2005-11-08Rev. 2.6 Page 1
SPP12N50C3
SPI12N50C3, SPA12N50C3
Cool MOS™ Power Transistor VDS @ Tjmax 560 V
RDS(on) 0.38
ID11.6 A
Feature
New revolutionary high voltage technology
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dtrated
Ultra low effective capacitances
Improved transconductance
PG-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
PG-TO220-3-31 PG-TO262- PG-TO220
2
P
-
TO220
-
3
-
1
23
1
P-TO220-3-31
123
Marking
12N50C3
12N50C3
12N50C3
Type Package Ordering Code
SPP12N50C3 PG-TO220 Q67040-S4579
SPI12N50C3 PG-TO262
Q67040-S4578
SPA12N50C3 PG-TO220-3-31 SP000216322
Maximum Ratings
Parameter Symbol Value Unit
SPP_I
SPA
Continuous drain current
T
C
= 25 °C
T
C
= 100 °C
I
D
11.6
7
11.6
1)
7
1)
A
Pulsed drain current,
t
p
limited by T
j
max
I
D
p
uls
34.8 34.8 A
Avalanche energy, single pulse
I
D
=5.5A, V
DD
=50V
E
AS
340 340 mJ
Avalanche energy, repetitive
t
AR
limited by
T
jmax2)
I
D=11.6A,
V
DD=50V
E
AR
0.6 0.6
Avalanche current, repetitive
t
A
R
limited by
T
j
ma
x
I
A
R
11.6 11.6 A
Gate source voltage
V
GS
±20 ±20 V
Gate source voltage AC (f >1Hz) V
GS
±
30 ±30
Power dissipation,
TC = 25°C
P
tot
125 33 W
Operating and storage temperature T
j
,
T
st
g
-55...+150 °C
Reverse diode dv/dt
Gate source voltage
dv/dt 15 V/ns
7)
2005-11-08Rev. 2.6 Page 2
SPP12N50C3
SPI12N50C3, SPA12N50C3
Maximum Ratings
Parameter Symbol Value Unit
Drain Source voltage slope
VDS = 400 V, ID = 11.6 A, Tj = 125 °C
dv/dt50 V/ns
Thermal Characteristics
Parameter Symbol Values Unit
min. typ. max.
Thermal resistance, junction - case RthJC - - 1 K/W
Thermal resistance, junction - case, FullPAK RthJC
FP - - 3.8
Thermal resistance, junction - ambient, leaded RthJA - - 62
Thermal resistance, junction - ambient, FullPAK RthJA
_
FP - - 80
SMD version, device on PCB:
@ min. footprint
@ 6 cm2 cooling area 3)
RthJA
-
-
-
35
62
-
Soldering temperature, wavesoldering
1.6 mm (0.063 in.) from case for 10s4)
Tsold - - 260 °C
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA 500 - - V
Drain-Source avalanche
breakdown voltage
V(BR)DS VGS=0V, ID=11.6A - 600 -
Gate threshold voltage VGS(th) ID=500µA, VGS=VDS 2.1 3 3.9
Zero gate voltage drain current IDSS VDS=500V, VGS=0V,
Tj=25°C
Tj=150°C
-
-
0.1
-
1
100
µA
Gate-source leakage current IGSS VGS=20V, VDS=0V - - 100 nA
Drain-source on-state resistance RDS(on) VGS=10V, ID=7A
Tj=25°C
Tj=150°C
-
-
0.34
0.92
0.38
-
Gate input resistance RGf=1MHz, open drain - 1.4 -
2005-11-08Rev. 2.6 Page 3
SPP12N50C3
SPI12N50C3, SPA12N50C3
Electrical Characteristics, at T
j
= 25 °C, unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Characteristics
Transconductance gfs VDS2*ID*RDS(on)max,
ID=7A
- 8 - S
Input capacitance Ciss VGS=0V, VDS=25V,
f=1MHz
- 1200 - pF
Output capacitance Coss - 400 -
Reverse transfer capacitance Crss - 30 -
Effective output capacitance,5)
energy related
Co(er) VGS=0V,
VDS=0V to 400V
- 45 -
Effective output capacitance,6)
time related
Co(tr) - 92 -
Turn-on delay time td(on) VDD=380V, VGS=0/10V,
ID=11.6A, RG=6.8
- 10 - ns
Rise time tr- 8 -
Turn-off delay time td(off) - 45 -
Fall time tf- 8 -
Gate Charge Characteristics
Gate to source charge Qgs VDD=400V, ID=11.6A - 5 - nC
Gate to drain charge Qgd - 26 -
Gate charge total QgVDD=400V, ID=11.6A,
VGS=0 to 10V
- 49 -
Gate plateau voltage V(plateau) VDD=400V, ID=11.6A - 5 - V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f.
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4Soldering temperature for TO-263: 220°C, reflow
5Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS.
6Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
7ISD<=ID, di/dt<=400A/us, VDClink=400V, Vpeak<VBR, DSS, Tj<Tj,max.
Identical low-side and high-side switch.
2005-11-08Rev. 2.6 Page 4
SPP12N50C3
SPI12N50C3, SPA12N50C3
Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Inverse diode continuous
forward current
ISTC=25°C - - 11.6 A
Inverse diode direct current,
pulsed
ISM - - 34.8
Inverse diode forward voltage VSD VGS=0V, IF=IS- 1 1.2 V
Reverse recovery time trr VR=400V, IF=IS ,
diF/dt=100A/µs
- 380 - ns
Reverse recovery charge Qrr - 5.5 - µC
Peak reverse recovery current Irrm - 38 - A
Peak rate of fall of reverse
recovery current
dirr/dt Tj=25°C - 1100 - A/µs
Typical Transient Thermal Characteristics
Symbol Value Unit Symbol Value Unit
SPP_I SPA SPP_I SPA
Rth1 0.015 0.15 K/W Cth1 0.0001878 0.0001878 Ws/K
Rth2 0.03 0.03 Cth2 0.0007106 0.0007106
Rth3 0.056 0.056 Cth3 0.000988 0.000988
Rth4 0.197 0.194 Cth4 0.002791 0.002791
Rth5 0.216 0.413 Cth5 0.007285 0.007401
Rth6 0.083 2.522 Cth6 0.063 0.412
External Heatsink
TjTcase
Tamb
Cth1 Cth2
Rth1 Rth,n
Cth,n
Ptot (t)
2005-11-08Rev. 2.6 Page 5
SPP12N50C3
SPI12N50C3, SPA12N50C3
1 Power dissipation
Ptot = f(TC)
0 20 40 60 80 100 120 °C 160
TC
0
10
20
30
40
50
60
70
80
90
100
110
120
W
140
SPP12N50C3
Ptot
2 Power dissipation FullPAK
Ptot = f(TC)
0 20 40 60 80 100 120 °C 160
TC
0
4
8
12
16
20
24
28
W
36
Ptot
3 Safe operating area
ID= f ( VDS )
parameter : D = 0 , TC=25°C
10 010 110 210 3
V
VDS
-2
10
-1
10
0
10
1
10
2
10
A
ID
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
4 Safe operating area FullPAK
ID = f (VDS)
parameter: D = 0, TC = 25°C
10 010 110 210 3
V
VDS
-2
10
-1
10
0
10
1
10
2
10
A
ID
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
2005-11-08Rev. 2.6 Page 6
SPP12N50C3
SPI12N50C3, SPA12N50C3
5 Transient thermal impedance
ZthJC = f(tp)
parameter: D=tp/T
10 -7 10 -6 10 -5 10 -4 10 -3 10 -1
s
tp
-4
10
-3
10
-2
10
-1
10
0
10
1
10
K/W
ZthJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
6 Transient thermal impedance FullPAK
ZthJC = f(tp)
parameter: D = tp/t
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1
s
tp
-4
10
-3
10
-2
10
-1
10
0
10
1
10
K/W
ZthJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
7 Typ. output characteristic
ID = f (VDS); Tj=25°C
parameter: tp= 10 µs, VGS
0 5 10 15 V25
VDS
0
4
8
12
16
20
24
28
32
A
40
ID
4.5V
5V
5.5V
6V
6.5V
7V
20V
10V
8V
8 Typ. output characteristic
ID = f (VDS); Tj=150°C
parameter: tp= 10 µs, VGS
0 5 10 15 V 25
VDS
0
2
4
6
8
10
12
14
16
18
A
22
ID
4V
4.5V
5V
5.5V
6V
20V
8V
7.5V
7V
2005-11-08Rev. 2.6 Page 7
SPP12N50C3
SPI12N50C3, SPA12N50C3
9 Typ. drain-source on resistance
RDS(on)=f(ID)
parameter: Tj=150°C, VGS
0 2 4 6 8 10 12 14 16 A 20
ID
0.4
0.6
0.8
1
1.2
1.4
1.6
2
RDS(on)
4V 4.5V 5V 5.5V 6V
6.5V
8V
20V
10 Drain-source on-state resistance
RDS(on) = f(Tj)
parameter : ID = 7 A, VGS = 10 V
-60 -20 20 60 100 °C 180
Tj
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2.1 SPP12N50C3
RDS(on)
typ
98%
11 Typ. transfer characteristics
ID= f ( VGS ); VDS 2 x ID x RDS(on)max
parameter: tp = 10 µs
0 1 2 3 4 5 6 7 8 V 10
VGS
0
4
8
12
16
20
24
28
32
A
40
ID
25°C
150°C
12 Typ. gate charge
VGS =f (QGate)
parameter: ID = 11.6 A pulsed
0 10 20 30 40 50 nC 70
QGate
0
2
4
6
8
10
12
V
16 SPP12N50C3
VGS
0,8 VDS max
DS max
V
0,2
2005-11-08Rev. 2.6 Page 8
SPP12N50C3
SPI12N50C3, SPA12N50C3
13 Forward characteristics of body diode
IF = f (VSD)
parameter: T
j
, tp= 10 µs
0 0.4 0.8 1.2 1.6 2 2.4 V3
VSD
-1
10
0
10
1
10
2
10
A
SPP12N50C3
IF
Tj = 25 °C typ
Tj = 25 °C (98%)
Tj = 150 °C typ
Tj = 150 °C (98%)
14 Avalanche SOA
IAR = f (tAR)
par.: Tj 150 °C
10 -3 10 -2 10 -1 10 010 110 210 4
µs
tAR
0
1
2
3
4
5
6
7
8
9
A
11
IAR
Tj(START)=125°C
Tj(START)=25°C
15 Avalanche energy
EAS = f(Tj)
par.: ID = 5.5 A, VDD = 50 V
20 40 60 80 100 120 °C 160
Tj
0
50
100
150
200
250
mJ
350
EAS
16 Drain-source breakdown voltage
V(BR)DSS = f(Tj)
-60 -20 20 60 100 °C 180
Tj
450
460
470
480
490
500
510
520
530
540
550
560
570
V
600
SPP12N50C3
V(BR)DSS
2005-11-08Rev. 2.6 Page 9
SPP12N50C3
SPI12N50C3, SPA12N50C3
17 Avalanche power losses
PAR = f (f )
parameter: EAR=0.6mJ
10 410 510 6
Hz
f
0
50
100
150
200
W
300
PAR
18 Typ. capacitances
C = f(VDS)
parameter: VGS=0V, f=1 MHz
0 100 200 300 V 500
VDS
-1
10
0
10
1
10
2
10
3
10
4
10
pF
C
Ciss
Coss
Crss
19 Typ. Coss stored energy
Eoss=f(VDS)
0 100 200 300 V 500
VDS
0
1
2
3
4
µJ
6
Eoss
2005-11-08Rev. 2.6 Page 10
SPP12N50C3
SPI12N50C3, SPA12N50C3
Definition of diodes switching characteristics
2005-11-08Rev. 2.6 Page 11
SPP12N50C3
SPI12N50C3, SPA12N50C3
PG-TO-220-3-1, PG-TO220-3-21
2005-11-08Rev. 2.6 Page 12
SPP12N50C3
SPI12N50C3, SPA12N50C3
PG-TO220-3-31 (FullPAK)
2005-11-08Rev. 2.6 Page 13
SPP12N50C3
SPI12N50C3, SPA12N50C3
PG-TO262-3-1, PG-TO262-3-21 (I²-PAK)
2005-11-08Rev. 2.6 Page 14
SPP12N50C3
SPI12N50C3, SPA12N50C3
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.