January 2007 Rev 1 1/58
1
STA529
2 x 100 mW class-D amplifier with analog or digital input
2.0 multichannel digital audio processor with FFX
Features
Up to 96 dB dynamic range
Sample rates from 8 kHz to 192 kHz
FFXTM class-D driver
1.5 V to 1.95 V digital power supply
1.5 V to 1.95 V analog power supply
18-bit audio processing and class-D FFXTM
modulator
Digital volume control:
+36 dB to 105 dB in 0.5 dB steps
Software volume update
Individual channel and master gain/attenuation
Automatic invalid input detect mute
2-channel I2S input/output data interface
Digitally controlled POP-free operation
Input and output channel mapping
250 m output CMOS Rdson
> 90% efficiency
Stereo headphone plus mono speaker
application:
50 mW stereo into 32 headphone
100 mW stereo into 16 headphone
Order codes
TFBGA48
VFQFPN52
Part number Package
STA529B TFBGA48 (tube)
STA529Q VFQFPN52 (tube)
www.st.com
Contents STA529
2/58
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Connection diagrams and pin descriptions . . . . . . . . . . . . . . . . . . . . . . 5
2.1 TFBGA48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 VFQFPN52 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Maximum and recommended operating conditions . . . . . . . . . . . . . . . . . 11
3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Lock time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 ADC performance values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Digital processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Signal processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 I2C interface disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Volume control and gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 High-pass filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.3 Programmable gain amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Application scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Configuration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STA529 Contents
3/58
7 Driver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1 I2S bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.3 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.4 Serial formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.4.1 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.4.2 I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.4.3 PCM/IF (non-delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.4.4 PCM/IF (delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9I
2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.1 Data transition and change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.6.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.6.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.7 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.7.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.7.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.7.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.7.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2 General registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.1 Package TFBGA48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.2 Package VFQFPN52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Introduction STA529
4/58
1 Introduction
The STA529 is a digital stereo class-D audio amplifier. It includes an audio DSP, a ST
proprietary high-efficiency class-D driver and CMOS power output stage. It is intended for
high-efficiency digital-to-power-audio conversion for portable applications. The STA529 also
provides output capabilities for FFXTM. In conjunction with a power device, the STA529
provides high-quality digital amplification.
The STA529 contains an on-chip volume/gain control.
The PWM amplifier achieves greater than 90% efficiency for longer battery life for portable
systems.
The innovative class-D modulation, allows the STA529 to work without external LC filters
and without a heatsink.
The STA529 I2CDIS pin disables the audio DSP functions to provide a direct conversion of
the input signal into output power (the I2C interface is disabled). This conversion is done
without the microcontroller.
The STA529 is designed for low-power operation with extremely low-current consumption in
standby mode. It is available in two packages: the TFBGA48 and the VFQFPN52. These are
very thin packages (1.2 mm thick) intended for small portable applications.
Figure 1. Block diagram
Power
driver
Power
driver
Control
interface
DividerPLLOSC
FFX
modulator
PWM out I/F
ADC
ADC
Serial digital
audio interface
PGA
Digital
volume
RST_N
TM
STBY
MUTE
POWERFAULT/
BICLKO/PWM1A
LRCLKI
LRCLKO/PWM1B
SDATAI
SDATAO/PWM2A
GNDIO
VDDIO
GND33
VCC33
GND2
GND1
VCC2
VCC1
VDD
GND
BICLKI
AVCC
AGND
XTO
SELCLK33
FILT
VDDPLL
GNDPLL
CLKOUT/
SDA
SCL
I2CDIS
XTI
MCLK33
OUT1A
OUT1B
OUT2A
OUT2B
VBIAS
INL
VHI
VCM
VLO
INR
MUX
MUX
MUX
EADP
PWM2B
STA529 Connection diagrams and pin descriptions
5/58
2 Connection diagrams and pin descriptions
This section includes connection diagrams and pin descriptions for the following packages:
TFBGA48
VFQFPN52
2.1 TFBGA48 package
2.1.1 Connection diagram
Figure 2 shows the connection diagram for the TFBGA48 package.
Figure 2. Package: TFBGA48
F
E
D
C
B
A
123456 78
H
G
Connection diagrams and pin descriptions STA529
6/58
2.1.2 Pin description
Table 1. Package: TFBGA48
Pin # Name Type Description
D7 RST_N Digital input Reset (active low)
D1 XTI Digital input Crystal input or master clock input
E1 MCLK33 Digital input Master clock input 3.3 V capable
XTI: crystal input or master clock input 3.3 V capable
G3 SELCLK33 Digital input
Master clock input selector:
SELCLK33 = 1 -> MCLK33 selected
SELCLK33 = 0 -> XTI selected
D2 XTO Digital output Crystal output
C7 CLKOUT/
PWM2B Digital output Buffered clock output / PWM2B FFXTm
F1 SCL Digital input I2C serial clock
G1 SDA Digital
input/output I2C serial data
G2 I2CDIS Digital input I2C disable pin (active high)
G8 STBY Digital input Standby (active high)
B7 MUTE Digital input Mute (active high)
H6 BICLKI Digital
input/output Input serial audio interface bit-clock
H5 LRCLKI Digital
input/output Input serial audio interface L/R-clock
E2 SDATAI Digital input Input serial audio interface data
G6 BICLKO/
PWM1A
Digital
input/output
Output serial audio interface bit-clock
(volume DOWN when I2CDIS = 1) / PWM1A FFXTm
G5 LRCLKO/
PWM1B
Digital
input/output
Output serial audio interface L/R-clock
(volume UP when I2CDIS = 1) / PWM1B FFXTm
G4 SDATAO/
PWM2A Digital output Output serial audio interface data / PWM2A FFXTm
H2 TM Digital input Test mode (active high)
H7 INL Analog input ADC left channel line input or microphone input
H8 INR Analog
input/output ADC right channel line input
G7 VBIAS Analog
input/output ADC microphone bias voltage
D8 VCM Analog
input/output ADC common mode voltage
F8 AVDD Supply ADC analog supply
E8 AGND Ground ADC analog ground
STA529 Connection diagrams and pin descriptions
7/58
2.1.3 Thermal data
Ta bl e 2 gives the thermal resistance specifications for the TFBGA48 and the VFQFPN52.
F7 VHI Analog input ADC high reference voltage
E7 VLO Analog input ADC low reference voltage
H1 FILT Analog
input/output PLL loop filter terminal
H4 VDDPLL Supply PLL analog supply
H3 GNDPLL Ground PLL analog ground
A6 OUT1A Analog output Channel 1 half-bridge A output
B6 OUT1A Analog output Channel 1 half-bridge A output
A5 OUT1B Analog output Channel 1 half-bridge B output
B5 OUT1B Analog output Channel 1 half-bridge B output
A3 OUT2A Analog output Channel 2 half-bridge A output
B3 OUT2A Analog output Channel 2 half-bridge A output
A4 OUT2B Analog output Channel 2 half-bridge B output
B4 OUT2B Analog output Channel 2 half-bridge B output
F2 POWERFAULT/
EADP Digital output Power fault signal (active high) /
external audio power-down signal
A8 VCC1 Supply Channel 1 power supply
A1 VCC2 Supply Channel 2 power supply
A7 GND1 Ground Channel 1 power ground
A2 GND2 Ground Channel 2 power ground
C2 VCC33 Supply Pre-driver supply
B2 GND33 Ground Pre-driver ground
C8 VDD Supply Digital supply
B8 GND Ground Digital ground
C1 VDDIO Supply I/O ring supply
B1 GNDIO Ground I/O ring ground
Table 1. Package: TFBGA48 (continued)
Pin # Name Type Description
Table 2. Thermal data
Device Parameter Min Typ Max Unit
TFBGA48 Thermal resistance junction to ambient 72 oC/W
VFQFPN52 Thermal resistance junction to ambient 22 oC/W
Connection diagrams and pin descriptions STA529
8/58
2.2 VFQFPN52 package
2.2.1 Connection diagram
Figure 3 shows the connection diagram for the VFQFPN52 package.
Figure 3. Package: VFQFPN52
40
52
1
13
39
27
26
14
STA529 Connection diagrams and pin descriptions
9/58
2.2.2 Pin description
Table 3. Package: VFQFPN52
Pin # Name Type Description
10 RST_N Digital input Reset (active low)
38 XTI Digital input Crystal input or master clock input
37 MCLK33 Digital input Master clock input 3.3 V capable
XTI: crystal input or master clock input 3.3 V capable
36 SELCLK33 Digital input
Master clock input selector:
SELCLK33 = 1 -> MCLK33 selected
SELCLK33 = 0 -> XTI selected
39 XTO Digital output Crystal output
11 CLKOUT Digital output Buffered clock output
34 SCL Digital input I2C serial clock
35 SDA Digital
input/output I2C serial data
33 I2CDIS Digital input I2C disable pin (active high)
1 STBY Digital input Standby (active high)
14 MUTE Digital input Mute (active high)
51 BICLKI Digital
input/output Input serial audio interface bit-clock
47 LRCLKI Digital
input/output Input serial audio interface L/R-clock
45 SDATAI Digital input Input serial audio interface data
52 BICLKO Digital
input/output
Output serial audio interface bit-clock
(volume DOWN when I2CDIS=1)
48 LRCLKO Digital
input/output
Output serial audio interface L/R-clock
(volume UP when I2CDIS=1)
46 SDATAO Digital output Output serial audio interface data
32 TM Digital input Test mode (active high)
2 INL Analog input ADC left channel line input or microphone input
3INR
Analog
input/output ADC right channel line input
4 VBIAS Analog
input/output ADC microphone bias voltage
9VCM
Analog
input/output ADC Common mode voltage
5 AVDD Supply ADC analog supply
8 AGND Ground ADC analog ground
6 VHI Analog input ADC High reference voltage
Connection diagrams and pin descriptions STA529
10/58
7 VLO Analog input ADC Low reference voltage
40 FILT Analog
input/output PLL loop filter terminal
42 VDDPLL Supply PLL analog supply
41 GNDPLL Ground PLL analog ground
16 OUT1A Analog output Channel 1 half-bridge A output
19 OUT1B Analog output Channel 1 half-bridge B output
25 OUT2A Analog output Channel 2 half-bridge A output
22 OUT2B Analog output Channel 2 half-bridge B output
31 POWERFAULT/
EADP Digital output Power fault signal (active high)/external audio power
down signal
15 VCC1A Supply Channel 1 half-bridge A power supply
20 VCC1B Supply Channel 1 half-bridge B power supply
26 VCC2A Supply Channel 2 half-bridge A power supply
21 VCC2B Supply Channel 2 half-bridge B power supply
17 GND1A Ground Channel 1 half-bridge A power ground
18 GND1B Ground Channel 1 half-bridge B power ground
24 GND2A Ground Channel 2 half-bridge A power ground
23 GND2B Ground Channel 2 half-bridge B power ground
30 VCC33 Supply Pre-driver supply
27 GND33 Ground Pre-driver ground
13 VDD1 Supply Digital supply
12 GND1 Ground Digital ground
44 VDD2 Supply Digital supply
43 GND2 Ground Digital ground
29 VDDIO1 Supply I/O ring supply
28 GNDIO1 Ground I/O ring ground
50 VDDIO2 Supply I/O ring supply
49 GNDIO2 Ground I/O ring ground
Table 3. Package: VFQFPN52 (continued)
Pin # Name Type Description
STA529 Electrical specifications
11/58
3 Electrical specifications
This section includes the electrical specifications for the STA529.
3.1 Maximum and recommended operating conditions
Ta bl e 4 provides the maximum ratings and Ta b l e 5 the recommended operating conditions.
Note: All grounds must be within 0.3 V of each other.
Table 4. Absolute maximum ratings
Signal Description Min Max Unit
VDD/VDD1/VDD2 Digital supply voltage -0.5 +2.5 V
AVDD ADC supply voltage -0.5 +4 V
VDDPLL PLL analog supply voltage -0.5 +2.5 V
VCC1A/1B/2A/2B Power stage supply voltage -0.5 +4 V
VCC33 Pre-driver supply -0.5 +4 V
VDDIO Digital I/O supply -0.5 +4 V
VDI Voltage range digital in -0.5 VDDIO +0.3 V
VAI Voltage range analog in -0.5 AVDD +0.3 V
VoVoltage on output pins -0.5 VDDIO +0.3 V
TSTG Storage temperature -40 150 oC
TAMB Ambient operating temperature -20 85 oC
Table 5. Recommended operating conditions
Symbol Parameter Min Typ Max Unit
VDD/VDD1/VDD2 Digital supply voltage 1.55 1.8 1.95 V
AVDD ADC supply voltage 1.8 3.3 3.6 V
VDDPLL PLL analog supply voltage 1.55 1.8 1.95 V
VCC1A/1B/2A/2B Power stage supply voltage 1.8 3.3 3.6 V
VCC33 Pre-driver supply 1.8 3.3 3.6 V
GND1, GND2,
GND33
Channel 1 and 2 power
ground, pre-driver ground 0
TAMB
Ambient operating
temperature 025 70 oC
Electrical specifications STA529
12/58
3.2 Electrical characteristics
Ta bl e 6 lists the device’s electrical characteristics (see also Ta bl e 5 for supply voltages).
Note: LRCLKI frequency (Fs) = 48 kHz, input frequency = 1 kHz, and Rload = 32
unless
otherwise specified.
Table 6. Electrical characteristics
Symbol Parameter Test conditions Min Typ Max Unit
Eff Output power efficiency 90 %
Rdson
Output stage N/PMOS on-
resistance 250 m
IstbyL Logic power supply current at
standby 1.3 µA
IstbyP Bridges power supply current in
standby 0.7 µA
IddL Logic power supply current at
operating 15 mA
IddP Bridges power supply current at
operating 0.5 mA
Tds Low current dead time (static) 1 ns
Tdd High current dead time
(dynamic) 2.5 ns
Tr Rise time 3 ns
Tf Fall time 3 ns
THDN Total harmonic distortion 0 dBFS input, 32 load
headphone 0.1 %
THDN Total harmonic distortion -6 dBFS input, 32 load
headphone 0.05 %
STA529 Electrical specifications
13/58
The following tables give the distortion values for headphones and speakers.
3.3 Lock time
Ta bl e 8 gives the typical lock time of the PLL using the suggested loop filter, 1.8 V supply
voltage and 30 oC junction temperature.
Table 7. Load power at 1% distortion headphone mode
Load () P (mW) at 1.8 V P (mW) at 3.3 V P (mW) at 3.6 V
16 20 70 80
32 10 32 40
Table 8. PLL lock time
Parameter Value
Lock time 200 µs
Electrical specifications STA529
14/58
3.4 ADC performance values
Table 9. Programmable gain performance
Parameter Min Typ Max Unit
Dynamic range 1 kHz 1.8 V supply dB
Dynamic range 1 kHz 1.8 V supply A-weighted 84 dB
SNDR 1 kHz 1.8 V supply dB
SNDR 1 kHz 1.8 V supply A-weighted 84 dB
THD 1 kHz (-1 dB input) 1.8 V supply 75 dB
Deviation from linear phase degree
Pass band kHz
Pass band ripple dB
Stop band kHz
Stop band attenuation dB
Group delay 8 kHz ms
Group delay 48 kHz ms
Cross talk 1.8 V dB
Cross talk 3.3 V dB
STA529 Digital processing
15/58
4 Digital processing
The STA529 processor block is a digital block providing two channels of audio processing
and channel-mapping capability.
4.1 Signal processing flow
I2S or stereo ADC data can be selected. The I2S frequency range is from 8 kHz to 192 kHz.
ADC sampling frequency can be selected from 8 kHz to 48 kHz.
4.2 I2C interface disabled
When pin I2CDIS = 1, the SDA, SCL, LRCLKO and BICLKO pins can be pulled high or low
to change certain parameters of operation.
SDA = 0: FFX input comes from ADC
SDA = 1: FFX input comes from digital audio interface
SCL = 0: binary output mode (binary soft start/stop enabled)
SCL = 1: phase shift output mode
LRCLKO = 0: no volume change
LRCLKO = 1: volume up
BICLKO = 0: no volume change
BICLKO = 1: volume down
At power up, the master volume is set to -60 dB. When holding pin LRCLKO = 1 and pin
BICLKO = 1 simultaneously, the master volume is set to 0 dB. A high pulse on pin LRCLKO
causes a master volume change of +0.5 dB and a high pulse on pin BICLKO causes a
master volume change of -0.5 dB.
Digital processing STA529
16/58
4.3 Volume control and gain
The volume control structure of the STA529 consists of individual volume registers for each
channel and a master volume register that provides an offset to each channel’s volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +36 dB to
-91.5 dB. As an example, if register LVOL = 0x00 or +36 dB and register MVOL = 0x18 or
-12 dB, then the total gain for the left channel is +24 dB.
When the mute bit is set to 1, all channels are muted. The volume control provides a soft
mute with the volume ramping down to mute in 4096 samples from the maximum volume
setting at the internal processing rate (~48 kHz).
Table 10. Master volume offset as a function of register MVOL
MVOL[7:0] Volume offset from channel value
0x00 0 dB
0x01 -0.5 dB
0x02 -1dB
……
0x78 -60 dB
……
0xFE -105 dB
0xFF Hard master mute
Table 11. Channel volume as a function of registers LVOL and RVOL
LVOL/RVOL[7:0] Volume
0x00 +36 dB
0x01 +35.5 dB
0x02 +35 dB
……
0x47 +0.5 dB
0x48 0dB
0x49 -0.5 dB
……
……
0xFF -91.5 dB
STA529 PLL
17/58
5 PLL
Figure 4 shows the main components of the PLL.
Figure 4. PLL block diagram
Input frequency
Output
frequency
divider
Loop frequency divider
CLKIN LOCKP
FVCO
IDF
Lock detect
INFIN
FBCLK
Phase
Buffer
Fractional controller
VCO
INFIN
FBCLK
DITHER_DISABLE
FRAC_INPUT NDIV
PHI
INFOUT
divider
Charge
REFOUT
LF
FILT
VCONT
pump and
loop filter
STRB
STRB_
FRAC_CTRL
BYPASS
frequency
divider
(PFD)
PLL STA529
18/58
5.1 Functional description
Phase/frequency detector
The phase/frequency detector (PFD) compares the phase difference between the
corresponding rising edges of INFIN and FBCLK, (clock output from the loop frequency
divider) by generating voltage pulses with widths proportional to the input phase error.
Charge pump and loop filter
This block converts the voltage pulses from the phase/frequency detector to current pulses
which charge the loop filter and generate the control voltage for the voltage-controlled
oscillator. The loop filter is placed external to the PLL on pin FILT.
Voltage controlled oscillator
The voltage controlled oscillator (VCO) is the oscillator inside the PLL. It produces a
frequency output (FVCO) proportional to the input control voltage.
Input frequency divider
This frequency divider divides the PLL input clock CLKIN by a factor called the input division
factor (IDF) to generate the PFD input frequency INFIN.
Loop frequency divider
This frequency divider is present within the PLL for dividing FVCO by a factor called the loop
division factor (LDF). The output of this block is the FBCLK.
Output frequency divider
The PLL output PHI is generated by dividing the FVCO by the output division factor (ODF).
The divider that divides the FVCO to generate the clock to the core is called the output
frequency divider. In the STA529, the ODF is fixed to be divisible by 2 and cannot be
configured.
Lock-detect circuit
The output of this block (the LOCKP signal) is asserted high when the PLL enters the state
of COARSE LOCK in which the output frequency is within +/-10% (approximately) of the
desired frequency. The LOCKP signal is refreshed every 32 cycles of the INFIN. The
generated value is based on the result of comparing the number of FBCLK cycles in a
window of 14 INFIN cycles. The different cases generated after comparison are as follows.
If LOCKP is already at 0, then in the next refresh cycle LOCKP goes to 1 if the number
of FBCLK cycles in the 14-cycle INFIN window is 13, 14, or 15. Otherwise LOCKP
stays at 0.
If LOCKP is already at 1, then in the next refresh cycle LOCKP goes to 0 if the number
of FBCLK cycles in the 25-cycle INFIN window is less than 11 or higher than 17,
otherwise LOCKP stays at 1.
If LOCKP is already at 1 and CLKIN is lost (no longer present on the input pin), LOCKP
stays at 1. In this case, the PLL is unlocked.
STA529 PLL
19/58
PLL filter
Figure 5 shows the PLL filter scheme. Recommended values are R1 = 12.5 k,
C1 = 250 pF, and C2 = 82 pF.
Figure 5. PLL filter scheme
Table 8 on page 13 gives a typical lock time value for the PLL.
5.2 Configuration examples
The STA529 PLL can be configured in two ways:
default startup configuration
direct PLL programming
The default startup configuration reads the device’s defaults. With this configuration, it is not
necessary to program the PLL dividers directly as some presets are used. In this mode, the
oversampling ratio between pins XTI (or MCLK33) and LRCLKI is fixed to 256.
The direct PLL programming bypasses the automatic presets allowing direct programming
of the PLL dividers.
The output PLL frequency can be determined as following:
Output division factor:
ODF = 2
Relation between input and output clock frequency:
FINFIN = FXTI / IDF
If register bit PLLCFG0.FRAC_CTRL = 1
FVCO = FINFIN * (LDF + FRACT/216 + 1/217)
FPHI = FVCO / ODF
When register bit PLLCFG0.DITHER_DISABLE[1] = 1, the 1/217 factor is not in the
multiplication. This is recommended in order to keep register bit
PLLCFG0.DITHER_DISABLE[1] = 0, otherwise there can be spurious signals in the output
clock spectrum.
C2
R1
C1
Vc
Ground
PLL STA529
20/58
If register bit PLLCFG0.FRAC_CTRL = 0, then:
FVCO = FINFIN * LDF
FPHI = FVCO / ODF
In the above equations:
FRACT = Decimal equivalent of register bit PLLCFG1.FRAC_INPUT[15:0]
IDF = Input division factor (refer to previous formulas)
LDF = Loop division factor (refer to previous formulas)
ODF = Output division factor = 2
FINFIN = INFIN frequency
FXTI = XTI frequency
FVCO = VCO frequency
FPHI = Frequency of the PLL output clock
When selecting the value of IDF, LDF and FRACT make sure the following limits are
maintained:
2.048 MHz < FXTI < 49.152 MHz
2.048 MHz < FINFIN < 16.384 MHz
65.536 MHz < FVCO < 98.304 MHz
There are also some additional constraints on IDF and LDF. IDF should be greater than 0,
LDF should be greater than 5 if FRAC_CTRL = 0 and greater than 8 if FRAC_CTRL = 1.
When automatic settings are not used, the PLL must be configured to generate an internal
frequency of N * Fs, where Fs is the LRCLKI pin frequency. Values of N are given in
Ta bl e 1 2 .
Table 12. Oversampling table
Fs (kHz) N FPHI (MHz)
8 4096 32.768
11.025 4096 45.1584
12 4096 49.152
16 2048 32.768
22.05 2048 45.1584
24 2048 49.152
32 1024 32.768
44.1 1024 45.1584
48 1024 49.152
64 512 32.768
88.2 512 45.1584
96 512 49.152
128 256 32.768
176.4 256 45.1584
192 256 49.152
STA529 PLL
21/58
Example 1:
FXTI = 13 MHz
Fs = 44.1 kHz
IDF should be equal to 3 otherwise LDF become less than 8 (FRAC_CTRL must be 1):
LDF = floor(45.1584/(13/IDF)) = 10
FRACT = round([(45.1584/(13/ IDF))-floor(45.1584/(13/ IDF))]*216) = 27602
(where:
floor: rounded towards zero
round: rounded real number to nearest integer)
Using the above configuration, the system clock is 45.15841675 MHz, the approximate
static error is 16 Hz (that is, 0.5 ppm).
Example 2:
FXTI = 19.2 MHz
Fs = 48 kHz
IDF should be equal to 4 otherwise LDF become less than 8 (FRAC_CTRL must be 1):
LDF = floor(49.152/(19.2/IDF)) = 10
FRACT = round([(49.152/(19.2/IDF))-floor(49.152/(19.2/IDF))]*216) = 15728
Using the above configuration, the system clock is 49.151953125 MHz, the approximate
static error is 47 Hz (that is, 1 ppm).
ADC STA529
22/58
6 ADC
This section describes the analog-to-digital converter (ADC).
6.1 Functional description
The STA529 analog input is provided through a low power, low voltage, stereo audio analog-
to-digital converter front-end designed for audio applications. It includes a programmable
gain amplifier, anti-aliasing filter, low-noise microphone biasing circuit, a third-order
MASH2-1 delta-sigma modulator, digital decimating filter, and a first-order DC-removal filter.
This device is fabricated using a 0.18 µm CMOS process, where high-speed precision
analog circuits are combined with high-density logic circuits.
The ADC works in a microphone input (mic-in) mode and in a line-input mode.
If the line input mode is selected, the ADC is configured in stereo and all conversion
channels are active.
If the microphone input mode is selected, the ADC is configured in mono. The mono
channel is routed through the left conversion path, and the right conversion path is kept in
power-down mode to minimize power consumption. A programmable gain amplifier (PGA) is
available in mic-in mode, giving the possibility to amplify the signal from 0 to +42 dB in steps
of 6 dB.
6.1.1 Digital filter characteristics
The digital filter characteristics are shown in Ta bl e 1 3 .
Table 13. Digital filter characteristics
Parameter Typical Unit
Passband 0.4535 * Fs kHz
Passband ripple:
Fs mode
Fs_by_2 mode
Fs_by_4 mode
0.08 at 44.1 kHz
0.08 at 22.05 kHz
0.08 at 11.025 kHz
dB
dB
dB
Stop band attenuation:
Fs mode
Fs_by_2 mode
Fs_by_4 mode
45 at 44.1 kHz
45 at 22.05 kHz
45 at 11.025 kHz
dB
dB
dB
Group delay:
Fs mode
Fs_by_2 mode
Fs_by_4 mode
0.4 at 32 kHz
0.7 at 16 kHz
1.4 at 8 kHz
ms
ms
ms
STA529 ADC
23/58
6.1.2 High-pass filter characteristics
6.1.3 Programmable gain amplifier
The programmable gain amplifier (PGA) is available in mic-in mode only. It is possible to
amplify the input signal from 0 to 42 db in steps of 6 db. The setting is done through PGA
bits of the ADCCFG register (see ADCCFG on page 49 for details).
See Table 9 on page 14 for performance values.
6.2 Application scheme
Figure 6 shows the filter circuit.
Figure 6. Block diagram
Table 14. High-pass filter characteristics
Parameter Typical Unit
Frequency response:
-3 dB
-0.08 dB
7
50
Hz
Hz
Phase deviation at 20 Hz 19.35 degree
Passband ripple 0.08 dB
AC coupled
DC coupled
DC coupled
AC coupled
C9
C0
C1
C5
C2
C6
C3
C7
C4
C8
1.8 V supply
VSSA
VSSA
R1
INL
INR
AVDD
AGND
VHI
VLO
VCM
VBIAS
C1, C2, C3, C4 = 10 nF
(These capacitors must be
placed very close to their
respective pins)
C5, C6, C7 = 33 µF
(Low ESR and ESL
capacitors are
recommended)
VSSA plane must be
different from other
ground plane
3V, 3A must be a
low-noise supply and
separate from
other supplies
R1 = 500
C8 = 10 µF
C9, C0 = 1 µF
ADC STA529
24/58
6.3 Configuration examples
The ADC sampling frequency can be selected from three values:
normal (from 32 kHz to 48 kHz)
low (from 16 kHz to 24 kHz)
very-low (from 8 kHz to 12 kHz)
The setting is done through register bits MISC.ADC_FS_RANGE (see MISC on page 50 for
details). For all other settings, register ADCCFG is used (see ADCCFG on page 49 for
details).
STA529 Driver configuration
25/58
7 Driver configuration
A driver configuration is available that allows PWM commands to be used on an external
power device. For this purpose, the output serial audio interface is disabled and the
respective pins have an alternative name and new functionality, as shown in Ta bl e 1 5 .
The driver configuration is selected with two programmable registers PWMINT1 = 0x93 and
PWMINT2 = 0x81 (see PWMINT1 on page 51 and PWMINT2 on page 51).
7.1 I2S bypass
A configuration is available which allows the bypassing of the I2S input signal straight to the
I2S output signal.
This configuration is set using two programmable registers PWMINT1 = 0x93 and
PWMINT2 = 0x80 (see PWMINT1 on page 51 and PWMINT2 on page 51).
Table 15. Pin functionality in driver-configuration mode
Pin Alternative pin name and functionality
BICLKO PWM1A (external bridge PWM command for output 1A)
LRCLKO PWM1B (external bridge PWM command for output 1B)
SDATAO PWM2A (external bridge PWM command for output 2A)
CLKOUT PWM2B (external bridge PWM command for output 2B)
POWERFAULT EADP (external audio power-down signal)
Serial audio interface STA529
26/58
8 Serial audio interface
This section includes information about the audio interface.
8.1 Specifications
The serial-to-parallel interface and the parallel-to-serial interface can have different
sampling rates.
The following terms are used in this section:
BICLK active edge: Pins SDATAI, SDATAO, LRCLKI, LRCLKO always change
synchronously with BITCLK active edges. The active edge can be configured to a rising
or falling edge via register programming.
BICLK strobe edge: Pins SDATAI, SDATAO, LRCLKI, LRCLKO should be stable near
BICLK strobe edges, the slave device is able to use strobe edges to latch serial data
internally.
STA529 Serial audio interface
27/58
8.2 Master mode
In this mode, pins BICLKI/BICLKO and pins LRCLKI/LRCLKO are configured as outputs.
Figure 7. Master mode
Table 16. Master mode
Parameter Symbol Min Typ Max Unit
LRCLKI/LRCLKO propagation delay from BICLK active
edge tDL 010ns
SDATAI propagation delay from BICLKI/O active edge tDDA 015ns
Sdatao setup time to BICLKI/O strobing edge tDST 10 ns
Sdatao hold time from BICLKI/O strobing edge tDHT 10 ns
BICLKI/
BICLKO
LRCLKI/
LRCLKO
SDATAO
SDATAI
t
DST
t
DHT
t
DL
t
DDA
Serial audio interface STA529
28/58
8.3 Slave mode
In this mode, pins BICLKI/O and pins LRCLKI/O are configured as inputs.
Figure 8. Slave mode
Table 17. Slave mode
Parameter Symbol Min Typ Max Unit
BICLK cycle time tBCY 50 ns
BICLK pulse width high tBCH 20 ns
BICLK pulse width low tBCL 20 ns
LRCLKI/LRCLKO setup time to BICLK strobing edge tLRSU 10 ns
LRCLKI/LRCLKO hold time to BICLK strobing edge tLRH 10 ns
SDATAO setup time to BICLK strobing edge tDS 10 ns
SDATAO hold time to BICLK strobing edge tDH 10 ns
SDATAI propagation delay from BICLK active edge tDD 010ns
BICLKI/
BICLKO
LRCLKI/
LRCLKO
SDATAO
SDATAI
tBCH tBCL
tBCY
tDS tLRH tLRSU
tDH
tDD
STA529 Serial audio interface
29/58
8.4 Serial formats
Different audio formats are supported in both master and slave modes. Clock and data
configurations can be customized to match most of the serial audio protocols available on
the market.
Data length can be customized for 8-, 16-, 24-, and 32-bit.
Figure 9. Right justified
Figure 10. Left justified
123 n-1 n
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO 123 n-1 n
123 n-1 n
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO
123
n-1 n
Serial audio interface STA529
30/58
8.4.1 DSP
Figure 11. DSP
8.4.2 I2S
Figure 12. I2S
123
n-1 n
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO
123
n-1 n
Left Right
123
n-1 n
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO
123 n
-1
n
STA529 Serial audio interface
31/58
8.4.3 PCM/IF (non-delayed mode)
MSB first
16-bit data
Figure 13. PCM/IF (non delayed mode)
8.4.4 PCM/IF (delayed mode)
MSB first
16-bit data
Figure 14. PCM/IF (delayed mode)
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO
123 n
-1
n
Any width
LRCLKI/
LRCLKO
BICLKI/
BICLKO
SDATAI/
SDATAO
123 n
-1
n
I2C interface STA529
32/58
9 I2C interface
This section describes the communication protocol of the I2C interface.
9.1 Data transition and change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition
while the clock is high is used to identify a start or stop condition.
9.2 Start condition
A start condition is identified by a high to low transition of the data bus SDA signal while the
clock signal SCL is stable in the high state. A start condition must precede any command for
data transfer.
9.3 Stop condition
A stop condition is identified by low to high transition of the data bus SDA signal while the
clock signal SCL is stable in the high state. A stop condition terminates communication
between the STA529 and the master bus.
9.4 Data input
During data input, the STA529 samples the SDA signal on the rising edge of clock SCL. For
correct device operation the SDA signal must be stable during the rising edge of the clock
and the data can change only when the SCL line is low.
9.5 Device addressing
To start communication between the master and the STA529, the master must initiate with a
start condition. Following this, the master sends onto the SDA line 8 bits (MSB first)
corresponding to the device select address and read or write mode.
The 7 most significant bits are the device address identifiers, corresponding to the I2C bus
definition. In the STA529, the I2C interface has the device address 0x34.
The 8th bit (LSB) identifies read or write operation (R/W), this bit is set to 1 in read mode
and 0 in write mode. After a start condition, the STA529 identifies on the bus the device
address and if a match is found, it acknowledges the identification on SDA bus during the
9th bit time. The byte following the device identification byte is the internal space address.
STA529 I2C interface
33/58
9.6 Write operation
Following the start condition the master sends a device select code with the R/W bit set to 0.
The STA529 acknowledges this and the writes to the byte of the internal address. After
receiving the internal byte address, the STA529 responds with an acknowledgement.
9.6.1 Byte write
In the byte-write mode the master sends one data byte. This is acknowledged by the
STA529. The master then terminates the transfer by generating a stop condition.
9.6.2 Multi-byte write
The multi-byte write modes can start from any internal address. The master generates a
stop condition which terminates the transfer.
9.7 Read operation
9.7.1 Current address byte read
Following the start condition the master sends a device select code with the R/W bit set
to 1. The STA529 acknowledges this and then responds by sending one byte of data. The
master then terminates the transfer by generating a stop condition.
9.7.2 Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA529. The master acknowledges each data
byte read and then generates a stop condition terminating the transfer.
9.7.3 Random address byte read
Following the start condition the master sends a device select code with the R/W bit set to 0.
The STA529 acknowledges this and then the master writes the internal address byte. After
receiving the internal byte address, the STA529 again responds with an acknowledgement.
The master then initiates another start condition and sends the device select code with the
R/W bit set to 1. The STA529 acknowledges this and then responds by sending one byte of
data. The master then terminates the transfer by generating a stop condition.
I2C interface STA529
34/58
9.7.4 Random address multi-byte read
The multi-byte read modes could start from any internal address. Sequential data bytes are
read from sequential addresses within the STA529. The master acknowledges each data
byte read and then generates a stop condition terminating the transfer.
Figure 15. I2C write operations
Figure 16. I2C read operations
R/W
Multibyte
Stop
Start Sub address Data in Data in
ACK ACK ACK ACK
Dev address
Write
R/W
Byte
Stop
Start Sub address Data in
ACK ACK ACK
Dev address
Write
R/W
Random
StopStart Sub address Start Data
ACK ACK ACK No ACK
Dev address
address
R/W
Current
Stop
Start Data
ACK No ACK
Dev address
address
read
Dev address R/W
read
Sequential
StopStart Data Data
ACK ACK ACK No ACK
Dev address
current
Data
read R/W=High
R/W
Sequential
Start Sub address Start Data
ACK ACK ACK ACK
Dev address
random
Dev address R/W
read
Sto
p
Data
ACK No ACK
Data
STA529 Registers
35/58
10 Registers
This section includes register information.
10.1 Summary
Table 18. Register summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x00 FFXCFG0 MUTE POW_STBY SOFT_
VOL_ON
BIN_SOFTS
TA R T TIM_SOFT_VOL[3:0]
0x01 FFXCFG1 L1_R2 MUTE_ON_
INVALID PWM_MODE[1:0] PWM_SHIFT[1:0]
0x02 MVOL SET_VOL_MASTER[7:0]
0x03 LVOL SET_VOL_LEFT[7:0]
0x04 RVOL SET_VOL_RIGHT[7:0]
0x05 TTF0 TIM_TS_FAULT[15:8]
0x06 TTF1 TIM_TS_FAULT[7:0]
0x07 TTP0 TIM_TS_POWUP[15:8]
0x08 TTP1 TIM_TS_POWUP[7:0]
0x0A S2PCFG0 BICLK_
STRB
LRCLK_
LEFT
SHARE_
BILR MSB_FIRST DATA_FORMAT[2:0]
MASTER_
MODE
0x0B S2PCFG1 PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_L[1:0] MAP_R[1:0]
0x0C P2SCFG0 BICLK_
STRB
LRCLK_
LEFT
SDATAO_
ACT MSB_FIRST DATA_FORMAT[2:0] MASTER_
MODE
0x0D P2SCFG1 PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_L[1:0] MAP_R[1:0]
0x14 PLLCFG0 PLL_DIREC
T_PROG
FRAC_
CTRL DITHER_DISABLE[1:0] IDF[3:0]
0x15 PLLCFG1 FRAC_INPUT[15:8]
0x16 PLLCFG2 FRAC_INPUT[7:0]
0x17 PLLCFG3 STRB STRB_BYP
ASS NDIV[5:0]
0x18 PLLPFE PLL_BYP_
UNL BICLK2PLL PLL_PWDN PFE1A PFE1B PFE2A PFE2B RESET_FA
ULT
0x19 PLLST PLL_UNLO
CK
PLL_PWD_
STATE
PLL_BYP_
STATE
0x1E ADCCFG PGA[2:0] INSEL STBY BYPASS_
CALIB CLKENBL
0x1F CKOCFG CLKOUT_
DIS CLKOUT_SEL[1:0]
0x20 MISC OSC_DIS P2P_FS_RANGE[2:0] ADC_FS_RANGE[1:0] P2P_IN_
ADC
CORE_
CLKENBL
0x21 PADST0 Reserved
0x22 PADST1 Reserved
0x23 FFXST INVALID_
INP_FBK
MUTE_
INT_FBK BINSS_FBK
0x28 BISTRUN Reserved
Registers STA529
36/58
10.2 General registers
FFXCFG0 FFX configuration register 0
Address: 0x00
Type: R/W
Buffer: No
Reset: 0x75
Description:
0x29 BISTST0 Reserved
0x2A BISTST1 Reserved
0x2B BISTST2 Reserved
0x2D PWMINT1 PWM_INT[15:8]
0x2E PWMINT2 PWM_INT[7:0]
0x32 POWST POWER
DOWN
POW_
TRISTATE
POW_
FAULT1A
POW_
FAULT1B
POW_
FAULT2A
POW_
FAULT2B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MUTE POW_STBY SOFT_VOL_ON BIN_
SOFTSTART TIM_SOFT_VOL[3:0]
7MUTE:
0: default
1: FFX output is zero
6POW_STBY:
0: FFX bridge is in power-up mode
1: FFX bridge is put in standby mode (default)
5 SOFT_VOL_ON:
0: smooth transition not active
1: smooth transition when changing volume control (default)
4 BIN_SOFTSTART:
Reserved (1: default)
3:0 TIM_SOFT_VOL: volume control time step for any 0.5 dB volume change
Time is (2TIM_SOFT_VOL) * 20.83 µs
Default is 666.66 µs
Table 18. Register summary (continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STA529 Registers
37/58
FFXCFG1 Configuration register 1
Address: 0x01
Type: R/W
Buffer: No
Reset: 0xf8
Description:
MVOL Master volume control register
Address: 0x02
Type: R/W
Buffer: No
Reset: 0x00
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
L1_R2 MUTE_ON_
INVALID PWM_MODE[1:0] PWM_SHIFT[1:0]
7 L1_R2: channel mapping:
0: right channel is mapped to output channel 1 and left channel is mapped to output
channel 2
1: left channel is mapped to output channel 1 and right channel is mapped to output
channel 2 (default)
6 MUTE_ON_ INVALID: mutes PWM outputs if invalid digital data is received:
0: outputs are not muted
1: outputs are muted (default)
5:4 PWM_MODE[1:0]:
00: binary (output B is opposite of output A)
01: binary headphones (output B is 50 % duty cycle)
10: ternary
11: phase shift (default)
3:2 PWM_SHIFT[1:0]:
10: default
PWM period-shift between channels 1 and 2
Value is N * 90o
Default is 180o
1:0 Reserved (00: default)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SET_VOL_MASTER[7:0]
7:0 SET_VOL_MASTER[7:0]: master volume control:
From 0 dB to -127.5 dB in 0.5 dB steps
Registers STA529
38/58
LVOL Left channel volume control register
Address: 0x03
Type: R/W
Buffer: No
Reset: 0x48
Description:
RVOL Right channel volume control register
Address: 0x04
Type: R/W
Buffer: No
Reset: 0x48
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SET_VOL_LEFT[7:0]
7:0 SET_VOL_LEFT[7:0]: left channel volume control:
0100 1000: default
Left channel volume control (from +36 dB to -91.5 dB in 0.5 dB steps)
Default value corresponds to 0 dB
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SET_VOL_RIGHT[7:0]
7:0 SET_VOL_RIGHT[7:0]: right channel volume control:
0100 1000: default
Right channel volume control (from +36 dB to -91.5 dB in 0.5 dB steps)
Default value corresponds to 0 dB
STA529 Registers
39/58
TTF0 Tri-state time-after-fault register 0
Address: 0x05
Type: R/W
Buffer: No
Reset: 0x00
Description:
TTF1 Tri-state time-after-fault register 1
Address: 0x06
Type: R/W
Buffer: No
Reset: 0x02
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TIM_TS_FAULT[15:8]
7:0 MSBs of TIM_TS_FAULT[15:8]:
See TTF1 on page 39.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TIM_TS_FAULT(7:0)
7:0 LSBs of TIM_TS_FAULT[7:0]: time in which power is held in tri-state mode after a fault
signal:
Time is TIM_TS_FAULT * 83.33 µs.
Default value corresponds to 166.66 µs tri-state time after fault
Registers STA529
40/58
TTP0 Tri-state time-after-power-up register 0
Address: 0x07
Type: R/W
Buffer: No
Reset: 0x00
Description:
TTP1 Tri-state time-after-power-up register 1
Address: 0x08
Type: R/W
Buffer: No
Reset: 0x02
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TIM_TS_POWUP[15:8]
7:0 MSBs of TIM_TS_POWUP[15:8]:
See register TTP1.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TIM_TS_POWUP[7:0]
7:0 LSBs of TIM_TS_POWUP[7:0]: time in which power is held in tri-state mode after a power-
up signal:
Time is TIM_TS_POWUP * 83.33 µs
Default value corresponds to 166.66 µs tri-state time after power-up
STA529 Registers
41/58
S2PCFG0 Serial-to-parallel audio interface configuration
register 0
Address: 0x0A
Type: R/W
Buffer: No
Reset: 0xD2
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BICLK_STRB LRCLK_LEFT SHARE_BILR MSB_FIRST DATA_FORMAT[2:0] MASTER_
MODE
7 BICLK_STRB:
0: bit clock strobe edge is falling edge, bit clock active edge is rising edge
1: bit clock strobe edge is rising edge, bit clock active edge is falling edge (default)
6 LRCLK_LEFT:
0: left/right clock is low for left channel, high for right channel
1: left/right clock is high for left channel, low for right channel (default)
5 SHARE_BILR:
0: default
1: left/right clock and bit clock are shared between serial-parallel interface and parallel-to-
serial interface, BICLKI and LRCLKI are used
4 MSB_FIRST:
0: LSB first
1: MSB first (default)
3:1 DATA_FORMAT[2:0]: serial interface protocol format:
000: left Justified
001: I2S (default)
010: right justified
100: PCM no delay
101: PCM delay
111: DSP
001: default
0 MASTER_MODE:
0: default
1: serial interface is in master mode
Registers STA529
42/58
S2PCFG1 Serial-to-parallel audio interface configuration
register 1
Address: 0x0B
Type: R/W
Buffer: No
Reset: 0x91
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_L[1:0] MAP_R[1:0]
7:6 PDATA_LENGTH[1:0]: serial-to-parallel interface data length:
10: default
Length is (N+1) * 8 bit
Default is 24 bit
5:4 BICLK_OS[1:0]: bit clock oversampling:
01: default
Value is (N+1) * 32 fs (where fs = sampling frequency)
Default is 64 fs
3:2 MAP_L[1:0]: left data-mapping slot:
00: default
Value is nth slot
Default is slot0
1:0 MAP_R[1:0]: right data-mapping slot:
01: default
Value is nth slot
Default is slot
STA529 Registers
43/58
P2SCFG0 Parallel-to-serial audio interface configuration
register 0
Address: 0x0C
Type: R/W
Buffer: No
Reset: 0xD3
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BICLK_ STRB LRCLK_LEFT SDATAO_ACT MSB_FIRST DATA_FORMAT[2:0] MASTER_
MODE
7 BICLK_STRB: defines the bit clock edges:
0: strobe is falling edge, active edge is rising
1: strobe is rising edge, active edge is falling (default)
6 LRCLK_LEFT: defines the channel for the LR clock:
0: clock is low for left channel, high for right channel
1: clock is high for left channel, low for right channel (default)
5 SDATAO_ ACT: sets the behavior of pin SDATAO:
0: output is tri-stated when no data is sent (default)
1: output is never in tri-state (it is 0 when no data is sent)
4 MSB_FIRST: data alignment in the protocol for SDATAI and SDATAO:
0: LSB is the first bit
1: MSB is the first bit (default)
3:1 DATA_FORMAT[2:0]: serial interface protocol format:
000: left justified
001: I2S (default)
010: right justified
100: PCM no delay
101: PCM delay
111: DSP
0 MASTER_ MODE: selects serial interface master/slave mode:
0: slave
1: master (default)
Registers STA529
44/58
P2SCFG1 Parallel-to-serial audio interface configuration
register 1
Address: 0x0D
Type: R/W
Buffer: No
Reset: 0x91
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_L[1:0] MAP_R[1:0]
7:6 PDATA_LENGTH[1:0]: serial-to-parallel interface data length:
10: default
Length is (PDATA_LENGTH+1) * 8 bit
Default is 24 bits
5:4 BICLK_OS[1:0]: bit clock oversampling:
01: default
Value is (BICLK_OS+1) * 32 fs
Default is 64 fs
3:2 MAP_L[1:0]: left data-mapping slot:
00: default
Value is nth slot
Default is slot0
1:0 MAP_R[1:0]: right channel data-mapping slot:
01: default
Value is nth slot
Default is slot1
STA529 Registers
45/58
PLLCFG0 PLL configuration register 0
Address: 0x14
Type: R/W
Buffer: No
Reset: 0x00
Description:
PLLCFG1 PLL configuration register 1
Address: 0x15
Type: R/W
Buffer: No
Reset: 0x00
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PLL_DIRECT_
PROG FRAC_CTRL DITHER_DISABLE[1:0] IDF[3:0]
7 PLL_DIRECT_PROG: PLL programming:
0: default
1: PLL is programmed according to the PLLCFG register settings
6 FRAC_CTRL:
0: default
1: PLL fractional-frequency synthesis is enabled
5:4 DITHER_DISABLE[1:0]:
00: default
MSB = 1: disables rectangular PDF dither input to SDM
LSB = 1: disables triangular PDF dither input to SDM
3:0 IDF[3:0]: PLL input division factor:
0000: IDF = 1 (default)
0001: IDF = 1
0010: IDF = 2
1111: IDF = 15
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FRAC_INPUT[15:8]
7:0 FRAC_INPUT[15:8]: 16 bits are used to set the fractional part of PLL multiplication factor:
0000 0000: default
Registers STA529
46/58
PLLCFG2 PLL configuration register 2
Address: 0x16
Type: R/W
Buffer: No
Reset: 0x00
Description:
PLLCFG3 PLL configuration register 3
Address: 0x17
Type: R/W
Buffer: No
Reset: 0x00
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FRAC_INPUT[7:0]
7:0 FRAC_INPUT[7:0]: 16 bits are used to set the fractional part of PLL multiplication factor:
0000 0000: default
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STRB STRB_BYPASS NDIV[5:0]
7 STRB: asynchronous strobe input to the fractional controller:
0: default
6 STRB_BYPASS: standby bypass:
0: STRB signal is not bypassed (default)
1: STRB signal is bypassed
5:0 NDIV[5:0]: PLL multiplication factor (integral part) named as loop division factor:
0000 XX: LDF = NA
0001 00: LDF = NA
0001 01: LDF = 5
...
1101 11: LDF = 55
111X XX: LDF = NA
0000 00: default
STA529 Registers
47/58
PLLPFE PLL/POP-free configuration register
Address: 0x18
Type: R/W
Buffer: No
Reset: 0x00
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PLL_BYP_UNL BICLK2PLL PLL_PWDN PFE1A PFE1B PFE2A PFE2B RESET_FAULT
7 PLL_BYP_UNL: PLL bypass:
0: PLL is not bypassed (default)
1: PLL is bypassed when not locked
6 BICLK2PLL:
0: default
1: BICLKI is input to PLL
5 PLL_PWDN:
0: default
1: PLL is put in power-down mode
4PFE1A:
0: default
1: POP-free resistances are connected to output 1A
3PFE1B:
0: default
1: POP-free resistances are connected to output 1B
2PFE2A:
0: default
1: POP-free resistances are connected to output 2A
1PFE2B:
0: default
1: POP-free resistances are connected to output 2B
0 RESET_FAULT:
0: default
1: fault signal in the i2c register POWST is reset
Registers STA529
48/58
PLLST PLL status register (RO)
Address: 0x19
Type: RO
Buffer: No
Reset: Undefined
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PLL_UNLOCK PLL_PWD_
STATE
PLL_BYP_
STATE
7 PLL_UNLOCK: PLL unlock state:
0: PLL is not in unlock state
1: PLL is in unlock state
6 PLL_PWD_ STATE: PLL power-down state:
0: PLL is not in power-down state
1: PLL is in power-down state
5 PLL_BYP_STATE: PLL bypass state:
0: PLL is not in bypass state
1: PLL is in bypass state
4:0 Reserved
STA529 Registers
49/58
ADCCFG ADC configuration register
Address: 0x1E
Type: RO
Buffer: No
Reset: Undefined
Description:
CKOCFG Clock-out configuration register
Address: 0x1F
Type: R/W
Buffer: No
Reset: Undefined
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PGA[2:0] INSEL STBY BYPASS_CALIB CLKENBL
7:5 PGA[2:0]: gain selection bits for the ADC programmable gain amplifier:
000: default
Values are from 0 to 42 dB in 6 dB steps
4 INSEL:
0: line input selected (default)
1: microphone input selected (it must be applied to INL line)
3 STBY: ADC standby mode:
0: ADC in power-up mode (default)
1: ADC in standby mode
2 BYPASS_CALIB:
0: ADC DC-removal block not bypassed (default)
1: ADC DC-removal block bypassed
1 CLKENBL: Clock enable:
0: system clock not enabled
1: system clock available at ADC input (default)
0Reserved
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CLKOUT_DIS CLKOUT_SEL[1:]]
7 CLKOUT_DIS: CLKOUT PAD disabled
0: default
1: enabled
6:5 CLKOUT_SEL[1:0]:
00: default
The CLKOUT output frequency is the PLL output frequency divided by 2CLKOUT_SEL.
4:0 Reserved
Registers STA529
50/58
MISC Miscellaneous configuration register
Address: 0x20
Type: R/W
Buffer: No
Reset: 0x21
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OSC_DIS P2P_FS_RANGE[2:0] ADC_FS_RANGE[1:0] P2P_IN_ADC CORE_
CLKENBL
7 OSC_DIS: enable/disable crystal oscillator:
0: default
1: disabled
6:4 P2P_FS_RANGE[2:0]: FFX audio frequency range:
000: very low (fs = 8 to 12 kHz) (default)
001: low (fs = 16 to 24 kHz) (default)
010: normal (fs = 32 to 48 kHz)
011: high (fs = 64 to 96 kHz)
1X: very high (fs = 128 to 192 kHz)
3:2 ADC_FS_RANGE[2:0]: ADC audio frequency range:
00: normal (fs = 32 to 48 kHz)
00: low (fs = 16 to 24 kHz)
1X: very low (fs = 8 to 12 kHz)
00: default
1 P2P_IN_ADC: FFX input:
0: FFX input is from serial-to-parallel audio interface (default)
1: FFX input is from ADC
0 CORE_CLKENBL: availability of system clock:
0: FFX system clock disabled
1: FFX system clock enabled (default)
STA529 Registers
51/58
FFXST FFX status register
Address: 0x23
Type: RO
Buffer: No
Reset: Undefined
Description:
PWMINT1 PWM driver configuration register 1
Address: 0x2D
Type: R/W
Buffer: No
Reset: 0x00
Description:
PWMINT2 PWM driver configuration register 2
Address: 0x2E
Type: R/W
Buffer: No
Reset: 0x00
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INVALID_INP_
FBK MUTE_INT_FBK
7:3 Reserved
2 INVALID_INP_FBK: invalid input status:
1: invalid input sent to FFX
1 MUTE_INT_FBK: FFX mute status
1: FFX is in mute state
0Reserved
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PWM_INT1[7:0]
7:0 PWM_INT1[7:0]: see Section 7: Driver configuration on page 25:
0000 0000: default
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PWM_INT1[7:0]
7:0 PWM_INT1[7:0]: see Section 7: Driver configuration on page 25:
0000 0000: default
Registers STA529
52/58
POWST Power bridge status register
Address: 0x32
Type: RO
Buffer: No
Reset: Undefined
Description:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
POW_
POWERDOWN
POW_
TRISTATE POW_FAULT1A POW_FAULT1B POW_FAULT2A POW_FAULT2B
7 POW_POWERDOWN: power-down bridge:
0: not in power-down state
1: power-down state
6 POW_TRISTATE:
1: power bridge is in tri-state
5POW_FAULT1A:
1: power bridge 1A is in fault state
4POW_FAULT1B:
1: power bridge 1B is in fault state
3POW_FAULT2A:
1: power bridge 2A is in fault state
2POW_FAULT2B:
1: power bridge 2B is in fault state
1:0 Reserved
STA529 Package information
53/58
11 Package information
This section includes packaging information for the following packages:
TFBGA48
VFQFPN52
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These package have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
11.1 Package TFBGA48
Figure 17. Mechanical data (TFBGA48)
Package information STA529
54/58
Ta bl e 1 9 gives the package dimensions.
Table 19. Package dimensions (TFBGA48)
Databook mm
Reference Min Typical Max
A1.20
A1 0.15
A2 0.785
A3 0.20
A4 0.60
b 0.25 0.30 0.35
D 4.85 5.00 5.15
D1 3.50
E 4.85 5.00 5.15
E1 3.50
e0.50
F0.75
ddd 0.08
eee 0.15
fff 0.05
STA529 Package information
55/58
11.2 Package VFQFPN52
Figure 18. Mechanical data (VFQFPN52)
Package information STA529
56/58
Ta bl e 2 0 gives the package dimensions.
Table 20. Package dimensions (VFQFPN52)
Databook mm
Reference Min Typical Max
A 0.800 0.900 1.000
A1 0.020 0.050
A2 0.650 1.000
A3 0.250
b 0.180 0.230 0.300
D 7.875 8.000 8.125
D2 2.750 5.700 6.250
E 7.875 8.000 8.125
E2 2.750 5.700 6.250
e 0.450 0.500 0.550
L 0.350 0.550 0.750
ddd 0.080
STA529 Revision history
57/58
12 Revision history
Table 21. Document revision history
Date Revision Changes
10-Jan-2007 1 Initial release
STA529
58/58
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com