5
UCC15701/2
UCC25701/2
UCC35701/2
(Note: Refer to the Typical Application Diagram on the first
page of this datasheet for external component names.) All the
equations given below should be considered as first order ap-
proximations with final values determined empirically for a spe-
cific application.
Power Sequencing
VDD is normally connected through a high impedance
(R6) to the input line, with an additional path (R7) to a
low voltage bootstrap winding on the power transformer.
VFF is connected through a divider (R1/R2) to the input
line.
For circuit activation, all of the following conditions are
required:
1. VFF between 0.6V and 4.0V (operational input voltage
range).
2. VDD has been under the UVLO stop threshold to reset
the shutdown latch.
3. VDD is over the UVLO start threshold.
The circuit will start at this point. IVDD will increase from
the start up value of 130mA to the run value of 750mA.
The capacitor on SS is charged with a 18mA current.
When the voltage on SS is greater than 0.8V, output
pulses can begin, and supply current will increase to a
level determined by the MOSFET gate charge require-
ments to IVDD ~ 1mA + QT ·fs. When the output is ac-
tive, the bootstrap winding should be sourcing the supply
current. If VDD falls below the UVLO stop threshold, the
controller will enter a shutdown sequence and turn the
controller off, returning the start sequence to the initial
condition.
VDD Clamp
An internal shunt regulator clamps VDD so the voltage
does not exceed a nominal value of 14V. If the regulator
is active, supply current must be limited to less than
20mA.
APPLICATION INFORMATION
VSCLAMP: Voltage at this pin is compared to the CT
voltage, providing a constant volt-second limit. The com-
parator output terminates the PWM pulse when the ramp
voltage exceeds VSCLAMP. The maximum on time is
given by:
tVCT
I
ON
VS CLAMP
RT
=·
·2
The maximum duty cycle limit is given by:
Dt
T
V
V
MAX
ON VS CLAMP
RT
==
FB: Input to the PWM comparator. This pin is intended
to be driven with an optocoupler circuit. Input impedance
is 50kWTypical modulation range is 1.6V to 3.6V.
SYNC: Level sensitive oscillator sync input. A high level
forces the gate drive output low and resets the ramp ca-
pacitor. On-time starts at the negative edge the pulse.
There is a 3mA pull down current on the pin, allowing it to
be disconnected when not used.
VREF: 5.0V trimmed reference with 2% variation over
line, load and temperature. Bypass with a minimum of
0.1mF to ground.
SS: Soft Start pin. A capacitor is connected between this
pin and ground to set the start up time of the converter.
After power up (VDD>13V AND VREF>4.5V), or after a
fault condition has been cleared, the soft start capacitor
is charged to VREF by a nominal 18mA internal current
source. While the soft start capacitor is charging, and
while VSS < (0.4 VFB), the duty cycle, and therefore the
output voltage of the converter is determined by the soft
start circuitry.
At High Line or Low Line fault conditions, the soft start
capacitor is discharged with a controlled discharge cur-
rent of about 500mA. During the discharge time, the duty
cycle of the converter is gradually decreased to zero.
This soft stop feature allows the synchronous rectifiers to
gradually discharge the output LC filter. An abrupt shut
off can cause the LC filter to oscillate, producing unpre-
dictable output voltage levels.
All other fault conditions (UVLO, VREF Low, Over Cur-
rent (0.6V on ILIM) or COUNT) will cause an immediate
stop of the converter. Furthermore, both the Over Current
fault and the COUNT fault will be internally latched until
VDD drops below 9V or VFF goes below the 600mV
threshold at the input of the Low Line comparator.
After all fault conditions are cleared and the soft start ca-
pacitor is discharged below 200 mV, a soft start cycle will
be initiated to restart the converter.
ILIM: Provides a pulse by pulse current limit by terminat-
ing the PWM pulse when the input is above 200mV. An
input over 600mV initiates a latched soft stop cycle.
COUNT: Capacitor to ground integrates current pulses
generated when ILIM exceeds 200mV. A resistor to
ground sets the discharge time constant. A voltage over
4V will initiate a latched soft stop cycle.
PIN DESCRIPTIONS (cont.)