] = 1, LCR 0xBF
See DLD[7: 6]
0 0 1 DLM - Divisor MSB Register Read/Write
0 1 0 DLD - Divisor Fractional Register Read/Write LCR[7] = 1, LCR 0xBF,
EFR[4] = 1
0 0 0 RHR - Receive Holding Register
THR - Transmit Holding Register Read-only
Write-only LCR[7] = 0
0 0 1 IER - Interrupt Enable Register Read/Write
0 1 0 ISR - Interrupt Status Register
FCR - FIFO Control Register Read-only
Write-only LCR[7] = 0 if EFR[4] = 1
or
LCR 0xBF if EFR[4] = 0
0 1 1 LCR - Line Control Register Read/Write
1 0 0 MCR - Modem Control Register Read/Write
LCR 0xBF1 0 1 LSR - Line Status Register Read-only
1 1 0 MSR - Modem Status Register Read-only
1 1 0 MSR - Modem Status Register Write-only LCR 0xBF
EFR[4] = 1
1 1 1 SPR - Scratch Pad Register Read/Write LCR 0xBF, FCTR[6] = 0
1 1 1 EMSR - Enhanced Mode Select Register Write-only LCR 0xBF, FCTR[6] = 1
1 1 1 FC - RX/TX FIFO Level Counter Register Read-only
E
NHANCED
R
EGISTERS
0 0 0 FC - RX/TX FIFO Level Counter Register Read-only
LCR = 0xBF
0 0 1 FCTR - Feature Control Register Read/Write
0 1 0 EFR - Enhanced Function Reg Read/Write
1 0 0 Xon-1 - Xon Character 1 Read/Write
1 0 1 Xon-2 - Xon Character 2 Read/Write
1 1 0 Xoff-1 - Xoff Character 1 Read/Write
1 1 1 Xoff-2 - Xoff Character 2 Read/Write
XR16M680
26
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
TABLE 7: INTERNAL REGISTERS DESCRIPTION.
S
HADED
BITS
ARE
ENABLED
WHEN
EFR B
IT
-4=1
A
DDRESS
A2-A0 R
EG
N
AME
R
EAD
/
W
RITE
B
IT
-7 B
IT
-6 B
IT
-5 B
IT
-4 B
IT
-3 B
IT
-2 B
IT
-1 B
IT
-0 C
OMMENT
16C550 Compatible Registers
0 0 0 RHR RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
LCR[7] = 0
0 0 0 THR WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
0 0 1 IER RD/WR 0/ 0/ 0/ 0/ Modem
Stat. Int.
Enable
RX Line
Stat.
Int.
Enable
TX
Empty
Int
Enable
RX
Data
Int.
Enable
CTS#
Int.
Enable
RTS#
Int.
Enable
Xoff Int.
Enable Sleep
Mode
Enable
0 1 0 ISR RD FIFOs
Enabled FIFOs
Enabled 0/ 0/ INT
Source
Bit-3
INT
Source
Bit-2
INT
Source
Bit-1
INT
Source
Bit-0 LCR[7] = 0
if EFR[4]=1
or
LCR0xBF
if EFR[4]=0
RTS
CTS
Interrupt
Xoff
Interrupt
0 1 0 FCR WR RX FIFO
Trigger RX FIFO
Trigger TX FIFO
Trigger TX FIFO
Trigger Wake up
Int Enable TX
FIFO
Reset
RX
FIFO
Reset
FIFOs
Enable
0 1 1 LCR RD/WR Divisor
Enable Set TX
Break Set
Parity Even
Parity Parity
Enable Stop
Bits Word
Length
Bit-1
Word
Length
Bit-0
1 0 0 MCR RD/WR 0/ 0/ 0/ Internal
Lopback
Enable
INT Out-
put
Enable
(OP2#)
OP1# RTS#
Output
Control
DTR#
Output
Control
LCR0xBF
BRG
Pres-
caler
IR Mode
ENable XonAny
1 0 1 LSR RD RX FIFO
Global
Error
THR &
TSR
Empty
THR
Empty RX Break RX Fram-
ing Error RX
Parity
Error
RX
Over-
run
Error
RX
Data
Ready
1 1 0 MSR RD CD#
Input RI#
Input DSR#
Input CTS#
Input Delta
CD# Delta
RI# Delta
DSR# Delta
CTS#
WR Fast IR Enable
9-bit
mode
Disable
RX Disable
TX 0 0 0 0
1 1 1 SPR RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR0xBF
FCTR[6]=0
1 1 1 EMSR WR Xoff
interrupt
mode
select
LSR
interrupt
mode
select
0 0 Invert
RTS in
RS485
mode
Send
TX
imme-
diate
FIFO
count
control
bit-1
FIFO
count
control
bit-0 LCR0xBF
FCTR[6]=1
1 1 1 FC RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
XR16M680
27
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
4.0 INTERNAL REGISTER DESCRIPTIONS
4.1 Receive Holding Register (RHR) - Read- Only
SEE”RECEIVER” ON PAGE 16.
4.2 Transmit Holding Register (THR) - Write-Only
SEE”TRANSMITTER” ON PAGE 15.
4.3 Interrupt Enable Register (IER) - Read/Write
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).
Baud Rate Generator Divisor
0 0 0 DREV RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR0xBF
DLL= 0x00
DLM= 0x00
0 0 1 DVID RD 0 0 0 0 0 1 0 1
0 0 0 DLL RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR0xBF
DLD[7:6]
0 0 1 DLM RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
0 1 0 DLD RD/WR BRG
select Enable
Indepen-
dent
BRG
4X Mode 8X Mode Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR0xBF
EFR[4] = 1
Enhanced Registers
0 0 0 FC RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
LCR=0
X
BF
0 0 1 FCTR RD/WR RX/TX
select Swap
SCR 0 0 RS485
interrupt
mode
invert
RX IR 0 0
0 1 0 EFR RD/WR Auto
CTS#
Enable
Auto
RTS#
Enable
Special
Char
Select
Enable
IER [7:4],
ISR [5:4],
FCR[5:3],
MCR[7:5],
DLD
Soft-
ware
Flow
Cntl
Bit-3
Soft-
ware
Flow
Cntl
Bit-2
Soft-
ware
Flow
Cntl
Bit-1
Soft-
ware
Flow
Cntl
Bit-0
1 0 0 XON1 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 0 1 XON2 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 1 0 XOFF1 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 1 1 XOFF2 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
TABLE 7: INTERNAL REGISTERS DESCRIPTION.
S
HADED
BITS
ARE
ENABLED
WHEN
EFR B
IT
-4=1
A
DDRESS
A2-A0 R
EG
N
AME
R
EAD
/
W
RITE
B
IT
-7 B
IT
-6 B
IT
-5 B
IT
-4 B
IT
-3 B
IT
-2 B
IT
-1 B
IT
-0 C
OMMENT
XR16M680
28
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.3.1 IER versus Receive FIFO Interrupt Mode Operation
When the receive FI FO (F CR BIT-0 = 1) and receive inte rrupt s ( IER BIT-0 = 1) are enabled, th e RHR int errupts
(see ISR bits 2 and 3) status will reflect the following:
A. The receive data available interrupts are issued to the host when the FIFO has reached the selected trig-
ger level. It will be cleared when the FIFO drops below the selected trigger level.
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.
C. The receive dat a re ady bit ( LSR BIT-0) is set as soon as a character is t ra nsferr ed f rom the shift register to
the receive FIFO. It is reset when the FIFO is empty.
4.3.2 IER versus Receive/Transmit FIFO Polled Mode Operation
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16M680 in the FIFO
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can
be used in the polled mode by selecting respective transmit or receive control bit(s).
A. LSR BIT-0 indicates there is data in RHR
or
RX FIFO.
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.
D. LSR BIT-5 indicates THR is empty.
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.
IER[0]: RHR Interrupt Enable
The receive dat a ready int erru pt will be issued when RHR ha s a data character in the no n- FIFO mod e
or when
the receive FIFO has reached the selected trigger level in the FIFO mode.
Logic 0 = Disable the receive data ready interrupt (default).
Logic 1 = Enable the receiver data ready interrupt.
IER[1]: THR Interrupt Enable
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-
FIFO mode or when data in the FIFO falls below the selected trigger level in the FIFO mode. If the THR is
empty when this bit is enabled, an interrupt will be generated.
Logic 0 = Disable Transmit Ready interrupt (default).
Logic 1 = Enable Transmit Ready interrupt.
IER[2]: Receive Line Status Interrupt Enable
If any of the LSR register bits 1, 2, 3 o r 4 is a logic 1, it will generate an interrupt to inform the host controller
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when an
overrun occurs. LSR bits 2-4 generate an interrupt when the character in the RHR has an error. However,
when EMSR bit-6 changes to 1 (default is 0), LSR bit 2-4 generate an interrupt when the character is received
in the RX FIFO. See “Section 4.12, Enhanced Mode Select Register (EMSR) - Write-only” on page 38.
Logic 0 = Disable the receive r line status interrupt (default).
Logic 1 = Enable the receiver line status interrupt.
IER[3]: Modem Status Interrupt Enable
Logic 0 = Disable the modem status register interrupt (default).
Logic 1 = Enable the modem status register interrupt.
XR16M680
29
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
IER[4]: Sleep Mode Enable (requires EFR[4] = 1)
Logic 0 = Disable Sleep Mode (default).
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.
IER[5]: Xoff Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the software flow control, receive Xoff interrupt. (default)
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for
details.
IER[6]: RTS# Output Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the RTS# interrupt (default).
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition
from LOW to HIGH (if enabled by EFR bit-6).
IER[7]: CTS# Input Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the CTS# interrupt (default).
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from
LOW to HIGH (if enable d by EFR bit-7) .
4.4 Interrupt Status Register (ISR) - Read-Only
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The
Interrupt Status Register (IS R) provides the user with six interrupt status bits. Performing a read cycle on the
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt
Source Table , Table 8, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources
associated with each of these interrupt levels.
4.4.1 Interrupt Generation:
LSR is by any of the LSR bits 1, 2, 3 and 4.
RXRDY is by RX trigger level.
RXRDY Time-out is by a 4-char plus 12 bits delay timer.
TXRDY is by TX trigger level or TX FIFO empty.
MSR is by any of the MSR bits 0, 1, 2 and 3.
Receive Xon/Xoff/Special character is by detection of a Xon, Xoff or Special character.
CTS# is when the r emote transmitter t oggles the input pin (from LOW to HIGH) during auto CTS flow cont rol.
RTS# is when its receiver toggles the output pin (from LOW to HIGH) during auto RTS flow control.
Wakeup interrupt is genera ted when the M680 wakes up from the sleep mode.
XR16M680
30
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.4.2 Interrupt Clearing:
LSR interrupt is cleared by a read to the LSR register.
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.
RXRDY Time-out interrupt is cleared by reading RHR.
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.
MSR interrupt is cleared by a read to the MSR register.
Xon or Xoff interrupt is cleared by a read to the ISR register. See EMSR[7].
Special character interrupt is cleared by a read to ISR register or after next character is received. See
EMSR[7].
RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.
Wakeup interrupt is cleared by a read to ISR regi ster.
]
ISR[0]: Interrupt Status
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt
service routine .
Logic 1 = No interrupt pending (default condition).
ISR[3:1]: Interrupt Status
These bit s indi cate the so urce for a pendi ng int errup t at int erru pt prior ity leve ls (See I nterru pt Source Table 8).
ISR[4]: Interrupt Status (requires EFR bit-4 = 1)
This bit is enabled when EFR bit-4 is set to a logic 1. ISR bit-4 indicates that the receiver detected a data
match of the Xoff, Xon or special char act er (s ).
ISR[5]: Interrupt Status (requires EFR bit-4 = 1)
ISR bit-5 indicates that CTS# or RTS# has changed state from LOW to HIGH.
ISR[7:6]: FIFO Enable Status
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are
enabled.
TABLE 8: INTERRUPT SOURCE AND PRIORITY LEVEL
P
RIORITY
ISR R
EGISTER
S
TATUS
B
ITS
S
OURCE
OF
INTERRUPT
L
EVEL
B
IT
-5 B
IT
-4 B
IT
-3 B
IT
-2 B
IT
-1 B
IT
-0
1 0 0 0 1 1 0 LSR (Receiver Line Status Register)
2 0 0 1 1 0 0 RXRDY (Receive Data Time-o ut)
3 0 0 0 1 0 0 RXRDY (Received Data Ready)
4 0 0 0 0 1 0 TXRDY (Transmit Ready)
5 0 0 0 0 0 0 MSR (Modem Status Register)
6 0 1 0 0 0 0 RXRDY (Received Xon, Xoff or Special character)
7 1 0 0 0 0 0 CTS#, RTS# change of state
- 0 0 0 0 0 1 None (default) or Wakeup interrupt
XR16M680
31
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
4.5 FIFO Control Register (FCR) - Write-Only
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and
enable the wake up interrupt. They are defined as follows:
FCR[0]: TX and RX FIFO Enable
Logic 0 = Disable the transmit and receive FIFO (default).
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are
written or they will not be programmed.
FCR[1]: RX FIFO Reset
This bit is only active when FCR bit-0 is a ‘1’.
Logic 0 = No receive
FIFO
reset (default)
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.
FCR[2]: TX FIFO Reset
This bit is only active when FCR bit-0 is a ‘1’.
Logic 0 = No transmit FIFO reset (default).
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.
FCR[3]: Enable wake up interrupt (requires EFR bit-4 = 1)
Logic 0 = Disable the wake up interrupt (default).
Logic 1 = Enable the wak e up inte rrup t.
Please refer to “Section 2.17.3, Wake-up Interrupt” on page 23.
FCR[5:4]: Transmit FIFO Trigger Select (requires EFR bit-4 = 1)
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the
FIFO did not get filled over the trigger level on last re-load. Table 9
below shows the selections. Note that the
receiver and the transmitter cannot use different trigger tables. Whichever selection is made last applies to
both the RX and TX side.
FCR[7:6]: Receive FIFO Trigger Select
These 2 bits are used to set the trigger level for the receive FIFO. The UART will issue a receive interrupt when
the number of the characters in the FIFO crosses the trigger level. Table 9 shows the complete selections.
Note that the receiver and the transmitter cannot use different trigger tables. Whichever selection is made last
applies to both the RX and TX side.
XR16M680
32
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.6 Line Control Register (LCR) - Read/Write
The Line Control Register is used to specify the asynchronous data communication format. The word or
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this
register.
LCR[1:0]: TX and RX Word Length Select
These two bits specify the word length to be transmitted or received.
TABLE 9: TRANSMIT AND RECEIVE FIFO TRIGGER TABLE AND LEVEL SELECTION
FCR B
IT
-7 FCR B
IT
-6 FCR B
IT
-5 FCR
BIT
-4 R
ECEIVE
T
RIGGER
L
EVEL
T
RANSMIT
T
RIGGER
L
EVEL
C
OMPATIBILITY
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
18
16
24
28
16
8
24
30
16C650A, 16V2650 &
16M2650
BIT-1 BIT-0 W
ORD
LENGTH
0 0 5 (default)
0 1 6
1 0 7
1 1 8
XR16M680
33
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
LCR[2]: TX and RX Stop-bit Length Select
The length of stop bit is specified by this bit in conjunction with the programmed word length.
LCR[3]: TX and RX Parity Select
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data
integrity check. See Table 10 for parity selection summary below.
Logic 0 = No parity.
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the
data character received.
LCR[4]: TX and RX Parity Select
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The
receiver must be programmed to check the same format (default).
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The
receiver must be programmed to check the same format.
LCR[5]: TX and RX Parity Select
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.
LCR BIT-5 = logic 0, parity is not forced (default).
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive
data.
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive
data.
BIT-2 W
ORD
LENGTH
S
TOP
BIT
LENGTH
(B
IT
TIME
(
S
))
05,6,7,8 1 (default)
1 5 1-1/2
16,7,8 2
TABLE 10: PARITY SELECTION
LCR B
IT
-5 LCR B
IT
-4 LCR B
IT
-3 P
ARITY
SELECTION
X X 0 No parity
0 0 1 Odd parity
0 1 1 Even parity
1 0 1 Force parity to mark, HIGH
1 1 1 Forced parity to space, LOW
XR16M680
34
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
LCR[6]: Transmit Break Enable
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.
Logic 0 = No TX break condition. (default)
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line
break condition.
LCR[7]: Baud Rate Divisors Enable
Baud rate generator divisor (DLL/DLM/DLD) enable.
Logic 0 = Data registers are select ed . (d ef au lt)
Logic 1 = Divisor latch registers are selected.
4.7 Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.
MCR[0]: DTR# Output
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a
general purpose output.
Logic 0 = Force DTR# output HIGH (default).
Logic 1 = Force DTR# output LOW.
MCR[1]: RTS# Output
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by
EFR bit-6. If the modem interface is not used, this ou tput may be used as a general purpose output.
Logic 0 = Force RTS# output HIGH (default).
Logic 1 = Force RTS# output LOW. It is required to start Aut o RTS Flow Control.
MCR[2]: Reserved
OP1# is not available as an output pin on the M680. But it is available for use during Internal Loopback Mode.
In the Loopback Mode, this bit is used to write the state of the modem RI# interface signal.
MCR[3]: INT Output Enable
Enable or disable INT outputs to become active or in three-state. This bit is also used to control the OP2#
signal during internal loopback mode.
Logic 0 = INT output disabled (three state) in the 16 mode (default). During internal loopback mode, OP2# is
HIGH.
Logic 1 = INT output enabled (active) in the 16 mode. During internal loopback mode, OP2# is LOW.
TABLE 11: INT OUTPUT MODES
MCR
B
IT
-3 INT O
UTPUT
I
N
16 M
ODE
0Three-State
1Active
XR16M680
35
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
MCR[4]: Internal Loopback Enable
Logic 0 = Disable loopback mode (default).
Logic 1 = Enable local loopback mode, see loopback section and Figure 15.
MCR[5]: Xon-Any Enable (requires EFR bit-4 = 1)
Logic 0 = Disable Xon-Any function (for 16C550 compatibility, default).
Logic 1 = Enable Xon-Any fun ct ion . In th is mode, any RX character received will resume transmit operation.
The RX character will be loaded into the RX FIFO , unless the RX character is an Xon or Xoff character and
the M680 is programmed to use the Xon/Xoff flow control.
MCR[6]: Infrared Encoder/Decoder Enable (requires EFR bit-4 = 1)
Logic 0 = Enable the standard modem receive and transmit input/output interface. (Default)
Logic 1 = Enable infrared IrDA re ce ive and tr ansm it inp uts/outputs. The TX/RX ou tp ut / inpu t ar e ro ut ed t o the
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface
requirement. The RX FIFO may need to be flushed upon enable. While in this mode, the infrared TX output
will be LOW during idle data conditions.
MCR[7]: Clock Prescaler Select (requires EFR bit-4 = 1)
Logic 0 = Divide by one. The input cl ock from the cr ysta l or external clock is fed dir ectly to the Programmabl e
Baud Rate Generator without further modification, i.e., divide by one (default).
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.
4.8 Line Status Register (LSR) - Read Only
This register provides t he st atus of dat a tr ansfers be tween t he UAR T and th e host. If IER bit-2 is en abled, LSR
bit 1 will generate an interrupt immediately and LSR bits 2-4 will generate an interrupt when a character with an
error is in the RHR.
LSR[0]: Receive Data Ready Indicator
Logic 0 = No data in receive holding register or FIFO (default).
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.
LSR[1]: Receiver Overrun Flag
Logic 0 = No overrun error (default).
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens
when additional data arrives while the FIFO is full. In this case the previou s data in the receive shift register
is overwritten. Note that under this condition the data byte in the receive s hift register is not transf erred into
the FIFO, ther efore the data in the FIFO is not co rr up te d by the error.
LSR[2]: Receive Data Parity Error Tag
Logic 0 = No parity error (default).
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.
This error is associated with the character available for reading in RHR.
LSR[3]: Receive Data Framing Error Tag
Logic 0 = No framing error (default).
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with
the character available for reading in RHR.
XR16M680
36
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
LSR[4]: Receive Break Tag
Logic 0 = No break condition (default).
Logic 1 = The receiver received a break signal (RX was LOW for at least one character frame tim e). In the
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX
input return s to the idle condition, “mark” or HIGH.
LSR[5]: Transmit Holding Register Empty Flag
This bit is the Transmit Holding Register Empty indi cator. The THR bit is set to a logic 1 when the last dat a byte
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0
concurrent ly with the data loading to th e transmit hold ing register by the host. In the FIFO mode this bit is set
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.
LSR[6]: THR and TSR Empty Flag
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and
transmit shift register are both empty.
LSR[7]: Receive FIFO Data Error Flag
Logic 0 = No FIFO error (default).
Logic 1 = A global indicato r for the sum of all er ror bits in the RX FIFO. At least one pari ty error, framing error
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the
RX FIFO.
4.9 Mode m Status Regist er (MSR) - Rea d On ly
This register provid es th e cur rent state of the modem interf ace in put sign als. Lower f our bits of this register are
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem
changes state. These bits may be used for general purpose inputs when they are not used with modem
signals. Reading the higher four bits shows the status of the modem signals.
MSR[0]: Delta CTS# Input Flag
Logic 0 = No change on CTS# input (default).
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt
will be generated if MSR interrupt is enabled (IER bit-3).
MSR[1]: Delta DSR# Input Flag
Logic 0 = No change on DSR# input (default).
Logic 1 = The DSR# in put has ch anged state since the last time it was monitor ed. A modem status interrupt
will be generated if MSR interrupt is enabled (IER bit-3).
MSR[2]: Delta RI# Input Flag
Logic 0 = No change on RI# input (default).
Logic 1 = The RI# input has changed from LOW to HIGH, ending of the ringing signal. A modem status
interrupt will be generated if MSR interrupt is enabled (IER bit-3).
MSR[3]: Delta CD# Input Flag
Logic 0 = No change on CD# input (default).
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).
XR16M680
37
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
MSR[4]: CTS Input Status
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto
CTS (EFR bit-7). Auto CTS Flow Control allows starting and stopping of local data transmissions based on the
modem CTS# signal. A HIGH on the CTS# p in will stop UAR T tran smitter as soon as the cur rent charact er has
finished transmission, and a LOW will resume data transmission. Normally MSR bit-4 bit is the complement of
the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR register. The
CTS# input may be used as a general purpose input when the modem interface is not used.
MSR[5]: DSR Input Status
Normally this bit is the complemen t of th e DSR# input. In the loopb ack mode, t his bit is equival en t to th e DTR#
bit in the MCR register. The DSR# input may be used as a general purpose input when the mo dem interf ace is
not used.
MSR[6]: RI Input Status
Normally this bit is the complement of the RI# input. In the loopbac k mode this bit is equivalent to bit-2 in the
MCR register. Th e RI# inpu t ma y be use d as a gen er al pu rpo s e inpu t whe n th e mo de m interfa ce is not us ed .
MSR[7]: CD Input Status
Normally this bit is the comp lement of the CD# input. In th e loopback mode this bit is equivalent to bit-3 in the
MCR register. Th e CD# inpu t ma y be use d as a gen er al pu rpose input when the mo de m inte rfa ce is not us ed .
4.10 Modem Status Register (MSR) - Write Only
This register provides the advanced features of XR16M680. Lower four bits of this register are reserved.
Writing to the higher four bits enables additional functions.
MSR[3:0]: Reserved
MSR[4]: Enable/Disable Transmitter (Requires EFR[4] = 1)
Logic 0 = Enable Transmitter (default).
Logic 1 = Disable Transmitter.
MSR[5]: Enable/Disable Receiver (Requires EFR[4] = 1)
Logic 0 = Enable Receiver (default).
Logic 1 = Disable Receiver.
MSR[6]: Enable/Disable 9-bit mode (Requires EFR[4] = 1)
For the 9-bit mode information, See ”Section 2. 15, Normal Multidrop Mode” on page 20.
Logic 0 = Normal 8-bit mode (default).
Logic 1 = Enable 9-bit or Multidrop mode.
MSR[7]: Enable/Disable fast IR mode (Requires EFR[4] = 1)
The M680 supports the new fast IR transmission with data rate up to 1.152 Mbps.
Logic 0 = IrDA version 1.0, 3/16 pulse ratio, data rate up to 115.2 Kbps (default).
Logic 1 = IrDA version 1.1, 1 /4 pulse ratio , data rate up to 1.152 Mbps. F or more IR mode inf ormation, please
See ”Section 2. 16 , In fra red Mo de ” on page 21.
4.11 Scratch Pad Register (SPR) - Read/Write
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.
XR16M680
38
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.12 Enhanced Mode Select Register (EMSR) - Write-only
This register replaces SPR (during a Write) and is accessible only when FCTR[6] = 1.
EMSR[1:0]: Receive/Transmit FIFO Level Count
When Scratchpad Swap (FCTR[6]) is asser ted, EMSR bits 1-0 controls wh at mode the FIFO L evel Counter is
operating in.
During Alternate RX/TX FIFO Level Counter Mode, the first value read after EMSR bits 1-0 have been
asserted will always be the RX FIFO Level Counter. The second value read w ill correspond with the TX FIFO
Level Counter. The next value will be the RX FIFO Level Counter again, then the TX FIFO Level Counter and
so on and so forth.
EMSR[2]: Send TX Immediately
Logic 0 = Do not send TX immediately (default).
Logic 1 = Send TX immediately. When FIFO is enabled and this bit is set, the next data will be written to the
TX shift register. Thus, the data will be sent out immediately instead of queuing in the FIFO. Every time, only
1 byte will be send out. Once this byte has been sent out, the EMSR[2] will go back to 0 automatically. If
more than 1 byte will be sent out, EMSR[2] needs to be set to 1 for each byte.
EMSR[3]: Invert RTS in RS485 mode
Logic 0 = RTS# output is a logic 0 during TX and a logic 1 during RX (default).
Logic 1 = RTS# output is a logic 1 during TX and a logic 0 during RX.
EMSR[5:4]: Reserved
EMSR[6]: LSR Interrupt Mode
Logic 0 = LSR Interrupt Delayed (default). LSR bits 2, 3, and 4 will generate an interrupt when the character
with the error is in the RHR.
Logic 1 = LSR Int errupt Immed iate. LSR bit s 2 , 3, and 4 will gener ate a n interr upt a s soon as the chara cter is
received into the FIFO.
EMSR[7]: Xoff/Special character Interrupt Mode Select
This bit selects how the Xoff and Special character interrupt is clear ed . The XON interr up t can on ly be cleare d
by reading the IS R register.
Logic 0 = Xoff interrupt is cleared by either reading ISR register or when an XON character is received.
Special character interrupt is cleared by either reading ISR register or when next character is received.
(default).
Logic 1 = Xoff/Special character interrupt can only be cleared by reading the ISR register.
TABLE 12: SCRATCHPAD SWAP SELECTION
FCTR[6] EMSR[1] EMSR[0] Scratchpad is
0 X X Scratchpad
1 X 0 RX FIFO Level Coun ter Mode
1 0 1 TX FIFO Level Counter Mode
1 1 1 Alternate RX/TX FIFO Counter Mode
XR16M680
39
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
4.13 Baud Rate Generator Registers (DLL, DLM and DLD) - Read/Write
These registers make-up the value of the baud rate divisor. The M680 has different DLL, DLM and DLD for
transmitter and receiver. It provides more convenience for the transmitter and receiver to transmit data with
different rate. The M680 uses DLD[7:6] to select TX or RX. Then it provides DLD[5:0] to select the sampling
frequency and fractional baud rate divisor. The concatenation of the contents of DLM and DLL gives the 16-bit
divisor value. The value is added to DLD[3:0]/16 to achieve the fractional baud rate divisor. DLD must be
enabled via EFR bit-4 before it can be accessed. See Table 13 below and See ”Section 2.7, Programmable
Baud Rate Generator with Fractional Divisor” on page 13.
DLD[5:4]: Sampling Rate Select
These bit s se lect the d at a sampl ing r ate. By de fault, t he dat a sampling rate is 16X. Th e maximum dat a ra te will
double if the 8X mode is selected and will quadruple if the 4X mode is selected. See Table 13 below.
DLD[6]: Independent BRG enable
Logic 0 = The Transmitter and Receiver uses the same Baud Rate Generator. (default).
Logic 1 = The Transmitter and Receiver uses different Baud Rate Generators. Use DLD[7] for selecting
which baud rate generator to configure.
DLD[7]: BRG select
When DLD[6] = 1, this bit selects whether the values written to DLL, DLM and DLD[5 :0 ] will be fo r the Transmit
Baud Rate Generator or the Receive Baud Rate Generator. When DLD[6] = 0 (same Baud Rate Generator
used for both TX and RX), this bit must be a logic 0 to properly write to the appropriate DLL, DLM and
DLD[5:0]. .
TABLE 13: SAMPLING RATE SELECT
DLD[5] DLD[4] S
AMPLING
R
ATE
0 0 16X
0 1 8X
1 X 4X
TABLE 14: BRG SELECT
DLD[7] DLD[6] BRG
0 0 Transmitter and Receiver uses same BRG.
Writing to DLL, DLM and DLD[5:0] configures the BRG for both the TX and RX.
0 1 Transmitter and Receiver uses different BRGs.
Writing to DLL, DLM and DLD[5:0] configures the BRG for TX.
1 1 Transmitter and Receiver uses different BRGs.
Writing to DLL, DLM and DLD[5:0] configures the BRG for RX.
1 0 Transmitter and Receiver uses same BRG.
Writing to DLL, DLM and DLD[5:0] has no effect on BRG used by the TX and RX.
XR16M680
40
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.14 RX/TX FIFO Level Count Register (FC) - Read-Only
This register replaces SPR (during a read) and is accessible when FCTR[6] = 1. This register is also
accessible when LCR = 0xBF. It is suggested to read the FIFO Level Count Register at the Scratchpad
Register location when FCTR bit-6 = 1. See Table 12.
FC[7:0]: RX/TX FIFO Level Count
Receive/Transmit FIFO Level Count. Number of characters in Receiver FIFO (FCTR[7] = 0) or Transmitter
FIFO (FCTR[7] = 1) can be read via this register. Reading this register is not recommended when transmitting
or receiving data.
4.15 Feature Control Register (FCTR) - Read/Write
FCTR[1:0]: Reserved
FCTR[2]: IrDa RX Inversion
Logic 0 = Select RX input as encoded IrDa data (Idle state will be LOW).
Logic 1 = Select RX input as inverted encoded IrDa data (Idle state will be HIGH).
FCTR[3]: Auto RS-485 Direction Control
Logic 0 = Standard ST16C550 mode. Transmitter generates an interrupt when transmit holding register
becomes empty and transmit shift register is shifting data out .
Logic 1 = Enable Auto RS485 Direction Control function. The direction control signal, RTS# pin, changes its
output logic state from LOW to HIGH one bit time after the last stop bit of the last character is shifted out.
Also, the Transmit interrupt generation is delayed until the transmitter shift register becomes empty. The
RTS# output pin will automatically return to a LOW when a data byte is loaded into the TX FIFO. However,
RTS# behavior can be inverted by setting EMSR[3] = 1.
FCTR[5:4]: Reserved
FCTR[6]: Scratchpad Swap
Logic 0 = Scratch Pad register is selected as general read and write register. ST16C550 compatible mode.
Logic 1 = FIFO Count register (Read-Only), Enhanced Mode Select Register (Write-Only). Number of
characters in transmit or receive FIFO can be read via scratch pad register when this bit is set. Enhanced
Mode Select Register is selected when it is written into.
FCTR[7]: Programmable Trigger Register Select
Logic 0 = Register FC selected for RX.
Logic 1 = Register FC selected for TX.
XR16M680
41
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
4.16 Enhanced Feat ure Register (EFR) - Read/Write
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive
character software flow control selection (see Table 15). When the Xon1 and Xon2 and Xoff 1 and Xof f2 modes
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before
programming a new setting.
EFR[3:0]: Sof tware Flow Control Select
Single character and dual sequential characters software flow control is supported. Combinations of software
flow control can be selected by programming these bits.
EFR[4]: Enhanced Funct ion Bits Enable
Enhanced function cont r ol bit . This b i t en ables I ER bits 4-7, ISR bits 4-5, FCR b i ts 3-5, MCR bits 5-7, and DLD
to be modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values.
This feature pre vent s le gacy software from altering or overwriting the enhance d functi ons once set. Norm ally, it
is recommended to leave it enabled, logic 1.
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 3-5, MCR bits 5-
7, and DLD are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 3-5,
and MCR bits 5-7, and DLD are set to a logic 0 to be compatible with ST16C550 mode (default).
Logic 1 = Enables the EFR[3:0] register bits to be modified by the user.
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS
EFR
BIT
-3
C
ONT
-3 EFR
BIT
-2
C
ONT
-2 EFR
BIT
-1
C
ONT
-1 EFR
BIT
-0
C
ONT
-0 T
RANSMIT
AND
R
ECEIVE
S
OFTWARE
F
LOW
C
ONTROL
0 0 0 0 No TX and RX flow control (default and reset)
0 0 X X No transmit flow control
1 0 X X Transmit Xon1, Xoff1
0 1 X X Transmit Xon2, Xoff2
1 1 X X Transmit Xon1 and Xon2, Xoff1 and Xoff2
X X 0 0 No receive fl ow con trol
X X 1 0 Receiver compares Xon1, Xoff1
X X 0 1 Receiver compares Xon2, Xoff2
1 0 1 1 Transmit Xon1, Xoff1
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
0 1 1 1 Transmit Xon2, Xoff2
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
1 1 1 1 Transmit Xon1 and Xon2, Xoff1 and Xoff2,
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2
0 0 1 1 No transmit flow control,
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2
XR16M680
42
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
EFR[5]: Special Character Detect Enable
Logic 0 = Special Character Detect Disabled (default).
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character
interrupt, if enabled via IER bit-5.
EFR[6]: Auto RTS Flow Control Enable
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is
selected, an interrupt will be generated when the receive FIFO is filled to the selected trigger level and RTS de-
asserts HIGH at the next upper trigger level/hysteresis level. RTS# will return LOW when FIFO data falls below
the next lower trigger level/hysteresis level. The RTS# output must be asserted (LOW) before the auto RTS
can take effect. RTS# pin will function as a general purpose output when hardware flow control is disabled.
Logic 0 = Automatic RTS flow control is disabled (default).
Logic 1 = Enable Automatic RTS flow control.
EFR[7]: Auto CTS Flow Control Enable
Automatic CTS Flow Control.
Logic 0 = Automatic CTS flow control is disabled (default).
Logic 1 = En able Automa tic CTS flow control. Data trans mission stops when CT S# input de -asserts to logic
1. Data transmission resumes when CTS# returns to a logic 0.
4.17 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.
For more det a ils, se e Table 5. The xoff2 is also used as auto ad dress de tect r egister when t he auto 9- bit mode
enabled. See ”Section 2.15.1, Auto Address Detection” on page 21.
XR16M680
43
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
TABLE 16: UART RESET CONDITIONS
REGISTERS RESET STATE
DLM, DLL
(Both TX and RX) DLM = 0x00 and DLL = 0x01. Only resets to these val-
ues during a power up. They do not reset when the
Reset Pin is asserted.
DLD Bits 7-0 = 0x00
RHR Bits 7- 0 = 0xXX
THR Bits 7-0 = 0xXX
IER Bits 7- 0 = 0x0 0
FCR Bits 7-0 = 0x00
ISR Bits 7- 0 = 0x0 1
LCR Bits 7-0 = 0x00
MCR Bits 7- 0 = 0x0 0
LSR Bits 7- 0 = 0x6 0
MSR Bits 7-0 =0xX0 (Read-only)
Bits 7-4 = 0000 (Write-only)
SPR Bits 7- 0 = 0xF F
EMSR Bits 7-0 = 0x00
FC Bits 7- 0 = 0x0 0
FCTR Bits 7 - 0 = 0x0 0
EFR Bits 7- 0 = 0x0 0
XON1 Bits 7- 0 = 0x0 0
XON2 Bits 7- 0 = 0x0 0
XOFF1 Bits 7- 0 = 0x0 0
XOFF2 Bits 7- 0 = 0x0 0
I/O SIGNALS RESET STATE
TX HIGH
RTS# HIGH
DTR# HIGH
INT
(16 Mode) Three-State Condition
IRQ#
(68 Mode) HIGH
XR16M680
44
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
Test 1: The followin g inputs remain steady at VCC or GND state to minimize Sl eep current: A0-A2, D0-D7, IOR#, IOW#,
CS#. Also, RX input must idle at HIGH while asleep.
For Power-Save, the U ART internally i solat es all of these inputs (except the modem inputs, 16/68# and Reset pins) there -
fore eliminating any unnecessary external buffers to keep the inputs steady. SEE”POWER-SAVE FEATURE” ON
ABSOLUTE MAXIMUM RATINGS
Power Supply Range 3.6 Volt s
Voltage at Any Pin GND-0.3 V to 3.6 V
Operating Temperature -40
o
to +85
o
C
Storage Temperature -65
o
to +150
o
C
Package Dissipation 500 mW
TYPICAL PACKAGE THERMAL RESISTANCE DATA
(MARGIN OF ERROR: ± 15%)
Thermal Resistance (32-QFN) theta-ja = 28
o
C/W, theta-jc = 10.5
o
C/W
Thermal Resistance (48-TQFP) theta-ja = 49
o
C/W, theta-jc = 10
o
C/W
Thermal Resistance (25-BGA) theta-ja = 166
o
C/W, theta-jc = 98.2
o
C/W
ELECTRICAL CHARACTERISTICS
DC ELECTRICAL CHARACTERISTICS
UNLESS OTHERWISE NOTED: TA = -40
O
TO +85
O
C, VCC IS 1.62 TO 3.63V
S
YMBOL
P
ARAMETER
L
IMITS
1.8V
M
IN
M
AX
L
IMITS
2.5V
M
IN
M
AX
L
IMITS
3.3V
M
IN
M
AX
U
NITS
C
ONDITIONS
V
ILCK
Clock Input Low Level -0.3 0.3 -0.3 0.4 -0.3 0.6 V
V
IHCK
Clock Input High Level 1.4 VCC 2.0 VCC 2.4 VCC V
V
IL
Input Low Voltage -0.3 0.2 -0.3 0.5 -0.3 0.7 V
V
IH
Input High Voltage 1.4 VCC 1.8 VCC 2.0 VCC V
V
OL
Output Low Voltage
0.4 0.4 0.4 V
V
V
I
OL
= 6 mA
I
OL
= 4 mA
I
OL
= 1.5 mA
V
OH
Output High Voltage
1.4 1.8 2.0 V
VI
OH
= -4 mA
I
OH
= -2 mA
I
OH
= -200 uA
I
IL
Input Low Leakage Current ±15 ±15 ±15 uA
I
IH
Input High Leakage Current ±15 ±15 ±15 uA
C
IN
Input Pin Capacitance 555pF
I
CC
Power Supply Current 1.5 22.5 mA Ext Clk = 5MHz
I
SLEEP/
I
PWRSV
Sleep / Power Save Current
(16 and 68 modes) 3 6 15 uA See Test 1
XR16M680
45
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
PAGE 23. To achieve minimum power drain , the voltage at any of the inputs of the M680M680 should N OT be lower th an
its VCC supply.
AC ELECTRICAL CHARACTERISTICS
TA = -40
O
TO +85
O
C, VCC IS 1.62 TO 3.6V, 70 PF LOAD WHERE APPLICABLE
S
YMBOL
P
ARAMETER
L
IMITS
1.8V ± 10%
M
IN
M
AX
L
IMITS
2.5V ± 10%
M
IN
M
AX
L
IMITS
3.3V ± 10%
M
IN
M
AX
U
NIT
XTAL1 UART Crystal Frequency 24 24 24 MHz
ECLK External Clock Frequency 30 50 64 MHz
T
ECLK
External Clock Time Period 15 9 7 ns
T
AS
Address Setup Time (16 Mode) 000ns
T
AH
Address Hold Time (16 Mode) 000ns
T
CS
Chip Select Width (16 Mode) 90 60 35 ns
T
RD
IOR# Strobe Width (16 Mode) 90 60 35 ns
T
DY
Read Cycle Delay (16 Mode) 90 60 35 ns
T
RDV
Data Access Time (16 Mode) 85 55 30 ns
T
DD
Data Disable Time (16 Mode) 25 10 5ns
T
WR
IOW# Strobe Width (16 Mode) 90 60 35 ns
T
DY
Write Cycle Delay (16 Mode) 90 60 35 ns
T
DS
Data Setup Time (16 Mode) 30 15 10 ns
T
DH
Data Hold Time (16 Mode) 333ns
T
ADS
Address Setup (68 Mode) 500ns
T
ADH
Address Hold (68 Mode) 000ns
T
RWS
R/W# Setup to CS# (68 Mode) 000ns
T
RDA
Data Access Time (68 mode) 85 55 30 ns
T
RDH
Data Disable Time (68 mode) 15 15 15 ns
T
WDS
Write Data Setup (68 mode) 15 10 10 ns
T
WDH
Write Data Hold (68 Mode) 333ns
T
RWH
CS# De-asserted to R/W# De-
asserted (68 Mode) 333ns
T
CSL
CS# Strobe Width (68 Mode) 90 60 35 ns
T
CSD
CS# Cycle Delay (68 Mode) 90 60 35 ns
T
WDO
Delay From IOW# To Output 50 50 50 ns
XR16M680
46
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
T
MOD
Delay To Set Interrupt From MODEM
Input 50 50 50 ns
T
RSI
Delay To Reset Interrupt From IOR# 50 50 50 ns
T
SSI
Delay From Stop To Set In terrupt 111Bclk
T
RRI
Delay From IOR# To Reset Inte rrupt 45 45 45 ns
T
SI
Delay From Start To Interrupt 45 45 45 ns
T
INT
Delay From Initial INT Reset To
Transmit Start 824 824 824 Bclk
T
WRI
Delay From IOW# To Reset Interrupt 45 45 45 ns
T
SSR
Delay From Stop To Set RXRDY# 111Bclk
T
RR
Delay From IOR# To Rese t RXRDY# 45 45 45 ns
T
WT
Delay From IOW# To Set TXRDY# 45 45 45 ns
T
SRT
Delay From Center of Start To Reset
TXRDY# 888Bclk
T
RST
Reset Pulse Width 40 40 40 ns
Bclk Baud Clock 16X or 8X or 4X of data rate Hz
FIGURE 16. CLOCK TIMING
AC ELECTRICAL CHARACTERISTICS
TA = -40
O
TO +85
O
C, VCC IS 1.62 TO 3.6V, 70 PF LOAD WHERE APPLICABLE
S
YMBOL
P
ARAMETER
L
IMITS
1.8V ± 10%
M
IN
M
AX
L
IMITS
2.5V ± 10%
M
IN
M
AX
L
IMITS
3.3V ± 10%
M
IN
M
AX
U
NIT
OSC
CLK
CLK
EXTERNAL
CLOCK
XR16M680
47
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
FIGURE 17. MODEM INPUT/OUTPUT TIMING
FIGURE 18. 16 MODE (INTEL) DATA BUS READ TIMING
IOW #
IOW
RTS#
DTR#
CD#
CTS#
DSR#
INT
IOR#
RI#
T
WDO
T
MOD
T
MOD
T
RSI
T
MOD
Active
Active
C hange of state C hange of state
Active Active Active
C hange of state C hange of state
C hange of state
Active Active
T
AS
T
DD
T
AH
T
RD
T
RDV
T
DY
T
DD
T
RDV
T
AH
T
AS
T
CS
Valid Address Valid Address
Valid Data Va lid D ata
A0-A2
CS#
IOR#
D0-D7
RDTm
T
CS
T
RD
XR16M680
48
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
FIGURE 19. 16 MODE (INTEL) DATA BUS WRITE TIMING
FIGURE 20. 68 MODE (MOTOROLA) DATA BUS READ TIMING
16Write
TAS
TDH
TAH
TWR
TDS
TDY
TDH
TDS
TAH
TAS TCS
Valid Address Valid Address
V a lid D a ta V a lid D a ta
A0-A2
CS#
IOW#
D0-D7
TCS
TWR
68Read
T
ADS
T
RDH
T
ADH
T
CSL
T
RDA
T
CSD
T
RWS
V alid Ad d r e s s V alid Ad d r e s s
Valid Data
A0-A2
CS#
R/W#
D0-D7
T
RWH
V alid Data
XR16M680
49
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
FIGURE 21. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING
FIGURE 22. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE]
68Write
T
ADS
T
ADH
T
CSL
T
WDS
T
CSD
T
RWS
Valid Address Valid Address
V a lid Da ta
A0-A2
CS#
R/W#
D0-D7
T
RWH
V a lid Da ta
T
WDH
RX
RXRDY#
IOR#
INT
D0:D7
Start
Bit D0:D7
Stop
Bit D0:D7
T
SSR
1 Byte
in RHR
Active
Data
Ready
Active
Data
Ready
Active
Data
Ready
1 Byte
in RHR 1 Byte
in RHR
T
SSR
T
SSR
RXNFM
T
RR
T
RR
T
RR
T
SSR
T
SSR
T
SSR
(Reading data
out of RHR)
XR16M680
50
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
FIGURE 23. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE]
FIGURE 24. RECEIVE READY & INTERRUPT TIMING [FIFO MODE]
TX
TXRDY#
IOW#
INT*
D0:D7
Start
Bit D0:D7
Stop
Bit D0:D7
T
WT
TXNonFIFO
T
WT
T
WT
T
WRI
T
WRI
T
WRI
T
SRT
T
SRT
T
SRT
*INT is cleared when the ISR is read or when data is loaded into the THR.
ISR is read ISR is readISR is read
(Loading data
into THR)
(Unloading)
IER[1]
enabled
RX
RXRDY#
IOR#
INT
D0:D7
S
T
SSR
RXINTDMA#
RX FIFO fills up to RX
Trigger Level or RX Data
Timeout
RX FIFO drops
below RX
Trigger L evel
FIFO
Empties
First Byte is
Received in
RX FIFO
D0:D7
S
D0:D7
T
D0:D7
S
D0:D7
S
T
D0:D7
S
TT
D0:D7
ST
Start
Bit
Stop
Bit
T
RR
T
RRI
T
SSI
(Reading data out
of RX FIFO)
XR16M680
51
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
FIGURE 25. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE]
TX
TXRDY#
IOW#
INT*
TXDMA#
D0:D7
S
D0:D7
T
D0:D7
S
D0:D7
S
T
D0:D7
S
TT
D0:D7
ST
Start
Bit Stop
Bit
T
WRI
(Unloading)
(Loading d ata
into FIFO)
Last Data Byte
Transmitted
TX FIFO fills up
to trigger level TX FIFO drops
below trigger level
Data in
TX FIFO
TX FIFO
Empty
T
WT
T
SRT
TX FIFO
Empty
T
TS
T
SI
ISR is read
IER[1]
enabled
ISR is read
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.
XR16M680
52
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9
mm
)
Note: The control dimension is in millimeter.
INCHES MILLIMETERS
SYMBOL MIN MAX MIN MAX
A0.031 0.039 0.80 1.00
A1 0.000 0.002 0.00 0.05
A3 0.006 0.010 0.15 0.25
D0.193 0.201 4.90 5.10
D2 0.138 0.150 3.50 3.80
b0.007 0.012 0.18 0.30
e0.0197 BSC 0.50 BSC
L0.012 0.020 0.35 0.45
k0.008 -0.20 -
Note: the actual center pad
is metallic and the size (D 2)
is device-dependent with a
typical tolerance of 0.3mm
XR16M680
53
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1
mm
)
Note: The control dimension is the millimeter column
INCHES MILLIMETERS
SYMBOL MIN MAX MIN MAX
A0.039 0.047 1.00 1.20
A1 0.002 0.006 0.05 0.15
A2 0.037 0.041 0.95 1.05
B0.007 0.011 0.17 0.27
C0.004 0.008 0.09 0.20
D0.346 0.362 8.80 9.20
D1 0.272 0.280 6.90 7.10
e0.020 BSC 0.50 BSC
L0.018 0.030 0.45 0.75
a
36 25
24
13
1
1
2
37
48
D
D
1
D
D
1
B
e
α
A
2
A
1
A
Seating
Plane
L
C
XR16M680
54
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
PACKAGE DIMENSIONS (25 PIN BGA - 3 X 3 X 0.8
mm
)
Note: The control dimension is the millimeter column
INCHES MILLIMETERS
SYMBOL MIN MAX MIN MAX
A0.028 0.031 0.70 0.80
A1 0.005 0.007 0.13 0.19
A2 0.022 0.024 0.57 0.61
D0.114 0.122 2.90 3.10
D1 0.079 BSC 2.00 BSC
b0.008 0.012 0.20 0.30
e0.020 BSC 0.50 BSC
B
A
E
D
C
A1 corner
13245
D1
D1
D
D
e
b
A1
AA2
(A1 corner feature is mfger option)
Plane
Seating
55
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuit s described he rein, conveys n o license under an y p atent or ot her right , and makes no rep resent atio n that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purposes and may vary depending upon a user’s specific application. While the information in this publication
has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or
to significantly a ffect its safety or effectiveness. Products are not authorized for use in such app lica tions u nless
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately
protected un de r the circumstances.
Copyright 2008 EXAR Corporation
Datasheet Septembe r 2008.
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
XR16M680
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
REVISION HISTORY
D
ATE
R
EVISION
D
ESCRIPTION
September 2008 Rev 1.0.0 Final Datasheet.
XR16M680
I
REV. 1.0.0 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO
GENERAL DESCRIPTION................................................................................................ 1
FEATURES................................................................................................................................................... . 1
APPLICATIONS ............................................................................................................................................. . 1
F
IGURE
1. XR16M680 B
LOCK
D
IAGRAM
.......................................................................................................................................... 1
F
IGURE
2. P
IN
O
UT
A
SSIGNMENT
F
OR
32-
PIN
QFN
AND
48-
PIN
TQFP P
ACKAGES
I
N
16
AND
68 M
ODE
............................................. 2
F
IGURE
3. P
IN
O
UT
A
SSIGNMENT
F
OR
25-
PIN
BGA P
ACKAGE
........................................................................................................... 3
ORDERING INFORMATION............................................................................................................................... 3
PIN DESCRIPTIONS ........................................................................................................ 4
1.0 PRODUCT DESCRIPTION ............................................................................................................... ... ... . 7
2.0 FUNCTIONAL DESCR IPTIO NS ................ ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... ....... ... .... 8
2.1 CPU INTERFACE ................................................................................................................................................ 8
F
IGURE
4. XR16M680 T
YPICAL
I
NTEL
/M
OTOROLA
D
ATA
B
US
I
NTERCONNECTIONS
............................................................................ 8
2.2 SERIAL INTERFACE........................................................................................................................................... 9
F
IGURE
5. XR16M680 T
YPICAL
S
ERIAL
I
NTERFACE
C
ONNECTIONS
................................................................................................... 9
F
IGURE
6. XR16M680 T
YPICAL
S
ERIAL
I
NTERFACE
C
ONNECTIONS
................................................................................................. 10
2.3 DEVICE RESET................................................................................................................................................. 11
2.4 INTERNAL REGISTERS.................................................................................................................................... 11
2.5 INT OUPUT........................................................................................................................................................ 11
T
ABLE
1: INT P
IN
O
PERATION
FOR
T
RANSMITTER
..................................................................................... ...................................... 11
T
ABLE
2: INT P
IN
O
PERATION
FOR
R
ECEIVER
................................................................................................................................ 11
2.6 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK INPUT.............................................................................. 12
F
IGURE
7. T
YPICAL
C
RYSTAL
C
ONNECTIONS
.................................................................................................................................. 12
2.7 PROGRAMMABLE BAUD RATE GENERATOR WITH FRACTIONAL DIVISOR ........................................... 13
2.7.1 INDEPENDENT TX/RX BRG........................................................... .............................................................................. 13
F
IGURE
8. B
AUD
R
ATE
G
ENERATOR
............................................................................................................................................... 14
T
ABLE
3: T
YPICAL
DATA
RATES
WITH
A
24 MH
Z
CRYSTAL
OR
EXTERNAL
CLOCK
AT
16X S
AMPLING
................................................... 14
2.8 TRANSMITTER.................................................................................................................................................. 15
2.8.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY........................................................................................... 15
2.8.2 TRANSMITTER OPERATION IN NON-FIFO MODE.................................................................................................... 15
F
IGURE
9. T
RANSMITTER
O
PERATION
IN
NON
-FIFO M
ODE
.............................................................................................................. 15
2.8.3 TRANSMITTER OPERATION IN FIFO MODE............................................................................................................. 16
F
IGURE
10. T
RANSMITTER
O
PERATION
IN
FIFO
AND
F
LOW
C
ONTROL
M
ODE
................................................................................... 16
2.9 RECEIVER......................................................................................................................................................... 16
2.9.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .............................................................................................. 16
F
IGURE
11. R
ECEIVER
O
PERATION
IN
NON
-FIFO M
ODE
.................................................................................................................. 17
F
IGURE
12. R
ECEIVER
O
PERATION
IN
FIFO
AND
A
UTO
RTS F
LOW
C
ONTROL
M
ODE
....................................................................... 17
2.10 AUTO RTS (HARDWARE) FLOW CONTROL................................................................................................ 18
2.11 AUTO RTS HYSTERESIS ............................................................................................................................... 18
T
ABLE
4: A
UTO
RTS (H
ARDWARE
) F
LOW
C
ONTROL
....................................................................................................... ................. 18
2.12 AUTO CTS FLOW CONTROL......................................................................................................................... 18
F
IGURE
13. A
UTO
RTS
AND
CTS F
LOW
C
ONTROL
O
PERATION
....................................................................................................... 19
2.13 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL...................................................................................... 20
T
ABLE
5: A
UTO
X
ON
/X
OFF
(S
OFTWARE
) F
LOW
C
ONTROL
............................................................................................................... 20
2.14 SPECIAL CHARACTER DETECT.................................................................................................................. 20
2.15 NORMAL MULTIDROP MODE........................................................................................................................ 20
2.15.1 AUTO ADDRESS DETECTION .................................................................................................................................. 21
2.16 INFRARED MODE........................................................................................................................................... 21
F
IGURE
14. I
NFRARED
T
RANSMIT
D
ATA
E
NCODING
AND
R
ECEIVE
D
ATA
D
ECODING
.......................................................................... 22
2.17 SLEEP MODE WITH AUTO WAKE-UP AND POWER-SAVE FEATURE...................................................... 22
2.17.1 SLEEP MODE ............................................................................................................................................................. 22
2.17.2 POWER-SAVE FEATURE .......................................................................................................................................... 23
2.17.3 WAKE-UP INTERRUPT ........................................... ................................................................................................... 23
2.18 INTERNAL LOOPBACK................................................................................................................................. 24
F
IGURE
15. I
NTERNAL
L
OOPBACK
................................................................................................................................................... 24
3.0 UART INTERNAL REGISTERS.... ......................................................................................................... 25
T
ABLE
6: UART INTERNAL REGISTERS ........................................................................ .......................................................... 25
T
ABLE
7: INTERNAL REGISTERS DESCRIPTION. S
HADED
BITS
ARE
ENABLED
WHEN
EFR B
IT
-4=1 ......................................... 26
4.0 INTERNAL REGISTER DESCRIPTIONS.............................................................................................. 27
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY.................................................................................. 27
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY............................................................................... 27
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ................................................................................ 27
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................... 28
XR16M680
II
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 32-BYTE FIFO REV. 1.0.0
4.3.2 IER VERSUS RECEIVE/TRANSMIT FI FO POLLED MODE OPERATION.................................................................. 28
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY .................................................................................. 29
4.4.1 INTERRUPT GENERATION: ........................................................................................................................................ 29
4.4.2 INTERRUPT CLEARING: ............................................................................................................................................. 30
T
ABLE
8: I
NTERRUPT
S
OURCE
AND
P
RIORITY
L
EVEL
....................................................................................................................... 30
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY......................................................................................... 31
T
ABLE
9: T
RANSMIT
AND
R
ECEIVE
FIFO T
RIGGER
T
ABLE
AND
L
EVEL
S
ELECTION
............................................................................ 32
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE......................................................................................... 32
T
ABLE
10: P
ARITY
SELECTION
........................................................................................................................................................ 33
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUT S CONTROL - READ/WRITE.. 34
T
ABLE
11: INT O
UTPUT
M
ODES
..................................................................................................................................................... 34
4.8 LINE STATUS REGISTER (LSR) - READ ONLY.............................................................................................. 35
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY ....................................................................................... 36
4.10 MODEM STATUS REGISTER (MSR) - WRITE ONLY.................................................................................... 37
4.11 SCRATCH PAD REGISTER (SPR) - READ/WRITE ....................................................................................... 37
4.12 ENHANCED MODE SELECT REGISTER (EMSR) - WRITE-ONLY............................................................... 38
T
ABLE
12: S
CRATCHPAD
S
WAP
S
ELECTION
.................................................................................................................................... 38
4.13 BAUD RATE GENERATOR REGISTERS (DLL, DL M AND DLD) - READ/WRITE ....................................... 39
T
ABLE
13: S
AMPLING
R
ATE
S
ELECT
............................................................................................................................................... 39
T
ABLE
14: BRG S
ELECT
................................................................................................................................................................ 39
4.14 RX/TX FIFO LEVEL COUNT REGISTER (FC) - READ-ONLY ....................................................................... 40
4.15 FEATURE CONTROL REGISTER (FCTR) - READ/WRITE............................................................................ 40
4.16 ENHANCED FEATURE REGISTER (EFR) - READ/WRITE ........................................................................... 41
T
ABLE
15: S
OFTWARE
F
LOW
C
ONTROL
F
UNCTIONS
........................................................................................................................ 41
4.17 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE................... 42
T
ABLE
16: UART RESET CONDITIONS ...................................................................................................................................... 43
ABSOLUTE MAXIMUM RATINGS.................................................................................. 44
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%) 44
ELECTRICAL CHARACTERISTICS............................................................................... 44
DC ELECTRICAL CHARACTERISTICS ............................................................................................................. 44
AC ELECTRICAL CHARACTERISTICS ............................................................................................................. 45
TA = -40O TO +85OC, VCC IS 1.62 TO 3.6V, 70 PF LOAD WHERE APPLICABLE ............................................. 45
F
IGURE
16. C
LOCK
T
IMING
............................................................................................................................................................. 46
F
IGURE
17. M
ODEM
I
NPUT
/O
UTPUT
T
IMING
.................................................................................................................................... 47
F
IGURE
18. 16 M
ODE
(I
NTEL
) D
ATA
B
US
R
EAD
T
IMING
................................................................................................................... 47
F
IGURE
19. 16 M
ODE
(I
NTEL
) D
ATA
B
US
W
RITE
T
IMING
.................................................................................................................. 48
F
IGURE
20. 68 M
ODE
(M
OTOROLA
) D
ATA
B
US
R
EAD
T
IMING
.......................................................................................................... 48
F
IGURE
22. R
ECEIVE
R
EADY
& I
NTERRUPT
T
IMING
[N
ON
-FIFO M
ODE
]............................................................................................ 49
F
IGURE
21. 68 M
ODE
(M
OTOROLA
) D
ATA
B
US
W
RITE
T
IMING
......................................................................................................... 49
F
IGURE
23. T
RANSMIT
R
EADY
& I
NTERRUPT
T
IMING
[N
ON
-FIFO M
ODE
].......................................................................................... 50
F
IGURE
24. R
ECEIVE
R
EADY
& I
NTERRUPT
T
IMING
[FIFO M
ODE
].................................................................................................... 50
F
IGURE
25. T
RANSMIT
R
EADY
& I
NTERRUPT
T
IMING
[FIFO M
ODE
].................................................................................................. 51
PACKAGE DIMENSIONS (32 PIN QFN - 5 X 5 X 0.9
mm
).............................................. 52
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1
mm
)............................................... 53
PACKAGE DIMENSIONS (25 PIN BGA - 3 X 3 X 0.8
mm
).............................................. 54
REVISION HISTORY...................................................................................................................................... 55