Lucent Technologies Inc. 9
Data Sheet
March 2000 36 Vdc to 75 Vdc Input, 28 Vdc Output; 250 W to 300 W
FW250R1 and FW300R1 Power Modules: dc-dc Converters:
Feature Descriptions
Overcurrent Protection
To provide protection in a fault (output overload) condi-
tion, the unit is equipped with internal current-limiting
circuitry and can endure current limiting for an unlim-
ited duration. At the point of current-limit inception, the
unit shifts from voltage control to current control. If the
output voltage is pulled very low during a severe fault,
the current-limit circuit can exhibit either foldback or
tailout characteristics (output-current decrease or
increase). The unit operates normally once the output
current is brought back into its specified range.
Remote On/Off
To turn the power module on and off , the user must
supply a s witch to control the v oltage between the on/off
terminal and the V
I
(–) terminal (V
on/off
). The s witch can be
an open collector or equivalent (see Figure 11). A logic
low is V
on/off
= 0 V to 1.2 V, during which the module is on.
The maximum I
on/off
during a logic low is 1 mA. The switch
should maintain a logic-low v oltage while sinking 1 mA.
During a logic high, the maximum V
on/off
generated by
the power module is 15 V. The maximum allowable
leakage current of the switch at V
on/off
= 15 V is 50 µA.
If not using the remote on/off feature, short the
ON/OFF pin to V
I
(–).
8-580 (C).d
Figure 11. Remote On/Off Implementation
Remote Sense
Remote sense minimizes the effects of distribution
losses by regulating the voltage at the remote-sense
connections. The voltage between the remote-sense
pins and the output terminals must not exceed the out-
put voltage sense range given in the Feature Specifica-
tions table, i.e.:
[V
O
(+) – V
O
(–)] – [SENSE(+) – SENSE(–)]
≤
0.5 V
The voltage between the V
O
(+) and V
O
(–) terminals
must not exceed the minimum value indicated in the
output overvoltage shutdown section of the Feature
Specifications table. This limit includes any increase in
voltage due to remote-sense compensation and output
voltage set-point adjustment (trim), see Figure 12.
If not using the remote-sense f eature to regulate the out-
put at the point of load, connect SENSE(+) to V
O
(+) and
SENSE(–) to V
O
(–) at the module.
Although the output voltage can be increased by both
the remote sense and by the trim, the maximum
increase for the output voltage is not the sum of both.
The maximum increase is the larger of either the
remote sense or the trim. Consult the factory if you
need to increase the output voltage more than the
above limitation.
The amount of power delivered by the module is
defined as the voltage at the output terminals multiplied
by the output current. When using remote sense and
trim, the output voltage of the module can be
increased, which at the same output current would
increase the power output of the module. Care should
be taken to ensure that the maximum output power of
the module remains at or below the maximum rated
power.
8-651 (C).e
Figure 12. Effective Circuit Configuration for
Single-Module Remote-Sense Operation
Output Voltage Set-Point Adjustment (Trim)
Output voltage trim allows the user to increase or
decrease the output voltage set point of a module . This
is accomplished by connecting an external resistor
between the TRIM pin and either the SENSE(+) or
SENSE(–) pins. The trim resistor should be positioned
close to the module.
If not using the trim feature, leave the TRIM pin open.
+
Ion/off
–
Von/off
CASE
ON/OFF
VI(+)
VI(–)
SENSE(+)
SENSE(–)
VO(+)
VO(–)
V
O
(+)
SENSE(+)
SENSE(–)
V
O
(–)
V
I
(+)
V
I
(–)
I
O
LOAD
CONTACT AND
DISTRIBUTION LOSSES
SUPPLY I
I
CONTACT
RESISTANCE