March 2008 Rev 10 1/52
1
M29W800DT
M29W800DB
8-Mbit (1 Mbit x 8 or 512 Kbits x 16, boot block)
3 V supply flash memory
Features
Supply voltage
–V
CC = 2.7 V to 3.6 V for program, erase and
read
Access times: 45, 70, 90 ns
Programming time
10 µs per byte/word typical
19 memory blocks
1 boot block (top or bottom location)
2 parameter and 16 main blocks
Program/erase contr oller
Embedded byte/word program algorithms
Erase suspend and resume modes
Read and program anot her blo ck during
erase suspend
Unlock bypass program command
Faster production/batch programming
Temporary block unprotection mode
Common flash interface
64-bit security code
Low power consumption
Standby and automatic standby
100,000 progr am/erase cycles per block
Electronic signature
Manufacturer co de: 0020h
Top device code M29W800DT: 22D7h
Bottom device code M29W800DB: 225Bh
FBGA
TFBGA48 (ZE)
6 x 8 mm
TSOP48 (N)
12 x 20 mm
SO44 (M)
www.numonyx.com
Contents M29W800DT, M29W800DB
2/52
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Address inputs (A0-A18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Data inputs/outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Data inputs/outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Data input/output or address input (DQ15A-1) . . . . . . . . . . . . . . . . . . . . . 12
2.5 Chip enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Output enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Write enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Reset/block temporary unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Ready/b u sy output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Byte/word organization select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Bus read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Bus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Output disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Automatic standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Special bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 Block protection and blocks unprotection . . . . . . . . . . . . . . . . . . . . . . . 16
4 Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
M29W800DT, M29W800DB Contents
3/52
4.6 Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.10 Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.11 Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.12 Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . . 20
5 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Data polling bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Toggle bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Error bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Erase timer bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Alternative toggle bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9 Or dering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Appendix A Block address table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Appendix B Common flash interface (CFI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Appendix C Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.1 Programmer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.2 In-system technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
List of tables M29W800DT, M29W800DB
4/52
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Bus operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. Bus operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Commands, 16-bit mode, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5. Commands, 8-bit mode, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Program, erase times and program, erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 11. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 12. Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 13. Write AC characteristics, write enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 14. Write AC characteristics, chip enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 15. Reset/block temporary unprotect AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 16. SO44 – 44 lead plast ic small outline, 525 mils body width, package mechanical data . . . 35
Table 17. TSOP48 – 48 lead plast ic thin small outline, 12 x 20 mm, package mechanical data . . . . 36
Table 18. TFBGA48 6 x 8 mm – 6 x 8 active ball array – 0.80 mm pitch, package mechanical data. 37
Table 19. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 20. Top boot block addresses, M29W800DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 21. Bottom boot block addresses, M29W800DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 22. Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 23. CFI query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 24. CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 25. Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 26. Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 27. Security code area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 28. Programmer technique bus operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 29. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
M29W800DT, M29W800DB List of figures
5/52
List of figures
Figure 1. Logic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. SO connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Block addresses (x 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Block addresses (x 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Data polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Data toggle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. Read mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12. Write AC waveforms, write enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13. Write AC waveforms, chip enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 14. Reset/block temporary unprotect AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. SO44 – 44 lead plast ic small outline, 525 mils body width, package outline . . . . . . . . . . . 34
Figure 16. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 36
Figure 17. TFBGA48 6 x 8 mm – 6 x 8 ball array – 0.80 mm pitch, bottom view package outline. . . . 37
Figure 18. Programmer equipment block protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 19. Programmer equipment chip unprotect flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 20. In-system equipment block protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 21. In-system equipment chip unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Description M29W800DT, M29W800DB
6/52
1 Description
The M29W800D is a 8-Mbit (1 Mbit x 8 or 512 Kbits x 16) non-volatile memory that can be
read, erased and reprogrammed. These operations can be performed using a single low
voltage (2.7 to 3.6 V) supply. On power-up the memory defaults to its read mode where it
can be read in the same wa y as a ROM or EPROM.
The memory is divided into blocks that can be erased independently so it is possible to
preserve valid dat a while old data is erased. Each block can be protected independently to
prevent accidental program or erase commands from modifying the memory. Program and
erase commands are written to the command int erface of the memory. An on-chip
program/erase controller simplifies the process of programming or erasing the memory by
taking care of all of the special operations that are required to update the memory contents.
The end of a program or erase operation can be detected and any error conditions
identified. The command set required to control the memory is consistent with JEDEC
standards.
The b locks in the me mory are asymmetrically arran ged, see Figure 5: Block ad dresses (x 8)
and Figure 6: Block addresses (x 16). The first or last 64 Kbytes have been divided into four
additional blocks. The 16-Kbyte boot b lock can be used for small initialization code to start
the microprocessor, the two 8-Kbyte paramet er blocks can be used for parameter storage
and the remaining 32-Kbyte is a small main block where the application may be stored.
Chip Enable, Output Enable and Write Enable signals control the bus operation of the
memory. They allow simple connection to most microprocessors, often without additional
logic.
The memory is offered in SO44, TSOP48 (12 x 20 mm) and TFBGA48 6 x 8 mm (0.8 mm
pitch) packages. The memory is supplied with all the bits erased (set to ’1’).
Figure 1. Logic diagram
AI05470B
19
A0-A18
W
DQ0-DQ14
VCC
M29W800DT
M29W800DB
E
VSS
15
G
RP
DQ15A–1
RB
BYTE
M29W800DT, M29W800DB Description
7/52
Figure 2. SO connections
Table 1. Signal names
Signal Description Direction
A0-A18 Address inputs Inputs
DQ0-DQ7 Data inputs/outputs I/O
DQ8-DQ14 Data inputs/outputs I/O
DQ15A–1 Data input/output or address input I/O
EChip enable Input
GOutput enable Input
WWrite enable Input
RP Reset/block temporary unprotect Input
RB Ready/busy output (not available on SO44 package) Output
BYTE Byte/word organization select Input
VCC Supply voltage
VSS Ground
NC Not connected internally
G
DQ0
DQ8
A3
A0
E
VSS
A2
A1
A13
VSS
A14
A15
DQ7
A12
A16
BYTE
DQ15A–1
DQ5DQ2
DQ3 VCC
DQ11 DQ4
DQ14
A9
NC
RP
A4
W
A7
AI05462b
M29W800DT
M29W800DB
8
2
3
4
5
6
7
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
2322
20
19
18
17DQ1
DQ9
A6
A5
DQ6
DQ13
44
39
38
37
36
35
34
33
A11
A10
DQ10 21 DQ12
40
43
1
42
41
A17 A8
A18
Description M29W800DT, M29W800DB
8/52
Figure 3. TSOP connections
DQ3
DQ9
DQ2
A6 DQ0
W
A3
RB
DQ6
A8
A9 DQ13
A17
A10 DQ14
A2
DQ12
DQ10
DQ15A–1
VCC
DQ4
DQ5
A7
DQ7
NC
NC
AI05461
M29W800DT
M29W800DB
12
1
13
24 25
36
37
48
DQ8
NC
NC
A1
A18
A4
A5
DQ1
DQ11
G
A12
A13
A16
A11
BYTE
A15
A14 VSS
E
A0
RP
VSS
M29W800DT, M29W800DB Description
9/52
Figure 4. TFBGA connections (top view through package)
AI00656
B
A
4321
G
F
H
DQ15
A–1
A7
A3
DQ10DQ8E
DQ13DQ11
DQ9
G
VSS
DQ6DQ1VSS
DQ14
A12
NCA17
A4
A14A10NCA18A6A2
RP A8
DQ4
DQ3
VCC
DQ12
A9
BYTE
A15A11NCA1
A16DQ7DQ5DQ2A0
NC
DQ0
A5
E
D
C
RB W A13
65
Description M29W800DT, M29W800DB
10/52
Figure 5. Block addresses (x 8)
1. Also see Appendix A: Block address table, Table 20 and Table 21 for a full listing of the block addresses.
AI05463
16 Kbyte
FFFFFh
FC000h
64 Kbyte
1FFFFh
10000h
64 Kbyte
0FFFFh
00000h
M29W800DT
Top boot block addresses (x 8)
32 Kbyte
F7FFFh
F0000h
64 Kbyte
E0000h
EFFFFh
Total of 15
64 Kbyte blocks
16 Kbyte
FFFFFh
F0000h 64 Kbyte
64 Kbyte
03FFFh
00000h
M29W800DB
bottom boot block addresses (x 8)
32 Kbyte
EFFFFh
1FFFFh 64 Kbyte
E0000h
10000h
Total of 15
64 Kbyte blocks
0FFFFh
08000h
8 Kbyte
8 Kbyte
FBFFFh
FA000h
F9FFFh
F8000h
8 Kbyte
8 Kbyte
07FFFh
06000h
05FFFh
04000h
M29W800DT, M29W800DB Description
11/52
Figure 6. Block addresses (x 16)
1. Also see Appendix A: Block address table, Table 20 and Table 21 for a full listing of the block addresses.
AI05464
8 Kword
7FFFFh
7E000h
32 Kword
0FFFFh
08000h
32 Kword
07FFFh
00000h
M29W800DT
Top boot block addresses (x 16)
16 Kword
7BFFFh
78000h
32 Kword
70000h
77FFFh
Total of 15
32 Kword blocks
8 Kword
7FFFFh
78000h 32 Kword
32 Kword
01FFFh
00000h
M29W800DB
Bottom boot block addresses (x 16)
16 Kword
77FFFh
0FFFFh 32 Kword
70000h
08000h
Total of 15
32 Kword blocks
07FFFh
04000h
4 Kword
4 Kword
7DFFFh
7D000h
7CFFFh
7C000h
4 Kword
4 Kword
03FFFh
03000h
02FFFh
02000h
Signal descriptions M29W800DT, M29W800DB
12/52
2 Signal descriptions
See Figure 1: Logic diagram and Table 1: Signal names for a brief overview of the signals
connected to this device.
2.1 Address inputs (A0-A18)
The address inputs select the cells in the memory arra y to access during bus read
operations. During bus write operations they control the commands sent to the command
interface of the internal state machine.
2.2 Data inputs/outputs (DQ0-DQ7)
The data inputs/outputs output th e data stored at the selected address during a bus read
operation. During bus write operations they represent the commands sent to the command
interface of the internal state machine.
2.3 Data inputs/outputs (DQ8-DQ14)
The data inputs/outputs output th e data stored at the selected address during a bus read
operat ion when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and ar e
high impedance . During b us write oper ations the com mand register does not use t hese bits .
When reading the status register th ese bits should be ignored.
2.4 Data input/output or address input (DQ15A-1)
When BYTE is High, VIH, this pin beha v es as a data input /output pin ( as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of
the word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text
consider references to the data input/output to include this pin when BYTE is High and
references to the address inputs to include this pin when BYTE is Low except when stated
explicitly otherwise.
2.5 Chip enable (E)
The chip enable, E, activates the memory, allowing bus read and bus write operatio ns to be
perf ormed. When Chip Enable is High, VIH, all other pins are ignored.
2.6 Output enable (G)
The output enable, G, controls the bus read operation of the memory.
M29W800DT, M29W800DB Signal descriptions
13/52
2.7 Write enable (W)
The write enable, W, controls the bus write operation of the memory’s command interface.
2.8 Reset/block temporary unprotect (RP)
The reset/block temporary unprotect pin can be used to apply a hardware reset to the
memory or to temporarily unprotect all blocks that have been protected.
A hardware reset is achieved by holding reset/block temporary unprotect Low, VIL, for at
least tPLPX. After rese t/block temporary unprotect goes High, VIH, the memory will be ready
for bus read and bus write operations after tPHEL or tRHEL, whichever occurs last. See the
Section 2.9: Ready/busy output (RB), Table 15: Reset/bloc k temporary unprotect AC
characteristics and Figure 14: Reset/block temporar y unprotect AC waveforms, for more
details.
Holding RP at VID will temporarily unprotect the protected blocks in the memory. Program
and erase oper ations on all blocks will be possible. The transition from VIH to VID must be
slower than tPHPHH.
2.9 Ready/busy output (RB)
The ready/busy pin is an open-dra in output that can be used to identify when the device is
perf orming a progr am or era se opera tion. During progr am or er ase oper ations ready/b usy is
Low, VOL. Ready/busy is high- impedance during read mode, auto select mode and er ase
suspend mode.
After a hardware reset, b us read and bus write operations cannot begin until ready/busy
becomes high-impedance. See Table 15: Reset/bloc k temporary unprotect AC
characteristics and Figure 14: Reset/block temporar y unprotect AC waveforms.
The use of an open-drain output allows the ready/busy pins from several memories to be
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the
memories is busy.
2.10 Byte/w ord organization select (BYTE)
The byte/word organization select pin is used to switch between the 8-bit and 16-bit bus
modes of the memory. When byte/word organization select is Low, VIL, the memory is in 8-
bit mode, when it is High, VIH, the memory is in 16-bit mode.
2.11 VCC supply voltage
The VCC supply voltage supplies the power for all operations (read, program, erase etc.).
The command interface is disabled when the VCC supply voltage is less than the lockout
vo lt age, VLKO. This prevents bus write operations from accidentally damaging the data
during power-up, power-down and power surges. If the program/erase controller is
progr amming or erasin g during this time then th e operation abo rts and the memory contents
being altered will be invalid.
Signal descriptions M29W800DT, M29W800DB
14/52
A 0.1 µF capacitor should be connected between the VCC supply voltage pin and the VSS
ground pin to decouple the current surges from the power supply. The PCB track widths
must be sufficient to carry the currents required during program and erase operat ions, ICC3.
2.12 VSS ground
The VSS ground is the reference for all voltage measurements.
M29W800DT, M29W800DB Bus operations
15/52
3 Bus operations
There are five standard bus operations that control the device. These are bus read, bus
write, output disable, standby and automatic standby. See Table 2 and Table 3, Bus
operations, for a summary. Typically glitches of less than 5 ns on Chip Enable or Write
Enable are ignored by the memory and do not affect bus operations.
3.1 Bus read
Bus read operations read from the memory cells, or specific registers in the command
interface. A valid bus read operation involves setting the desir ed address on the address
inputs, applying a Low signal, VIL, to Chip Enable and Output Enable and keeping Write
Enable High, VIH. The data inputs/outputs will output the value, see Figure 11: Read mode
AC waveforms, and Figure 12: Read AC characteristics for details of when the output
becomes valid.
3.2 Bus write
Bus write operations write to the command interface. A valid bus write operation begins by
setting the desired address on the address inputs. The address inputs are latched by the
command interface on the falling edge of Chip Enable or Write Enable, whichever occurs
last. The data inputs/outputs are latched by the comm and interface on the rising edge of
Chip Enable or Write Enable, whichever occurs first. Output Enab le must remain High, VIH,
during the whole bus write operation. See Figure 12 and Figure 13, Write AC waveforms,
and Table 13 and Table 14, Write AC characteristics, for details of the timing requirement s.
3.3 Output disable
The data inputs/outputs are in the high impedance state when Output Enable is High, VIH.
3.4 Standby
When Chip Enable is High, VIH, the memory enters standb y mode and the data
inputs/outputs pins are placed in the high-impedance state. To reduce the supply curren t to
the standby supply current, ICC2, Chip Enable should be held within VCC ± 0.2 V. For the
standb y current level see Table 11: DC characteristics.
During program or erase operations the memory will continue to use the program/erase
supply current, ICC3, fo r pr ogram or erase operatio ns until th e op eratio n co mp le te s.
3.5 Automatic standby
If CMOS levels (VCC ± 0.2 V) are used to drive the bus and the bus is inactive for 150 ns or
more the memory enters automatic standby where the internal supply current is reduced to
the standby supply current, ICC2. The data inputs/outputs will still output data if a bus read
operat ion is in progress.
Bus operations M29W800DT, M29W800DB
16/52
3.6 Special bus operations
Additional bus operations can be performed to read the electronic signatu re and also to
apply and remove block protection. These bus operations are intended for use by
programming equipment and are not usually used in applications. They require VID to be
applied to some pins.
3.6.1 Electronic signature
The memory has two codes, the manufacturer code and the device code, that can be read
to identify the memory. These codes can be read by applying the signals listed in Table 2
and Table 3, Bus operations.
3.6.2 Block protection and blocks unprotection
Each block can be separately protected against accidental program or erase. Protected
bl ocks can be unprotected to allow data to be changed.
There are two methods available for protecting and unprotecting the blocks, one for use on
programming equipment and the other for in-system use. Block protect and chip unprotect
operations are described in Appendix C: Block protection.
Table 2. Bus operations, BYTE = VIL(1)
Operation E G W Address inputs
DQ15A–1, A0-A18
Data inputs/outputs
DQ14-DQ8 DQ7-DQ0
Bus read VIL VIL VIH Cell address Hi-Z Data output
Bus write VIL VIH VIL Command address Hi-Z Data input
Output disable X VIH VIH X Hi-Z Hi-Z
Standby VIH X X X Hi-Z Hi-Z
Read manufa cturer code VIL VIL VIH A0 = VIL, A1 = VIL, A9 =
VID, others VIL or VIH Hi-Z 20h
Read device code VIL VIL VIH A0 = VIH, A1 = VIL, A9 =
VID, others VIL or VIH Hi-Z D7h (M29W800DT)
5Bh (M29W800DB)
1. X = VIL or VIH.
Table 3. Bus operations, BYTE = VIH (1)
Operation E G W Address inputs
A0-A18 Data inputs/outputs
DQ15A–1, DQ14-DQ0
Bus read VIL VIL VIH Cell address Data output
Bus write VIL VIH VIL Command address Data input
Output disable X VIH VIH XHi-Z
Standby VIH XXX Hi-Z
Read manufacturer code VIL VIL VIH A0 = VIL, A1 = VIL, A9 = VID,
others VIL or VIH 0020h
Read device code VIL VIL VIH A0 = VIH, A1 = VIL, A9 = VID,
others VIL or VIH
22D7h (M29W800DT)
225Bh (M29W800DB)
1. X = VIL or VIH.
M29W800DT, M29W800DB Command interface
17/52
4 Command interface
All bus write operations to the memory are interpreted by the command interf ace.
Commands co nsis t of on e or mo re seque nt i al bus writ e op eratio ns. Failur e to obs erve a
v alid sequence of bus write operations will result in the memory returning to read mode. The
long command sequences are imposed to maximize data security.
The address used for the commands changes depending on whether the memory is in 16-
bit or 8-bit mode . See either Table 4, or Table 5, dependin g on the configur ation that is be ing
used, for a summary of the commands.
4.1 Read/Reset command
The Read/Reset command returns the memory to its read mode where it behaves like a
ROM or EPROM, unless otherwise stated. It also resets the errors in the status register.
Either one or three bus write operations can be used to issue the Read/Reset command.
The Read/Reset command can be issued, between bus write cycles before the start of a
program or erase operation, to return the device to read mode. Once the program or erase
operation has started the Read/Reset command is no longer accepted. The Read/Reset
command will not abort an erase operation when issued while in erase suspend.
4.2 Auto Select command
The Auto Select command is used to read the manufacturer code, the device code and the
block protection status. Three consecutive bus write operations are required to issue the
Auto Select command. Once the Auto Select command is issued the memory remains in
auto select mode unt il a Read/Reset comm and is issued. Re ad CFI Query and Read/Reset
commands are accepted in au to select mode, all other commands are ignored.
From the auto select mode the manufacturer code can be read using a bus read operation
with A0 = VIL and A1 = VIL. The other address bits may be set to either VIL or VIH. The
manufacturer code for Numonyx is 0020h.
The device code can be read using a bus read operation with A0 = VIH and A1 = VIL. The
other address bits may be set to either VIL or VIH. The device code for the M29W800DT is
22D7h and for the M29W800DB is 225Bh.
The block pro tection status of each block can be read using a bus read operation with A0 =
VIL, A1 = VIH, and A12-A1 8 specifying t he address of the block. The other add ress bits may
be set to either VIL or VIH. If the addressed block is protected then 01h is output on data
inputs/outputs DQ0-DQ7, otherwise 00h is output.
4.3 Program command
The Prog ram command can be used to prog ram a v alue to one address in the memory arra y
at a time. The command requires four bus write operations, the final write operation latches
the address and data in t he internal state machine and starts the program/erase controller.
If the address falls in a protected block then the Program command is ignored, the data
remains unchanged. The status register is never read and no error condition is given.
Command interface M29W800DT, M29W800DB
18/52
During the program operation the memory will ignore all commands. It is not possible to
issue any command to abort or pause the op eration. Typical program times are given in
Tabl e 6: Program, erase times and program, erase endurance cycles. Bus read operations
during the program operation will output the status register on the data inputs/outputs. See
the Section 5: Status register for more details.
After the program oper ation has completed the memory will return to the read mode, unless
an error has occurred. When an error occurs the memory will continue to output the status
register. A Read/Reset command must be issued to reset the error condition and re turn to
read mode.
Note that the Prog ram comman d cann ot change a bit set to ’0’ back to ’1’. One of the erase
commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.
4.4 Unlock Bypass command
The Unloc k Bypass command is used in conjunction with the Unlock Bypass Program
command to program the memory. When the access time to the device is long (as with
some EPROM programmers) considerable time saving can be made by using these
commands. Three b us write operations are required to issue the Unlock Bypass co mmand.
Once the Unlock Bypass command has been issued the memory will only accept the Unlock
Bypass Program command and th e Unlo ck Bypass Reset comm a nd . The mem o ry can be
read as if in read mode.
4.5 Unlock Bypass Program command
The Unlock Bypass Program command can be used to program one address in memory at
a time. The command requires tw o bus write operatio ns, the fin al write operation latches the
address and data in the internal state machine and sta rts the progra m/erase controller.
The program operation using the Unlock Bypass Program command behaves identically to
the program operation using the Program command. A protected b lock cannot be
programmed; the operation cannot be aborted and the status register is read. Errors must
be reset using th e Read/Reset command, which leaves the device in unlock bypass mode.
See the Program command for details on the behavior.
4.6 Unlock Bypass Reset command
The Unlock Bypass Reset comman d can be use d to re tu rn to read/res et mode from unlock
bypass mode. Two bus write operations are required to issue the Unlock Bypass Reset
command. Read/Reset command does not exit from unlock bypass mode.
M29W800DT, M29W800DB Command interface
19/52
4.7 Chip Erase command
The Chip Er ase command can b e used to er ase the e ntire chip . Six bus write operatio ns are
required to issue the Chip Erase command and start the program/e rase controller.
If any blocks are protected then these are ignored and all the ot he r blocks are erased. If all
of the bloc ks are protected the chip erase operation appears to start but will terminate within
about 100 µs, leaving the data unchanged. No error condition is given when protected
blocks are ignored.
During the erase operation the memory will ignore all commands. It is not possible to issue
any command to abort the operation. Typical chip erase times are giv en in Table 6: Program,
erase times and program, erase endurance cycles. All bus read operations during the chip
erase operation will output the status register on the data inputs/outputs. See the Section 5:
Status register for more details.
After the chip erase operation has co mp le te d the me m ory will retu rn to the re ad mode,
unless an error has occurred. When an error occurs the memory will continue to output the
status register. A Read/Reset command must be issued to reset the error condition and
return to read mode.
The Chip Erase command sets all of the bits in unprotected blocks of the memory to ’1’. All
previous data is lost.
4.8 Block Erase command
The Bloc k Erase command can be used to erase a list of one or more blocks. Six bus write
operat ions are required to select the first b loc k in the list. Each additional bl ock in the list can
be selected by repe ating the sixth bus write operation using the address of the additional
bl ock. The block erase operation starts the program/erase controller about 50 µs after the
last bus write operation. Once the program/erase controller starts it is not possible to select
any more blocks. Each additional block must there fore be selected within 50 µs of the last
bl oc k. Th e 50 µs timer restarts when an additional b lock is selected. The status r egister can
be read after the sixth bus write operat ion. See the status register f or details on how to
identify if the program/erase controller has started the block erase operation.
If an y selected b l oc ks are prote cted then t hese are ignored and all the other selected b locks
are erased. If all of the selected blocks are protected the block erase operation appears to
start but will terminate within about 100 µs, leaving the data unchanged. No error condition
is given when protected blocks are ignored.
During the block erase operation the memory will ignore all commands except the Erase
Suspend command. Typical block er ase times are given in Table 6: Program, erase times
and program, erase endurance cycles. All bus read operations during the block erase
operation will output the status register on the data inputs/outputs. See the Section 5: Status
register for more de tails.
After the block erase operation has completed the memory will return to the read mode,
unless an error has occurred. When an error occurs the memory will continue to output the
status register. A Read/Reset command must be issued to reset the error condition and
return to read mode.
The Bloc k Erase command sets all of the bits in the unprotected selected blocks to ’1’. All
previous data in the selected blocks is lost.
Command interface M29W800DT, M29W800DB
20/52
4.9 Erase Suspend command
The Erase Susp end command may be used to tempora rily suspend a bloc k er ase oper ation
and return the memory to read mode. The command requires one bus write operation.
The program/erase controller will suspend within the erase suspend latency time (refer to
Table 6 for value) of the Erase Suspend command being issued. Once the program/erase
controller has stopped the memory will be set to read mode and the erase will be
suspended. If the Er ase Suspend command is issued during the period when the memory is
waiting for an additional block (before the program/erase controller starts) then the erase is
suspended immediately and will start immediately when the Erase Resume command is
issued. It is not possible to select any further blocks to erase after the erase resume.
During erase suspend it is possible to r ead and program cells in blocks that are not being
erased; bo th read and progr am operati ons behav e as normal on these bloc ks. If any attempt
is made to program in a protected block or in the suspended block then the Program
command is ignored and the data remains unchanged. The status register is not read and
no error condition is given. Reading from blocks that are being erased will output the status
register.
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands
during an erase suspe nd. The Re ad/Reset comman d must be issued to r eturn the de vice to
read array mode before the Resume command will be accepted.
4.10 Erase Resume command
The Erase Resume co mmand must be used to restart the program/ erase controller from
erase suspend. An erase can be suspende d and resumed more than once.
4.11 Read CFI Query command
The Read CFI Query command is used to read data from the common flash interface (CFI)
memory area. This command is valid when the de vice is in the read arr ay mode , or when the
de vice is in auto select mode.
One b us write cycle is required to issue the Read CFI Query command. Once the command
is issued subsequent bus read operations read from the common fl ash interface memory
area.
The Read/Reset command must be issued to return the device to the previous mode (read
array mode or auto select mode). A second Read/Reset co mmand would be needed if the
device is to be put in the read array mode from auto select mode.
See Appendix B: Common flash interface (CFI), Table 22, Table 23, Table 24, Table 25,
Table 26 and Table 27 f or details on the information contained in the common flash interface
(CFI) memory area.
4.12 Block Protect and Chip Unprotect commands
Each block can be separately protected against accidental program or erase. The whole
chip can be unprotected to allow the data inside the blocks to be changed.
Block protect and chip unpro tec t op eratio ns ar e de sc ribed in Appendix C: Block protection.
M29W800DT, M29W800DB Command interface
21/52
Table 4. Commands, 16-bit mode, BYTE = VIH(1)
Command
Length
Bus write operation s
1st 2nd 3rd 4th 5th 6th
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read/Reset 1X F0
3 555 AA 2AA 55 X F0
Au to Select 3 555 AA 2AA 55 555 90
Program 4 555 AA 2AA 55 555 A0 PA PD
Unlock Bypass 3 555 AA 2AA 55 555 20
Unlock Bypass Program 2 X A0 PA PD
Unlock Bypass Reset 2 X 90 X 00
Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10
Block Erase 6+ 555 AA 2AA 55 555 80 555 AA 2AA 55 BA 30
Erase Suspend 1 X B0
Erase Resume 1 X 30
Read CFI Query 1 55 98
1. X don’t care, PA program address, PD program data, BA any address in the block.
All values in the table are in hexadecimal format.
The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15
are don’t care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Command interface M29W800DT, M29W800DB
22/52
Table 5. Commands, 8-bit mode, BYTE = VIL(1)
Command
Length
Bus write operations
1st 2nd 3rd 4th 5th 6th
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read/Reset 1X F0
3 AAA AA 555 55 X F0
Auto Select 3 AAA AA 555 55 AAA 90
Program 4 AAA AA 555 55 AAA A0 PA PD
Unlock Bypass 3 AAA AA 555 55 AAA 20
Unlock Bypass
Program 2X A0PAPD
Unlock Bypass Reset 2 X 90 X 00
Chip Erase 6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10
Block Erase 6+ AAA AA 555 5 5 AAA 80 AAA AA 555 55 BA 30
Erase Suspend 1 X B0
Erase Resume 1 X 30
Read CFI Query 1 AA 98
1. X don’t care, PA program address, PD program data, BA any address in the block.
All values in the table are in hexadecimal.
The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A18, DQ8-DQ14 and DQ15
are don’t care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH.
Table 6. Program, erase times and program, erase endurance cycles
Parameter Min. Typ. (1)(2) Max.(2) Unit
Chip erase 12 60(3) s
Block erase (64 Kbytes) 0.8 6(4) s
Erase suspend latency time 15 25(3) µs
Program (byte or word) 10 200(3) µs
Chip program (byte by byte) 12 60(3) s
Chip program (w ord by word) 6 30(4) s
Program/erase cycles (per block) 100,000 cycles
Data retention 20 years
1. Typical values measured at room temperature and nominal voltages.
2. Sampled, but not 100% tested.
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles.
4. Maximum value measured at worst case conditions for both temperature and VCC.
M29W800DT, M29W800DB Status register
23/52
5 Status register
Bus read operations from any address alw ays read the status register during program and
erase ope rations . It is also r ead during erase suspend when an address wit hin a bl ock be ing
erased is accessed.
The bits in the status register are summarized in Table 7: Status register bits.
5.1 Data polling bit (DQ7)
The data polling bit can be used to identify whether the program/erase controller has
successfully completed its operation or if it has responded to an erase suspend. The data
polling bit is output on DQ7 when the status register is read.
During program operations the data polling bit outputs the complement of the bit being
programmed to DQ7. After successful co mpletion of the program operation the memory
returns to read mode and bus read operations from the address just programmed output
DQ7, not its complement.
During erase operations the data polling bit outputs ’0’, the complement of the erased state
of DQ7. After successful completion of the erase operation the memory returns to read
mode.
In erase suspend mode the data polling bit will output a ’1’ during a bus read operation
within a block being erased. The data polling bit will change from a ’0’ to a ’1’ when the
program/erase controller has suspended the erase operation.
Figure 7: Data polling flowchart gives an example of how to use the data polling bit. A valid
address is the address being programmed or an address within the block being erased.
5.2 Toggle bit (DQ6)
The toggle b it can be used to identify whether the pr ogr am/erase controller ha s successfully
completed its operation or if it has responded to an er ase suspend. The toggle bit is output
on DQ6 when the status register is read.
During program and erase operations the toggle bit changes from ’0’ to ’1’ to ’0’, et c., with
successive bus read opera tions at any address . After successful complet ion of the operation
the memory returns to read mode.
During erase suspend mode the toggle bit will output when addressing a cell within a block
being erased. The toggle bit will stop toggling when the program/erase controller has
suspended the erase operation.
If any attempt is made to erase a protected block, the operation is aborted, no error is
signalled and DQ6 toggle s f or approximately 100 µs. If any attempt is made to program a
protected block or a suspended block, the operation is aborted, no error is signalled and
DQ6 toggles for approximately 1 µs.
Figure 8: Data toggle flowchar t gives an example of how to use th e toggle bit.
Status register M29W800DT, M29W800DB
24/52
5.3 Error bit (DQ5)
The error bit can be used to identify errors detected by the program/erase controller. The
error bit is set to ’1’ when a pro gram, block erase or chip erase operation fails to write the
correct data to the memory. If the error bit is set a Read/Reset command must be issued
before other commands are issued. The error bit is output on DQ5 when the status register
is read.
Note that the Prog ram command cannot cha nge a bit se t to ’0 ’ back to ’1’ and attempting to
do so will set DQ5 to ‘1’. A bus read oper ation to that address will show the bit is still ‘0’. One
of the erase commands must be used to set all the bits in a block or in the whole memory
from ’0’ to ’1’
5.4 Erase timer bit (DQ3)
The eras e timer bit can be used to identi fy the start of program/erase controller operation
during a Block Er ase comm and. Once the pr ogr am/ eras e contro ller starts erasing the era se
timer bit is set to ’1’. Bef ore the program/erase controller starts the erase timer bit is set to ’0’
and additional blocks to be erased may be written to the command interface. The erase
timer bit is output on DQ3 when the status register is read.
5.5 Alternative toggle bit (DQ2)
The alternative toggle bit can be used to monitor the program/erase controller during er ase
operations. The alternative toggle bit is output on DQ2 when the status register is read.
During chip erase and block erase operations the toggle bit changes from ’0’ to ’1’ to ’0’,
etc., with successive bus read operations from a ddresses within the blocks being erased. A
protected block is treated the same as a block not being erased. Once the operation
completes the memory returns to read mode.
During erase suspend the alternative t oggle bit changes from ’0’ to ’1’ to ’0’, etc. with
successive bus read operations from addresses within the blocks being erased. Bus re ad
operations to addresses within bloc ks not being erased will output the memory cell data as if
in read mode.
After an er ase operation that causes the error bit to be set the alternative toggle bit can be
used to identify which block or blocks have caused the er ror. The alternative toggle bit
changes from ’0’ to ’1’ to ’0’, etc. wit h successiv e b us rea d operation s from addresses within
bl ocks that have not erased correctly. The alternative toggle bit does not change if the
addressed bloc k has erased correctly.
M29W800DT, M29W800DB Status register
25/52
Figure 7. Data polling flowchart
Table 7. Status register bits(1)
Operation Address DQ7 DQ6 DQ5 DQ3 DQ2 RB
Program Any address DQ7 Toggle 0 0
Program during erase
suspend Any address DQ7 Toggle 0 0
Program error Any address DQ7 Toggle 1 0
Chip erase Any address 0 Toggle 0 1 Toggle 0
Block erase before
timeout Erasing block 0 Toggle 0 0 Toggle 0
Non-erasing block 0 Toggle 0 0 No toggle 0
Block erase Erasing block 0 Toggle 0 1 Toggle 0
Non-erasing block 0 Toggle 0 1 No toggle 0
Erase suspend Erasing block 1 No toggle 0 Toggle 1
Non-erasing block Data read as nor m al 1
Erase er ror Good block address 0 Toggle 1 1 No toggle 0
Faulty block address 0 Toggle 1 1 Toggle 0
1. Unspecified data bits should be ignored.
READ DQ5 & DQ7
at VALID ADDRESS
START
READ DQ7
at VALID ADDRESS
FAIL PASS
AI03598
DQ7
=
DATA YES
NO
YES
NO
DQ5
= 1
DQ7
=
DATA YES
NO
Status register M29W800DT, M29W800DB
26/52
Figure 8. Data toggle flowchart
READ DQ6
START
READ DQ6
TWICE
FAIL PASS
AI01370C
DQ6
=
TOGGLE NO
NO
YES
YES
DQ5
= 1
NO
YES
DQ6
=
TOGGLE
READ
DQ5 & DQ6
M29W800DT, M29W800DB Maximum rating
27/52
6 Maximum rating
Stressing the device above the rating listed in the Table 8: Absolute maximum ratings may
cause permanent damage to the device. Exposure to absolute maximum rating condit ions
for extended periods may affect device reliability. These are stress ratings only and
operation of the device at these or any other conditions above those indicated in the
operat ing sections of this specification is not implied. Refer also to the Numonyx SURE
program and other relevant quality documents.
Table 8. Absolute maximum ratings
Symbol Parameter Min Max Unit
TBIAS Temperature under bias –50 125 °C
TSTG Storage temperature –65 150 °C
VIO Input or output voltage (1) (2)
1. Minimum voltage may undershoot to –2 V during transition and for less than 20 ns during transitions.
2. Maximum voltage may overshoot to VCC + 2 V during transition and for less than 20 ns during transitions.
–0.6 VCC + 0.6 V
VCC Supply voltage –0.6 4 V
VID Identification voltage –0.6 13.5 V
DC and AC parameters M29W800DT, M29W800DB
28/52
7 DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics tables that
follow, are derived from tests performed under the measurement conditions summarized in
Table 9: Operating and AC measurement conditions. Designers should check that the
operat ing conditions in their circuit match the operating conditions when relying on the
quoted parameters.
Figure 9. AC measurement I/O wavef orm
Table 9. Operating and AC measurement conditions
Parameter
M29W800D
Unit45 ns 70 ns 90 ns
Min Max Min Max Min Max
VCC supply voltage 3.0 3.6 2.7 3.6 2.7 3.6 V
Ambient operating temperature (range 6) –40 85 –40 85 –40 85 °C
Ambient operating temperature (range 1) 0 70 0 70 0 70
Load capacitance (CL) 30 30 100 pF
Input rise and fall times 10 10 10 ns
Input pulse voltages 0 to VCC 0 to VCC 0 to VCC V
Input and output timing ref. voltages VCC/2 VCC/2 VCC/2 V
AI04498
VCC
0 V
VCC/2
M29W800DT, M29W800DB DC and AC parameters
29/52
Figure 10. AC measurement load circuit
Table 10. Device c apacitance(1)
1. Sampled only, not 100% tested.
Symbol Parameter Test condition Min Max Unit
CIN Input capacitance VIN = 0 V 6 pF
COUT Output capacitance VOUT = 0 V 12 pF
Table 11. DC characteristics
Symbol Parameter Test condition Min Max Unit
ILI Input leakage current 0 V VIN VCC ±1 µA
ILO Output leakage current 0 V VOUT VCC ±1 µA
ICC1 Supply current (read) E=V
IL, G =V
IH,
f=6MHz 10 mA
ICC2 Supply current (standby) E=V
CC ±0.2V,
RP =V
CC ±0.2V 100 µA
ICC3 (1)
1. Sampled only, not 100% tested.
Supply current (program/erase) Program/erase
controller active 20 mA
VIL Input low v oltage –0.5 0.8 V
VIH Input high volt age 0.7VCC VCC +0.3 V
VOL Output low vol tag e IOL = 1.8 mA 0.45 V
VOH Output high voltage IOH =–100µAV
CC –0.4 V
VID Identification voltage 11.5 12.5 V
IID Identification current A9 = VID 100 µA
VLKO Program/erase lockout supply
voltage 1.8 2.3 V
AI04499
CL
CL includes JIG capacitance
DEVICE
UNDER
TEST
25k
VCC
25k
VCC
0.1µF
DC and AC parameters M29W800DT, M29W800DB
30/52
Figure 11. Read mode AC waveforms
AI05448
tAVAV
tAVQV tAXQX
tELQX tEHQZ
tGLQV
tGLQX tGHQX
VALID
A0-A18/
A–1
G
DQ0-DQ7/
DQ8-DQ15
E
tELQV tEHQX
tGHQZ
VALID
tBHQV
tELBL/tELBH tBLQZ
BYTE
Table 12. Read AC characteristics
Symbol Alt P arameter Test condition M29W800D Unit
45 ns 70 ns 90 ns
tAVAV tRC Address Valid to Next Address Valid E = VIL,
G = VIL Min 45 70 90 ns
tAVQV tACC Address Valid to Output Valid E = VIL,
G = VIL Max 45 70 90 ns
tELQX (1) tLZ Chip Enable Low to Output Transition G = VIL Min000ns
tELQV tCE Chip Enable Low to Output Valid G = VIL Max 45 70 90 ns
tGLQX (1) tOLZ Output Enable Low to Output Transition E = VIL Min000ns
tGLQV tOE Output Enable Low to Output Valid E = VIL Max 25 30 35 ns
tEHQZ (1) tHZ Chip Enable High to Output Hi-Z G = VIL Max 20 25 30 ns
tGHQZ (1) tDF Output Enable High to Output Hi-Z E = VIL Max 20 25 30 ns
tEHQX
tGHQX
tAXQX
tOH Chip Enable, Output Enable or Address
Transition to Output Transition Min000ns
tELBL
tELBH
tELFL
tELFH Chip Enable to BYTE Low or High Max 5 5 5 ns
tBLQZ tFLQZ BYTE Low to Output Hi-Z Max 25 25 30 ns
tBHQV tFHQV BYTE High to Output Valid Max 30 30 40 ns
1. Sampled only, not 100% tested.
M29W800DT, M29W800DB DC and AC parameters
31/52
Figure 12. Writ e AC waveforms, write enable controlled
AI05449
E
G
W
A0-A18/
A–1
DQ0-DQ7/
DQ8-DQ15
VALID
VALID
VCC
tVCHEL
tWHEH
tWHWL
tELWL
tAVWL
tWHGL
tWLAX
tWHDX
tAVAV
tDVWH
tWLWHtGHWL
RB
tWHRL
Table 13. Write AC characteristics, write enable controlled
Symbol Alt Parameter M29W800D Unit
45 ns 70 ns 90 ns
tAVAV tWC Address Valid to Next Address Valid Min 45 70 90 ns
tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 0 ns
tWLWH tWP Write Enable Low to Write Enable High Min 30 45 50 ns
tDVWH tDS Input Valid to Write Enable High Min 25 45 50 ns
tWHDX tDH Write Enable High to Input Transition Min 0 0 0 ns
tWHEH tCH Write Enable High to Chip Enable High Min 0 0 0 ns
tWHWL tWPH Write Enable High to Write Enable Low Min 30 30 30 ns
tAVWL tAS Address Valid to Write Enable Low Min 0 0 0 ns
tWLAX tAH Write Enable Low to Address Transition Min 40 45 50 ns
tGHWL Output Enable High to Write Enable Low M in 0 0 0 ns
tWHGL tOEH Write Enable High to Output Enable Low Min 0 0 0 ns
tWHRL (1) tBUSY Program/Erase Valid to RB Low Max 30 30 35 ns
tVCHEL tVCS VCC High to Chip Enable Low Min 50 50 50 µs
1. Sampled only, not 100% tested.
DC and AC parameters M29W800DT, M29W800DB
32/52
Figure 13. Writ e AC wav e forms, chip enable controlled
AI05450
E
G
W
A0-A18/
A–1
DQ0-DQ7/
DQ8-DQ15
VALID
VALID
VCC
tVCHWL
tEHWH
tEHEL
tWLEL
tAVEL
tEHGL
tELAX
tEHDX
tAVAV
tDVEH
tELEHtGHEL
RB
tEHRL
Table 14. Write AC characteristics, chip enable controlled
Symbol Alt Parameter M29W800D Unit
45 ns 70 ns 90 ns
tAVAV tWC Address Valid to Next Address Valid Min 45 70 90 ns
tWLEL tWS Write Enable Low to Chip Enable Low Min 0 0 0 ns
tELEH tCP Chip Enable Low to Chip Enable High Min 30 45 50 ns
tDVEH tDS Input Valid to Chip Enab le High Min 25 45 50 ns
tEHDX tDH Chip Enable High to Input Transition Min 0 0 0 ns
tEHWH tWH Chip Enable High to Write Enable High Min 0 0 0 ns
tEHEL tCPH Chip Enable High to Chip Enable Low Min 30 30 30 ns
tAVEL tAS Address Valid to Chip Enable Low Min 0 0 0 ns
tELAX tAH Chip Enable Low to Address Transition Min 40 45 50 ns
tGHEL Output Enable High Chip Enable Low Min 0 0 0 ns
tEHGL tOEH Chip Enable High to Output Enable Low Min 0 0 0 ns
tEHRL (1) tBUSY Program/Erase Valid to RB Low Max 30 30 35 ns
tVCHWL tVCS VCC High to W rite Enable Low Min 50 50 50 µs
1. Sampled only, not 100% tested.
M29W800DT, M29W800DB DC and AC parameters
33/52
Figure 14. Reset/block temporary unprotect AC waveforms
AI06870
RB
W,
RP tPLPX
tPHWL, tPHEL, tPHGL
tPLYH
tPHPHH
E, G
tRHWL, tRHEL, tRHGL
Table 15. Reset/block temporary unprotect AC characteristics
Symbol Alt Parameter M29W800D Unit
45 ns 70 ns 90 ns
tPHWL (1)
tPHEL
tPHGL (1) tRH RP High to Write Enable Low, Chip Enable
Low, Output Enable Low Min 50 50 50 ns
tRHWL (1)
tRHEL (1)
tRHGL (1) tRB RB High to Write Enable Low, Chip Enable
Low, Output Enable Low Min000ns
tPLPX tRP RP pulse width Min 500 500 500 ns
tPLYH (1) tREADY RP Low to read mode Max 1 0 10 10 µs
tPHPHH (1) tVIDR RP rise time to VID Min 500 500 500 ns
1. Sampled only, not 100% tested.
Package mechanical data M29W800DT, M29W800DB
34/52
8 Package mechanical data
In order to mee t en viron mental requir ements , Numo nyx o ff er s these devices in ECOPA CK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also mark ed on the inner box label.
Figure 15. SO44 – 44 lead plastic small outline, 525 mils body wi dth, package outline
1. Drawing is not to scale.
SO-d
E
N
D
C
LA1 α
EH
A
1
eCP
b
A2
M29W800DT, M29W800DB Package mechanical data
35/52
Table 16. SO44 – 44 lead plastic small outline, 525 mils body width, package mechanical data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 2.80 0.110
A1 0.10 0.004
A2 2.30 2.20 2.40 0.091 0.087 0.094
b 0.40 0.35 0.50 0.016 0.014 0.020
C 0.15 0.10 0.20 0.006 0.004 0.008
CP 0.08 0.003
D 28.20 28.00 28.40 1.110 1.102 1.118
E 13.30 13.20 13.50 0.524 0.520 0.531
EH 16.00 15.75 16.25 0.630 0.620 0.640
e 1.27 0.050
L 0.80 0.031
a8° 8°
N44 44
Package mechanical data M29W800DT, M29W800DB
36/52
Figure 16. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package outline
1. Drawing is not to scale.
TSOP-G
B
e
DIE
C
LA1 α
E1
E
A
A2
1
24
48
25
D1
L1
CP
Table 17. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.20 0.047
A1 0.10 0.05 0.15 0.004 0.002 0.006
A2 1.00 0.95 1.05 0.039 0.037 0.041
B 0.22 0.17 0.27 0.009 0.007 0.011
C 0.10 0.21 0.004 0.008
CP 0.08 0.003
D1 12.00 11.90 12.10 0.472 0.468 0.476
E 20.00 19.80 20.20 0.787 0.779 0.795
E1 18.40 18.30 18.50 0.724 0.720 0.728
e 0.50 0.020
L 0.60 0.50 0.70 0.024 0.020 0.028
L1 0.80 0.031
a3°0°5°3°0°5°
M29W800DT, M29W800DB Package mechanical data
37/52
Figure 17. TFBGA48 6 x 8 mm – 6 x 8 ball array – 0.80 mm pitch, bottom view package outline
1. Drawing is not to scale.
E1E
D1
D
eb
A2
A1
A
BGA-Z32
ddd
FD
FE SD
SE
e
BALL "A1"
Table 18. TFBG A48 6 x 8 mm – 6 x 8 active ball array – 0.80 mm pitch, pack age mec hanical data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.20 0.047
A1 0.26 0.010
A2 0.90 0.035
b 0.35 0.45 0.014 0.018
D 6.00 5.90 6.10 0.236 0.232 0.240
D1 4.00 0.157
ddd 0.10 0.004
E 8.00 7.90 8.10 0.315 0.311 0.319
E1 5.60 0.220
e 0.80 0.031
FD 1.00 0.039
FE 1.20 0.047
SD 0.40 0.016
SE 0.40 0.016
Ordering information M29W800DT, M29W800DB
38/52
9 Ordering information
Table 19. Ordering informati on scheme
Note: For a list of available options (speed, package, etc.) or for further information on an y aspect
of this device, please contact your nea rest Numonyx Sales Office.
Example: M29W800DB 90 N 6 T
Device type
M29
Operatin g voltage
W = VCC = 2.7 to 3.6 V
Device function
800D = 8-Mbit (x 8/x 16), boot block
Array matrix
T = top boot
B = bottom boot
Speed
45 = 45 ns
70 = 70 ns
90 = 90 ns
Package
M = SO44
N = TSOP48: 12 x 20 mm
ZE = TFBGA48: 6 x 8 mm, 0.80 mm pitch
Temperature range
6 = –40 to 85 °C
1 = 0 to 70 °C
Option
T = tape & reel packing
E = lead-free package, standard packing
F = lead-free package, tape & reel packing
M29W800DT, M29W800DB Block address table
39/52
Appendix A Block address table
Table 20. Top boot block addresses, M29W800DT
# Size (Kbytes) Address range (x 8) Address range (x 16)
18 16 FC000h-FFFFFh 7E000h-7FFFFh
17 8 FA000h-FBFFFh 7D000h-7DFFFh
16 8 F8000h-F9FFFh 7C000h-7CFFFh
15 32 F0000h-F7FFFh 78000h-7BFFFh
14 64 E0000h-EFFFFh 70000h-77FFFh
13 64 D0000h-DFFFFh 68000h-6FFFFh
12 64 C0000h-CFFFFh 60000h-67FFFh
11 64 B0000h-BFFFFh 58000h-5FFFFh
10 64 A0000h-AFFFFh 50000h-57FFFh
9 64 90000h-9FFFFh 48000h-4FFFFh
8 64 80000h-8FFFFh 40000h-47FFFh
7 64 70000h-7FFFFh 38000h-3FFFFh
6 64 60000h-6FFFFh 30000h-37FFFh
5 64 50000h-5FFFFh 28000h-2FFFFh
4 64 40000h-4FFFFh 20000h-27FFFh
3 64 30000h-3FFFFh 18000h-1FFFFh
2 64 20000h-2FFFFh 10000h-17FFFh
1 64 10000h-1FFFFh 08000h-0FFFFh
0 64 00000h-0FFFFh 00000h-07FFFh
Block address table M29W800DT, M29W800DB
40/52
Table 21. Bottom boot block addresses, M29W800DB
# Size (Kbytes) Address range (x 8) Address range (x 16)
18 64 F0000h-FFFFFh 78000h-7FFFFh
17 64 E0000h-EFFFFh 70000h-77FFFh
16 64 D0000h-DFFFFh 68000h-6FFFFh
15 64 C0000h-CFFFFh 60000h-67FFFh
14 64 B0000h-BFFFFh 58000h-5FFFFh
13 64 A0000h-AFFFFh 50000h-57FFFh
12 64 90000h-9FFFFh 48000h-4FFFFh
11 64 80000h-8FFFFh 40000h-47FFFh
10 64 70000h-7FFFFh 38000h-3FFFFh
9 64 60000h-6FFFFh 30000h-37FFFh
8 64 50000h-5FFFFh 28000h-2FFFFh
7 64 40000h-4FFFFh 20000h-27FFFh
6 64 30000h-3FFFFh 18000h-1FFFFh
5 64 20000h-2FFFFh 10000h-17FFFh
4 64 10000h-1FFFFh 08000h-0FFFFh
3 32 08000h-0FFFFh 04000h-07FFFh
2 8 06000h-07FFFh 03000h-03FFFh
1 8 04000h-05FFFh 02000h-02FFFh
0 16 00000h-03FFFh 00000h-01FFFh
M29W800DT, M29W800DB Common flash interface (CFI)
41/52
Appendix B Common flash interface (CFI)
The common flash interface is a JEDEC approved, standardized data structure that can be
read from the flash memory device. It allows a system software to query the device to
determine various electrical and timing parameters, density information and functions
supported by the memory. The system can interface easily with the device, enabling the
software to upgrade itself when necessary.
When the CFI Query command is issued the device enters CFI query mode and the data
structure is read from the memory. Table 22, Table 23, Table 24, Table 25, Table 26 and
Table 27 show the addresses used to retrieve the data.
The CFI data structure also co nt ains a security area wher e a 64 -b it uniq ue se curity n umb er
is written (see Table 27: Security code area). This area can be accessed only in read mode
by the final user. It is impossible to change the security number after it has been written by
Numonyx. Issue a Read command to return to read mode.
Table 22. Query structure overview (1)
1. Query data are always presented on the lowest order data outputs.
Address Sub-section name Description
x 16 x 8
10h 20h CFI query identification string Command set ID and algorithm data offset
1Bh 36h System interface information Device timing & voltage information
27h 4Eh Device geometry definition Flash device layout
40h 80h Primary algorithm-specific extended
query table Additional information specific to the
primary algorithm (optiona l)
61h C2h Security code area 64-bit unique device number
Common flash interface (CFI) M29W800DT, M29W800DB
42/52
Table 23. CFI query identification string(1)
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Address Data Description Value
x 16 x 8
10h 20h 0051h ‘Q’
11h 22h 0052h Query unique ASCII string ‘QRY’ ‘R’
12h 24h 0059h ‘Y’
13h 26h 0002h Primary algorithm command set and control interface ID
code 16-bit ID code defining a specific algorithm AMD
compatible
14h 28h 0000h
15h 2Ah 0040h Address for prim ary algorithm extended query table (see
Table 26)P = 40h
16h 2Ch 0000h
17h 2Eh 0000h Alternate vendor command set and control interface ID
code second vendor - specified algorithm supported NA
18h 30h 0000h
19h 32h 0000h Address for alternate algorithm extended query table NA
1Ah 34h 0000h
Table 24. CFI query system interfa ce information
Address Data Description Value
x 16 x 8
1Bh 36h 0027h VCC logic supply minimum program/erase voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 mV 2.7 V
1Ch 38h 0036h VCC logic supply maximum program/erase voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 mV 3.6 V
1Dh 3Ah 0000h VPP [programming] supply minimum program/erase voltage NA
1Eh 3Ch 0000h VPP [programming] supply maximum program/erase voltage NA
1Fh 3Eh 0004h Typical timeout per single byte/word program = 2n µs 16 µs
20h 40h 0 000h Typical timeout for minimum size write buffer program = 2n µs NA
21h 42h 000Ah Typical timeout per individual bloc k er ase = 2n ms 1 s
22h 44h 0000h Typical timeout for full chip erase = 2n ms (1)
1. Not supported in the CFI.
23h 46h 0004h Maximum timeout for byte/word program = 2n times typical 2 56 µs
24h 48h 0000h Maximum timeout for write b uffer program = 2n times typical NA
25h 4Ah 0003h Maximum timeout per individual block erase = 2n times typical 8 s
26h 4Ch 0000h Maximum timeout for chip erase = 2n times typical (1)
M29W800DT, M29W800DB Common flash interface (CFI)
43/52
Table 25 . Device geometry definition
Address Data Description Value
x 16 x 8
27h 4Eh 0014h Device size = 2n in nu mber of bytes 1 Mbyte
28h
29h 50h
52h 0002h
0000h Flash device interface code description x 8, x 16
async.
2Ah
2Bh 54h
56h 0000h
0000h Maximum number of bytes in multi-by te program or page =
2n NA
2Ch 58h 0004h Number of erase block regions within the device.
It specifies the number of regions within the device
containing contiguous erase blocks of the same size. 4
2Dh
2Eh 5Ah
5Ch 0000h
0000h Region 1 information
Number of identical size erase block = 0000h+1 1
2Fh
30h 5Eh
60h 0040h
0000h Region 1 information
Block size in region 1 = 0040h * 256 bytes 16-Kbyte
31h
32h 62h
64h 0001h
0000h Region 2 information
Number of identical size erase block = 0001h+1 2
33h
34h 66h
68h 0020h
0000h Region 2 information
Block size in region 2 = 0020h * 256 bytes 8-Kbyte
35h
36h 6Ah
6Ch 0000h
0000h Region 3 information
Number of identical size erase block = 0000h+1 1
37h
38h 6Eh
70h 0080h
0000h Region 3 information
Block size in region 3 = 0080h * 256 byte 32-Kbyte
39h
3Ah 72h
74h 000Eh
0000h Region 4 information
Number of identical-size erase block = 000Eh+1 15
3Bh
3Ch 76h
78h 0000h
0001h Region 4 information
Block size in region 4 = 0100h * 256 byte 64-Kbyte
Common flash interface (CFI) M29W800DT, M29W800DB
44/52
Table 26. Primary algorithm-specific extended query table
Address Data Description Value
x 16 x 8
40h 80h 0050h Primary algorithm e xtended query table unique ASCII string
‘PRI’
‘P’
41h 82h 0052h ‘R’
42h 84h 0049h ‘I’
43h 86h 0031h Major version number, ASCII ‘1’
44h 88h 0030h Minor version number, ASCII ‘0’
45h 8Ah 0000h Address sensitive unlock (bits 1 to 0)
00 = required, 01= not required
silicon revision number (bits 7 to 2) Yes
46h 8Ch 0002h Erase suspend
00 = not supported, 01 = read only, 02 = read and write 2
47h 8Eh 0001h Block protecti on
00 = not supported, x = number of sectors in per group 1
48h 90h 0001h Temporary block unprotect
00 = not supported, 01 = supported Yes
49h 92h 0004h Bloc k protect /unp r o tect
04 = M29W800D 4
4Ah 94h 0000h Simultaneous operations, 00 = not supported No
4Bh 96h 0000h Burst mode, 00 = not supported, 01 = supported No
4Ch 98h 0000h Page mode, 00 = not supported, 01 = 4 page word, 02 = 8
page word No
Table 27. Security code area
Address Data Description
x 16 x 8
61h C3h, C2h XXXX
64-bit: unique device number
62h C5h, C4h XXXX
63h C7h, C6h XXXX
64h C9h, C8h XXXX
M29W800DT, M29W800DB Block protection
45/52
Appendix C Block protection
Bloc k protect ion can be used to prevent any operation from modifying the data stored in th e
Flash. Each block can be protected individually. Once protected, program and erase
operations on the b lock fail to change the data.
There are three techniques that can be used to cont rol block protection, these are the
programmer technique, the in-system technique and temporary unprotection. Temporary
unprotection is controlled by the reset/block temporar y unprotection pin, RP; this is
descr i be d in th e Section 2: Signal descriptions.
Unlike the command inte rface of the program/erase controller, the techniques f or protecting
and unprotecting blocks change between different Flash memory suppliers. For example,
the techniques for AMD parts will not work on Numonyx parts. Care should be taken when
changing drivers for one part to work on another.
C.1 Programmer technique
The programmer technique uses high (VID) voltage levels on some of the bus pins. These
cannot be achieved using a standard microprocessor bus, therefore the technique is
recommended only for use in programming equipment.
To protect a block follow the flowchart in Fi gu re 18: Programmer eq uip m en t block protect
flowchart. To unprotect t he whole chip it is ne cessary to protect all of the b loc ks f irst, then all
bl ocks can be unprotected at the same time. To unprotect the chip f ollow Figure 19:
Programmer equipment chip unprotect flowchart. Table 28: Programmer technique bus
operations, BYTE = VIH or VIL, gives a summary of each operation.
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not abort the procedure before
reaching the end. Chip unprotect can take several seconds and a user message should be
provided to show th at the operation is progressing.
C.2 In-system technique
The in-system technique requires a high voltage level on the reset/blocks temporary
unprotect pin, RP. This can be achieved without violating the maximum ratings of the
components on the micro processor b us , ther ef or e this technique is suit ab le for use after the
Flash has been fitted to the system.
To protect a block follow the flowchart in Figure 20: In-system equipment block protect
flowchart. To unprotect t he whole chip it is ne cessary to protect all of the b loc ks f irst, then all
the blocks can be unprotected at the same time. To unprotect the chip follow Figure 21: In-
system equipm en t ch ip un pr otect flowchart.
The timing on these flowcharts is critical. Care should be taken to ensure that, where a
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to
service interrupts that will upset the timing and do not abort the procedure before reaching
the end. Chip unprotect can take several seconds and a user message should be provided
to show that the operation is progressing.
Block protection M29W800DT, M29W800DB
46/52
Table 28. Programmer technique bus operations, BYTE = VIH or VIL
Operation E G W Address inputs
A0-A18 Data inputs/outputs
DQ15A–1, DQ14-DQ0
Block protect VIL VID VIL pulse A9 = VID, A12-A18 block address
others = X X
Chip unprotect VID VID VIL pulse A9 = VID, A12 = VIH, A15 = VIH
others = X X
Block protection
verify VIL VIL VIH
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,
A12-A18 block address
others = X
Pass = XX01h
Retry = XX00h
Block unprotection
verify VIL VIL VIH
A0 = VIL, A1 = VIH, A6 = VIH,
A9 = VID, A12-A18 block address
others = X
Retry = XX01h
Pass = XX00h
M29W800DT, M29W800DB Block protection
47/52
Figure 18. Programmer equipment block protect flowchart
ADDRESS = BLOCK ADDRESS
AI03469
G, A9 = VID,
E = VIL
n = 0
Wait 4µs
Wait 100µs
W = VIL
W = VIH
E, G = VIH,
A0, A6 = VIL,
A1 = VIH
A9 = VIH
E, G = VIH
++n
= 25
START
FAIL
PASS
YES
NO
DATA
=
01hYES
NO
W = VIH
E = VIL
Wait 4µs
G = VIL
Wait 60ns
Read DATA
Verify Protect Set-upEnd
A9 = VIH
E, G = VIH
Block protection M29W800DT, M29W800DB
48/52
Figure 19. Programmer equipment chip unprotect flowchart
PROTECT ALL BLOCKS
AI03470
A6, A12, A15 = VIH(1)
E, G, A9 = VID
DATA
W = VIH
E, G = VIH
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1, A6 = VIH
Wait 10ms
=
00h
INCREMENT
CURRENT BLOCK
n = 0
CURRENT BLOCK = 0
Wait 4µs
W = VIL
++n
= 1000
START
YES
YESNO
NO LAST
BLOCK
YES
NO
E = VIL
Wait 4µs
G = VIL
Wait 60ns
Read DATA
FAIL PASS
Verify Unprotect Set-upEnd
A9 = VIH
E, G = VIH A9 = VIH
E, G = VIH
M29W800DT, M29W800DB Block protection
49/52
Figure 20. In-system equipment block protect flowchart
AI03471
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
n = 0
Wait 100µs
WRITE 40h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
RP = VIH ++n
= 25
START
FAIL
PASS
YES
NO
DATA
=
01hYES
NO
RP = VIH
Wait 4µs
Verify Protect Set-upEnd
READ DATA
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
RP = VID
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
Block protection M29W800DT, M29W800DB
50/52
Figure 21. In-system equipment c hip unprotect flowc hart
AI03472
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
n = 0
CURRENT BLOCK = 0
Wait 10ms
WRITE 40h
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
RP = VIH
++n
= 1000
START
FAIL PASS
YES
NO
DATA
=
00h
YESNO
RP = VIH
Wait 4µs
READ DATA
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
RP = VID
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
PROTECT ALL BLOCKS
INCREMENT
CURRENT BLOCK
LAST
BLOCK
YES
NO
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Verify Unprotect Set-upEnd
M29W800DT, M29W800DB Revision history
51/52
10 Revision history
Table 29. Document revision history
Date Version Changes
August 2001 1.0 First issue
03-Dec-2001 2.0 Block protection appendix added, SO44 drawing and package
mechanical data updated, CFI Table 26, address 39h/72h data clarified,
read/reset operation during erase suspend clarified
01-Mar-2002 3.0
Description of Ready/Busy signal clarified (and Figure 14 modified)
Clarifi ed allowable commands during block erase
Clarifi ed the mode the device retur ns to in the CFI Read Query
command section
11-Apr-2002 4.0 Temperature range 1 added
Document promoted from preliminary data to full datasheet
31-Mar-2003 4.1
Erase suspend latency time (typic al and maximum) and data retention
parameters added to Table 6 : Program, erase times and program, erase
endurance cycles, and typical after 100k W/E cycles column removed.
Minimum voltage corrected for 70 ns speed class in Table 9: Operating
and AC measurement conditions.
Logic diagram and data toggle flowchart corrected.
Lead-free package options E and F added to Table 19: Ordering
inf ormation scheme.
13-Feb-2004 5
TSOP48 package outline and mechanical data updated.
TFBGA48 6 x 8 mm – 6 x 8 active ball array – 0.80 mm pitch added.
Table 9: Operating and A C measurement conditions updated for 70 ns
speed option.
23-Apr-2004 6 Figure 2: SO connections updated.
16-Sep-2004 7 45 ns speed class added.
21-Mar-2006 8 Removed TFBGA48 (ZA) (6 x 9 mm) package. Con verted to new ST
corporate template.
10-Dec-2007 9 Applied Numonyx branding.
25-Mar-2008 10 Minor text changes.
M29W800DT, M29W800DB
52/52
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITION S OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILIT Y
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specificati ons and product descri ptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that rel ate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,
by estoppel or otherwise, to any such patents, tradema rks, copyrights, or other intellectual property rights .
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sale s office or your distributor to obtain the latest specifications and before placi ng your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademar k or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.