D
S
AC
IN DC
OUT
Optional Smart
AC Sense
+
PeakSwitch
PI-3995-051006
D
S
EN/UV
BP
Figure 1. Typical Peak Power Application.
Product Highlights
EcoSmart®– Extremely Energy-Efcient
• Standbyoutputpower0.6Wfor1Winput(highline)
• Sleepmodepower2.4Wat3Winput(highline)
• No-loadconsumption<200mWat265VACinput
• SurpassesCaliforniaEnergyCommission(CEC),
ENERGYSTAR,andEUrequirements
PeakSwitch Features Reduce System Cost
• Deliverspeakpowerofuptothreetimesmaximum
continuousoutputpower
• 277kHzoperationduringpeakpowersignicantly
reducestransformersize
• ProgrammablesmartAClinesensingprovideslatching
shutdownduringshortcircuit,overloadandopenloop
faults,andpreventsglitchesduringpowerdownor
brownout
• TwoexternalcomponentsresetlatchonACremoval
• Adaptiveswitchingcycleon-timeextensionincreaseslow
linepeakoutputpower,minimizingbulkcapacitorsize
• Adaptivecurrentlimitreducesoutputoverloadpower
• FrequencyjitteringreducesEMIltercost
• TightI2ftolerancesandnegligibletemperaturevariation
ofkeyparameterseasedesignandlowercost
• Accuratehystereticthermalshutdownwithautomatic
recoveryprovidescompletesystemleveloverload
protectionandeliminatesneedformanualreset
Better System Cost/Performance over RCC & Discrete
• SimpleON/OFFcontrol–noloopcompensationneeded
• Verylowcomponentcount–higherreliabilityandsingle
sideprintedcircuitboard
• Highbandwidthprovidesfastturnonwithnoovershoot
andexcellenttransientloadresponse
• Peakcurrentlimitoperationrejectslinefrequencyripple
• Built-incurrentlimitandhystereticthermalprotection
Applications
• Inkjetprinter
• Datastorage,audioamplier,DCmotordrives
Description
PeakSwitchisdesignedtoaddressapplicationswithhighpeak-
to-continuouspowerratiodemands.Theveryhighswitching
frequencyduringpeakpowerloadsandexcellentloadtransient
responsereducesystemcostaswellascomponentcountandsize.
PeakSwitchincorporatesa700VpowerMOSFET,oscillator,
highvoltageswitchedcurrentsourceforstartup,currentlimit,
February 2007
Table 1.
Notes:
1. Typical continuous power in a non-ventilated enclosed adapter
measured at +50 °C ambient.
2. Typical peak power for a period of 100 ms and a duty cycle of
10% in a non-ventilated enclosed adapter measured at +50 °C
(see Key Applications section for details).
3. See Part Ordering Information.
andthermalshutdownontoamonolithicdevice.Inaddition,
thesedevicesincorporateauto-restart,lineunder-voltagesense
andfrequencyjittering.Aninnovativedesignminimizesaudio
frequencycomponentsinthesimpleON/OFFcontrolscheme
topracticallyeliminateaudiblenoisewithstandardvarnished
transformerconstruction.
OUTPUT POWER TABLE
PRODUCT3
230 VAC 15% 85-265 VAC
Adapter
Cont.1
Adapter
Peak2
Adapter
Cont.1
Adapter
Peak2
PKS603 P 13 W 32 W 9 W 25 W
PKS604 P 23 W 56 W 16 W 44 W
PKS604 Y/F 35 W 56 W 23 W 44 W
PKS605 P 31 W 60 W 21 W 44 W
PKS605 Y/F 46 W 79 W 30 W 58 W
PKS606 P 35 W 66 W 25 W 46 W
PKS606 Y/F 68 W 117 W 45 W 86 W
PKS607 Y/F 75 W 126 W 50 W 93 W
PKS603-607
PeakSwitch® Family
Enhanced, Energy-Efcient, Off-Line Switcher
IC With Super Peak Power Performance
Obsolete Product Not Recommended for New Designs
PKS603-607
Rev. I 02/07
2
Figure 2. Functional Block Diagram.
Figure 3. Pin Conguration.
Pin Functional Description
DRAIN (D) Pin:
The power MOSFET drain connection provides internal
operatingcurrentforbothstartupandsteady-stateoperation.
BYPASS (BP) Pin:
A0.33µFexternalbypasscapacitorfortheinternallygenerated
5.8Vsupplyisconnectedtothispin.Intypicalapplications,
thispinmustbeexternallysuppliedviaabiaswinding.
ENABLE/UNDER-VOLTAGE (EN/UV) Pin:
Thispinhasdualfunctions:enableinputandlineunder-voltage
sense.Duringnormaloperation,switchingofthepowerMOSFET
iscontrolledbythispin.MOSFETswitchingisdisabledwhena
currentgreaterthan240µAisdrawnfromthispin.Thispinmay
alsosenselineunder-voltageconditionsthrougheitheranexternal
resistorconnectedtotheDClinevoltageoranACsensecircuit.
SOURCE (S) Pin:
ThisistheMOSFETsourceconnectionforhighvoltagereturn
andcontrolcircuitcommon.
PI-3940-040606
CLOCK
OSCILLATOR
5.8 V
4.8 V
GROUND (GND)
(Y & F Package
Only)
SOURCE
(S)
S
R
Q
DCMAX
BYPASS
(BP)
+
-
V
ILIMIT
FAULT
PRESENT
CURRENT LIMIT
COMPARATOR
ENABLE
LEADING
EDGE
BLANKING
THERMAL
SHUTDOWN
+
-
DRAIN
(D)
REGULATOR
5.8 V
BYPASS PIN
UNDER-VOLTAGE
1.0 V + V
T
ENABLE/
UNDER-
VOLTAGE
(EN/UV)
Q
240 A 25 A
LINE UNDER-VOLTAGE
RESET
LATCH OFF/
AUTO-
RESTART
COUNTER
ON TIME EXT
JITTER
1.0 V
6.3 V
CURRENT
LIMIT STATE
MACHINE/
ADAPTIVE
CURRENT
LIMIT
PI-3941-031506
Tab Internally
Connected to
SOURCE Pin
Y Package (TO-220-7C)
DS
EN/UV S
S
1 BP
3 EN/UV
2 GND
5 NC
4 S
7 D
1 BP
3 EN/UV
2 GND
5 NC
4 S
7 D
BP
P Package (DIP-8C) F Package (TO-262-7C)
8
5
7
1
4
2
S
6
GROUND (GND) Pin (Y or F Package Only):
Thisisthesignalgroundforthebypasscapacitorandoptocoupler.
PKS603-607
Rev. I 02/07
3
Figure 4. Frequency Jitter.
PeakSwitch Functional Description
PeakSwitchintegratesa700VpowerMOSFETswitchwitha
powersupplycontrolleronthesamedie.Unlikeconventional
pulsewidthmodulation(PWM)controllers,PeakSwitchusesa
simpleON/OFFcontroltoregulatetheoutputvoltage.
The controller consists of an oscillator, enable
circuit (sense and logic), current-limit state machine,
5.8 V regulator, BYPASS pin under-voltage circuit, over-
temperature protection, current limit circuit, and leading
edge blanking. PeakSwitch incorporates additional circuitry
for adaptive current limit, line under-voltage sense,
programmable smart line sense, auto-restart, adaptive
switching cycle on-time extension, and frequency jitter.
Figure2isafunctionalblockdiagramofthedevice’s most
importantfeatures.
Oscillator
Thetypicaloscillatorfrequencyisinternallysettoanaverage
of277kHz.Twosignalsaregeneratedfromtheoscillator:the
maximumdutycycle(DCMAX)signalandtheclocksignalthat
indicatesthebeginningofeachcycle.
The oscillator incorporates circuitry that introduces a small
amountoffrequencyjitter,typically16kHzpeak-to-peak,to
minimizeEMIemission.Themodulationrateofthefrequency
jitter is set to 1.1 kHz to optimize EMI reduction for both
averageandquasi-peakemissions.Thefrequencyjittershould
bemeasuredwiththeoscilloscopetriggeredatthefallingedge
oftheDRAINwaveform.ThewaveforminFigure4illustrates
thefrequencyjitter.
Enable Input and Current-Limit State Machine
TheenableinputcircuitattheEN/UVpinconsistsofalow
impedance source follower output set at 1.0 V.The current
throughthesourcefollowerislimitedto240µA.Whenthe
current out of this pin exceeds 240µA, a low logic level
(disable)isgeneratedattheoutputoftheenablecircuit.This
enable circuit output is sampled at the beginning of each
cycleontherisingedgeoftheclocksignal.Ifhigh,thepower
MOSFETisturnedonforthatcycle(enabled).Iflow,thepower
MOSFETremainsoff(disabled).Sincethesamplingisdone
onlyatthebeginningofeachcycle,subsequentchangesinthe
EN/UV pin voltage or current during the remainder of the
cycleareignored.
The current-limit state machine reduces the current limit by
discrete amounts at light loads when PeakSwitch is likely to
switchintheaudiblefrequencyrange.Thelowercurrentlimit
raisestheeffectiveswitchingfrequencyabovetheaudiorange
andreducesthetransformeruxdensity,includingtheassociated
audible noise. The state machine monitors the sequence of
EN/UVpinvoltagelevelstodeterminetheloadconditionand
adjuststhecurrentlimitlevelaccordinglyindiscreteamounts.
Undermostoperatingconditions(exceptwhenclosetono-load),
thelowimpedanceofthesourcefollowerkeepsthevoltageon
theEN/UVpinfromgoingmuchbelow1.0Vinthedisabled
state.Thisimprovestheresponsetimeoftheoptocouplerthat
isusuallyconnectedtothispin.
5.8 V Regulator and 6.3 V Shunt Voltage Clamp
The5.8Vregulatorchargesthebypasscapacitorconnectedto
theBYPASSpinto5.8Vbydrawingacurrentfromthevoltage
ontheDRAINpinwhenevertheMOSFETisoff.TheBYPASS
pinistheinternalsupplyvoltagenode.WhentheMOSFET
ison,thePeakSwitch operatesfromtheenergystoredinthe
bypasscapacitor.ThevoltageontheDRAINpinpowersthe
bypassduringstart-up.
Thereisa6.3VshuntregulatorclampingtheBYPASSpinat
6.3Vwhencurrentis provided through an external resistor
from the bias winding in normal operation. Powering the
PeakSwitchdeviceinthiswayminimizesno-loadconsumption
toabout150mWat265VAC.Notethatabiaswindingmustbe
usedtopowerthedevice.SeeKeyApplicationConsiderations
sectionfordetails.
BYPASS Pin Under-Voltage
TheBYPASSpinunder-voltagecircuitrydisablesthepower
MOSFETwhentheBYPASSpinvoltagedropsbelow4.8V.
OncetheBYPASSpinvoltagedropsbelow4.8V,itmustrise
backto5.8Vtoenable(turnon)thepowerMOSFET.
Over Temperature Protection
The thermal shutdown circuitry senses the die temperature.
Thethresholdistypicallysetat142°Cwith75°Chysteresis.
When the die temperature rises above this threshold, the
powerMOSFETisdisabledandremainsdisableduntilthedie
temperaturefallsby75°C,atwhichpointitisre-enabled.Alarge
hysteresisof75°C(typical)isprovidedtopreventoverheating
600
0 2.5 5
285 kHz
269 kHz
VDRAIN
Time (µs)
PI-3942-022806
500
400
300
200
100
0
PKS603-607
Rev. I 02/07
4
ofthePCboardduringacontinuousfaultcondition.
Current Limit
ThecurrentlimitcircuitsensesthecurrentinthepowerMOSFET.
Whenthiscurrentexceedstheinternalthreshold(ILIMIT),the
powerMOSFETisturnedofffortheremainderofthatcycle.The
currentlimitstatemachinereducesthecurrentlimitthreshold
bydiscreteamountsundermediumandlightloads.
The leading edge blanking circuit inhibits the current limit
comparatorforashorttime(tLEB)afterthepowerMOSFETis
turnedon.Thisleadingedgeblankingtimehasbeensetsothat
currentspikescausedbycapacitanceandsecondary-siderectier
reverserecoverytimewillnotcauseprematureterminationof
theMOSFETconductionportionoftheswitchingcycle.
During startup and fault conditions, the controller prevents
excessivedraincurrentsbyreducingtheswitchingfrequency.
Adaptive Current Limit
Whenswitchinginthefullcurrentlimitstate,askippedcycle
followed by a cycle that terminates at the full current limit
impliesthatthelinevoltageisathighline.Underthiscondition,
adaptivecurrentlimit reduces the fullcurrentlimitlevelby
approximately10%inordertoreduceoutputoverloadpower.
The next skipped cycle disables the adaptive current limit
conditionandrestoresthefullcurrentlimitlevel.
Line Under-Voltage Sense Circuit
The line under-voltage circuit prevents startup below the
programmedinputvoltagebyconnectinganexternalresistor
from either the DC line or from an AC sense circuit (see
Figure1)totheEN/UVpin.Thecompletefunctionisdescribed
intheowchartshowninFigure5.Duringpoweruporwhen
theswitchingofthepowerMOSFETisdisabledinauto-restart,
thecurrentowingintotheEN/UVpinmustexceed25µAto
initiateswitchingofthepowerMOSFET.Duringpowerup,
oncethethresholdisexceeded,theBypasspinmustchargefrom
4.8Vto5.8VbeforeMOSFETswitchingisinitiated.
Theline under-voltagecircuit alsodetectswhen there is no
externalresistorconnectedtotheEN/UVpin(lessthan~1µA
intopin).Inthiscase,thelineunder-voltagefunctionisdisabled
andthedeviceoperateswithanormalauto-restartfunction.
Programmable Smart AC Line Sense
WhenanexternalACsensecircuitisused(seeFigure1),theline
under-voltagesensecircuitcanbeusedtodeterminethereason
foralossoffeedbacksignalattheEN/UVpin.Intheeventof
afaultconditionsuchasoutputoverload,outputshortcircuit,
oranopenloopcondition,thepowerMOSFETswitchingis
disabledaftertheEN/UVpinisnotpulledlowfor30ms.Ifthe
AClineispresent(IEN
>25µA)atthetimeswitchingisdisabled,
the line under-voltage sense circuit prevents a
restart attempt until the AC input voltage is removed
1. Startup
PI-4014-062305
2. UV Resistor
Present?
Yes
Yes
Yes
No
No
No
No
Yes
Yes
No
3. AC Input
Present?
(IEN>25 A)
4. Start Switching
5. No Feedback
>30 ms?
6. Stop Switching
7. AC Input
Present?
(IEN>25 A)
8. Reset A/R Latch
9. Start Switching
10. No Feedback
>30 ms?
11. Stop Switching
(for 5 s)
Note: Normal operation
(no fault present) is denoted
by looping with a “No” response
at decision box 5 or 10.
Figure 5. PeakSwitch Line Sense Function Flow Chart.
PKS603-607
Rev. I 02/07
5
V
DRAIN
V
EN
CLOCK
D
DRAIN
I
MAX
PI-2749-050301
Figure 7. PeakSwitch Operation at Near Maximum Loading.
V
DRAIN
V
EN
CLOCK
D
DRAIN
I
MAX
PI-2667-090700
Figure 6. PeakSwitch Auto-Restart Operation.
(IEN<25µA).Thentheinternalauto-restartlatchisresetand
thepowerMOSFETswitchingwillresumeoncetheACinput
voltageisappliedagain(IEN>25µA).Thiseffectivelyprovides
alatchingshutdownfunctionwithACresetduringsuchafault
condition.
Whenabrownoutorlinesagoccurs,outputregulationmay
be lost and the EN/UV pin will receive no feedback (it is
pulledlow).After30msofnofeedback,MOSFETswitching
isdisabled.SincetheAClineisabnormallylow(IEN<25µA)
MOSFETswitchingremainsdisableduntilnormallinevoltage
isrestored.ThepowerMOSFETswitchingwillresumeonce
theACinputreturnstonormal(IEN>25µA).Thiseffectively
disablesthelatchingshutdownfunctionduringsuchacondition.
Auto-Restart (UV resistor not present)
In the event of a fault condition such as output overload,
output short circuit or an open loop condition, PeakSwitch
enters into auto-restart operation. An internal counter
clockedby theoscillatoris reseteverytime theEN/UVpin
is pulled low. When the EN/UV pin receives no feedback
for 30 ms, the power MOSFET switching is disabled for
5 seconds (150 ms for the rst auto-restart event). The
auto-restart alternately enables and disables the switching
ofthepowerMOSFETuntilthefaultconditionisremoved.
Figure6illustratesauto-restartcircuitoperationinthepresence
ofanoutputshortcircuit.
Adaptive Switching Cycle On-time Extension
Adaptiveswitchingcycleon-timeextensionkeepstheMOSFET
onuntilcurrentlimitisreached,insteadofterminatingafter
theDCMAXsignalgoeslow.Thison-timeextensionisadaptive
becauseitonlyoccursaftertheENABLEpinhasbeenhigh
forapproximately750µs,aconditionthatwouldariseifthe
peakoutputpowerwasrequiredinlowlineconditions.On-time
extensionisdisabledduringthestartupofthepowersupply.
PI-3943-031506
0
51
0
Time (s)
0
5
0
10
100
200
300 VDRAIN
VDC-OUTPUT
PeakSwitch Operation
PeakSwitchdevicesoperateinthecurrent-limitmode.When
enabled, the oscillator turns the power MOSFET on at the
beginningofeachcycle.TheMOSFETisturnedoffwhenthe
currentrampsuptothecurrentlimitorwhentheDCMAXlimit
isreached.Sincethehighestcurrentlimitlevelandfrequency
of a PeakSwitch design are constant, the power delivered
to the load is proportional to the primary inductance of the
transformerandpeakprimarycurrentsquared.Hence,designing
Figure 8. PeakSwitch Operation at Moderately Heavy Loading.
PKS603-607
Rev. I 02/07
6
Figure 11. PeakSwitch Power Up with Optional External UV
Resistor (4 MW) Connected to EN/UV Pin.
PI-2661-072400
V
DRAIN
V
EN
CLOCK
D
DRAIN
I
MAX
Figure 10. PeakSwitch Operation at Very Light Loading.
thesupplyinvolvescalculatingtheprimaryinductanceofthe
transformer for the maximum output power required. If the
chosenPeakSwitchfamilymemberisappropriateforthepower
level,thecurrentinthecalculatedinductancewillrampupto
currentlimitbeforetheDCMAXlimitisreached.
Enable Function
PeakSwitchsensestheEN/UVpintodeterminewhetherornot
toproceedwiththenextswitchingcycleasdescribedearlier.
Thesequenceofcyclesisusedtodeterminethecurrentlimit.
Onceacycleisstarted,italwayscompletesthecycle(evenwhen
theEN/UVpinchangesstatehalfwaythroughthecycle).This
operationresultsinapowersupplyinwhichtheoutputvoltage
rippleisdeterminedbytheoutputcapacitor,amountofenergy
perswitchcycleandthedelayofthefeedback.
The EN/UV pin signal is produced on the secondary by
comparingthepowersupplyoutputvoltagewithareference
voltage.TheEN/UVpinsignalishighwhenthepowersupply
outputvoltageislessthanthereferencevoltage.
Inatypicalimplementation,theEN/UVpinisdrivenbyan
optocoupler. The collector of the optocoupler transistor is
connectedtotheEN/UVpinandtheemitterisconnectedto
theSOURCEpin.TheoptocouplerLEDisconnectedinseries
withaZenerdiodeacrosstheDCoutputvoltagetoberegulated.
Whentheoutputvoltageexceedsthetargetregulationvoltage
level(optocouplerLEDvoltagedropplusZenervoltage),the
optocouplerLEDwillstarttoconduct,pullingtheEN/UVpin
low.TheZenerdiodecanbereplacedbyaTL431reference
circuitforimprovedaccuracy.
Figure 9. PeakSwitch Operation at Medium Loading.
PI-2377-091100
V
DRAIN
V
EN
CLOCK
D
DRAIN
I
MAX
ON/OFF Operation with Current-Limit State Machine
TheinternalclockofthePeakSwitchrunsallthetime.Atthe
beginningofeachclockcycle,itsamplestheEN/UVpinto
decidewhetherornottoimplementaswitchcycle,andbased
onthesequenceofsamplesovermultiplecycles,itdetermines
theappropriatecurrentlimit.Athighloads,whentheEN/UV
pinishigh(lessthan240µAoutofthepin),aswitchingcycle
withthefullcurrentlimitoccurs.Atlighterloads,whenEN/UV
ishigh,aswitchingcyclewithareducedcurrentlimitoccurs.
Atmaximumpeakload,PeakSwitchwillconductduringnearly
allofitsclockcycles(Figure7).Attheratedcontinuousload,
PI-4331-031506
0
51
0
Time (ms)
0
100
200
0
300
5
0
100
200
VDC-INPUT
VBYPASS
VDRAIN
PKS603-607
Rev. I 02/07
7
Figure 13. Normal Power Down Timing (Without UV).
Figure 14. Slow Power Down Timing With Optional External
(4 MW) UV Resistor Connected to EN/UV Pin.
Figure 12. PeakSwitch Power Up Without Optional External UV
Resistor Connected to EN/UV Pin.
it will “skip” additional cycles in order to maintain voltage
regulationatthepowersupplyoutput(Figure8).Atmedium
loads, cycles will be skipped and the current limit will be
reduced(Figure9).Atverylightloads,thecurrentlimitwill
bereducedevenfurther(Figure10).Onlyasmallpercentage
ofcycleswilloccurtosatisfytheinternalpowerconsumption
ofthepowersupplyatno-load.
The response time of the ON/OFF control scheme is very
fast compared to normal PWM control. This provides
tightregulationandexcellenttransientresponse.
PI-2395-030801
02.5 5
Time (s)
0
100
200
400
300
0
100
200
VDC-INPUT
VDRAIN
Power Up/Down
The PeakSwitch requires only a 0.33 µF capacitor on the
BYPASSpin.Becauseofitssmallsize,thetimetochargethis
capacitoriskepttoanabsoluteminimum,typicallylessthan
1.5ms.DuetothefastnatureoftheON/OFFfeedback,there
isnoovershootatthepowersupplyoutput.Whenanexternal
resistorisconnectedfromthepositiveDCinputtotheEN/UV
pin,thepowerMOSFETswitchingwillbedelayedduringpower
upuntil the DClinevoltageexceeds thethreshold(100V).
Figures 11 and 12 show the power up timing waveform in
applications with and without an external resistor (4 MW)
connectedtotheEN/UVpin.
During power down, when an external resistor is used, the
powerMOSFETwillswitchfor30msaftertheoutputloses
regulation.ThepowerMOSFETwillthenremainoffwithout
anyglitchessincetheunder-voltagefunctionprohibitsrestart
whenthelinevoltageislow.
Figure13illustratesatypicalpower-downtimingwaveform.
Figure14illustratesaveryslowpower-downtimingwaveform
asinstandbyapplications.Anexternalresistorisconnected
totheEN/UVpininthiscasetopreventunwantedrestarts.
Current Limit Operation
EachswitchingcycleisterminatedwhentheDRAIN current
reaches the current limit of the PeakSwitch. Current limit
operationprovidesgoodlineripplerejection.
BYPASS Pin Capacitor
TheBYPASSpinusesasmall0.33uFceramiccapacitorfor
decouplingtheinternalpowersupply.
PI-2348-030801
0.5 1
Time (s)
0
100
200
300
0
100
200
400
VDC-INPUT
VDRAIN
Modifyingcurrentschematic
PI-4332-031506
0
51
0
Time (ms)
0
100
200
0
300
5
0
100
200
VDC-INPUT
VBYPASS
VDRAIN
PKS603-607
Rev. I 02/07
8
Application Example
ThecircuitshowninFigure15isalowcost,highefciency,
yback power supply designed to provide a 30 V, 1.06 A
continuous,2.7Apeakoutputfromuniversalinputusingthe
PKS606Y.
Thesupplyfeaturesunder-voltagelockoutandsmartACsensewith
fastreset.Latchingoverload,openloop,andhystereticthermal
shutdownprotectboththesupplyandloadunderfaultconditions
whilehighefciency(>80%)andverylowno-loadconsumption
(<200mWat230VAC)meetsbothactiveandstandbyefciency
requirements.Outputregulationisaccomplishedusingasimple
Zenerreferenceandoptocouplerfeedback.
ComponentsC1,C2,C3,C10,C17,C19,R15,L1andL2provide
commonmodeanddifferentialmodeEMIltering.Resistors
R1andR2dischargeC3whenACpowerisremovedtoprevent
electricshockfromtouchingtheACinput.ThermistorRT1
limitsthepeakinrushcurrentwhenACisrstapplied.
Therectiedandlteredinputvoltageisappliedtotheprimary
windingofT1.Theothersideofthetransformerprimaryis
drivenbytheintegratedMOSFETinU1.DiodeD6,C5,R3,
R4,andVR1clamptheU1drainvoltagetosafelevels.Use
ofafastdiode (500 ns) vs ultrafast for D6 increasespower
supplyefciencybyrecoveringsomeoftheclampenergy.A
sloworstandardrecoverydiodemustnotbeusedduetothe
highswitchingfrequency(aslowdiodewillnotrecoverfast
enoughunderstartupor output faults and therefore fail due
toexcessdissipation).TheuseofaZenerinserieswithR3
comparedtoastandardRCDclampoptimizesbothEMIand
energyefciency.
Components D5, C7, and R5-6 provideAC line and under-
voltagesensingforPeakSwitchU1.Byprovidingaseparate
rectiedvoltageacrossC7whichisindependentfromtheload
condition,ratherthanusingthemaininputcapacitor,allows
PeakSwitchtodistinguishthecauseof loss of regulation. It
alsoprovidesfastresetwhentheACinputisremoved,should
latchingshutdownbetriggered.ConnectingR5andR6toC4
wouldstillprovideunder-voltagelockoutbutafterafaultthe
userwouldhavetowaitforC4todischargebeforethesupply
wouldreset.ResistorR16providesasmallamountofbiasto
theU1ENABLE/UNDER-VOLTAGEpintoretaintheunder-
voltagelockoutfunctionduringbrown-outconditions.
WithR5andR6present,switchingisinhibiteduntilthecurrent
intotheEN/UVpinexceeds25µA.Thisallowsthestartup
voltagetobeprogrammedwithinthenormaloperatinginput
voltagerange,preventingglitchingoftheoutputunderabnormal,
lowvoltageconditionsandalsoonremovaloftheACinput.
Underafaultcondition,forexampleanoutputshortcircuitor
brokenfeedbackloop,ifthelinevoltageiswithinthenormal
range(>25µAintotheEN/UVpin)thePeakSwitchwilllatch
T1
EE25
J1
L
PE
N
30 V @
1.07 A Cont.
2.7 A Peak
RTN
D5
1N4007
D6
FR106
D10
UF4003
D8
STPS3150
D9
1N4148
D7
1N4148
U2
PC817X4
Q2
FS202DA
J3
PCB Term 18 AWG
RTN Connected to PE via Flying Lead
Q1
2N3906
D1-D4
1N4007
L1
5.3 mH
L2
5.3 µH
R2
1.3 M
R1
1.3 M
R15
2.2
R4
22
1/2 W
R3
10 k
1/2 W
R5
2.2 M
R6
2.4 M
R16
2.7 M
R7
4.7 k
R12
1 k
R13
1 k
R14
100
R11
3 k
R10
1.5 k
R9
0.33
2 W
R8
68
1/2 W
C3
680 nF
X1
C1-C2
100 pF
250 VAC
C17
4.7 nF
1 kV
C6
47 µF
35 V
C15
100 nF
50 V
C16
100 nF
C12
330 µF
50 V
C10
1 nF
250 VAC
C11
330 pF
U1
PKS606Y
C13
47 µF
16 V
C14
220 nF
50 V
C7
100 nF
400 V
C8
220 nF
50 V
C5
2.2 nF
1 kV
VR1
1N4764A
100 V
VR2
1N5255B
28 V
VR3
1N5258B
36 V
1
9,10
7,8
4
5
3
2
C4
150 µF
400 V
F1
3.15 A
RT1
10
PI-4170-060706
tO
PeakSwitch
C19
1 nF, 250 VAC
D
S
EN/UV
BP
GND
Figure 15. PeakSwitch PKS606Y, 32 W Continuous, 81 W Peak, Universal Input Power Supply.
PKS603-607
Rev. I 02/07
9
offthepowersupply.Thisprotectstheloadandsupplyfrom
acontinuousfaultcondition.RemovingtheACinputresets
thiscondition.
TheoutputvoltageisdeterminedbytheZenerdiodeVR2,the
voltagedropacrossR12andtheforwarddropofD9andtheLED
ofoptocouplerU2.ResistorR13providesbiascurrentthrough
D9andVR2,toensurethatVR2isoperatingclosetoitsknee
voltage,whileR12setstheoverallgainofthefeedbackloop.
CapacitorC15boostshighfrequencyloopgaintohelpdistribute
theenabledswitchingcyclesandreducepulsegrouping.
Whentheoutputvoltageexceedsthefeedbackthresholdvoltage,
currentwillowintheoptocouplerLED,causingcurrentowin
thetransistoroftheoptocoupler.WhenthisexceedstheENABLE
pin threshold current the next switching cycle is inhibited,
astheoutputvoltage falls (below the feedback threshold) a
conductioncycleisallowedtooccurandbyadjustingthenumber
ofenabledcyclesoutputregulationismaintained.Astheload
reducesthenumberofenabledcyclesdecreases,loweringthe
effectiveswitchingfrequencyandscalingswitchinglosseswith
load.Thisprovidesalmostconstantefciencydowntovery
lightloads,idealformeetingenergyefciencyrequirements.
PeakSwitchdeviceU1issuppliedfromanauxillarywinding
onthetransformerwhichisrectiedandlteredbyD7andC6.
ResistorR7providesapproximately2mAofsupplycurrentinto
theBYPASSpincapacitorC8.Duringstartuporfaultconditions
whenthebiasvoltageislow,theBYPASSpinissuppliedfrom
ahighvoltagecurrentsourcewithinU1,eliminatingtheneed
forseparatestartupcomponents.
Components Q1-2, R9-11, R14, C13, C16, and VR3 form
anovervoltageandovercurrentprotectioncircuit.Anoutput
overvoltageorovercurrentconditionresSCRQ2,clamping
theoutput voltage and forcing PeakSwitchU1intolatching
shutdownafter30ms.ThelowpasslterformedbyR10and
C13 adds a delay to the over-current sense. The shutdown
conditioncanberesetbybrieyremovingACpowerfor~3
seconds(maximum).ThelatchingfunctionwithinPeakSwitch
signicantlyreducesthesizeoftheSCRandoutputrectier,
D8,astheshortcircuitcurrentonlyowsfor50msbeforethe
supplylatchesoff.
This design meets EN55022 Class B conducted EMI with
>10dBmarginevenwiththeoutputRTNdirectlyconnected
toearthground.
Key Application Considerations
PeakSwitch Design Considerations
Output Power Table
Thedatasheetmaximumoutputpowertable(Table1)represents
themaximumpracticalcontinuousoutputpowerlevelthatcan
beobtainedunderthefollowingassumedconditions:
1. The minimum DC input voltage is 100 V or higher for
85VACinput,or220Vorhigherfor230VACinputor
single100/115VACwithavoltagedoubler.
2. Efciencyof70%forY/Fpackaged devices,75% for P
packageddevicesat85-265VAC,75%for230VACinput
allpackages
3. MinimumdatasheetvalueofI2f
4. Transformerprimaryinductancetoleranceof±10%
5. Reectedoutputvoltage(VOR)of135V
6. Voltageonlyoutputof15VwithanultrafastPNrectier
diode
7. ContinuousconductionmodeoperationwithtransientKP*
valueof0.25
8. Sufcientheatsinkingisprovided,eitherexternally(Y/F
packages)orthroughanareaofPCboardcopper(Ppackage)
tokeeptheSOURCEpinortabtemperatureatorbelow
110°C.
9. Deviceambienttemperatureof50°Cforopenframedesigns
and40°Cforsealedadapters
*Below a value of 1, KP is the ratio of ripple to peak primary
current.Topreventreducedpowercapabilityduetopremature
terminationofswitchingcycles,atransientKPlimitof≥0.25is
recommended.Thisavoidstheinitialcurrentlimit(IINIT)being
exceededatMOSFETturnon.
Peak vs. Continuous Power
PeakSwitchdeviceshavecurrentlimit values that allow the
speciedpeakpowervaluesinthepowertable.Withsufcient
heatsinking,thesepowerlevelscouldbeprovidedcontinuously,
however this may not be practical in many applications.
PeakSwitchisoptimizedforuseinapplicationsthathaveshort
duration,highpeakpowerdemand,butasignicantlylower
continuousoraveragepower.TypicalratioswouldbePPEAK
2×PAV E .ThehighswitchingfrequencyofPeakSwitchallows
a small core size to be selected to deliver the peak power,
buttheshortdurationpreventsthetransformerwindingfrom
overheating.Asaveragepowerincreases,itmaybenecessary
toselectalargertransformertoallowincreasedcopperareafor
thewindingsbasedonthemeasuredtransformertemperature.
The power table provides some guidance between peak
power and continuous power in sealed adapters, however
specic applications may differ. For example, if the peak
powerconditionisverylowdutycycle,saya2secondpeak
occurring only at power up to accelerate a hard disk drive,
thenthetransformersthermal rise is onlyafunctionofthe
continuouspower.However,ifthepeakpoweroccursevery
200msfor50msthenitwouldneedtobeconsidered.
Inallcases,theacceptabletemperatureriseofthePeakSwitch
andtransformershouldbeveriedunderworstcaseambient
andloadconditions.
PKS603-607
Rev. I 02/07
10
Figure 16 shows how to calculate the average power
requirementsforadesignwithtwodifferentpeakloadconditions.
WherePXarethedifferentoutputpowerconditions,ΔtXarethe
durationsofeachpeakpowercondition,andTistheperiodof
onecycleofthepulseloadcondtion.
Audible Noise
The cycle skipping mode of operation used in PeakSwitch
cangenerateaudiofrequencycomponentsinthetransformer.
Tolimitthisaudiblenoisegeneration,thetransformershould
be designed such that the peak core ux density is below
3000Gauss(300mT).Followingthisguidelineandusingthe
standardtransformerproductiontechniqueofdipvarnishing
practically eliminates audible noise. Vacuum impregnation
ofthetransformershouldnotbeusedduetothehighprimary
capacitanceandincreasedlossesthatresult.
CeramiccapacitorsthatusedielectricssuchasZ5U,whenused
inclampcircuits,mayalsogenerateaudionoise.Ifthisisthe
casetryreplacingthemwithacapacitorhavingadifferenttype
ofdielectricorconstruction,forexamplealmtypecapacitor.
Maximum Flux Density
Amaximumvalueof3000Gaussduringnormaloperationis
recommendedtolimitthemaximumuxdensityunderstart
upandoutputshortcircuit.Undertheseconditionstheoutput
voltageislowandlittleresetofthetransformeroccursduring
theMOSFETofftime.Thisallowsthetransformeruxdensity
to staircase above the normal operating level. A value of
3000Gauss atthepeakcurrent limitoftheselecteddevice,
together with the built in protection features of PeakSwitch
provides sufcient margin to prevent core saturation under
startuporoutputshortcircuitconditions.
Optocoupler CTR
To minimize the delay introduced by the optocoupler, it is
recommendedthatahigh(300-600%)CTRoptocouplerisused
inPeakSwitchdesigns.
Bias Winding
AllPeakSwitchdesignsmustuseabiaswindingtofeedoperating
currentintotheBYPASSpinoncethesupplyisoperational.
Itisrecommendedthatthevalueoftheresistorfromthebias
windingtotheBYPASSpinbeselectedsuchthatitsuppliesthe
samecurrentasthemaximumdatasheetdrainsupplycurrent
(IS2)forthespecicdevicebeingused.
PeakSwitch Layout Considerations
See Figure 17 for a recommended circuit board layout for
PeakSwitch.
Single Point Grounding
DevicesinYandFpackageshaveseparatereturnpinsforthe
MOSFET source (S) and the controller (GND) connections
which are internally connected. Therefore connecting these
pinsonthePCboardisnotrecommended.
Devices in the P package do not have separate return pins,
but in both cases the low current feedback signals and IC
decoupling,highMOSFETcurrentandbiaswindingprimary
returnconnectionshouldroutethroughseparatetracestothe
Kelvinconnection.
Thebiaswindingreturnconnectionistreatedseparately,even
thoughitcarrieslowcurrent.Toroutehighcurrentsawayfrom
thedevicewhenthesupplyissubjectedtolinesurgetransients,
thebiaswindingshouldbereturneddirectlytotheinputbulk
capacitor.
Bypass Capacitor (CBP)
TheBYPASSpincapacitorshouldbelocatedascloseaspossible
totheBYPASSandSOURCEpins.
Primary Loop Area
The area of the primary loop that connects the input lter
capacitor,transformerprimaryandPeakSwitchtogethershould
bekeptassmallaspossible.
Primary Clamp Circuit
AclampisusedtolimitthepeakvoltageontheDRAINpin
atturnoff.ThiscanbeachievedbyusinganRCDclampora
Zener(~200V)anddiodeclampacrosstheprimarywinding.
InallcasestominimizeEMIcareshouldbetakentominimize
thecircuitpathfromtheclampcomponentstothetransformer
andPeakSwitch.
Figure 16. Continuous (Average) Output Power Calculation
Example.
PI-4329-030906
P3
Power (W)
Time (t)
T
t1t2
P2
P1
PKS603-607
Rev. I 02/07
11
Figure 17. Recommended Layout for PeakSwitch in (a) P and (b) Y/F Packages.
-
+
Input Filter Capacitor
Heat Sink
Safety Spacing
Opto-
coupler
+- DC
OUT
T
r
a
n
s
f
o
r
m
e
r
SEC
D
GND
PI-4327-031706
TOP VIEW
HV
NC
EN/UV
Output
Rectifier Output Filter
Capacitor
Maximize hatched copper
areas ( ) for optimum
heatsinking
Y1-
Capacitor
PRI
PRI
BIAS
BIAS
BP
CBP
TOP VIEW
PI-4326-060706
Opto-
coupler
+
-
HV
+- DC
OUT
Input Filter Capacitor
Output
Rectifier
Safety Spacing
T
r
a
n
s
f
o
r
m
e
r
PRI
SEC
BIAS
BIAS
PeakSwitch
Output Filter
Capacitor
Maximize hatched copper
areas ( ) for optimum
heatsinking
BP
EN/UV
Y1-
Capacitor
S
S
S
S
PRI
CBP
D
(a)
(b)
PKS603-607
Rev. I 02/07
12
Thermal Considerations
For the P package, the four SOURCE pins are internally
connectedtotheICleadframeandprovidethemainpathto
removeheatfromthedevice.Therefore,alltheSOURCEpins
shouldbeconnectedtoacopperareaunderneaththePeakSwitch
toactnotonlyasasinglepointground,butalsoasaheatsink.
Asthisareaisconnectedtothequietsourcenode,itshouldbe
maximizedforgoodheatsinking.Similarly,foraxialoutput
diodes,maximizethePCBareaconnectedtothecathode.
Y-Capacitor
TheplacementoftheY-typecapshouldbedirectlyfromthe
primaryinputltercapacitorpositiveterminaltothecommon/
return terminal of the transformer secondary. If a second
Y-typecapisrequiredfromprimarytosecondaryreturn,connect
theprimarysidedirectlytothenegativeterminaloftheinput
capacitor.Suchaplacementwillroutehighmagnitudecommon
modesurgecurrentsawayfromthePeakSwitchdevice.Note
–ifaninputπ(C,L,C)EMIlterisused,thentheinductorin
theltershouldbeplacedbetweenthenegativeterminalson
theinputltercapacitors.
Optocoupler
Placetheoptocouplerphysically close to the PeakSwitch to
minimizetheprimarysidetracelengths.Keepthehighcurrent
highvoltagedrainandclamptracesawayfromtheoptocoupler
topreventnoisepickup.
Output Diode
For best performance, the area of the loop connecting the
secondary winding, the output diode and the output lter
capacitorshouldbeminimized.Inaddition,sufcientcopper
area should be provided at the anode and cathode terminal
ofthediodeforheatsinking.Alargerareaispreferredatthe
quitecathodeterminal.Alargeanodeareacanincreasehigh
frequencyradiatedEMI.
Quick Design Checklist
As with any power supply design, all PeakSwitch designs
shouldbeveriedonthebenchtomakesurethatcomponent
specicationsarenotexceededunderworstcaseconditions.
Thefollowingminimumsetoftestsisstronglyrecommended:
1. Maximumdrainvoltage–VerifythattheVDSdoesnotexceed
650Vathighestinputvoltageandpeak(overload)output
power.The50Vmargintothe700VBVDSSspecication
allowsmarginfordesignvariation.
2. Maximumdraincurrents–Verifythesimultaneousdrain
voltageandcurrentlevelsarewithinthecurveprovidedin
Figure29underworstcaseconditions.Typicallythisoccurs
atstartup(andduringanoutputshortcircuit),highestinput
line voltage and maximum ambient temperature. When
makingthismeasurementusingacurrentprobe,tomonitor
thedraincurrent,ensuretheresultsarecorrectedforthe
10-20nscurrentprobedelay.
3. Maximumdraincurrent–Atmaximumambienttemperature,
maximuminputvoltageandpeakoutput(overload)power,
verifydraincurrentwaveformsshownosignsoftransformer
saturation.If the transformer shows signs ofsaturation,
it should be redesigned with a lower ux density, or a
higherqualitycore material shouldbeused.Toprevent
false triggering of the current limit, verify the leading
edgecurrentspikeeventisbelowIINIT(MIN)attheendofthe
tLEB(MIN).Underallconditions,themaximumdraincurrent
shouldbebelowtheabsolutemaximumlimitspeciedin
theAbsoluteMaximumRatingssection.
4. Thermal Check –At specied maximum output power,
minimuminputvoltageandmaximumambienttemperature,
verifythatthetemperaturespecicationsarenotexceededfor
PeakSwitch,transformer,outputdiodeandoutputcapacitors.
Enoughthermalmarginshouldbeallowedforpart-to-part
variationoftheRDS(ON)ofPeakSwitchasspeciedinthe
datasheet.Underlowline,maximumpower,amaximum
PeakSwitchSOURCEpinortabtemperatureof110°Cis
recommendedtoallowforthesevariations.
Design Tools
Up-to-date information on design tools can be found at the
PowerIntegrationswebsite:www.powerint.com.
PKS603-607
Rev. I 02/07
13
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 18
(Unless Otherwise Specied)
Min Typ Max Units
CONTROL FUNCTIONS
Output Frequency fOSC
TJ = 25 °C
See Figure 4
Average 250 277 304 kHz
Peak-Peak Jitter 16
Maximum Duty
Cycle DCMAX S1 Open 62 65 68 %
EN/UV Pin Turn
Off Threshold
Current
IDIS -350 -240 -200 µA
EN/UV Pin
Voltage VEN
IEN/UV = -125 µA0.4 1.0 1.5 V
IEN/UV = 25 µA1.3 2.0 2.7
DRAIN Supply
Current
IS1 VEN/UV = 0 V 350 475 600
µA
IS2
EN/UV Open
(MOSFET
Switching)
See Note A, B
PKS603 460 570 690
PKS604 600 725 870
PKS605 700 875 1050
PKS606 950 1175 1400
PKS607 1160 1430 1700
BYPASS Pin
Charge Current
ICH1
VBP = 0 V,
TJ = 25 °C
See Note C
PKS603-604 -7.5 -5.0 -2.5
mA
PKS605-607 -10.0 -6.6 -3.2
ICH2
VBP = 4 V,
TJ = 25 °C
See Note C
PKS603-604 -4.5 -3.0 -1.5
PKS605-607 -6.5 -4.5 -2.5
ABSOLUTE MAXIMUM RATINGS(1,4)
DRAINVoltage................................................-0.3Vto700V
DRAINPeakCurrent:............................. 2×ILIMIT(Typical)(5)
EN/UVVoltage....................................................-0.3Vto9V
EN/UVCurrent........................................................... 100mA
BYPASSVoltage..................................................-0.3Vto9V
StorageTemperature......................................-65°Cto150°C
OperatingJunctionTemperature(2).................-40°Cto150°C
LeadTemperature(3)....................................................... 260°C
Notes:
1. AllvoltagesreferencedtoSOURCE,TA=25°C.
2. Normallylimitedbyinternalcircuitry.
3. 1/16in.fromcasefor5seconds.
4.Maximumratingsspeciedmaybeappliedoneatatime,
 withoutcausingpermanentdamagetotheproduct.
ExposuretoAbsoluteMaximumRatingconditionsfor
extendedperiodsoftimemayaffectproductreliability.
5. PeakDRAINcurrentisallowedwhiletheDRAINvoltage
issimultaneouslylessthan400V.SeealsoFigure29.
THERMAL IMPEDANCE
ThermalImpedance:Y/FPackage:
(qJA)(1)........................................80°C/W
(qJC)(2)..........................................2°C/W
PPackage:
(qJA).....................70°C/W(3);60°C/W(4)
(qJC)(5).....................................10°C/W(5)
Notes:
1. Freestandingwithnoheatsink.
2. Measuredatthebacksurfaceoftab.
3. Solderedto0.36sq.in.(232mm2),2oz.(610g/m2)copperclad.
4. Solderedto1sq.in.(645mm2),2oz.(610g/m2)copperclad.
5. MeasuredontheSOURCEpinclosetoplasticinterface.
PKS603-607
Rev. I 02/07
14
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 18
(Unless Otherwise Specied)
Min Typ Max Units
CONTROL FUNCTIONS (cont.)
BYPASS Pin Shunt
Regulator Voltage VBP(SH) See Note D 6.0 6.3 6.7 V
BYPASS Pin
Voltage VBP 5.5 5.8 6.15 V
BYPASS Pin
Voltage Hysteresis VBPH 0.8 1.0 1.3 V
EN/UV Pin Line
Under-Voltage
Threshold
ILUV TJ = 25 °C 22.5 25 27.5 µA
CIRCUIT PROTECTION
Current Limit ILIMIT
PKS603 P
TJ = 25 °C
di/dt = 200 mA/µs
See Note E 0.75 0.81 0.87
A
PKS604 P/Y/F
TJ = 25 °C
di/dt = 290 mA/µs
See Note E 1.35 1.45 1.55
PKS605 P
TJ = 25 °C
di/dt = 290 mA/µs
See Note E 1.35 1.45 1.55
PKS605 Y/F
TJ = 25 °C
di/dt = 325 mA/µs
See Note E 1.76 1.89 2.02
PKS606 P
TJ = 25 °C
di/dt = 255 mA/µs
See Note E 1.40 1.51 1.62
PKS606 Y/F
TJ = 25 °C
di/dt = 660 mA/µs
See Note E 2.60 2.80 3.00
PKS607 Y/F
TJ = 25 °Cdi/dt = 800 mA/µs 2.79 3.00 3.21
Power Coefcient I2f
PKS603 P
TJ = 25 °Cdi/dt = 200 mA/µs 164 182 204
A2kHz
PKS604 P/Y/F
TJ = 25 °Cdi/dt = 290 mA/µs 524 582 652
PKS605 P
TJ = 25 °Cdi/dt = 290 mA/µs 524 582 652
PKS605 Y/F
TJ = 25 °Cdi/dt = 325 mA/µs 890 989 1108
PKS606 P
TJ = 25 °Cdi/dt = 255 mA/µs 569 632 708
PKS606 Y/F
TJ = 25 °Cdi/dt = 660 mA/µs 1955 2172 2433
PKS607 Y/F
TJ = 25 °Cdi/dt = 800 mA/µs 2242 2493 2793
PKS603-607
Rev. I 02/07
15
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 18
(Unless Otherwise Specied)
Min Typ Max Units
CIRCUIT PROTECTION (cont.)
Initial Current Limit IINIT
See Figure 21
See Note F
0.75 ×
ILIMIT(Min)
mA
Leading Edge
Blanking Time tLEB
TJ = 25 °C
See Note F 170 215 ns
Current Limit
Delay tILD
TJ = 25 °C
See Notes F, G 150 ns
Thermal Shutdown
Temperature 135 142 150 °C
Thermal Shutdown
Hysteresis 75 °C
OUTPUT
ON-State
Resistance RDS(ON)
PKS603
ID = 81 mA
TJ = 25 °C 7.8 9.0
W
TJ = 100 °C 11.7 13.5
PKS604
ID = 150 mA
TJ = 25 °C 5.2 6.0
TJ = 100 °C 7.8 9.0
PKS605
ID = 200 mA
TJ = 25 °C 3.9 4.5
TJ = 100 °C 5.8 6.7
PKS606
ID = 300 mA
TJ = 25 °C 2.6 3.0
TJ = 100 °C 3.9 4.5
PKS607
ID = 300 mA
TJ = 25 °C 2.0 2.3
TJ = 100 °C 3.0 3.5
OFF-State Drain
Leakage Current
IDSS1
VBP = 6.2 V
VEN/UV = 0 V
VDS = 560 V
TJ = 125 °C
See Note H
200
µA
IDSS2
VBP = 6.2 V
VEN/UV = 0 V
VDS = 375 V
TJ = 50 °C
See Note H
15
Breakdown
Voltage BVDSS
VBP = 6.2 V, VEN/UV = 0 V,
See Note I, TJ = 25 °C700 V
Drain Supply
Voltage 50 V
Output EN/UV
Delay tEN/UV See Figure 20 5 µs
Output Disable
Setup Time tDST 0.5 µs
PKS603-607
Rev. I 02/07
16
NOTES:
A. Total current consumption is the sum of IS1 and IDSS when EN/UV pin is shorted to ground (MOSFET not
switching) and the sum of IS2 and IDSS when EN/UV pin is open (MOSFET switching).
B. Since the output MOSFET is switching, it is difcult to isolate the switching current from the supply current at the
DRAIN. An alternative is to measure the BYPASS pin current at 6.1 V.
C. See Typical Performance Characteristics section for BYPASS pin startup charging waveform.
D. BYPASS pin is externally supplied (bias winding).
E. For current limit at other di/dt values, refer to Figure 25.
F. This parameter is derived from characterization.
G. This parameter is derived from the change in current limit measured at 1X and 4X of the di/dt shown in the ILIMIT
specication.
H. IDSS1 is the worst case OFF state leakage specication at 80% of BVDSS and maximum operating junction
temperature. IDSS2 is a typical specication under worst case application conditions (rectied 265 VAC) for no-load
consumption calculations.
I. Breakdown voltage may be checked against minimum BVDSS specication by ramping the DRAIN pin voltage up
to but not exceeding minimum BVDSS.
J. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to
frequency). Auto-restart on time is extended during startup and certain fault conditions because the controller
reduces its oscillator clock frequency to prevent excessive drain currents. If excessive drain currents are still
occuring half way through the auto-restart on time, output MOSFET switching is disabled for the remainder of that
auto-restart on time episode (if the line is not sensed) or the supply latches off (if the line is sensed and adequate
line voltage is present).
K. Only applicable if no UV resistor is present at the EN/UV pin. 5 s applies only if the preceding switching auto-
restart event did not result in EN/UV pin going low. In that event, the rst auto-restart off-time is 150 ms.
Parameter Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 18
(Unless Otherwise Specied)
Min Typ Max Units
OUTPUT (cont.)
Auto-Restart
ON Time tAR
TJ = 25 °C
See Note J 30 ms
Auto-Restart
OFF Time tAROFF See Note K 5 s
PKS603-607
Rev. I 02/07
17
Figure 19. Duty Cycle Measurement. Figure 20. Output Enable Timing.
Figure 18. PeakSwitch General Test Circuit.
Figure 21. Current Limit Envelope.
PI-4317-030606
0.33 F
10 V
50 V
470
5 W S2
470
NOTE: This test circuit is not applicable for current limit or output characteristic measurements.
SD
BP
S
SEN/UV
S
150 V
S1
4 M
PI-2364-012699
EN/UV
tP
tEN/UV
DCMAX
tP = 1
fOSC
VDRAIN
(internal signal)
0.8
PI-4328-030806
tLEB (Blanking Time)
IINIT(MIN)
ILIMIT(MIN) @ 100 °C
PKS603-607
Rev. I 02/07
18
Typical Performance Characteristics
1.1
1.0
0.9
-50 -25 0255075 100 125 150
Junction Temperature (°C)
Breakdown Voltage
(Normalized to 25 °C)
PI-2213-012301
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
12
34
Normalized di/dt
PI-4297-020806
Normalized Current Limit
Figure 22. Breakdown vs. Temperature.
Figure 23. Frequency vs. Temperature.
Figure 25. Current Limit vs. di/dt.
Figure 24. Standard Current Limit vs. Temperature.
Figure 26. Output Characteristic.
Figure 27. COSS vs. Drain Voltage.
1.2
0.6
0.8
1.0
0
0.2
0.4
-50 -25 0255075100 125
Junction Temperature (°C)
(Normalized to 25 °C)
PI-4294-022806
1.2
0.6
0.8
1
0
0.2
0.4
-50 050 100 150
Junction Temperature (°C)
Standard Current Limit
(Normalized to 25 °C)
PI-4295-020806
1.2
0.6
0.8
1.0
0
0.2
0.4
68101214161820204
Drain Voltage (V)
Drain Current (A)
PI-4307-030806
PKS603 1.0
PKS604 1.5
PKS605 2.0
PKS606 3.0
Scaling Factors:
TJ = 25 °C
TJ = 100 °C
Drain Voltage (V)
Drain Capacitance (pF)
PI-4308-021306
0 100 200 300 400 500 600
1
10
100
1000
PKS603 1.0
PKS604 1.5
PKS605 2.0
PKS606 3.0
Scaling Factors:
PKS603-607
Rev. I 02/07
19
Typical Performance Characteristics (cont.)
Figure 28. Under-Voltage Threshold vs. Temperature.
1.2
0.6
0.8
1
0
0.2
0.4
-50 050 100 150
Junction Temperature (°C)
Under-Voltage Theshold
(Normalized to 25 °C)
PI-4296-020806
Figure 29. Maximum Allowable Drain Current vs.
Drain Voltage.
2.5
1.5
2
0
1
0.5
0 600500400300200100 800700
Drain Voltage (V)
Drain Current
(Normalized to Typical ILIMIT)
PI-4330-031606
PKS603-607
Rev. I 02/07
20
PART ORDERING INFORMATION
PeakSwitch Product Family
Series Number
Package Identier
P Plastic DIP-8C
YPlastic TO-220-7C
FPlastic TO-262-7C
Lead Finish
N Pure Matte Tin (Pb-Free)
PI-2644-122004
Notes:
1. Controlling dimensions are inches. Millimeter
dimensions are shown in parentheses.
2. Pin numbers start with Pin 1, and continue from left
to right when viewed from the front.
3. Dimensions do not include mold flash or other
protrusions. Mold flash or protrusions shall not
exceed .006 (.15mm) on any side.
4. Minimum metal to metal spacing at the package
body for omitted pin locations is .068 in. (1.73 mm).
5. Position of terminals to be measured at a location
.25 (6.35) below the package body.
6. All terminals are solder plated.
Y07C
PIN 1 PIN 7
MOUNTING HOLE PATTERN
.050 (1.27)
.150 (3.81)
.050 (1.27)
.150 (3.81)
.050 (1.27)
.050 (1.27)
.100 (2.54)
.180 (4.58)
.200 (5.08)
PIN 1
+
.010 (.25) M
.461 (11.71)
.495 (12.57)
.390 (9.91)
.420 (10.67)
.146 (3.71)
.156 (3.96)
.860 (21.84)
.880 (22.35)
.024 (.61)
.034 (.86)
.068 (1.73) MIN
.050 (1.27) BSC
.150 (3.81) BSC
.108 (2.74) REF
PIN 1 & 7
7° TYP.
PIN 2 & 4
.040 (1.02)
.060 (1.52)
.190 (4.83)
.210 (5.33)
.012 (.30)
.024 (.61)
.080 (2.03)
.120 (3.05)
.234 (5.94)
.261 (6.63)
.165 (4.19)
.185 (4.70)
.040 (1.02)
.060 (1.52)
.045 (1.14)
.055 (1.40)
.670 (17.02)
REF.
.570 (14.48)
REF.
TO-220-7C
PKS 604 P N
PKS603-607
Rev. I 02/07
21
Notes:
1. Package dimensions conform to JEDEC specification
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)
package with .300 inch row spacing.
2. Controlling dimensions are inches. Millimeter sizes are
shown in parentheses.
3. Dimensions shown do not include mold flash or other
protrusions. Mold flash or protrusions shall not exceed
.006 (.15) on any side.
4. Pin locations start with Pin 1, and continue counter-clock-
wise to Pin 8 when viewed from the top. The notch and/or
dimple are aids in locating Pin 1. Pin 3 is omitted.
5. Minimum metal to metal spacing at the package body for
the omitted lead location is .137 inch (3.48 mm).
6. Lead width measured at package body.
7. Lead spacing measured with the leads constrained to be
perpendicular to plane T.
.008 (.20)
.015 (.38)
.300 (7.62) BSC
(NOTE 7)
.300 (7.62)
.390 (9.91)
.367 (9.32)
.387 (9.83)
.240 (6.10)
.260 (6.60)
.125 (3.18)
.145 (3.68)
.057 (1.45)
.068 (1.73)
.120 (3.05)
.140 (3.56)
.015 (.38)
MINIMUM
.048 (1.22)
.053 (1.35)
.100 (2.54) BSC
.014 (.36)
.022 (.56)
-E-
Pin 1
SEATING
PLANE
-D-
-T-
P08C
DIP-8C
PI-3933-100504
D S .004 (.10)
T E D S .010 (.25) M
(NOTE 6)
.137 (3.48)
MINIMUM
PKS603-607
Rev. I 02/07
22
PI-2757-122004
Notes:
1. Controlling dimensions are inches. Millimeter
dimensions are shown in parentheses.
2. Pin numbers start with Pin 1, and continue
from left to right when viewed from the front.
3. Dimensions do not include mold flash or
other protrusions. Mold flash or protrusions
shall not exceed .006 (.15mm) on any side.
4. Minimum metal to metal spacing at the pack-
age body for omitted pin locations is .068
inch (1.73 mm).
5. Position of terminals to be measured at a
location .25 (6.35) below the package body.
6. All terminals are solder plated.
F07C
PIN 1 PIN 7
MOUNTING HOLE PATTERN
.050 (1.27)
.150 (3.81)
.050 (1.27)
.150 (3.81)
.050 (1.27)
.050 (1.27)
.100 (2.54)
.180 (4.58)
.200 (5.08)
PIN 1 .010 (.25) M
.326 (8.28)
.336 (8.53)
.390 (9.91)
.420 (10.67)
.795 (20.18)
REF.
.024 (.61)
.034 (.86)
.050 (1.27) BSC
.150 (3.81) BSC
.055 (1.40)
.066 (1.68)
PIN 1 & 7
7° TYP.
PIN 2 & 4
.040 (1.06)
.060 (1.52)
.190 (4.83)
.210 (5.33)
.012 (.30)
.024 (.61)
.080 (2.03)
.120 (3.05)
.165 (4.17)
.185 (4.70)
.040 (1.02)
.060 (1.52)
.045 (1.14)
.055 (1.40)
.595 (15.10)
REF.
.495 (12.56)
REF.
TO-262-7C
.068 (1.73) MIN
PKS603-607
Rev. I 02/07
23
PKS603-607
Rev. I 02/07
24
Revision Notes Date
F 1)FinalReleaseDataSheet. 3/06
GReviseddevicesymbolinFigures1and15tobeconsistentwithotherPIdocumentation(addedsecond
groundconnection).RevisedlayoutofFigure17(PI-4326).
4/06
HRevisedgroundinginFigure1tomatchactualimplementation. 6/06
IAddedPKS607. 2/07
For the latest updates, visit our website:www.powerint.com
PowerIntegrationsreservestherighttomakechangestoitsproductsatanytimetoimprovereliabilityormanufacturability.PowerIntegrationsdoesnotassume
anyliabilityarisingfromtheuseofanydeviceorcircuitdescribedherein.POWERINTEGRATIONSMAKESNOWARRANTYHEREINANDSPECIFICALLY
DISCLAIMSALLWARRANTIESINCLUDING,WITHOUTLIMITATION,THEIMPLIEDWARRANTIESOFMERCHANTABILITY,FITNESSFORAPAR-
TICULARPURPOSE,ANDNON-INFRINGEMENTOFTHIRDPARTYRIGHTS.
PATENT INFORMATION
Theproductsandapplicationsillustratedherein(includingtransformerconstructionandcircuitsexternaltotheproducts)maybecoveredbyoneormoreU.S.
andforeignpatents,orpotentiallybypendingU.S.andforeignpatentapplicationsassignedtoPowerIntegrations.AcompletelistofPowerIntegrations’patents
maybefoundatwww.powerint.com.PowerIntegrationsgrantsitscustomersalicenseundercertainpatentrightsassetforthathttp://www.powerint.com/ip.htm.
LIFE SUPPORT POLICY
POWERINTEGRATIONS’PRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESORSYSTEMS
WITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTOFPOWERINTEGRATIONS.Asusedherein:
1.ALifesupportdeviceorsystemisonewhich,(i)isintendedforsurgicalimplantintothebody,or(ii)supportsorsustainslife,and(iii)whosefailuretoperform,
whenproperlyusedinaccordancewithinstructionsforuse,canbereasonablyexpectedtoresultinsignicantinjuryordeathtotheuser.
2.Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailureofthelife
supportdeviceorsystem,ortoaffectitssafetyoreffectiveness.
ThePIlogo,TOPSwitch, TinySwitch,LinkSwitch, DPA-Switch,PeakSwitch,Clampless,EcoSmart,E-Shield,Filterfuse,
StackFET,PI ExpertandPI FACTS aretrademarksofPowerIntegrations,Inc.Othertrademarksarepropertyoftheirrespectivecompanies.
©Copyright2007,PowerIntegrations,Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245HellyerAvenue
SanJose,CA95138,USA.
Main:+1-408-414-9200
CustomerService:
Phone:+1-408-414-9665
Fax:+1-408-414-9765
e-mail: usasales@powerint.com
CHINA (SHANGHAI)
Rm807-808A
PacheerCommercialCentre,
555NanjingRd.West
Shanghai,P.R.C.200041
Phone:+86-21-6215-5548
Fax:+86-21-6215-2468
e-mail: chinasales@powerint.com
CHINA (SHENZHEN)
Rm2206-2207,BlockA,
ElectronicsScience&TechnologyBldg.
2070ShennanZhongRd.
Shenzhen,Guangdong,
China,518031
Phone:+86-755-8379-3243
Fax:+86-755-8379-5828
e-mail: chinasales@powerint.com
GERMANY
Rueckertstrasse3
D-80336,Munich
Germany
Phone:+49-89-5527-3910
Fax:+49-89-5527-3920
e-mail: eurosales@powerint.com
INDIA
#1,14thMainRoad
Vasanthanagar
Bangalore-560052,India
Phone:+91-80-4113-8020
Fax:+91-80-4113-8023
e-mail: indiasales@powerint.com
ITALY
ViaDeAmicis2
20091BressoMI
Italy
Phone:+39-028-928-6000
Fax: +39-028-928-6009
e-mail: eurosales@powerint.com
JAPAN
1stBldgShin-Yokohama
2-12-20Kohoku-ku,
Yokohama-shi,Kanagawa
ken,Japan222-0033
Phone:+81-45-471-1021
Fax:+81-45-471-3717
e-mail: japansales@powerint.com
KOREA
RM602,6FL
KoreaCityAirTerminalB/D,159-6
Samsung-Dong,Kangnam-Gu,
Seoul,135-728,Korea
Phone:+82-2-2016-6610
Fax:+82-2-2016-6630
e-mail: koreasales@powerint.com
SINGAPORE
51NewtonRoad
#15-08/10GoldhillPlaza
Singapore,308900
Phone:+65-6358-2160
Fax:+65-6358-2015
e-mail: singaporesales@powerint.com
TAIWAN
5F,No.318,NeiHuRd.,Sec.1
NeiHuDist.
Taipei114,TaiwanR.O.C.
Phone:+886-2-2659-4570
Fax:+886-2-2659-4550
e-mail: taiwansales@powerint.com
UNITED KINGDOM
1stFloor,St.James’sHouse
EastStreet,Farnham
SurreyGU97TJ
UnitedKingdom
Phone:+44(0)1252-730-140
Fax:+44(0)1252-727-689
e-mail: eurosales@powerint.com
APPLICATIONS HOTLINE
WorldWide+1-408-414-9660
APPLICATIONS FAX 
WorldWide+1-408-414-9760