IRF3808
HEXFET® Power MOSFET
Designed specifically for Automotive applications, this Advanced
Planar Stripe HEXFET ® Power MOSFET utilizes the latest process-
ing techniques to achieve extremely low on-resistance per silicon
area. Additional features of this HEXFET power MOSFET are a 175°C
junction operating temperature, low RθJC, fast switching speed and
improved repetitive avalanche rating. This combination makes the
design an extremely efficient and reliable choice for use in higher
power Automotive electronic systems and a wide variety of other
applications.
S
D
G
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 140V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 97 VA
IDM Pulsed Drain Current Q550
PD @TC = 25°C Power Dissipation 330 W
Linear Derating Factor 2.2 W/ °C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche EnergyR430 mJ
IAR Avalanche CurrentQ82 A
EAR Repetitive Avalanche EnergyWSee Fig.12a, 12b, 15, 16 mJ
dv/dt Peak Diode Recovery dv/dt S5.5 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C
Mounting Torque, 6-32 or M3 screw 10 lb fin (1.1Nm)
Absolute Maximum Ratings
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
VDSS = 75V
RDS(on) = 0.007
ID = 140AV
Description
02/06/02
www.irf.com 1
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Benefits
Typical Applications
Integrated Starter Alternator
42 Volts Automotive Electrical Systems
AUTOMOTIVE MOSFET
PD - 94291B
TO-220AB
HEXFET(R) is a registered trademark of International Rectifier.
http://store.iiic.cc/
IRF3808
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– VV
GS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.086 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 5.9 7.0 mVGS = 10V, ID = 82A T
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 100 ––– ––– SV
DS = 25V, ID = 82A
––– ––– 20 µA VDS = 75V, VGS = 0V
––– ––– 250 VDS = 60V, VGS = 0V, T J = 150°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -200 nA VGS = -20V
QgTotal Gate Charge ––– 150 220 ID = 82A
Qgs Gate-to-Source Charge ––– 31 47 nC VDS = 60V
Qgd Gate-to-Drain ("Miller") Charge ––– 50 76 VGS = 10VT
td(on) Turn-On Delay Time ––– 16 ––– VDD = 38V
trRise Time ––– 140 ––– ID = 82A
td(off) Turn-Off Delay Time ––– 68 ––– RG = 2.5
tfFall Time ––– 120 ––– VGS = 10V T
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 5310 ––– VGS = 0V
Coss Output Capacitance ––– 890 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 130 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 6010 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 570 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance U––– 1140 ––– VGS = 0V, VDS = 0V to 60V
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
Q Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
R Starting TJ = 25°C, L = 0.130mH
RG = 25, IAS = 82A. (See Figure 12).
SISD 82A, di/dt 310A/µs, VDD V(BR)DSS,
TJ 175°C
T Pulse width 400µs; duty cycle 2%.
Notes:
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) Q––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 82A, VGS = 0VT
trr Reverse Recovery Time ––– 93 140 ns TJ = 25°C, IF = 82A
Qrr Reverse RecoveryCharge ––– 340 510 nC di/dt = 100A/µsT
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
140V
550 A
U Coss eff. is a fixed capacitance that gives the same charging time
as Coss while V DS is rising from 0 to 80% VDSS .
VCalculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
WLimited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
http://store.iiic.cc/
IRF3808
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Volta
g
e
(
V
)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
137A
1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
VGS, Gate-to-Source Voltage (V)
10.00
100.00
1000.00
ID, Drain-to-Source Current )
TJ = 25°C
TJ = 175°C
VDS = 15V
20µs PULSE WIDTH
http://store.iiic.cc/
IRF3808
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + Cgd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds + Cgd
0.0 0.5 1.0 1.5 2.0
VSD, Source-toDrain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
040 80 120 160
0
2
4
6
8
10
12
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D82A
V = 15V
DS
V = 37V
DS
V = 60V
DS
http://store.iiic.cc/
IRF3808
www.irf.com 5
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
90%
10%
VGS t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width 1 µs
Duty Factor 0.1 %
RD
VGS
RGD.U.T.
10V
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25 50 75 100 125 150 175
0
20
40
60
80
100
120
140
T , Case Temperature
(
C
)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
http://store.iiic.cc/
IRF3808
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 14. Threshold Voltage Vs. Temperature
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
25 50 75 100 125 150
0
160
320
480
640
800
Startin
g
T
j
, Junction Temperature
(
C
)
E , Single Pulse Avalanche Energy (mJ)
AS
°
ID
TOP
BOTTOM
34A
58A
82A
http://store.iiic.cc/
IRF3808
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) =
T/ ZthJC
Iav = 2
T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 140A
http://store.iiic.cc/
IRF3808
8www.irf.com
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
S
T
R
RGVDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
Q
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 17. For N-channel HEXFET® power MOSFETs
http://store.iiic.cc/
IRF3808
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive (Q101) market.
Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/02
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMB LY LINE "C"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
DATE C ODE
Y EAR 7 = 1997
WEEK 19
LINE C
EXAMP LE: THI S IS AN IR F 1010
LEAD ASSIG NM ENTS
1 - G A T E
2 - D R A IN
3 - S O URCE
4 - D R A IN
- B -
1.32
(
.052
)
1.22
(
.048
)
3X 0.55
(
.022
)
0.46
(
.018
)
2.92
(
.115
)
2.64
(
.104
)
4.69
(
.185
)
4.20
(
.165
)
3X 0.93
(
.037
)
0.69
(
.027
)
4.06
(
.160
)
3.55
(
.140
)
1.15
(
.045
)
MIN
6.47
(
.255
)
6.10
(
.240
)
3.78
(
.149
)
3.54
(
.139
)
- A -
10.54
(
.415
)
10.29
(
.405
)
2.87
(
.113
)
2.62
(
.103
)
15.24
(
.600
)
14.84
(
.584
)
14.09
(
.555
)
13.47
(
.530
)
3X 1.40
(
.055
)
1.15
(
.045
)
2.54
(
.100
)
2X
0.36
(
.014
)
M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFOR MS TO JEDEC OUTLINE TO-220AB.
2 C ONTROLLING DIMENSION : INCH 4 HEATSINK & LE AD MEASUREMENTS DO NOT INCLU DE BURRS.
TO-220AB Par t Mar king Infor mation
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
http://store.iiic.cc/
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
http://store.iiic.cc/