Mar. 2003
MITSUBISHI HVIGBT MODULES
CM800HA-34H
HIGH POWER SWITCHING USE
INSULATED TYPE
IC...................................................................800A
VCES ....................................................... 1700V
Insulated Type
1-element in a pack
APPLICATION
Inverters, Converters, DC choppers, Induction heating, DC to DC converters.
CM800HA-34H
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
C
G
E
CC
EE
C
E
C
E
CM
E
C
G
20
114
130
16.5 2.5
18.5
18 61.5
14.5 11 35
5
30
140
5
38
28
31.5
4 - M8 NUTS
3 - M4 NUTS
124
±0.25
57
±0.25
57
±0.25
6 - φ 7 MOUNTING HOLES
LABEL
CIRCUIT DIAGRAM
Mar. 2003
VCE = VCES, VGE = 0V
VGE = VGES, VCE = 0V
Tj = 25°C
Tj = 125°C
VCC = 850V, IC = 800A, VGE = 15V
VCC = 850V, IC = 800A
VGE1 = VGE2 = 15V
RG = 2.5
Resistive load switching operation
IE = 800A, VGE = 0V
IE = 800A
die / dt = –1600A / µs
Junction to case, IGBT part
Junction to case, FWDi part
Case to fin, conductive grease applied
MITSUBISHI HVIGBT MODULES
CM800HA-34H
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
MAXIMUM RATINGS (Tj = 25°C)
Collector-emitter voltage
Gate-emitter voltage
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
Mounting torque
Mass
VGE = 0V
VCE = 0V
DC, TC = 95°C
Pulse (Note 1)
Pulse (Note 1)
TC = 25°C, IGBT part
Charged part to base plate, rms, sinusoidal, AC 60Hz 1min.
Main terminals screw M8
Mounting screw M6
Auxiliary terminals screw M4
Typical value
Collector current
Emitter current
1700
±20
800
1600
800
1600
9200
–40 ~ +150
–40 ~ +125
4000
6.67 ~ 13.00
2.84 ~ 6.00
0.88 ~ 2.00
1.5
Symbol Item Conditions UnitRatings V
V
A
A
A
A
W
°C
°C
V
N·m
N·m
N·m
kg
VCES
VGES
IC
ICM
IE
(Note 2)
IEM
(Note 2)
PC
(Note 3)
Tj
Tstg
Viso
V
V
Min Typ Max
20
0.5
3.58
1.20
1.50
2.00
0.60
3.12
2.00
0.0135
0.042
mA
µA
nF
nF
nF
µC
µs
µs
µs
µs
V
µs
µC
K/W
K/W
K/W
2.75
3.30
93
13.3
5.1
4.4
2.40
135
0.012
ICES
IGES
Cies
Coes
Cres
QG
td (on)
tr
td (off)
tf
VEC
(Note 2)
trr
(Note 2)
Qrr
(Note 2)
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Symbol Item Conditions
VGE(th)
VCE(sat)
Limits Unit
5.5
4.5
Note 1. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
2. IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.
3. Junction temperature (T j) should not increase beyond 150°C.
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
6.5
Thermal resistance
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Collector cutoff current
Gate-emitter
threshold voltage
Gate-leakage current
Collector-emitter
saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Emitter-collector voltage
Reverse recovery time
Reverse recovery charge
Contact thermal resistance
IC = 80mA, VCE = 10V
IC = 800A, VGE = 15V (Note 4)
VCE = 10V
VGE = 0V
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
Mar. 2003
PERFORMANCE CURVES
1600
800
400
0100 2468
1200
1600
800
400
0
1200
200481216
0
5
4
3
1
2
0 400 800 1200 1600 0 20161284
10
8
6
4
2
0
T
j
= 25°C
T
j
= 25°C
V
GE
= 13V
V
GE
= 11V
V
GE
= 12V
V
GE
= 10V
V
GE
= 9V
V
GE
= 8V
V
GE
= 7V
V
GE
= 14V
V
GE
= 15V
V
GE
= 20V
I
C
= 1600A
I
C
= 800A
I
C
= 320A
V
CE
= 10V
V
GE
= 15V
T
j
= 25°C
T
j
= 125°C
T
j
= 25°C
T
j
= 125°C
10
1
2310
1
5710
0
23 5710
1
23 5710
2
10
3
7
5
3
2
10
2
7
5
3
2
7
5
3
2
10
0
C
ies
C
oes
C
res
V
GE
= 0V, T
j
= 25°C
C
ies,
C
oes
: f = 100kHz
C
res
: f = 1MHz
CAPACITANCE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
TRANSFER CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT I
C
(A)
GATE-EMITTER VOLTAGE V
GE
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
COLLECTOR CURRENT I
C
(A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER VOLTAGE V
CE
(V)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
CE(sat)
(V)
GATE-EMITTER VOLTAGE V
GE
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
CAPACITANCE C
ies
, C
oes
, C
res
(nF)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
EMITTER CURRENT I
E
(A)
0 16001200800400
5
4
3
2
1
0
T
j
= 25°C
T
j
= 125°C
MITSUBISHI HVIGBT MODULES
CM800HA-34H
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
Mar. 2003
MITSUBISHI HVIGBT MODULES
CM800HA-34H
HIGH POWER SWITCHING USE
INSULATED TYPE
HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
7
5
3
2
710
2
10
1
7
23 5710
3
23 5
5
5
3
2
10
0
5
7
5
3
2
710
2
10
1
7
23 5710
3
23 5
5
5
3
2
10
0
5
t
d(off)
V
CC
= 850V, V
GE
= ±15V
R
G
= 2.5, T
j
= 125°C
Inductive load
t
d(on)
t
r
t
f
V
CC
= 850V, T
j
= 125°C
Inductive load
V
GE
= ±15V, R
G
= 2.5
t
rr
I
rr
7
5
3
2
10
2
7
5
5
3
2
10
3
10
2
10
3
10
2
10
1
10
0
7
5
3
2
10
1
7
5
3
2
10
0
10
1
7
5
3
2
23 57 23 57 23 57
20
16
12
8
4
08000 10000600002000 4000
V
CC
= 850V
I
C
= 800A
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING TIMES (µs)
COLLECTOR CURRENT I
C
(A)
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
REVERSE RECOVERY TIME t
rr
(µs)
EMITTER CURRENT I
E
(A)
REVERSE RECOVERY CURRENT I
rr
(A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Z
th(j c)
TIME (s)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE V
GE
(V)
GATE CHARGE Q
G
(nC)
2.5
2.0
1.5
1.0
0.5
0010515203025
GATE RESISTANCE ()
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
SWITCHING ENERGY (J/P)
V
CC
= 850V, I
C
= 800A,
V
GE
= ±15V, Tj = 125°C,
Inductive load
E
on
E
off
E
rec
0
0.2
0.4
0.6
0.8
1.0
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
CURRENT (A)
SWITCHING ENERGY (J/P)
0 800400 1200 1600
V
CC
= 850V, V
GE
= ±15V,
R
G
= 2.5, Tj = 125°C,
Inductive load
E
on
E
off
E
rec
Single Pulse
T
C
= 25°C
R
th(j c)Q
= 0.0135K/W
R
th(j c)R
= 0.042K/W