Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 1
The
InQor® Half-brick converter series is composed
of next-generation, board-mountable, isolated,
fixed switching frequency dc-dc converters that use
synchronous rectification to achieve extremely high
power conversion efficiency. Each module is supplied
completely encased to provide protection from the
harsh environments seen in many industrial and
transportation applications.
Operational Features
• Highefficiencies,upto87%atfullratedloadcurrent
Deliversfullpowerwithminimalderating-noheatsinkrequired
• Operatinginputvoltagerange:
9-75V,100Vtransientfor100ms
• FixedfrequencyswitchingprovidespredictableEMI
• Nominimumloadrequirement
Protection Features
• Inputunder-voltagelockout
• Inputover-voltageshutdown
• Outputcurrentlimitandshortcircuitprotection
• Activebackbiaslimit
• Outputover-voltageprotection
• Thermalshutdown
Mechanical Features
• IndustrystandardHalf-brickpin-outconfiguration
• Standardsize:2.390"x2.490"x0.512"
(60.6x63.1x13.0mm)
• Totalweight:5oz(142g)
Control Features
• On/Offcontrolreferencedtoinputside
• Remotesensefortheoutputvoltage
• Outputvoltagetrimrangeof-20%,+10%
9-75 V 100 V 1.8-48 V 165 W 2250 V dc Half-brick
Continuous Input Transient Input Outputs Max Power Isolation DC-DC Converter
CONTENTS
Safety Features
• 2250V,30MW input-to-output isolation
• UL60950-1:2003,basicinsulation
• CAN/CSA-C22.2No.60950-1:2003
• EN60950-1:2001
• RoHScompliant(seePage
28
)
PageNo.
IQ32-HPXMechanicalDrawing ..............................2
IQ32HPXFamilyElectricalCharacteristics(alloutputvoltages).......3
IQ32HPXFamilyStandards&Qualification .....................4
IQ32FamilyFigures(alloutputvoltages) ......................5
IQ32018HPX55ElectricalCharacteristics(1.8Vout)&Figures.......6-7
IQ32033HPX45ElectricalCharacteristics(3.3Vout)&Figures.......8-9
IQ32050HPX32ElectricalCharacteristics(5.0Vout)&Figures.....10-11
IQ32120HPX13ElectricalCharacteristics(12.0Vout)&Figures ....12-13
IQ32150HPX11ElectricalCharacteristics(15.0Vout)&Figures ....14-15
IQ32240HPX6HElectricalCharacteristics(24.0Vout)&Figures....16-17
IQ32280HPX5IElectricalCharacteristics(28.0Vout)&Figures ....18-19
IQ32400HPX04ElectricalCharacteristics(40.0Vout)&Figures ....20-21
IQ32480HPX3EElectricalCharacteristics(48.0Vout)&Figures ....22-23
ApplicationSection ...................................24-27
OrderingInformation.................................... 28
IQ32050HPC32NRS-G
9-75V
IN
5V
OUT @ 32A
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 2
NOTES
1) Appliedtorqueperscrewshouldnotexceed6in-lb.(0.7Nm).
2) Baseplateflatnesstoleranceis0.004"(.10mm)TIRforsurface.
3) Pins1-3,5-7are0.040”(1.02mm)diameter,with0.080”
(2.03mm)diameterstandoffshoulders.
4) Pins4and8are0.080”(2.03mm)dia.with0.125”(3.18mm)dia.
standoff shoulders
5) AllPins:Material:CopperAlloy
Finish:MatteTinoverNickelplate
6) UndimensionedComponentsareshownforvisualreferenceonly
7) Weight:4.9oz(142g)
8) ThreadedorNon-Threadedoptionsavailable
9) Alldimensionsininches(mm)Tolerances:
x.xx+/-0.02in.(x.x+/-0.5mm)
x.xxx+/-0.010in.(x.xx+/-0.25mm)
PIN DESIGNATIONS
Pin Name Function
1 Vin(+) Positiveinputvoltage
2 ON/OFF
TTLinputtoturnconverteron
andoff,referencedtoVin(–),with
internal pull up.
3 Vin(–) Negativeinputvoltage
4 Vout(–) Negativeoutputvoltage
5 SENSE(–) Negativeremotesense1
6TRIM Outputvoltagetrim2
7 SENSE(+) Positiveremotesense3
8 Vout(+) Positiveoutputvoltage
Notes:
1) SENSE(–)shouldbeconnectedtoVout(–)either
remotely or at the converter.
2) LeaveTRIMpinopenfornominaloutputvoltage.
3) SENSE(+)shouldbeconnectedtoVout(+)
either remotely or at the converter.
1.90
[ 48,3 ]
.400 [ 10,16 ]
1.400 [ 35,56 ]
.400 [ 10,16 ]
.700 [ 17,78 ]
1.000 [ 25,4 ]
1.400 [ 35,56 ]
2.386 ±.020
[ 60,6 ±0,5 ]
.233 ±.020
[ 5,92 ±0,5 ]
.543 ±.020 [ 13,79 ±0,5]
1.90
[ 48,3 ]
2.486 ±.020 [ 63,14 ±0,5 ]
.243 ±.020
[ 6,17 ±0,5 ]
.243 ±.020
[ 6,17 ±0,5]
2.00 [ 50,8 ]
+.002
.512 -.005
+0,05
13
[-0,12 ]
OVERALL
HEIGHT
+.007
.027 -.010
+0,17
0,69
[-0,25 ]
BOTTOMSIDE CLEARANCE
.163
[ 4,14 ]
123
4
5
6
7
8
SIDE VIEW
TOP VIEW
THRU HOLE
M3 (SEE NOTE 8)
STANDOFFS (4)
IQ32-HP Mechanical Drawing
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 3
IQ32 HPX Family Electrical Characteristics (all output voltages)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
ABSOLUTE MAXIMUM RATINGS
InputVoltage
Non-Operating 100 V Continuous
Operating 75 V Continuous
OperatingTransientProtection 100 V 100ms
IsolationVoltage
InputtoOutput 2250 Vdc
InputtoBase-Plate 2250 Vdc
OutputtoBase-Plate 2250 Vdc
OperatingTemperature -40 100 °C Baseplate temperature
StorageTemperature -55 125 °C
VoltageatON/OFFinputpin -2 18 V
INPUT CHARACTERISTICS
OperatingInputVoltageRange 932 75 V 100V,100msTransient;SeeNote1
InputUnder-VoltageLockout
Turn-OnVoltageThreshold 11.0 11.2 11.5 V
Turn-OffVoltageThreshold 8.1 8.4 8.7 V
LockoutVoltageHysteresis 2.8 V
InputOver-VoltageShutdown -V NotAvailable
RecommendedExternalInputCapacitance 470 µF TypicalESR0.1-0.2Ω
InputFilterComponentValues(L\C) 0.34\13.2 µH\µF Internalvalues;seeFigureE
DYNAMIC CHARACTERISTICS
Turn-OnTransient
Turn-OnTime 10 ms Fullload,Vout=90%nom.
Start-UpInhibitTime 200 230 250 ms -40°Cto+125°C;FigureF
OutputVoltageOvershoot 0 % MaximumOutputCapacitance
ISOLATION CHARACTERISTICS
IsolationVoltage(dielectricstrength) SeeAbsoluteMaximumRatings
IsolationResistance 30
IsolationCapacitance(inputtooutput) 1000 pF SeeNote2
TEMPERATURE LIMITS FOR POWER DERATING CURVES
SemiconductorJunctionTemperature 125 °C Packageratedto150°C
Board Temperature 125 °C ULratedmaxoperatingtemp130°C
Transformer Temperature 125 °C
MaximumBaseplateTemperature,Tb 100 °C
FEATURE CHARACTERISTICS
SwitchingFrequency 255 275 295 kHz Isolation stage switching freq. is half this
ON/OFFControl
Off-StateVoltage 2.4 18 V
On-StateVoltage -2 0.8
ON/OFFControl ApplicationnotesFiguresA&B
Pull-UpVoltage 5 V
Pull-UpResistance 50
Over-TemperatureShutdownOTPTripPoint 125 °C AveragePCBTemperature
Over-TemperatureShutdownRestartHysteresis 10 °C
RELIABILITY CHARACTERISTICS
CalculatedMTBF(Telcordia)TR-NWT-000332 2.2 106 Hrs. 80%load,200LFM,40°CTa
CalculatedMTBF(MIL-217)MIL-HDBK-217F 1.3 106 Hrs. 80%load,200LFM,40°CTa
FieldDemonstratedMTBF 106 Hrs. Seeourwebsitefordetails
Note1:Start-upguaranteedabove11.5V,butwilloperatedownto9V
Note2:Highervaluesofisolationcapacitancecanbeaddedexternaltothemodule.
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 4
STANDARDSCOMPLIANCE
Parameter Notes&Conditions
STANDARDSCOMPLIANCE
UL/cUL60950-1 File#E194341,Basicinsulation
EN60950-1 CertiedbyTUV
NeedleFlameTest(IEC695-2-2) Testonentireassembly;board&plasticcomponentsUL94V-0compliant
IEC61000-4-2 ESDtest,8kV-NP,15kVair-NP(NormalPerformance)
Note:Anexternalinputfusemustalwaysbeusedtomeetthesesafetyrequirements.ContactSynQorforofcialsafetycerticatesonnew
releasesordownloadfromtheSynQorwebsite.
QUALIFICATIONTESTING
Parameter #Units TestConditions
QUALIFICATIONTESTING
LifeTest 32 95%ratedVinandload,unitsatderatingpoint,1000hours
Vibration 5 10-55Hzsweep,0.060"totalexcursion,1min./sweep,120sweepsfor3axis
MechanicalShock 5 100gminimum,2dropsinxandyaxis,1dropinzaxis
TemperatureCycling 10 -40°Cto100°C,unittemp.ramp15°C/min.,500cycles
Power/ThermalCycling 5 Toperating=mintomax,Vin=mintomax,fullload,100cycles
DesignMarginality 5 Tmin-10°CtoTmax+10°C,5°Csteps,Vin=mintomax,0-105%load
Humidity 5 85°C,85%RH,1000hours,continuousVinappliedexcept5min/day
Solderability 15pins MIL-STD-883,method2003
IQ32 HPX FAMILY STANDARDS & QUALIFICATION
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 5
Common Figure 3: Trim graph for trim-up 1.8 to 12 V outputs.
0
20
40
60
80
100
120
010 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Load Current (%)
Output Voltage (%)
Vin min
Vin nom
Vin max
Typical Current Limit Inception Point
Typical Output Voltage at Shutdown
Common Figure 1: Typical startup waveform. Input voltage pre-applied,
ON/OFF Pin on Ch 2. Common Figure 2: Output voltage vs. load current showing typical
current limit curves and converter shutdown points.
100.0
1,000.0
10,000.0
100,000.0
012345678910 11 12 13 14 15
Trim Resistance (kOhms)
15 V 24 V 28 V 40 V 48 V
10.0
100.0
1,000.0
10,000.0
100,000.0
012345678910 11 12 13 14 15
Trim Resistance (kOhms)
1.8 V 3.3 V 5 V 12 V
10.0
100.0
1,000.0
10,000.0
012345678910 11 12 13 14 15 16 17 18 19 20
Decrease in Vout (%)
Trim Resistance (kOhms)
All voltages
Common Figure 5
: Trim graph for trim down.
Common Figure 4: Trim graph for trim-up 15 to 48 V outputs.
Nominal Vout
IQ32 Family Figures (all output voltages)
5.00
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 6
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
1.8 V
55 A
IQ32018HPx55
IQ32018HPX55 Electrical Characteristics (1.8 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 18.2 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 300 380 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 0.06 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 240 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 1.782 1.8 1.818 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -27 27 mV
TotalOutputVoltageRange 1.755 1.845 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 90 180 mV Fullload
RMS 19 40 mV Fullload
OperatingOutputCurrentRange 0 55 ASubjecttothermalderating
OutputDCCurrent-LimitInception 60.5 66.0 71.5 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 0.8 V
Back-DriveCurrentLimitwhileEnabled 0.4 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 0.1 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 15,000 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 110 mV 50%to75%to50%Ioutmax
SettlingTime 400 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5;seeNote2
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 2.1 2.2 2.3 V Overfulltemprange
EFFICIENCY
100%Load 80 % SeeFigure1forefficiencycurve
50%Load 83 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramicand15µFlow-ESRtantalumcapacitors.Forapplicationsrequiringreducedoutputvoltagerippleand
noise,consultSynQorapplicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 7
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
1.8 V
55 A
IQ32018HPx55
0
3
6
9
12
15
18
21
24
27
0 5 10 15 20 25 30 35 40 45 50 55
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
10
20
30
40
50
60
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
10
20
30
40
50
60
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0 5 10 15 20 25 30 35 40 45 50 55
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 8
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
3.3 V
45 A
IQ32033HPx45
IQ32033HPX45 Electrical Characteristics (3.3 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 26.4 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 340 430 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 0.12 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 440 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 3.267 3.3 3.333 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -50 50 mV
TotalOutputVoltageRange 3.218 3.383 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 175 350 mV Fullload
RMS 27 50 mV Fullload
OperatingOutputCurrentRange 0 45 ASubjecttothermalderating
OutputDCCurrent-LimitInception 49.5 54.0 58.5 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 1.8 V
Back-DriveCurrentLimitwhileEnabled 1.45 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 0.1 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 10,000 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 100 mV 50%to75%to50%Ioutmax
SettlingTime 200 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 3.9 4.0 4.2 V Overfulltemprange
EFFICIENCY
100%Load 83 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramicand15µFlow-ESRtantalumcapacitors.Forapplicationsrequiringreducedoutputvoltagerippleand
noise,consultSynQorapplicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 9
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
3.3 V
45 A
IQ32033HPx45
0
3
6
9
12
15
18
21
24
27
30
33
36
0 5 10 15 20 25 30 35 40 45
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
5
10
15
20
25
30
35
40
45
50
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
5
10
15
20
25
30
35
40
45
50
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0 5 10 15 20 25 30 35 40 45
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 10
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
5 V
32 A
IQ32050HPx32
IQ32050HPX32 Electrical Characteristics (5.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 27.9 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 325 410 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 0.15 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 350 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 4.95 5 5.05 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -75 75 mV
TotalOutputVoltageRange 4.875 5.125 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 140 280 mV Fullload
RMS 18 40 mV Fullload
OperatingOutputCurrentRange 0 32 ASubjecttothermalderating
OutputDCCurrent-LimitInception 35.2 38.4 41.6 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 2.4 V
Back-DriveCurrentLimitwhileEnabled 0.75 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 0.4 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 8,000 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 165 mV 50%to75%to50%Ioutmax
SettlingTime 200 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5;seeNote2
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 5.9 6.1 6.4 V Overfulltemprange
EFFICIENCY
100%Load 84 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramicand15µFlow-ESRtantalumcapacitors.Forapplicationsrequiringreducedoutputvoltagerippleand
noise,consultSynQorapplicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 11
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
5 V
32 A
IQ32050HPx32
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
5
10
15
20
25
30
35
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
5
10
15
20
25
30
35
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0 5 10 15 20 25 30
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 12
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
12 V
13 A
IQ32120HPx13
IQ32120HPX13 Electrical Characteristics (12.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 26.6 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 450 560 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 0.32 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 330 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 11.88 12 12.12 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -180 180 mV
TotalOutputVoltageRange 11.700 12.300 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 110 220 mV Fullload
RMS 17 30 mV Fullload
OperatingOutputCurrentRange 0 13 ASubjecttothermalderating
OutputDCCurrent-LimitInception 14.3 15.6 16.9 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 6V
Back-DriveCurrentLimitwhileEnabled 0.45 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 1 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 1,500 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 350 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5;seeNote2
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 14.040 14.640 15.240 V Overfulltemprange
EFFICIENCY
100%Load 86 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramicand15µFlow-ESRtantalumcapacitors.Forapplicationsrequiringreducedoutputvoltagerippleand
noise,consultSynQorapplicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 13
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
12 V
13 A
IQ32120HPx13
0
3
6
9
12
15
18
21
24
27
30
012345678910 11 12 13
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
2
4
6
8
10
12
14
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
2
4
6
8
10
12
14
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
012345678910 11 12 13
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 14
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
15 V
11 A
IQ32150HPx11
IQ32150HPX11 Electrical Characteristics (15.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 28.5 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 400 500 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 0.43 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 375 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 14.85 15 15.15 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -225 225 mV
TotalOutputVoltageRange 14.625 15.375 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 75 150 mV Fullload
RMS 11 20 mV Fullload
OperatingOutputCurrentRange 0 11 ASubjecttothermalderating
OutputDCCurrent-LimitInception 12.1 13.2 14.3 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 8 V
Back-DriveCurrentLimitwhileEnabled 0.5 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 1.5 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 1,000 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 660 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5;seeNote2
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 17.6 18.3 19.1 V Overfulltemprange
EFFICIENCY
100%Load 85 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramicand15µFlow-ESRtantalumcapacitors.Forapplicationsrequiringreducedoutputvoltagerippleand
noise,consultSynQorapplicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 15
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
15 V
11 A
IQ32150HPx11
0
3
6
9
12
15
18
21
24
27
30
33
012345678910 11
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
2
4
6
8
10
12
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
2
4
6
8
10
12
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
012345678910 11
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 16
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
24 V
6.7 A
IQ32240HPx6H
IQ32240HPX6H Electrical Characteristics (24.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 28.1 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 330 410 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 1.2 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 360 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 23.76 24 24.24 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -360 360 mV
TotalOutputVoltageRange 23.400 24.600 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 150 300 mV Fullload
RMS 21 40 mV Fullload
OperatingOutputCurrentRange 0 6.7 ASubjecttothermalderating
OutputDCCurrent-LimitInception 7.4 8.0 8.7 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 13 V
Back-DriveCurrentLimitwhileEnabled 0.25 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 2.5 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 400 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 1400 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 28.1 29.3 30.5 V Overfulltemprange
EFFICIENCY
100%Load 84 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramiccapacitor.Forapplicationsrequiringreducedoutputvoltagerippleandnoise,consultSynQor
applicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 17
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
24 V
6.7 A
IQ32240HPx6H
0
5
10
15
20
25
30
35
40
01234567
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
1
2
3
4
5
6
7
8
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
1
2
3
4
5
6
7
8
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0 1 2 3 4 5 6 7
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 18
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
28 V
5.8 A
IQ32280HPx5I
IQ32280HPX5I Electrical Characteristics (28.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 28.4 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 350 440 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 1.5 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 390 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 27.72 28 28.28 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -420 420 mV
TotalOutputVoltageRange 27.300 28.700 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 160 320 mV Fullload
RMS 21 40 mV Fullload
OperatingOutputCurrentRange 0 5.8 ASubjecttothermalderating
OutputDCCurrent-LimitInception 6.4 7.0 7.5 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 15 V
Back-DriveCurrentLimitwhileEnabled 0.25 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 3 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 250 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 1600 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 32.8 34.2 35.6 V Overfulltemprange
EFFICIENCY
100%Load 84 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramiccapacitor.Forapplicationsrequiringreducedoutputvoltagerippleandnoise,consultSynQor
applicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 19
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
28 V
5.8 A
IQ32280HPx5I
0
5
10
15
20
25
30
35
0123456
Load Current (A)
Power Dissipation (W)
12Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
1
2
3
4
5
6
7
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
1
2
3
4
5
6
7
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0123456
Load Current (A)
Efficiency (%)
12Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 20
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
40 V
4 A
IQ32400HPx04
IQ32400HPX04 Electrical Characteristics (40.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 27.9 A Vinmin;trimup;incurrentlimit
No-LoadInputCurrent 400 500 mA
DisabledInputCurrent 3 6mA
ResponsetoInputTransient 2.4 V 500V/ms;seeFigure6
InputTerminalRippleCurrent 350 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 39.6 40 40.4 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -600 600 mV
TotalOutputVoltageRange 39.000 41.000 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 180 360 mV Fullload
RMS 22 40 mV Fullload
OperatingOutputCurrentRange 0 4 ASubjecttothermalderating
OutputDCCurrent-LimitInception 4.4 4.8 5.2 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 22 V
Back-DriveCurrentLimitwhileEnabled 0.25 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 4 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 150 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 2500 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 46.8 48.8 50.8 V Overfulltemprange
EFFICIENCY
100%Load 84 % SeeFigure1forefficiencycurve
50%Load 87 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramiccapacitor.Forapplicationsrequiringreducedoutputvoltagerippleandnoise,consultSynQor
applicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 21
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
40 V
4 A
IQ32400HPx04
0
5
10
15
20
25
30
35
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Load Current (A)
Power Dissipation (W)
9 Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0
1
1
2
2
3
3
4
4
5
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0
1
1
2
2
3
3
4
4
5
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Load Current (A)
Efficiency (%)
9 Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 22
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
48 V
3.4 A
IQ32480HPx3H
IQ32480HPX3E Electrical Characteristics (48.0 Vout)
Ta=25°C,airflowrate=300LFM,Vin=32Vdcunlessotherwisenoted;fulloperatingtemperaturerangeis-40°Cto+100°Cbaseplate
temperaturewithappropriatepowerderating.Specificationssubjecttochangewithoutnotice.
Parameter Min. Typ. Max. Units Notes & Conditions
INPUT CHARACTERISTICS
MaximumInputCurrent 23 A 10Vin;nominaloutput;incurrentlimit
No-LoadInputCurrent 180 230 mA
DisabledInputCurrent 1 2 mA
ResponsetoInputTransient 3.9 V 1000V/ms,32Vto100Vstep;seeFigure6
InputTerminalRippleCurrent 900 mA RMS
RecommendedInputFuse 25 A Fastactingexternalfuserecommended
OUTPUT CHARACTERISTICS
OutputVoltageSetPoint 47.52 48 48.48 V
OutputVoltageRegulation
OverLine ±0.1 ±0.3 %
OverLoad ±0.1 ±0.3 %
OverTemperature -720 720 mV
TotalOutputVoltageRange 46.80 49.20 V Oversample,line,load,temperature&life
OutputVoltageRippleandNoise 20MHzbandwidth;seeNote1
Peak-to-Peak 0 80 160 mV Fullload
RMS 17 30 mV Fullload
OperatingOutputCurrentRange 0 3.4 ASubjecttothermalderating
OutputDCCurrent-LimitInception 3.74 4.08 4.42 A Outputvoltage10%Low
OutputDCCurrent-LimitShutdownVoltage 31 V
Back-DriveCurrentLimitwhileEnabled 0.1 A Negativecurrentdrawnfromoutput
Back-DriveCurrentLimitwhileDisabled 5 mA Negativecurrentdrawnfromoutput
MaximumOutputCapacitance 100 µF Voutnominalatfullload(resistiveload)
OutputVoltageduringLoadCurrentTransient
StepChangeinOutputCurrent(0.1A/µs) 2200 mV 50%to75%to50%Ioutmax
SettlingTime 80 µs Towithin1%Voutnom
OutputVoltageTrimRange -20 10 % AcrossPins8&4;CommonFigures3-5;seeNote2
OutputVoltageRemoteSenseRange 10 % AcrossPins8&4
OutputOver-VoltageProtection 56.16 58.6 60.96 V Overfulltemprange
EFFICIENCY
100%Load 87 % SeeFigure1forefficiencycurve
50%Load 88 % SeeFigure1forefficiencycurve
Note1:Outputisterminatedwith1µFceramiccapacitor.Forapplicationsrequiringreducedoutputvoltagerippleandnoise,consultSynQor
applicationssupport(e-mail:support@synqor.com)
Note2:Trim-uprangeislimitedbelow10%atlowlineandfullload.
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 23
Technical Specification
Input:
Output:
Current:
Part No.:
9-75V
48 V
3.4 A
IQ32480HPx3H
9-75V
48 V
3.4 A
IQ32480HPx3H
0
5
10
15
20
25
30
35
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Load Current (A)
Power Dissipation (W)
9 Vin
32 V in
75 V in
Figure 1: Efficiency at nominal output voltage vs. load current for
minimum, nominal, and maximum input voltage at 25
°
C. Figure 2: Power dissipation at nominal output voltage vs. load current
for minimum, nominal, and maximum input voltage at 25
°
C.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
25 40 55 70 85
Ambient Air Temperature (°C)
Iout (A)
400 LFM (2.0 m/s)
300 LFM (1.5 m/s)
200 LFM (1.0 m/s)
100 LFM (0.5 m/s)
Figure 3: Encased converter (without heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
Figure 4: Encased converter (with 1/2” heatsink) max. output power derating vs.
ambient air temperatur e for airflow rates of 100 LFM through 400 LFM. Air flows
acr oss the converter fr om input to output (nominal input voltage).
60
65
70
75
80
85
90
95
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Load Current (A)
Efficiency (%)
9 Vin
32 V in
75 V in
Figure 5: Output voltage response to step-change in load current
(50%-75%-50% of Iout(max); dI/dt = 0.05 A/
µ
s). Load cap: 1
µ
F ceramic
capacitor. Ch 1 : Vo ut ( 2 V/div), Ch 2: Iout (1 A/div).
Figure 6: Output voltage response to step-change in input voltage
(1000 V/ms). Load cap: 100
µ
F, electrolytic output capacitance.
Ch 1: Vout (5 V/div), Ch 2: Vin (50 V/div).
and Figures
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 24
Figure A: Various circuits for driving the ON/OFF pin. Figure B: Internal ON/OFF pin circuitry
BASICOPERATIONANDFEATURES
This converter series uses a two-stage power conversion
topology. The first stage is a buck-converter that keeps the
output voltage constant over variations in line, load, and
temperature. The second stage uses a transformer to provide
the functions of input/output isolation and voltage step-up or
step-down to achieve the output voltage required.
Both the first stage and the second stage switch at a fixed
frequency for predictable EMI performance. Rectification of
the transformer’s output is accomplished with synchronous
rectifiers. These devices, which are MOSFETs with a very low
on-state resistance, dissipate far less energy than Schottky
diodes. This is the primary reason that the converter has such
high efficiency, even at very low output voltages and very high
output currents.
These converters are offered totally encased to withstand harsh
environmentsandthermallydemandingapplications.Dissipation
throughout the converter is so low that it does not require a
heatsink for operation in many applications; however, adding
a heatsink provides improved thermal derating performance in
extreme si tuations.
This series of converters use the industry standard footprint and
pin-out configuration.
CONTROLFEATURES
REMOTE ON/OFF (Pin 2):TheON/OFFinput,Pin2,permits
the user to control when the converter is on or off. This input
is referenced to the return terminal of the input bus, Vin(-).
TheON/OFFsignalisactivelow(meaningthatalowturnsthe
converteron).FigureAdetailsfourpossiblecircuitsfordriving
theON/OFFpin.FigureBisadetailedlookoftheinternalON/
OFFcircuitry.
REMOTE SENSE(+) (Pins 7 and 5): The SENSE(+) inputs
correct for voltage drops along the conductors that connect the
converter’s output pins to the load.
Pin 7 should be connected to Vout(+) and Pin 5 should be
connectedtoVout(-)atthepointontheboardwhereregulation
is desired. A remote connection at the load can adjust for a
voltage drop only as large as that specified in this datasheet,
that is
[Vout(+)-Vout(-)]–[Vsense(+)-Vsense(-)] <
SenseRange%xVout
Pins 7 and 5 must be connected for proper regulation of
the output voltage. If these connections are not made, the
converter will deliver an output voltage that is slightly higher
than its specified value.
Note: the output over-voltage protection circuit senses the
voltage across the output (pins 8 and 4) to determine when
it should trigger, not the voltage across the converter’s sense
leads(pins7and5).Therefore,theresistivedropontheboard
should be small enough so that output OVP does not trigger,
even during load transients.
OpenCollectorEnableCircuit
RemoteEnableCircuit
DirectLogicDrive
NegativeLogic
(PermanentlyEnabled)
ON/OFF
Vin(_)
ON/OFF
ON/OFF
Vin(_)
ON/OFF
5V
TTL/
CMOS
Vin(_)
Vin(_)
TTL
5V
50k
50k
ON/OFF
Vin(_)
100pF
OUTPUT VOLTAGE TRIM (Pin 6):TheTRIMinputpermitsthe
usertoadjusttheoutputvoltageacrossthesenseleadsupor
down according to the trim range specifications.
To decrease the output voltage, the user should connect a
resistorbetweenPin6andPin5(SENSE(-)input).Foradesired
decrease of the nominal output voltage, the value of the resistor
should be
Rtrim-down =
(
511
)
-10.22 (kW)
%
where
∆% =
Vnominal–Vdesired
x100%
Vnominal
To increase the output voltage, the user should connect a
resistorbetweenPin6andPin7(SENSE(+)input).Foradesired
increase of the nominal output voltage, the value of the resistor
should be
Trim graphs show the relationship between the trim resistor
valueandRtrim-upandRtrim-down,showingthetotalrangethe
output voltage can be trimmed up or down.
Note:theTRIMfeaturedoesnotaffectthevoltageatwhichthe
output over-voltage protection circuit is triggered. Trimming the
output voltage too high may cause the over-voltage protection
circuit to engage, particularly during transients.
It is not necessary for the user to add capacitance at the Trim
pin. The node is internally bypassed to eliminate noise.
Total DC Variation of VOUT:Forthe convertertomeet its full
specifications,themaximumvariationofthedcvalueofVOUT, due
to both trimming and remote load voltage drops, should not be
greater than that specified for the output voltage trim range.
PROTECTIONFEATURES
Input Under-Voltage Lockout: The converter is designed
to turn off when the input voltage is too low, helping avoid an
input system instability problem, described in more detail in
the application note titled
Input System Instability
” on our
website. The lockout circuitry is a comparator with dc hysteresis.
When the input voltage is rising, it must exceed the typical Turn-
On Voltage Threshold value (listed on the specifications page)
before the converter will turn on. Once the converter is on,
the input voltage must fall below the typical Turn-Off Voltage
Threshold value before the converter will turn off.
Output Current Limit: The maximum current limit remains
constant as the output voltage drops. However, once the
impedance of the load across the output is small enough to make
theoutputvoltagedropbelowthespecifiedOutputDCCurrent-
LimitShutdownVoltage,theconverterturnsoff.
Theconverterthenentersa“hiccupmode”whereitrepeatedly
turnsonandoffata5Hz(nominal)frequencywitha5%duty
cycle until the short circuit condition is removed. This prevents
excessive heating of the converter or the load board.
Output Over-Voltage Limit:Ifthevoltageacrosstheoutput
pinsexceedstheOutputOver-VoltageProtectionthreshold,the
converter will immediately stop switching. This prevents damage
totheloadcircuitdueto1)excessiveseriesresistanceinoutput
current path from converter output pins to sense point, 2) a
releaseofashort-circuitcondition,or3)areleaseofacurrent
limit condition. Load capacitance determines exactly how high
theoutputvoltagewillriseinresponsetotheseconditions.After
200mstheconverterwillautomaticallyrestart.
Over-Temperature Shutdown: A temperature sensor on
the converter senses the average temperature of the module.
The thermal shutdown circuit is designed to turn the converter
off when the temperature at the sensed location reaches the
Over-Temperature Shutdown value. It will allow the converter
to turn on again when the temperature of the sensed location
fallsbytheamountoftheOver-TemperatureShutdownRestart
Hysteresis value.
Rtrim-up
(k
W)
where Vout=NominalOutputVoltage
511
_ 10.22
5.11VOUTx
(100+
%)
1.225%%
)
=
(
_
APPLICATIONCONSIDERATIONS
Input System Instability: This
condition can occur because
any dc-dc converter appears incrementally as a negative
resistance load. A detailed application note titled Input
SystemInstability”isavailableontheSynQorwebsite which
provides an understanding of why this instability arises, and
shows the preferred solution for correcting it.
Application Circuits: Figure D provides a typical circuit
diagram which details the input filtering and voltage trimming.
Input Filtering and External Capacitance:
FigureE
provides
a diagram showing the internal input filter components. This filter
dramatically reduces input terminal ripple current, which otherwise
could exceed the rating of an external electrolytic input capacitor.
The recommended external input capacitance is specified in the
Input Characteristics section on the
Electrical Characteristics
page.
More detailed information is available in the application
note titled
EMICharacteristics
”onthe
SynQorwebsite.
Startup Inhibit Period:TheStartupInhibitPeriodensuresthat
theconverterwillremainoffforapproximately200mswhenitis
shut down for any reason. When an output short is present, this
generates a 5 Hz “hiccup mode,” which prevents the converter
from overheating. In all, there are seven ways that the converter
canbeshutdown,initiatingaStartupInhibitPeriod:
• InputUnder-VoltageLockout
• InputOver-VoltageShutdown
• OutputOver-VoltageProtection
• OverTemperatureShutdown
• CurrentLimit
• ShortCircuitProtection
• TurnedoffbytheON/OFFinput
FigureFshowsthreeturn-onscenarios,whereaStartupInhibit
Periodisinitiatedatt0, t1, and t2:
Vin External
Input
Filter Trim
Vin(+)
Iload
Cload
L
Vout(+)
Rtrim-up
or
Rtrim-down
Vsense(+)
ON/OFF
Vin(_)
Vin(+)
Vin(_)
Vout(_)
Vsense(_)
Electrolytic
Capacitor
Figure D: Typical application circuit (negative logic unit, permanently enabled).
Figure E: Internal Input Filter Diagram (component values listed on the specifications page).
C
Before time t0,whentheinputvoltageisbelowtheUVLthreshold,
theunitisdisabledbytheInputUnder-VoltageLockoutfeature.
When the input voltage rises above the UVLthreshold, the
InputUnder-VoltageLockout is released, and a Startup Inhibit
Periodisinitiated.Attheendofthisdelay,theON/OFFpinis
evaluated, and since it is active, the unit turns on.
Attimet1,theunitisdisabledbytheON/OFFpin,anditcannot
beenabledagainuntiltheStartupInhibitPeriodhaselapsed.
When the ON/OFF pin goes high after t2, the Startup Inhibit
Periodhas elapsed, and the outputturns on within the typical
Turn-OnTime.
Thermal Considerations: The maximum operating base-
plate temperature, TB,is100ºC.Aslongastheuser’sthermal
system keeps TB < 100 ºC, the converter can deliver its full
rated power.
Apowerderatingcurvecanbecalculatedforanyheatsinkthatis
attached to the base-plate of the converter. It is only necessary
todeterminethethermalresistance,RTHBA, of the chosen heatsink
between the base-plate and the ambient air for a given airflow
rate. This information is usually available from the heatsink
vendor. The following formula can the be used to determine the
maximum power the converter can dissipate for a given thermal
conditionifitsbase-plateistobenohigherthan100ºC.
Pmax = 100 ºC-TA
dissRTHBA
Thisvalueofpowerdissipationcanthenbeusedinconjunction
withthedatashowninFigure2todeterminethemaximumload
current(andpower)thattheconvertercandeliverinthegiven
thermal condition.
Forconvenience,powerderatingcurvesforanencasedconverter
without a heatsink and with a typical heatsink are provided for
each output voltage.
Figure F: Startup Inhibit Period (turn-on time not to scale)
Under-Voltage
LockoutTurn-
OnThreshold
ON/OFF
(neglogic)
Vout
Vin
200ms 200ms
200ms
(typical start-up
inhibitperiod)
t0t1t2t
9ms (typical
turnontime)
ON ON ON
OFF OFF
Application Section
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 25
Figure A: Various circuits for driving the ON/OFF pin. Figure B: Internal ON/OFF pin circuitry
BASICOPERATIONANDFEATURES
This converter series uses a two-stage power conversion
topology. The first stage is a buck-converter that keeps the
output voltage constant over variations in line, load, and
temperature. The second stage uses a transformer to provide
the functions of input/output isolation and voltage step-up or
step-down to achieve the output voltage required.
Both the first stage and the second stage switch at a fixed
frequency for predictable EMI performance. Rectification of
the transformer’s output is accomplished with synchronous
rectifiers. These devices, which are MOSFETs with a very low
on-state resistance, dissipate far less energy than Schottky
diodes. This is the primary reason that the converter has such
high efficiency, even at very low output voltages and very high
output currents.
These converters are offered totally encased to withstand harsh
environmentsandthermallydemandingapplications.Dissipation
throughout the converter is so low that it does not require a
heatsink for operation in many applications; however, adding
a heatsink provides improved thermal derating performance in
extreme si tuations.
This series of converters use the industry standard footprint and
pin-out configuration.
CONTROLFEATURES
REMOTE ON/OFF (Pin 2):TheON/OFFinput,Pin2,permits
the user to control when the converter is on or off. This input
is referenced to the return terminal of the input bus, Vin(-).
TheON/OFFsignalisactivelow(meaningthatalowturnsthe
converteron).FigureAdetailsfourpossiblecircuitsfordriving
theON/OFFpin.FigureBisadetailedlookoftheinternalON/
OFFcircuitry.
REMOTE SENSE(+) (Pins 7 and 5): The SENSE(+) inputs
correct for voltage drops along the conductors that connect the
converter’s output pins to the load.
Pin 7 should be connected to Vout(+) and Pin 5 should be
connectedtoVout(-)atthepointontheboardwhereregulation
is desired. A remote connection at the load can adjust for a
voltage drop only as large as that specified in this datasheet,
that is
[Vout(+)-Vout(-)]–[Vsense(+)-Vsense(-)] <
SenseRange%xVout
Pins 7 and 5 must be connected for proper regulation of
the output voltage. If these connections are not made, the
converter will deliver an output voltage that is slightly higher
than its specified value.
Note: the output over-voltage protection circuit senses the
voltage across the output (pins 8 and 4) to determine when
it should trigger, not the voltage across the converter’s sense
leads(pins7and5).Therefore,theresistivedropontheboard
should be small enough so that output OVP does not trigger,
even during load transients.
OpenCollectorEnableCircuit
RemoteEnableCircuit
DirectLogicDrive
NegativeLogic
(PermanentlyEnabled)
ON/OFF
Vin(_)
ON/OFF
ON/OFF
Vin(_)
ON/OFF
5V
TTL/
CMOS
Vin(_)
Vin(_)
TTL
5V
50k
50k
ON/OFF
Vin(_)
100pF
OUTPUT VOLTAGE TRIM (Pin 6):TheTRIMinputpermitsthe
usertoadjusttheoutputvoltageacrossthesenseleadsupor
down according to the trim range specifications.
To decrease the output voltage, the user should connect a
resistorbetweenPin6andPin5(SENSE(-)input).Foradesired
decrease of the nominal output voltage, the value of the resistor
should be
Rtrim-down =
(
511
)
-10.22 (kW)
%
where
∆% =
Vnominal–Vdesired
x100%
Vnominal
To increase the output voltage, the user should connect a
resistorbetweenPin6andPin7(SENSE(+)input).Foradesired
increase of the nominal output voltage, the value of the resistor
should be
Trim graphs show the relationship between the trim resistor
valueandRtrim-upandRtrim-down,showingthetotalrangethe
output voltage can be trimmed up or down.
Note:theTRIMfeaturedoesnotaffectthevoltageatwhichthe
output over-voltage protection circuit is triggered. Trimming the
output voltage too high may cause the over-voltage protection
circuit to engage, particularly during transients.
It is not necessary for the user to add capacitance at the Trim
pin. The node is internally bypassed to eliminate noise.
Total DC Variation of VOUT:Forthe convertertomeet its full
specifications,themaximumvariationofthedcvalueofVOUT, due
to both trimming and remote load voltage drops, should not be
greater than that specified for the output voltage trim range.
PROTECTIONFEATURES
Input Under-Voltage Lockout: The converter is designed
to turn off when the input voltage is too low, helping avoid an
input system instability problem, described in more detail in
the application note titled
Input System Instability
” on our
website. The lockout circuitry is a comparator with dc hysteresis.
When the input voltage is rising, it must exceed the typical Turn-
On Voltage Threshold value (listed on the specifications page)
before the converter will turn on. Once the converter is on,
the input voltage must fall below the typical Turn-Off Voltage
Threshold value before the converter will turn off.
Output Current Limit: The maximum current limit remains
constant as the output voltage drops. However, once the
impedance of the load across the output is small enough to make
theoutputvoltagedropbelowthespecifiedOutputDCCurrent-
LimitShutdownVoltage,theconverterturnsoff.
Theconverterthenentersa“hiccupmode”whereitrepeatedly
turnsonandoffata5Hz(nominal)frequencywitha5%duty
cycle until the short circuit condition is removed. This prevents
excessive heating of the converter or the load board.
Output Over-Voltage Limit:Ifthevoltageacrosstheoutput
pinsexceedstheOutputOver-VoltageProtectionthreshold,the
converter will immediately stop switching. This prevents damage
totheloadcircuitdueto1)excessiveseriesresistanceinoutput
current path from converter output pins to sense point, 2) a
releaseofashort-circuitcondition,or3)areleaseofacurrent
limit condition. Load capacitance determines exactly how high
theoutputvoltagewillriseinresponsetotheseconditions.After
200mstheconverterwillautomaticallyrestart.
Over-Temperature Shutdown: A temperature sensor on
the converter senses the average temperature of the module.
The thermal shutdown circuit is designed to turn the converter
off when the temperature at the sensed location reaches the
Over-Temperature Shutdown value. It will allow the converter
to turn on again when the temperature of the sensed location
fallsbytheamountoftheOver-TemperatureShutdownRestart
Hysteresis value.
Rtrim-up
(k
W)
where Vout=NominalOutputVoltage
511
_ 10.22
5.11VOUTx
(100+
%)
1.225%%
)
=
(
_
APPLICATIONCONSIDERATIONS
Input System Instability: This
condition can occur because
any dc-dc converter appears incrementally as a negative
resistance load. A detailed application note titled Input
SystemInstability”isavailableontheSynQorwebsite which
provides an understanding of why this instability arises, and
shows the preferred solution for correcting it.
Application Circuits: Figure D provides a typical circuit
diagram which details the input filtering and voltage trimming.
Input Filtering and External Capacitance:
FigureE
provides
a diagram showing the internal input filter components. This filter
dramatically reduces input terminal ripple current, which otherwise
could exceed the rating of an external electrolytic input capacitor.
The recommended external input capacitance is specified in the
Input Characteristics section on the
Electrical Characteristics
page.
More detailed information is available in the application
note titled
EMICharacteristics
”onthe
SynQorwebsite.
Startup Inhibit Period:TheStartupInhibitPeriodensuresthat
theconverterwillremainoffforapproximately200mswhenitis
shut down for any reason. When an output short is present, this
generates a 5 Hz “hiccup mode,” which prevents the converter
from overheating. In all, there are seven ways that the converter
canbeshutdown,initiatingaStartupInhibitPeriod:
• InputUnder-VoltageLockout
• InputOver-VoltageShutdown
• OutputOver-VoltageProtection
• OverTemperatureShutdown
• CurrentLimit
• ShortCircuitProtection
• TurnedoffbytheON/OFFinput
FigureFshowsthreeturn-onscenarios,whereaStartupInhibit
Periodisinitiatedatt0, t1, and t2:
Vin External
Input
Filter Trim
Vin(+)
Iload
Cload
L
Vout(+)
Rtrim-up
or
Rtrim-down
Vsense(+)
ON/OFF
Vin(_)
Vin(+)
Vin(_)
Vout(_)
Vsense(_)
Electrolytic
Capacitor
Figure D: Typical application circuit (negative logic unit, permanently enabled).
Figure E: Internal Input Filter Diagram (component values listed on the specifications page).
C
Before time t0,whentheinputvoltageisbelowtheUVLthreshold,
theunitisdisabledbytheInputUnder-VoltageLockoutfeature.
When the input voltage rises above the UVLthreshold, the
InputUnder-VoltageLockout is released, and a Startup Inhibit
Periodisinitiated.Attheendofthisdelay,theON/OFFpinis
evaluated, and since it is active, the unit turns on.
Attimet1,theunitisdisabledbytheON/OFFpin,anditcannot
beenabledagainuntiltheStartupInhibitPeriodhaselapsed.
When the ON/OFF pin goes high after t2, the Startup Inhibit
Periodhas elapsed, and the outputturns on within the typical
Turn-OnTime.
Thermal Considerations: The maximum operating base-
plate temperature, TB,is100ºC.Aslongastheuser’sthermal
system keeps TB < 100 ºC, the converter can deliver its full
rated power.
Apowerderatingcurvecanbecalculatedforanyheatsinkthatis
attached to the base-plate of the converter. It is only necessary
todeterminethethermalresistance,RTHBA, of the chosen heatsink
between the base-plate and the ambient air for a given airflow
rate. This information is usually available from the heatsink
vendor. The following formula can the be used to determine the
maximum power the converter can dissipate for a given thermal
conditionifitsbase-plateistobenohigherthan100ºC.
Pmax = 100 ºC-TA
dissRTHBA
Thisvalueofpowerdissipationcanthenbeusedinconjunction
withthedatashowninFigure2todeterminethemaximumload
current(andpower)thattheconvertercandeliverinthegiven
thermal condition.
Forconvenience,powerderatingcurvesforanencasedconverter
without a heatsink and with a typical heatsink are provided for
each output voltage.
Figure F: Startup Inhibit Period (turn-on time not to scale)
Under-Voltage
LockoutTurn-
OnThreshold
ON/OFF
(neglogic)
Vout
Vin
200ms 200ms
200ms
(typical start-up
inhibitperiod)
t0t1t2t
9ms (typical
turnontime)
ON ON ON
OFF OFF
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 26
Figure A: Various circuits for driving the ON/OFF pin. Figure B: Internal ON/OFF pin circuitry
BASICOPERATIONANDFEATURES
This converter series uses a two-stage power conversion
topology. The first stage is a buck-converter that keeps the
output voltage constant over variations in line, load, and
temperature. The second stage uses a transformer to provide
the functions of input/output isolation and voltage step-up or
step-down to achieve the output voltage required.
Both the first stage and the second stage switch at a fixed
frequency for predictable EMI performance. Rectification of
the transformer’s output is accomplished with synchronous
rectifiers. These devices, which are MOSFETs with a very low
on-state resistance, dissipate far less energy than Schottky
diodes. This is the primary reason that the converter has such
high efficiency, even at very low output voltages and very high
output currents.
These converters are offered totally encased to withstand harsh
environmentsandthermallydemandingapplications.Dissipation
throughout the converter is so low that it does not require a
heatsink for operation in many applications; however, adding
a heatsink provides improved thermal derating performance in
extreme si tuations.
This series of converters use the industry standard footprint and
pin-out configuration.
CONTROLFEATURES
REMOTE ON/OFF (Pin 2):TheON/OFFinput,Pin2,permits
the user to control when the converter is on or off. This input
is referenced to the return terminal of the input bus, Vin(-).
TheON/OFFsignalisactivelow(meaningthatalowturnsthe
converteron).FigureAdetailsfourpossiblecircuitsfordriving
theON/OFFpin.FigureBisadetailedlookoftheinternalON/
OFFcircuitry.
REMOTE SENSE(+) (Pins 7 and 5): The SENSE(+) inputs
correct for voltage drops along the conductors that connect the
converter’s output pins to the load.
Pin 7 should be connected to Vout(+) and Pin 5 should be
connectedtoVout(-)atthepointontheboardwhereregulation
is desired. A remote connection at the load can adjust for a
voltage drop only as large as that specified in this datasheet,
that is
[Vout(+)-Vout(-)]–[Vsense(+)-Vsense(-)] <
SenseRange%xVout
Pins 7 and 5 must be connected for proper regulation of
the output voltage. If these connections are not made, the
converter will deliver an output voltage that is slightly higher
than its specified value.
Note: the output over-voltage protection circuit senses the
voltage across the output (pins 8 and 4) to determine when
it should trigger, not the voltage across the converter’s sense
leads(pins7and5).Therefore,theresistivedropontheboard
should be small enough so that output OVP does not trigger,
even during load transients.
OpenCollectorEnableCircuit
RemoteEnableCircuit
DirectLogicDrive
NegativeLogic
(PermanentlyEnabled)
ON/OFF
Vin(_)
ON/OFF
ON/OFF
Vin(_)
ON/OFF
5V
TTL/
CMOS
Vin(_)
Vin(_)
TTL
5V
50k
50k
ON/OFF
Vin(_)
100pF
OUTPUT VOLTAGE TRIM (Pin 6):TheTRIMinputpermitsthe
usertoadjusttheoutputvoltageacrossthesenseleadsupor
down according to the trim range specifications.
To decrease the output voltage, the user should connect a
resistorbetweenPin6andPin5(SENSE(-)input).Foradesired
decrease of the nominal output voltage, the value of the resistor
should be
Rtrim-down =
(
511
)
-10.22 (kW)
%
where
∆% =
Vnominal–Vdesired
x100%
Vnominal
To increase the output voltage, the user should connect a
resistorbetweenPin6andPin7(SENSE(+)input).Foradesired
increase of the nominal output voltage, the value of the resistor
should be
Trim graphs show the relationship between the trim resistor
valueandRtrim-upandRtrim-down,showingthetotalrangethe
output voltage can be trimmed up or down.
Note:theTRIMfeaturedoesnotaffectthevoltageatwhichthe
output over-voltage protection circuit is triggered. Trimming the
output voltage too high may cause the over-voltage protection
circuit to engage, particularly during transients.
It is not necessary for the user to add capacitance at the Trim
pin. The node is internally bypassed to eliminate noise.
Total DC Variation of VOUT:Forthe convertertomeet its full
specifications,themaximumvariationofthedcvalueofVOUT, due
to both trimming and remote load voltage drops, should not be
greater than that specified for the output voltage trim range.
PROTECTIONFEATURES
Input Under-Voltage Lockout: The converter is designed
to turn off when the input voltage is too low, helping avoid an
input system instability problem, described in more detail in
the application note titled
Input System Instability
” on our
website. The lockout circuitry is a comparator with dc hysteresis.
When the input voltage is rising, it must exceed the typical Turn-
On Voltage Threshold value (listed on the specifications page)
before the converter will turn on. Once the converter is on,
the input voltage must fall below the typical Turn-Off Voltage
Threshold value before the converter will turn off.
Output Current Limit: The maximum current limit remains
constant as the output voltage drops. However, once the
impedance of the load across the output is small enough to make
theoutputvoltagedropbelowthespecifiedOutputDCCurrent-
LimitShutdownVoltage,theconverterturnsoff.
Theconverterthenentersa“hiccupmode”whereitrepeatedly
turnsonandoffata5Hz(nominal)frequencywitha5%duty
cycle until the short circuit condition is removed. This prevents
excessive heating of the converter or the load board.
Output Over-Voltage Limit:Ifthevoltageacrosstheoutput
pinsexceedstheOutputOver-VoltageProtectionthreshold,the
converter will immediately stop switching. This prevents damage
totheloadcircuitdueto1)excessiveseriesresistanceinoutput
current path from converter output pins to sense point, 2) a
releaseofashort-circuitcondition,or3)areleaseofacurrent
limit condition. Load capacitance determines exactly how high
theoutputvoltagewillriseinresponsetotheseconditions.After
200mstheconverterwillautomaticallyrestart.
Over-Temperature Shutdown: A temperature sensor on
the converter senses the average temperature of the module.
The thermal shutdown circuit is designed to turn the converter
off when the temperature at the sensed location reaches the
Over-Temperature Shutdown value. It will allow the converter
to turn on again when the temperature of the sensed location
fallsbytheamountoftheOver-TemperatureShutdownRestart
Hysteresis value.
Rtrim-up
(k
W)
where Vout=NominalOutputVoltage
511
_ 10.22
5.11VOUTx
(100+
%)
1.225%%
)
=
(
_
APPLICATIONCONSIDERATIONS
Input System Instability: This
condition can occur because
any dc-dc converter appears incrementally as a negative
resistance load. A detailed application note titled Input
SystemInstability”isavailableontheSynQorwebsite which
provides an understanding of why this instability arises, and
shows the preferred solution for correcting it.
Application Circuits: Figure D provides a typical circuit
diagram which details the input filtering and voltage trimming.
Input Filtering and External Capacitance:
FigureE
provides
a diagram showing the internal input filter components. This filter
dramatically reduces input terminal ripple current, which otherwise
could exceed the rating of an external electrolytic input capacitor.
The recommended external input capacitance is specified in the
Input Characteristics section on the
Electrical Characteristics
page.
More detailed information is available in the application
note titled “
EMICharacteristics
”onthe
SynQorwebsite.
Startup Inhibit Period:TheStartupInhibitPeriodensuresthat
theconverterwillremainoffforapproximately200mswhenitis
shut down for any reason. When an output short is present, this
generates a 5 Hz “hiccup mode,” which prevents the converter
from overheating. In all, there are seven ways that the converter
canbeshutdown,initiatingaStartupInhibitPeriod:
• InputUnder-VoltageLockout
• InputOver-VoltageShutdown
• OutputOver-VoltageProtection
• OverTemperatureShutdown
• CurrentLimit
• ShortCircuitProtection
• TurnedoffbytheON/OFFinput
FigureFshowsthreeturn-onscenarios,whereaStartupInhibit
Periodisinitiatedatt0, t1, and t2:
Vin External
Input
Filter Trim
Vin(+)
Iload
Cload
L
Vout(+)
Rtrim-up
or
Rtrim-down
Vsense(+)
ON/OFF
Vin(_)
Vin(+)
Vin(_)
Vout(_)
Vsense(_)
Electrolytic
Capacitor
Figure D: Typical application circuit (negative logic unit, permanently enabled).
Figure E: Internal Input Filter Diagram (component values listed on the specifications page).
C
Before time t0,whentheinputvoltageisbelowtheUVLthreshold,
theunitisdisabledbytheInputUnder-VoltageLockoutfeature.
When the input voltage rises above the UVLthreshold, the
InputUnder-VoltageLockout is released, and a Startup Inhibit
Periodisinitiated.Attheendofthisdelay,theON/OFFpinis
evaluated, and since it is active, the unit turns on.
Attimet1,theunitisdisabledbytheON/OFFpin,anditcannot
beenabledagainuntiltheStartupInhibitPeriodhaselapsed.
When the ON/OFF pin goes high after t2, the Startup Inhibit
Periodhas elapsed, and the outputturns on within the typical
Turn-OnTime.
Thermal Considerations: The maximum operating base-
plate temperature, TB,is100ºC.Aslongastheuser’sthermal
system keeps TB < 100 ºC, the converter can deliver its full
rated power.
Apowerderatingcurvecanbecalculatedforanyheatsinkthatis
attached to the base-plate of the converter. It is only necessary
todeterminethethermalresistance,RTHBA, of the chosen heatsink
between the base-plate and the ambient air for a given airflow
rate. This information is usually available from the heatsink
vendor. The following formula can the be used to determine the
maximum power the converter can dissipate for a given thermal
conditionifitsbase-plateistobenohigherthan100ºC.
Pmax = 100 ºC-TA
dissRTHBA
Thisvalueofpowerdissipationcanthenbeusedinconjunction
withthedatashowninFigure2todeterminethemaximumload
current(andpower)thattheconvertercandeliverinthegiven
thermal condition.
Forconvenience,powerderatingcurvesforanencasedconverter
without a heatsink and with a typical heatsink are provided for
each output voltage.
Figure F: Startup Inhibit Period (turn-on time not to scale)
Under-Voltage
LockoutTurn-
OnThreshold
ON/OFF
(neglogic)
Vout
Vin
200ms 200ms
200ms
(typical start-up
inhibitperiod)
t0t1t2t
9ms (typical
turnontime)
ON ON ON
OFF OFF
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 27
Figure A: Various circuits for driving the ON/OFF pin. Figure B: Internal ON/OFF pin circuitry
BASICOPERATIONANDFEATURES
This converter series uses a two-stage power conversion
topology. The first stage is a buck-converter that keeps the
output voltage constant over variations in line, load, and
temperature. The second stage uses a transformer to provide
the functions of input/output isolation and voltage step-up or
step-down to achieve the output voltage required.
Both the first stage and the second stage switch at a fixed
frequency for predictable EMI performance. Rectification of
the transformer’s output is accomplished with synchronous
rectifiers. These devices, which are MOSFETs with a very low
on-state resistance, dissipate far less energy than Schottky
diodes. This is the primary reason that the converter has such
high efficiency, even at very low output voltages and very high
output currents.
These converters are offered totally encased to withstand harsh
environmentsandthermallydemandingapplications.Dissipation
throughout the converter is so low that it does not require a
heatsink for operation in many applications; however, adding
a heatsink provides improved thermal derating performance in
extreme si tuations.
This series of converters use the industry standard footprint and
pin-out configuration.
CONTROLFEATURES
REMOTE ON/OFF (Pin 2):TheON/OFFinput,Pin2,permits
the user to control when the converter is on or off. This input
is referenced to the return terminal of the input bus, Vin(-).
TheON/OFFsignalisactivelow(meaningthatalowturnsthe
converteron).FigureAdetailsfourpossiblecircuitsfordriving
theON/OFFpin.FigureBisadetailedlookoftheinternalON/
OFFcircuitry.
REMOTE SENSE(+) (Pins 7 and 5): The SENSE(+) inputs
correct for voltage drops along the conductors that connect the
converter’s output pins to the load.
Pin 7 should be connected to Vout(+) and Pin 5 should be
connectedtoVout(-)atthepointontheboardwhereregulation
is desired. A remote connection at the load can adjust for a
voltage drop only as large as that specified in this datasheet,
that is
[Vout(+)-Vout(-)]–[Vsense(+)-Vsense(-)] <
SenseRange%xVout
Pins 7 and 5 must be connected for proper regulation of
the output voltage. If these connections are not made, the
converter will deliver an output voltage that is slightly higher
than its specified value.
Note: the output over-voltage protection circuit senses the
voltage across the output (pins 8 and 4) to determine when
it should trigger, not the voltage across the converter’s sense
leads(pins7and5).Therefore,theresistivedropontheboard
should be small enough so that output OVP does not trigger,
even during load transients.
OpenCollectorEnableCircuit
RemoteEnableCircuit
DirectLogicDrive
NegativeLogic
(PermanentlyEnabled)
ON/OFF
Vin(_)
ON/OFF
ON/OFF
Vin(_)
ON/OFF
5V
TTL/
CMOS
Vin(_)
Vin(_)
TTL
5V
50k
50k
ON/OFF
Vin(_)
100pF
OUTPUT VOLTAGE TRIM (Pin 6):TheTRIMinputpermitsthe
usertoadjusttheoutputvoltageacrossthesenseleadsupor
down according to the trim range specifications.
To decrease the output voltage, the user should connect a
resistorbetweenPin6andPin5(SENSE(-)input).Foradesired
decrease of the nominal output voltage, the value of the resistor
should be
Rtrim-down =
(
511
)
-10.22 (kW)
%
where
∆% =
Vnominal–Vdesired
x100%
Vnominal
To increase the output voltage, the user should connect a
resistorbetweenPin6andPin7(SENSE(+)input).Foradesired
increase of the nominal output voltage, the value of the resistor
should be
Trim graphs show the relationship between the trim resistor
valueandRtrim-upandRtrim-down,showingthetotalrangethe
output voltage can be trimmed up or down.
Note:theTRIMfeaturedoesnotaffectthevoltageatwhichthe
output over-voltage protection circuit is triggered. Trimming the
output voltage too high may cause the over-voltage protection
circuit to engage, particularly during transients.
It is not necessary for the user to add capacitance at the Trim
pin. The node is internally bypassed to eliminate noise.
Total DC Variation of VOUT:Forthe convertertomeet its full
specifications,themaximumvariationofthedcvalueofVOUT, due
to both trimming and remote load voltage drops, should not be
greater than that specified for the output voltage trim range.
PROTECTIONFEATURES
Input Under-Voltage Lockout: The converter is designed
to turn off when the input voltage is too low, helping avoid an
input system instability problem, described in more detail in
the application note titled
Input System Instability
” on our
website. The lockout circuitry is a comparator with dc hysteresis.
When the input voltage is rising, it must exceed the typical Turn-
On Voltage Threshold value (listed on the specifications page)
before the converter will turn on. Once the converter is on,
the input voltage must fall below the typical Turn-Off Voltage
Threshold value before the converter will turn off.
Output Current Limit: The maximum current limit remains
constant as the output voltage drops. However, once the
impedance of the load across the output is small enough to make
theoutputvoltagedropbelowthespecifiedOutputDCCurrent-
LimitShutdownVoltage,theconverterturnsoff.
Theconverterthenentersa“hiccupmode”whereitrepeatedly
turnsonandoffata5Hz(nominal)frequencywitha5%duty
cycle until the short circuit condition is removed. This prevents
excessive heating of the converter or the load board.
Output Over-Voltage Limit:Ifthevoltageacrosstheoutput
pinsexceedstheOutputOver-VoltageProtectionthreshold,the
converter will immediately stop switching. This prevents damage
totheloadcircuitdueto1)excessiveseriesresistanceinoutput
current path from converter output pins to sense point, 2) a
releaseofashort-circuitcondition,or3)areleaseofacurrent
limit condition. Load capacitance determines exactly how high
theoutputvoltagewillriseinresponsetotheseconditions.After
200mstheconverterwillautomaticallyrestart.
Over-Temperature Shutdown: A temperature sensor on
the converter senses the average temperature of the module.
The thermal shutdown circuit is designed to turn the converter
off when the temperature at the sensed location reaches the
Over-Temperature Shutdown value. It will allow the converter
to turn on again when the temperature of the sensed location
fallsbytheamountoftheOver-TemperatureShutdownRestart
Hysteresis value.
Rtrim-up
(k
W)
where Vout=NominalOutputVoltage
511
_ 10.22
5.11VOUTx
(100+
%)
1.225%%
)
=
(
_
APPLICATIONCONSIDERATIONS
Input System Instability: This
condition can occur because
any dc-dc converter appears incrementally as a negative
resistance load. A detailed application note titled Input
SystemInstability”isavailableontheSynQorwebsite which
provides an understanding of why this instability arises, and
shows the preferred solution for correcting it.
Application Circuits: Figure D provides a typical circuit
diagram which details the input filtering and voltage trimming.
Input Filtering and External Capacitance:
FigureE
provides
a diagram showing the internal input filter components. This filter
dramatically reduces input terminal ripple current, which otherwise
could exceed the rating of an external electrolytic input capacitor.
The recommended external input capacitance is specified in the
Input Characteristics section on the
Electrical Characteristics
page.
More detailed information is available in the application
note titled “
EMICharacteristics
”onthe
SynQorwebsite.
Startup Inhibit Period:TheStartupInhibitPeriodensuresthat
theconverterwillremainoffforapproximately200mswhenitis
shut down for any reason. When an output short is present, this
generates a 5 Hz “hiccup mode,” which prevents the converter
from overheating. In all, there are seven ways that the converter
canbeshutdown,initiatingaStartupInhibitPeriod:
• InputUnder-VoltageLockout
• InputOver-VoltageShutdown
• OutputOver-VoltageProtection
• OverTemperatureShutdown
• CurrentLimit
• ShortCircuitProtection
• TurnedoffbytheON/OFFinput
FigureFshowsthreeturn-onscenarios,whereaStartupInhibit
Periodisinitiatedatt0, t1, and t2:
Vin External
Input
Filter Trim
Vin(+)
Iload
Cload
L
Vout(+)
Rtrim-up
or
Rtrim-down
Vsense(+)
ON/OFF
Vin(_)
Vin(+)
Vin(_)
Vout(_)
Vsense(_)
Electrolytic
Capacitor
Figure D: Typical application circuit (negative logic unit, permanently enabled).
Figure E: Internal Input Filter Diagram (component values listed on the specifications page).
C
Before time t0,whentheinputvoltageisbelowtheUVLthreshold,
theunitisdisabledbytheInputUnder-VoltageLockoutfeature.
When the input voltage rises above the UVLthreshold, the
InputUnder-VoltageLockout is released, and a Startup Inhibit
Periodisinitiated.Attheendofthisdelay,theON/OFFpinis
evaluated, and since it is active, the unit turns on.
Attimet1,theunitisdisabledbytheON/OFFpin,anditcannot
beenabledagainuntiltheStartupInhibitPeriodhaselapsed.
When the ON/OFF pin goes high after t2, the Startup Inhibit
Periodhas elapsed, and the outputturns on within the typical
Turn-OnTime.
Thermal Considerations: The maximum operating base-
plate temperature, TB,is100ºC.Aslongastheuser’sthermal
system keeps TB < 100 ºC, the converter can deliver its full
rated power.
Apowerderatingcurvecanbecalculatedforanyheatsinkthatis
attached to the base-plate of the converter. It is only necessary
todeterminethethermalresistance,RTHBA, of the chosen heatsink
between the base-plate and the ambient air for a given airflow
rate. This information is usually available from the heatsink
vendor. The following formula can the be used to determine the
maximum power the converter can dissipate for a given thermal
conditionifitsbase-plateistobenohigherthan100ºC.
Pmax = 100 ºC-TA
dissRTHBA
Thisvalueofpowerdissipationcanthenbeusedinconjunction
withthedatashowninFigure2todeterminethemaximumload
current(andpower)thattheconvertercandeliverinthegiven
thermal condition.
Forconvenience,powerderatingcurvesforanencasedconverter
without a heatsink and with a typical heatsink are provided for
each output voltage.
Figure F: Startup Inhibit Period (turn-on time not to scale)
Under-Voltage
LockoutTurn-
OnThreshold
ON/OFF
(neglogic)
Vout
Vin
200ms 200ms
200ms
(typical start-up
inhibitperiod)
t0t1t2t
9ms (typical
turnontime)
ON ON ON
OFF OFF
Technical
Specification
IQ32-HP Family
Product # IQ32xxxHPXxx Phone 1-888-567-9596 www.synqor.com Doc.# 005-0005225 Rev. B 5/7/10 Page 28
PART NUMBERING SYSTEM
The part numbering system for SynQor’s dc-dc converters
follows the format shown in the example below.
Thefirst 12characterscomprisethe basepartnumberand
the last 3 characters indicate available options. The “-G”
suffixindicates6/6RoHScompliance.
Application Notes
Avarietyofapplicationnotesandtechnicalwhitepaperscan
be downloaded in pdf format from our website.
RoHS Compliance:TheEUledRoHS(RestrictionofHazardous
Substances)DirectivebanstheuseofLead,Cadmium,Hexavalent
Chromium, Mercury, Polybrominated Biphenyls (PBB), and
PolybrominatedDiphenylEther(PBDE)inElectricalandElectronic
Equipment. This SynQor product is 6/6 RoHS compliant. For
more information please refer to SynQor’s RoHS addendum
available at our RoHS Compliance / Lead Free Initiative web
page or e-mail us at
rohs@synqor.com
.
ORDERING INFORMATION
The tables below show the valid model numbers and ordering
options for converters in this product family. When ordering
SynQorconverters,pleaseensurethatyouusethecomplete
15 character part number consisting of the 12 character
base part number and the additional characters for options.
Add“-G”tothemodelnumberfor6/6RoHScompliance.
The following options must be included in place of the
w x y z
spaces in the model numbers listed above.
Not all combinations make valid part numbers, please contact
SynQorforavailability. SeetheProductSummarywebpage for
more options.
PATENTS
SynQorholdsthefollowingpatents,oneormoreofwhich
mightapplytothisproduct:
5,999,417 6,222,742 6,545,890 6,577,109
6,594,159 6,731,520 6,894,468 6,896,526
6,927,987 7,050,309 7,072,190 7,085,146
7,119,524 7,269,034 7,272,021 7,272,023
Warranty
SynQoroffersatwo(2)yearlimitedwarranty.Completewarranty
information is listed on our website or is available upon request from
SynQor.
InformationfurnishedbySynQorisbelievedtobeaccurateandreliable.
However,noresponsibilityisassumedbySynQorforitsuse,norforany
infringements of patents or other rights of third parties which may result
fromitsuse.Nolicenseisgrantedbyimplicationorotherwiseunderany
patentorpatentrightsofSynQor.
Product Family
Package Size
Performance Level
Thermal Design
Output Current
6/6 RoHS
Options (see
Ordering Information)
Input Voltage
Output Voltage
Contact SynQor for further information:
Phone: 978-849-0600
TollFree: 888-567-9596
Fax: 978-849-0602
E-mail: power@synqor.com
Web:
www.synqor.com
Address: 155SwansonRoad
Boxborough,MA01719
USA
Model Number Continuous
Input Voltage Transient Input
Voltage Output
Voltage Maximum
Output Current
IQ32018HP
w
55NRS 9-75V 100V – 100ms 1.8 V 55 A
IQ32033HP
w
45NRS 9-75V 100V – 100ms 3.3 V 45 A
IQ32050HP
w
32NRS 9-75V 100V – 100ms 5.0 V 32 A
IQ32120HP
w
13NRS 9-75V 100V – 100ms 12 V 13 A
IQ32150HP
w
11NRS 9-75V 100V – 100ms 15 V 11 A
IQ32240HP
w
6HNRS 9-75V 100V – 100ms 24 V 6.7 A
IQ32280HP
w
5INRS 9-75V 100V – 100ms 28 V 5.8 A
IQ32400HP
w
04NRS 9-75V 100V – 100ms 40 V 4.0 A
IQ32480HP
w
3ENRS 9-75V 100V – 100ms 48 V 3.4 A
IQ 32 018 H P C 55 N R S - G
Options Description: w x y z
Thermal Design Enable Logic Pin Style Feature Set
C - Encased with
Threaded Baseplate
D - Encased with
Non-Threaded Baseplate
N - Negative R - 0.180" S - Standard
7,558,083 7,564,702