1/49February 2003
M28W160CT
M28W160CB
16 Mbit (1Mb x16, Boot Block)
3V S upply Flash Mem ory
0CFEAT URE S SUMMARY
SUPPLY VOLTAGE
–V
DD = 2.7V to 3.6V Core Power Supply
–V
DDQ= 1.65V to 3.6V for Input/Output
–V
PP = 12V for fast Program (optional)
ACCESS TIME: 70, 85, 90,100ns
PRO GRAMMIN G TIME:
10µs typic al
D ou ble Word P rogrammin g Option
COMMON FLASH INTERFACE
64 bit Sec urity Code
MEMORY BLOCKS
Parameter Bl o cks (Top or Bottom locati o n )
M ain B locks
BLOCK LOCKING
A ll blocks locked at Power Up
A ny combi nation of blocks can be locked
–WP
for Block Lock-Down
SECURITY
64 bit user Programmable OTP cells
64 bit uni que dev ice identifier
One Parameter Block Permanently Lockab le
AUTOMATIC STAND-BY MODE
PROG RAM and E RASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
Manufacturer Code: 20h
Top Device Code, M28W160CT: 88CEh
B ot tom Device Code, M28W 160CB : 88CFh
Figure 1. Packages
FBGA
TSOP48 (N)
12 x 20mm
TFBGA46 (ZB)
6.39 x 6.37mm
M28W160CT, M28W160CB
2/49
TABLE OF CONT ENTS
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connec tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connect ions (Top view through pack age). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Security Block and Protection Regi ster Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
D ata Input/Output (DQ0-DQ 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Out put Enabl e (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
W rite Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDD Supply Volt age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDDQ Supply Vo ltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
R ead.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Autom at ic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
R ead Electroni c Signature Com ma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Bus Ope rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
R ead Memory Array Com man d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
R ead Status Register Comma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
R ead Electroni c Signature Com ma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
R ead CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
D ouble Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
Program /Era se Suspend Com m and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Resume Com mand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Block Lock-Down Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3/49
M28W160CT, M28W160CB
Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Read El ec tronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 6. Read Prot ect ion Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Pr ogram , Erase Times and Prog ram/Er ase Endu rance Cycles . . . . . . . . . . . . . . . . . . . . 15
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
R eading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
Table 9. Protecti on Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STATUS REGIST ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Erase S uspend S tatus (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Status (Bit 4 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Program Susp end Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
Reserve d (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Status Re gister Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MAXIMU M RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Absolute Maximum Ratin gs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Table 12. Operating and AC Measuremen t Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. AC Measurement I/O Wave form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. AC Meas urement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Table 14. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. Write AC Wavef orms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 16. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17 . Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12. Pow er-Up and Reset AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 18 . Power-Up a nd Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
M28W160CT, M28W160CB
4/49
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Out lin e . . . . . . . . 29
Table 19. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 29
Figure 14. TFBGA4 6 6.39x 6.37mm - 8x6 ball array, 0.75m m pitch, Bottom View Package Outlin e30
Table 20. TFBG A 46 6 .39x6.37m m - 8x6 ball array, 0.75mm pitch, Pack age Mecha nical Data . . . 30
Figure 15. TFBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 31
Figure 16. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package). . . . 31
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 21. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22 . Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 23. Top Boot Block Ad dresse s, M28W160CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 24 . Bottom Boot Blo ck Addresses, M28W160CB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
APPENDIX B. COMMON FLASH INT ERFACE (CF I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 25. Query Structu re Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 26. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 27. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 28. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 29. Pr i mary Algorithm -Spe cific Extende d Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 30. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
APPENDIX C. F LOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 17. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 18. Double Wor d Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 19. Program Suspend & Resume Flowch art and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 41
Figure 20. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 22. Locking Operations Flowc hart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 23. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX D. CO MMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 46
Table 31 . Write State Machine Current/Next, sheet 1 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 32 . Write State Machine Current/Next, sheet 2 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 33 . Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
5/49
M28W160CT, M28W160CB
SUMMARY DESCRIPTION
The M28W160C is a 16 Mbit (1 Mbit x 16) non-vol-
atile Flash memory that can be erased elect rically
at the block level and programmed in-system on a
Word-by-Word basis. These operations can be
performed using a single low voltage (2.7 t o 3.6V)
supply. VDDQ allows to drive the I/O pin down to
1.65V. An o ptional 12V VPP power supply is pro-
vided to speed up customer programm ing.
The device features an asymmetrical blocked ar-
chitecture. The M28W160C has an array of 39
blocks: 8 Parameter Blocks of 4 KWord and 31
Main Blocks of 32 KWord. M28W160CT has the
Parameter Blocks at the top of the memory ad-
dress space while the M28W160CB locates the
Parameter Blocks starting from the bottom. The
memory maps are shown in Figure 5, Block Ad-
dresses.
The M28W160C features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency, enabling in-
stant code and data protection. All blocks have
three levels of protect ion. They can be locked and
locked-down individually preventing any acciden-
tal programmi ng or erasure. There is an addit ional
hardware protection against program and erase.
When VPP VPPLK all bloc ks are protected agains t
program or eras e. A ll blo cks are l ock ed a t power-
up.
Each block can be erased separately. Erase can
be suspended in order to perform either read or
program in any other block and then resumed.
Program can be suspended to read data in any
other block and then resumed. Each blo ck can be
programmed and erased over 100,000 cycles.
The device includ es a 128 b it Prot ection Register
and a Security Block t o increase the protection of
a system design. The Pro tect ion Register is divid-
ed into two 64 bit segments, the first one contains
a unique device number written by ST, while the
second one is on e-time-programmable by the us-
er. The user programmable se gment can be per-
manently protected. The Security Block,
parameter bloc k 0 , can be p ermanently protected
by the user. Figure 6, shows the Security Block
and Protection Register Mem ory Map.
Program and Erase command s a re written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the tim-
ings necessary for pr ogram and erase operati ons.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The memory is offered in TSOP48 (10 X 20mm)
and TFBGA46 (6.39 x 6.37mm, 0.75mm pitch)
packages and is supplied with all the bits erased
(set to ’1’).
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A19 Address Inputs
DQ0-DQ15 Data Input/Output
EChip Enable
GOutput Enable
WWrite Enable
RP Reset
WP Write Protect
VDD Core Power Supply
VDDQ Power Supply for
Input/Output
VPP Optional Supp ly Voltage for
Fast Program & Erase
VSS Ground
NC Not Connected Internally
AI03811
20
A0-A19
W
DQ0-DQ15
VDD
M28W160CT
M28W160CB
E
VSS
16
G
RP
WP
VDDQ VPP
M28W160CT, M28W160CB
6/49
Figu re 3. TSOP C onnecti on s
DQ3
DQ9
DQ2
A6 DQ0
W
A3
NC
DQ6
A8
A9 DQ13
A17
A10 DQ14
A2
DQ12
DQ10
DQ15
VDD
DQ4
DQ5
A7
DQ7
VPP
WP
AI03812
M28W160CT
M28W160CB
12
1
13
24 25
36
37
48
DQ8
NC
A19
A1
A18
A4
A5
DQ1
DQ11
G
A12
A13
A16
A11
VDDQ
A15
A14 VSS
E
A0
RP
VSS
7/49
M28W160CT, M28W160CB
Figure 4. TFBGA Connections ( Top vi ew throug h package)
AI03804
C
B
A
87654321
E
D
F
A4
A7VPP
A8A11
A13
A0EDQ8DQ5DQ14A16
VSS
DQ0DQ9DQ3DQ6
DQ15
VDDQ
DQ1DQ10VDD
DQ7VSS
DQ2
A2
A5A17WA10
A14
A1A3A6A9A12A15
RP A18
DQ4
DQ13 G
DQ12
DQ11
WP A19
M28W160CT, M28W160CB
8/49
Figure 5. Block Addresses
Note: Also see A ppendix A, T ables 23 and 24 for a f ul l l isting o f the Block A ddress es.
Figure 6. Securi ty Block an d Protection Register Memory Map
AI04311
4 KWords
FFFFF
FF000
32 KWords
0FFFF
08000
32 KWords
07FFF
00000
M28W160CT
Top Boot Block Addresses
4 KWords
F8FFF
F8000
32 KWords
F0000
F7FFF
Total of 8
4 KWord Blocks
Total of 31
32 KWord Blocks
4 KWords
FFFFF
F8000 32 KWords
32 KWords
00FFF
00000
M28W160CB
Bottom Boot Block Addresses
4 KWords
F7FFF
0FFFF 32 KWords
F0000
08000
Total of 31
32 KWord Blocks
Total of 8
4 KWord Blocks
07FFF
07000
AI03523
Parameter Block # 0
User Programmable OTP
Unique device number
Protection Register Lock 2 1 0
88h
85h
84h
81h
80h
SECURITY BLOCK
PROTECTION REGISTER
9/49
M28W160CT, M28W160CB
SIGNAL DESCRIPTIONS
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connect-
ed to this device.
Address Inputs (A0-A19). The Address Inputs
select the cell s in the memory arra y to access dur-
ing Bus Read operations. During Bus Writ e opera-
tions they control the commands sent to the
Comman d Interface of the internal stat e ma chine.
Data Input/Output (DQ 0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or the dat a to be programm ed durin g a W rite B us
operation.
Chip Enable (E). The Chip Enable input acti-
vates the memory control logic, input buffers, de-
coders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chi p E nable is at V IH the memory is
deselected, the outputs are high impedance and
the power consumption i s reduced to the stand-by
level.
Output Enable (G). The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W). Th e Wri te Enable controls the
Bus Write operation of the memorys Command
Interface. The data and address inputs are l atched
on the rising edge of Chip Ena ble, E, or Write En-
able, W, whichever occurs first.
Write Protect (WP). Write Protect is an input
that gives an additional hardware protection for
each block. When Wri te Protect is at VIL, t he Lock-
Down is en abled and the protection status of the
block cannot be changed. When Write Protect is at
VIH, the Lock-Down is disabled and the block can
be locked or unlocked. (refer to Table 6, Read Pro-
tection Register and Protection Register Lock).
Reset (R P). The Reset input provides a hard-
ware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is mini-
mized. After Reset all blocks are in the Locked
state. When Res et is at VIH, the device is in normal
operation. Exiting reset mode the device enters
read array mode, but a negative transition of Chip
Enable or a change of the address is requi re d to
ensure valid data outputs.
VDD Supply Voltage . VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
VDDQ Su pp ly V o lta ge . VDDQ provides the
power supp ly to the I/O pins and ena bles all Ou t-
puts to be powered independently from VDD. VDDQ
can be tied to V DD or can use a separate supply.
VPP Program Supply Voltage. VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range ap-
plied to the pin. The Supply Voltage VDD and the
Program Supply Voltage VPP can be applied in
any order.
If V PP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a volt-
age lower than VPPLK gives an absolut e protection
against program or erase, while VPP > VPP1 en-
ables these functions (see Table 1 4, DC Charac-
teristics for the relevant values). VPP is only
sampled at the beginni ng of a program or erase; a
change in its valu e af ter the operation has started
does not have any effect and program or erase op-
erations conti nue.
If VPP is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition VPP must be
stable until the Program/Erase algorithm is com-
pleted (see Table 16 and 17).
VSS Ground. VSS is the referenc e f or a ll voltage
measurements.
Note: Each device in a system should have
VDD,
VDDQ and V PP decoupled wi th a 0.1 µF ca-
pacitor close to the pin. S ee Figu re 8, AC M ea-
surement Load Circuit. The PCB trace widths
should be sufficient to carry the required VPP
program and erase currents.
M28W160CT, M28W160CB
10/49
BUS OPERATIONS
There are si x standard bus operati ons that control
the device. These are Bus Read, Bus Wri te, Out-
put Disable, St andby, A utom at ic Standby and Re-
set. See Table 2, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chi p Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Int erface. Both Chip Enable and Output En-
able mu st be at VIL in o rder t o perform a read op-
eration. The Chip Enable in put should be us ed to
enable t he de vice . Out put Enable s houl d be used
to gate data onto the output. The data read de-
pends on the previous command written to the
memory (see Command Interface section). See
Figure 9, Read Mode AC Waveforms, and Table
15, Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or lat ch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at V IL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on t he rising edge of Write Enable or Chip
Enable, whichever occurs f irst.
See Figures 10 and 11, Write AC Wavef orms, and
Tables 16 and 17, Write AC Characteristics, for
details of th e timing requiremen ts.
Outp ut Disable. The data outputs are high im-
pedance when the Output Enable is at VIH.
Standby. Standby disables most of the internal
circuitry allowing a substant ial reduction of the cur-
rent consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption i s reduced to
the stand-b y level and the o utputs are se t to high
impedance, independently from the Output Enable
or Write Enabl e inpu ts. If Chip Enable switches to
VIH du ring a program or erase operation, the de-
vice enters Standby mode when finished.
Automatic Stand by. Automatic Standby pro-
vides a low power consumption state during Read
mode. Following a read operation, the device en-
ters Automatic Standby after 150ns of bus inact iv-
ity even i f Chip Enable is Low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Out-
puts will sti ll output data if a bus Read operation is
in progress.
Reset. During Reset mode when Output Enable
is Low, VIL, the memory is deselect ed and the out-
puts are high impedance. The memory is in Reset
mode when Reset is at V IL. The power c onsump-
tion i s reduced to the Standby level, independently
from t he Chip Enable, Output Enable or Writ e En-
able inputs. If Reset is pu lled to VSS during a Pro-
gram or Erase, this operation is aborted and the
memory content is no longer va lid.
Table 2. Bus Operati ons
No te: X = VIL or VIH, VPPH = 12V ± 5%.
Operation E G W RP WP VPP DQ0-DQ15
Bus Read VIL VIL VIH VIH X Don’t Care Data Output
Bus Write VIL VIH VIL VIH XVDD or VPPH Data Input
Output Disable VIL VIH VIH VIH X Don’t Care Hi-Z
Standby VIH XX
V
IH X Don’t Care Hi-Z
Reset X X X VIL X Don’t Care Hi-Z
11/49
M28W160CT, M28W160CB
COMMAND INTERFACE
All Bus Write operations t o the memory are in ter-
preted by the Command Interface. Commands
consist of one or more sequential Bus Write oper-
ations. An internal Program/ Erase Controller han-
dles all timings and verifies the correct execution
of the Program and Erase commands. The Pro-
gram/Erase Controll er provides a S tatus Regi ster
whose output may be read at any time during, to
monitor the progress of the operation, or t he Pro-
gram/Erase states. See Appendix 21, Table 31,
Write State Machin e Current /Ne xt, for a summary
of the Command Interface.
The Command Interface is reset to Read mode
when power is fi rst applied, when exi ting from Re-
set or whenever VDD is lower than VLKO. Com-
mand sequences must be followed exactly. Any
invalid combination of commands will reset the de-
vice to Read mode. Refer to Table 3, Com mands,
in co njunction with the text descriptions below.
Read Memory Array Comman d
The Read command returns the memory to its
Read mode. One Bus Writ e cycle is required to i s-
sue the Read Memory Array command and return
the memory to Read m ode. Subsequ ent read op-
erations will r ead the addressed loc ation and out-
put the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operat ion i tself. Issue a Read S tatus
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register at any address, until another
command is issued. See Table 10, Status Register
Bits, for details on the definitions of the bits.
The Read Status Register command may be is-
sued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will auto matically output the con-
tent of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads
the Manufacturer and Device Codes and the Block
Locking Status, or the Protection Register.
The Read El ectronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer Code, the Device Code, the
Block Lock and Lock-Down S tatus, or the Protec-
tion and Lock Register. See Tables 4, 5 and 6 for
the valid address.
Read CFI Query Comman d
The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or appli-
cations to automatically match their interface to
the characteristics of the device. One Bus Write
cycle is required to issue the Read Query Com-
mand. Once the command is issued subsequent
Bus Read operations read from the Common
Flash Interface Memory Area. See Appendix B,
Common Flash Interface, Tables 25, 26, 27, 28,
29 and 30 for details on the information con tained
in the Common Flash Interface memory area.
Block Erase Command
The B lock Erase com mand can be used to erase
a block. It s ets all the bit s wi thin the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the dat a in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command.
The first bus cycle sets up the Erase command.
The second latches the block address in the
internal state machine and sta rts the Program/
Erase Controller.
If the second bus cycle is not Writ e Erase Confirm
(D0h), Status Regist er bit s b4 and b 5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data i nt egr ity
cannot be guarant eed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will accept
the Rea d Status Re gister com mand and the P ro-
gram/Erase Suspend command, all other com-
mands will be ignored. Typical Erase times are
given in Table 7 , Program, Eras e Times and Pro-
gram/Erase Endurance Cy cl es.
See Appendi x C, Figure 20 , Erase Flowchart and
Pseudo Code, f or a sugges ted f lowchart fo r using
the Erase command.
Progra m Command
The memory array can be programmed word-by-
word. Two bus write cycles are required to issue
the Program Command.
The first bus cycle sets up the P rogram
comman d.
The second latches the Address and the Data to
be written and starts the Program/Erase
Controller.
During Program operations the memory will ac-
cept the Read Status Register comm and and the
Program/Erase Suspend command. Typical Pro-
gram t imes are given in Tab le 7, P rogram, E rase
Times and Progra m/Er ase Endura nce Cycles.
Programming aborts if Reset goe s to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
M28W160CT, M28W160CB
12/49
memory location must be erased and repro-
grammed.
See Appendix C, Figure 17, Program Flowchart
and Pseudo Code, for the flowcha rt for using the
Program com man d.
Double Word Prog r am Command
This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0. P rogram m ing s hould not b e at t emp t-
ed when VPP is not at VPPH. The command can be
executed if VPP is below VPPH but the result is not
guaranteed.
Three bus write cycles are n eces sary to issue the
Double Wor d Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be wri tten.
The third bus cycle latches the Address and the
Data of the second word to be written and starts
the Program/Erase Controlle r.
Read operations output the Status Register con-
tent after the prog ramming has s tarted. Program-
ming a borts if Res et goes to VIL. As data in teg rity
cannot be guaranteed when the program opera-
tion is aborted, the block containing the memory
location must be erased and reprogramm ed.
See Appendix C, Figure 18, Double Word Pro-
gram Flowchart and Pseudo Code, for the flow-
chart for using the Double Word Program
command.
Clear Status Regi st er Command
The Clear S tatus Reg ister com m and can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the S tatus Register do not aut omati cal-
ly return to ‘0 when a new Program or Erase c om-
mand is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command .
Program/ Erase Suspend Command
The Progr am/Eras e Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue t he Program/ Erase
command and pause the Progra m/Erase control-
ler.
During Program/Erase Suspend the Command In-
terface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electron-
ic Signature and Read CFI Query commands. Ad-
ditionally, if the suspend operation was Erase then
the Program, Block Lock, Block Lock-Down or
Protection Program commands will also be ac-
cepted. T he block being erased may be pr otected
by issuing the Block Protect, Block Lock or Protec-
tion Program commands. When the Program/
Erase Resume command is issued the operation
will complete. Only the blocks not being erased
may be read or programm ed correc tly.
During a Program/Erase Suspend, the dev ice can
be placed in a pseudo-standby mode by taking
Chip Enable to VIH. Program/Erase is aborted if
Reset turns to V IL.
See Appendi x C , F igure 19, Program Suspend &
Resume Flowcha rt and Pseudo Code, and Figure
21, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Suspend com man d.
Progra m/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/E ras e Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subse-
quent Bus Read operations read the Status Reg-
ister.
See Appendi x C , Figure 19, Program Suspend &
Resume Flowcha rt and Pseudo Code, and Figure
21, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Resume command.
P rotectio n R egister Pr ogram C om m and
The Protection Register Program command is
used to Program the 64 bit user One-Time-Pro-
grammabl e (OTP) se gment of the Protection Reg-
ister. The segment is programmed 16 bits at a
time. When shipped all bits in the segment are set
to ‘1’. The user can only program the bits t o ‘0’.
Two write cycles are required to issue the Pro tec-
tion Register Program command.
The first bus cycle sets up the Protec tion
Register Program command.
The second latches the Address and the Data to
be written to t he P rotection Register and starts
the Program/Erase Controlle r.
Read operations output the Status Register con-
tent after the programm ing has started.
The segment can be protect ed by programming bit
1 of t he Pro tection Lock Register. Bit 1 of t he Pro-
tection Loc k Register prote cts bi t 2 of t he Pro tec-
tion Lock Register. Programming bit 2 of the
Protection Loc k Register will result in a permanent
protection of the S ecurity Block (see Fi gure 6, Se-
curity Block and Protection Register Memory
Map). Attempting to program a previously protect -
ed Protection Register will result in a Status Reg-
ister error. The protection of the Protection
Register and/or the Security Block is not revers-
ible.
13/49
M28W160CT, M28W160CB
The Protection Register Program cannot be sus-
pended. See Appendix C, Figure 23, Protection
Register Program Flowchart and Pseudo Code,
for the flowchart fo r using the P rote ction Register
Program com man d.
Block Lock Command
The Block Lock command is used to lock a block
and prevent Program or Erase operations from
changing the data in it. All blocks are locked at
power-up or reset.
Two Bus Write cycles are required to issue the
Block Lock command.
The first bus cycle sets up the Blo ck Lock
comman d.
The secon d Bus Write cycle latche s th e blo ck
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 9 shows the protection status after issuing
a Block Lock command.
The B lock Loc k bits are volatile, onc e s et t hey re-
main set until a hardware reset or power-down/
power-up. They are cleared by a Blocks Unlock
command. Refer to t he section, Block Loc king, for
a detail ed explanat i on.
Block Unlock Command
The Blocks Unlock command is u se d to u nlock a
block, allowing the block to be programmed or
erased. Two Bus Write cycles are required to is-
sue the Blocks Unlock comman d.
The first bus cycle sets up the B lo ck Unlock
comman d.
The secon d Bus Write cycle latche s th e blo ck
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 9 show s the protection status after issuing
a Block Unlock command. Refer to the section,
Block Locking, for a detailed explanation.
Block Lock-Down Command
A locked block cannot be Programmed or Erased,
or have its protection stat us changed when WP is
low, VIL. When WP is high, VIH, the Lock-Down
function is disabl ed and the locked blocks can be
individually unlocked by the Block Unlock com-
mand.
Two Bus Write cycles are required to issue the
Block Lock-Down comman d.
The first bus cycle sets up the Blo ck Lock
comman d.
The secon d Bus Write cycle latche s th e blo ck
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Locked-Down blo cks revert to the locked (and not
locked-down) state when the device is reset on
power-down. Table. 9 shows t he protection status
after issuing a Block Lock-Down command. Refer
to the sect ion, Block Locking, for a detailed expla-
nation.
M28W160CT, M28W160CB
14/49
Table 3. Commands
No te: 1. X = Don’t Care.
2. The si gnature addres ses are li st ed in Tabl es 4, 5 and 6 .
3. Addr 1 and Addr 2 must be consecutive Address es d i ffering on l y f or A0.
Table 4. Read Electronic Sign atur e
Note: RP = VIH.
Commands No. of
Cycles
Bus Write Operations
1st Cycle 2nd Cycle 3nd Cycle
Bus
Op. Addr Data Bus
Op. Addr Data Bus
Op. Addr Data
Read Memory Array 1+ Write X FFh Read Read
Addr Data
Read Status Register 1+ Write X 70h Read XStat us
Register
Read Electronic Sign ature 1+ Write X 90h Read Signature
Addr (2) Signature
Read CFI Query 1+ Write X 98h Read CFI Addr Query
Erase 2 Write X 20h Write Block
Addr D0h
Program 2 Write X 40h or
10h Writ e Addr Dat a Inp ut
Double Word Program(3) 3 Wr ite X 30h Write Addr 1 Data Input Write Addr 2 Data
Input
Clear St atus Register 1 Write X 50h
Program/Erase Suspend 1 Write X B0h
Program/E rase Resume 1 Write X D0h
Block Lock 2 Write X 60h Writ e Block
Address 01h
Block Unlock 2 Write X 60h Write Block
Address D0h
Block Lock- Down 2 Write X 60h Write Bloc k
Address 2Fh
Protection Register
Program 2 Write X C0h Write Address Data Input
Code Device E G W A0 A1 A2-A7 A8-A19 DQ0-DQ7 DQ8-DQ15
Manufacture.
Code VIL VIL VIH VIL VIL 0 Don’t Care 20h 00h
Device Code M28W160CT VIL VIL VIH VIH VIL 0 Don’t Care CEh 88h
M28W160CB VIL VIL VIH VIH VIL 0 Don’t Care CFh 88h
15/49
M28W160CT, M28W160CB
Table 5. Read Block Lock Signature
Note: 1. A Lock ed-Down Block can be locked "DQ0 = 1" or unlo ck ed "DQ0 = 0" ; s ee Block Lo cking section.
Table 6. Read Protection Register and Lock Register
Table 7. Progra m , Erase Times and Pro gra m /Erase Endura nce Cycl es
Block Status E G W A0 A1 A2-A7 A8-A11 A12-A19 DQ0 DQ1 DQ2-DQ15
Locked Block VIL VIL VIH VIL VIH 0 Don’t Care Block Address 1 0 00h
Unlocked Block VIL VIL VIH VIL VIH 0 Dont Care Block Address 0 0 00h
Locked-Down
Block VIL VIL VIH VIL VIH 0 Dont Care Block Address X (1) 1 00h
Word E G W A0-A7 A8-A19 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
Lock VIL VIL VIH 80h Don’t Care 0 OTP Prot.
data Security
prot. data 00h 00h
Unique ID 0 VIL VIL VIH 81h Don’t Care ID data ID data ID data ID data ID data
Unique ID 1 VIL VIL VIH 82h Don’t Care ID data ID data ID data ID data ID data
Unique ID 2 VIL VIL VIH 83h Don’t Care ID data ID data ID data ID data ID data
Unique ID 3 VIL VIL VIH 84h Don’t Care ID data ID data ID data ID data ID data
OTP 0 VIL VIL VIH 85h Don’t Care OTP data OTP data OTP data OTP data OTP data
OTP 1 VIL VIL VIH 86h Don’t Care OTP data OTP data OTP data OTP data OTP data
OTP 2 VIL VIL VIH 87h Don’t Care OTP data OTP data OTP data OTP data OTP data
OTP 3 VIL VIL VIH 88h Don’t Care OTP data OTP data OTP data OTP data OTP data
Parameter Test Conditions M28W160C Unit
Min Typ Max
Word Program VPP = VDD 10 200 µs
Double Word Program VPP = 12V ±5% 10 200 µs
Main Block Program VPP = 12V ±5% 0.16 5 s
VPP = VDD 0.32 5 s
Parameter Block Program VPP = 12V ±5% 0.02 4 s
VPP = VDD 0.04 4 s
Main Block Erase VPP = 12V ±5% 110 s
V
PP = VDD 110 s
Parameter Block Erase VPP = 12V ±5% 0.8 10 s
VPP = VDD 0.8 10 s
Program/Erase Cycles (per Block) 100,000 cycles
Data Retention 20 years
M28W160CT, M28W160CB
16/49
BLOCK LOCKING
The M28W160C features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency. This locking
scheme has three levels of protection.
Lock/ Unlock - th is first leve l allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be
changed.
VPP VPPLK - the third level offers a complete
hardware protection against program and erase
on all blocks.
The lock status of each block can be set to
Locked, Unlocked, and Lock-Down. Table 9, de-
fines all of the possible protection states (WP,
DQ1, DQ0 ), an d Appendix C, Figure 22, shows a
flowchart for the loc king operations.
Reading a Block’s Lock Status
The lock status of every block can be read in the
Read Electronic Signature mode of the device. To
enter this mode write 90h to the device. Subse-
quent reads at the address specified in Table 5,
will output the lock status of that block. The lock
status is represented by DQ0 and DQ1. DQ0 indi-
cates the Block Lock/Unlock status and is set by
the Lock command and cleared by the Unlock
command. I t is also autom atica lly set when enter-
ing Lock-Down. DQ1 indicates the Loc k-Down sta-
tus and is set by the Lock-Down command. It
cannot be cleared by software, only by a hardware
reset or power-down.
The following sections explain t he operati on of the
locking system.
Locked State
The default status of all blocks on power-up or af-
ter a hardware reset is Locked (states (0,0,1) or
(1,0,1)). Locked blocks are fully protected from
any progr am or erase. Any program or erase oper-
ations attempted on a locked block will return an
error in the Status Register. The Status of a
Locked block can be changed to Unlocked or
Lock-Down using the appropriate software com-
mands. An Unlocked block can be Locked by issu-
ing the Lock com mand.
Unlocked State
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),
can be programmed or erased. All unlocked
blocks re tu rn to the Locked sta te after a hardware
reset or when the device is powered-down. The
status of an unlocked block can be changed to
Locked or Locked-Down using the appropriate
software commands. A locked block can be un-
locked by issuing the Unlock command.
Lock-Down State
Blocks that are Locked-Down (state (0,1,x))are
protected from p rogram a nd erase operations (as
for Locked blocks) but their lock statu s cannot be
changed using software commands alone. A
Locked or Unlocked block can be Locked-Down by
issuing the Lock-Down command. Locked-Down
blocks revert to the Locked sta te when the device
is reset or powered-down.
The Lock-Do wn function is depen dent on the WP
input pin. When WP=0 (VIL), the blocks in the
Lock-Down state (0,1,x) are protected from pro-
gram, erase and protection status changes. When
WP=1 (VIH) the Lock-Down function is disabled
(1,1,1) and Locked-Down blocks can be individu-
ally unlocked to the (1,1,0) state by issuing the
software command, where they can be erased and
programmed. These blocks can then be relocked
(1,1,1) and unlocked (1,1,0) as desired while WP
remains high. When WP is lo w , blocks that were
previously Locked-Down return to the Lock -Down
state (0,1,x) regardless of any changes made
while WP was high. Device reset or power-down
resets all bl oc ks , including those in Lock-Down, to
the Locked state.
Locking Operations During Erase Suspend
Changes to block lock status can be performed
during an erase suspend by using the standard
locking command sequences to unlock, lock or
lock-down a block. This is useful in the case when
another block needs to be updated while an erase
operation i s in progress .
To change block locking during an erase opera-
tion, first write t he Erase Suspend comm and, then
check the status register until it indicates that the
erase operation has been suspended. Next write
the desired Lock command sequence to a block
and the protection status will be changed. After
completing any des ired lock, read, or program op-
erations, resume the erase operation with the
Erase Resume command.
If a block is locked or locked-down during an erase
suspend of the same block, the locking status bits
will be changed im mediately, but when the erase
is resumed, the erase operation will complete.
Locking ope ra tions c annot be performed du ring a
program suspend. Refer to Appendix D, Com-
mand Interface and Program/Erase Controller
State, for detailed information on which com-
mands are valid during erase suspend.
17/49
M28W160CT, M28W160CB
Table 8. Block Lock Status
Table 9. Protection Status
Note: 1. The p rotect i on status is defined by th e write protec t pi n and by DQ1 (‘1’ f or a locked-down block) and DQ0 (‘1’ for a lo cked bl ock)
as read in the Read Elec tr oni c Signat ure com m and with A1 = VIH and A0 = V IL.
2. All blocks are l ocked at power-up, so the default configuration i s 001 or 101 accor di ng to WP status.
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
Item Address Data
Block Lock Configuration
xx002
LOCK
Block is Unlocked DQ0=0
Block is Locke d DQ0=1
Block is Locked-Down DQ1=1
Current
Protection Status(1)
(WP, DQ1, DQ0)
Next Protection Status(1)
(WP, DQ1, DQ0)
Current State Program/Erase
Allowed
After
Block Lock
Command
After
Block Unlock
Command
After Block
Lock-Down
Command
After
WP trans ition
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
1,0,1(2) no 1,0,1 1,0,0 1,1,1 0,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1
1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1
0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
0,0,1(2) no 0,0,1 0,0,0 0,1,1 1,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1 1,1,1 or 1,1,0 (3)
M28W160CT, M28W160CB
18/49
STATUS REGIST E R
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits c onvey inf ormation and errors on
the operation. To read the Status register the
Read Status Register command can be issued, re-
fer to Read Status Register Command section. To
output the cont ents, the Status Register is latched
on the falling edge of the Chip Enable or Output
Enable signal s, and can be read until Chi p Enable
or Output Enable returns to VIH. Either Chip En-
able or Output Enable must be toggled to update
the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are s um marized in
Table 10, Status Register Bits. Refer to Table 10
in co njunction with the following text descriptions.
Program/Erase Controll er Status ( Bit 7). The Pro-
gr a m/Erase Controller Status bit indicates whether
the Program/ Erase Controller is activ e or inact i ve.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Pro-
gram/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low im-
mediately after a Program/Erase Suspend com-
mand is issued unt i l the Program/Eras e Controller
pauses. After the Program/E rase Cont roller paus-
es the bit is High .
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled t o find the
end of the operation. Other bits i n the Status Reg-
ister should not be tested until the Program /Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, V PP
Status and Block Lock Status bits should be tested
for errors.
Erase Suspend Status (Bit 6). The Erase Sus-
pend Status b it indicates that an Erase o perati on
has been suspended or is going to be suspended.
When the Erase Suspend Status bit is High (set to
‘1’), a Program/Erase Suspend command has
been issued and t he memo ry is waiting for a P ro-
gram/Erase Resume command.
The Er ase Suspend St atus should only be consid-
ered valid when the Program/Erase Controller Sta-
tus bit is High (Program/Erase Controller inactive).
Bit 7 i s set within 30µs of the Program /Erase Sus-
pend command being issued therefore the memo-
ry may still complete the operation rather than
entering t he Suspend mode.
When a Program/Erase Resume command is is-
sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Pro gram/
Erase Controller has applied the maximum num-
ber of pulses to the block and still failed to verify
that the block has erased corr ectly. The Erase Sta-
tus bit should be read once the Program/Erase
Controller Status bit is High (Prog ram/Erase Con-
troller inactive).
Once s et High, the Erase Status bit can only be re-
set Low by a Clear Status Register c ommand or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Pro-
gram/Erase Controller has applied the maximum
number of pulses to the by te and still failed to ver-
ify that it has programm ed correctly. The Program
Status bit should be read once t he Program/Erase
Controller Status bit is High (Prog ram/Erase Con-
troller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set Hi gh it should be reset be-
fore a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3). The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can oc-
cur if VPP becomes invali d during an operation.
When the VPP Status bit is Low (set to ‘0), the volt-
age on the VPP pin was sampled at a valid voltage;
when the VPP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the VPP Lockout
Voltage, VPPLK, the memory is protect ed and Pro-
gram and Erase operations cannot be perform ed.
Once set High, the VPP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset be-
fore a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspen d Status (Bit 2). The Program
Suspend St atus bit indicates that a Program oper-
ation has been suspended. When the Program
Suspend Status bit is High (set to ‘1’), a P rogram/
Erase Suspend command has been issued and
the memory is waiting for a Program/Erase Re-
sume command. The Program Suspend Status
should only be considered valid when the Pro-
19/49
M28W160CT, M28W160CB
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set within 5µs of
the Program/Erase Suspend command being is-
sued therefore the me mory may still complete t he
operation rather than entering the Suspend mode.
When a Program/Erase Resume command is is-
sued the Program Suspend Stat us bit returns Low.
Block Protection Status (Bit 1). The Block Pro-
tection Status bit can be used to identi fy if a Pro-
gram or Erase operation has tried to modify the
contents of a locked block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been at-
tempted on a lock ed block .
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register c om-
mand or a hardware reset. If set High it shoul d be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and
Pseudo Codes, for using the Status Register.
Table 10. Status Register Bits
Note: Logic level ’1’ is High, ’0’ is Low.
Bit Name Logic Level Definition
7 P/E.C. Status ’1’ Ready
’0’ Busy
6 Erase Suspend Status ’1’ Suspended
’0’ In progress or Completed
5 Erase Status ’1’ Erase Error
’0’ Erase Success
4 Program Status 1’ Program Error
’0’ Program Succ ess
3VPP Status ’1 VPP Invalid, Abort
’0’ VPP OK
2 Program Suspend Status ’1’ Suspended
’0’ In Progress or Completed
1 Block Protection Status 1’ Program/Erase on protected Block, Abort
’0’ No operation to protected blocks
0 Reserved
M28W160CT, M28W160CB
20/49
MAX I MUM R A TI N G
Stressing the device ab ove t he rating listed in t he
Absolute Maxi mum Ratings table m ay cause per-
manent damage to the device. These are stress
ratings only and operation of the device at t hes e or
any other con ditions ab ove those i ndicated i n the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating con-
ditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality docu-
ments.
Table 11. Absolute Maximum Ratings
Not e: 1. Depends on range.
Symbol Parameter Value Unit
Min Max
TAAmbient Operating Temperature (1) – 40 85 °C
TBIAS Temperature Under Bias – 40 125 °C
TSTG S torage Te mperat ure – 55 155 °C
VIO Input or Output Voltage – 0.6 VDDQ+0.6 V
VDD, VDDQ Supply Voltage – 0.6 4.1 V
VPP Program Voltage – 0.6 13 V
21/49
M28W160CT, M28W160CB
DC AND AC PARAMETERS
This section summarizes the operating and mea-
surement conditions, and the DC and AC charac-
teristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are de-
rived from tests performed under the Measure-
ment Conditions summarized in Table 12,
Operating and AC Measurement Conditions. De-
signers should check that the operating conditions
in their circu it match the measurement conditions
when relying on th e quoted parameters.
Table 12. Operating and AC Measurem en t Conditions
Figure 7. AC Measurement I/O Wavefo rm Figure 8. AC Measurem ent Load Circuit
Table 13. Capacitance
No te : Sampled only, not 100% te sted.
M28W160CT, M28W160CB
Parameter 70 85 90 100 Units
Min Max Min Max Min Max Min Max
VDD Supply Voltage 2.7 3.6 2.7 3.6 2.7 3.6 2.7 3.6 V
VDDQ Supply Voltage (VDDQ
VDD)2.7 3.6 2.7 3.6 2.7 3.6 1.65 3.6 V
Ambient Operati ng Tem peratur e 40 85 40 85 40 85 – 40 85 °C
Load Capacitance (CL)50 50 50 50 pF
Input Rise and Fall Times 5 5 5 5 ns
Input Pulse Voltages 0 to VDDQ 0 to VDDQ 0 to VDDQ 0 to VDDQ V
Input and Output Timing Ref.
Voltages VDDQ/2 VDDQ/2 VDDQ/2 VDDQ/2 V
AI00610
VDDQ
0V
VDDQ/2
AI00609C
VDDQ
CL
CL includes JIG capacitance
25k
DEVICE
UNDER
TEST
0.1µF
VDD
0.1µF
VDDQ
25k
Symbol Parameter Test Condition Min Max Unit
CIN Input Capacitance VIN = 0V 6pF
C
OUT Output Capacitance VOUT = 0V 12 pF
M28W160CT, M28W160CB
22/49
Table 14. DC Characteristics
Symbol Parameter Test Condition Min Typ Max Unit
ILI Input Leakage Current 0V VIN VDDQ ±1 µA
ILO Output Leakage Current 0V VOUT VDDQ ±10 µA
IDD Supply Current (Read) E = VSS, G = VIH, f = 5MHz 10 20 mA
IDD1 Supply Current (Stand-by or
Automatic Stand-by) E = VDDQ ± 0.2V,
RP = VDDQ ± 0.2V 15 50 µA
IDD2 Supply Current
(Reset) RP = VSS ± 0.2V 15 50 µA
IDD3 Supply Current (Program)
Program in progress
VPP = 12V ± 5% 10 20 mA
Program in progress
VPP = VDD 10 20 mA
IDD4 Supply Current (Erase)
Erase in progress
VPP = 12V ± 5% 520mA
Erase in progress
VPP = VDD 520mA
I
DD5 Supply Current
(Program/Erase Suspend) E = VDDQ ± 0.2V,
Erase suspended 50 µA
IPP Program Current
(Read or Stand-by) VPP > VDD 400 µA
IPP1 Program Current
(Read or Stand-by) VPP VDD A
I
PP2 Program Current (Reset) RP = VSS ± 0.2V A
I
PP3 Program Current (Program)
Program in progress
VPP = 12V ± 5% 10 mA
Program in progress
VPP = VDD A
I
PP4 Program Current (Erase)
Erase in progress
VPP = 12V ± 5% 10 mA
Erase in progress
VPP = VDD A
V
IL Input Low Voltage –0.5 0.4 V
VDDQ 2.7V –0.5 0.8 V
VIH Input High Voltage VDDQ –0.4 VDDQ +0.4 V
VDDQ 2.7V 0.7 VDDQ VDDQ +0.4 V
VOL Output Low Voltage IOL = 100µA, VDD = VDD min,
VDDQ = VDDQ min 0.1 V
VOH Output High Voltage IOH = –100µA, VDD = VDD min,
VDDQ = VDDQ min VDDQ –0.1 V
VPP1 Program Voltage (Program or
Erase operations) 1.65 3.6 V
VPPH Program Voltage
(Program or Erase
operations) 11.4 12.6 V
VPPLK Program Voltage
(Program and Erase lock-out) 1V
V
LKO VDD Supply Voltage (Program
and Erase lock-out) 2V
23/49
M28W160CT, M28W160CB
Figure 9. Read Mode AC Waveforms
Table 15. Read AC Characteristics
Not e: 1. Sampled only, not 100% tested.
2. G may be delayed by up to tELQV - tGLQV after the fallin g edge of E without in creasi ng tELQV.
Symbol Alt Parameter M28W160C Unit
70 85 90 100
tAVAV tRC Address Valid to Next Address Valid Min 70 85 90 100 ns
tAVQV tACC Address Valid to Output Valid Max 70 85 90 100 ns
tAXQX (1) tOH Address Transition to Output Transition Min 0 0 0 0 ns
tEHQX (1) tOH Chip Enable High to Output Transition Min 0 0 0 0 ns
tEHQZ (1) tHZ Chip Enable High to Output Hi-Z Max 20 20 25 30 ns
tELQV (2) tCE Chip Enable Low to Output Valid Max 70 85 90 100 ns
tELQX (1) tLZ Chip Enable Low to Output Transition Min 0 0 0 0 ns
tGHQX (1) tOH Output Enable High to Output Transition Min 0 0 0 0 ns
tGHQZ (1) tDF Output Enable High to Output Hi-Z Max 20 20 25 30 ns
tGLQV (2) tOE Output Enable Low to Output Valid Max 20 20 30 35 ns
tGLQX (1) tOLZ Output Enable Low to Output Transition Min 0 0 0 0 ns
DQ0-DQ15
AI03813b
VALID
A0-A19
E
tAXQX
tAVAV
VALID
tAVQV
tELQV
tELQX
tGLQV
tGLQX
ADDR. VALID
CHIP ENABLE OUTPUTS
ENABLED DATA VALID STANDBY
G
tGHQX
tGHQZ
tEHQX
tEHQZ
M28W160CT, M28W160CB
24/49
Figure 10. Write AC Waveforms, Wr ite Enable Controlled
E
G
W
DQ0-DQ15 COMMAND CMD or DATA STATUS REGISTER
VPP
VALIDA0-A19
tAVAV
tQVVPL
tAVWH tWHAX
PROGRAM OR ERASE
tELWL tWHEH
tWHDXtDVWH
tWLWH
tWHWL
tVPHWH
SET-UP COMMAND CONFIRM COMMAND
OR DATA INPUT STATUS REGISTER
READ
1st POLLING
tELQV
AI03814b
tWPHWH
WP
tWHGL
tQVWPL
tWHEL
25/49
M28W160CT, M28W160CB
Table 16. Write AC Characteristics, Write Enable Controlle d
Not e: 1. Sampled only, not 100% tested.
2. Appli cable if VPP is se en as a logic i nput (V PP < 3. 6V).
Symbol Alt Parameter M28W160C Unit
70 85 90 100
tAVAV tWC Write Cycle Time Min 70 85 90 100 ns
tAVWH tAS Address Valid to Write Enable High Min 45 45 50 50 ns
tDVWH tDS Data Valid to Write Enable High Min 45 45 50 50 ns
tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 0 0 ns
tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns
tQVVPL (1,2) Output Valid to VPP Low Min 0 0 0 0 ns
tQVWPL Output Valid to Write Protect Low Min 0 0 0 0 ns
tVPHWH (1) tVPS VPP High to Write Enable High Min 200 200 200 200 ns
tWHAX tAH Write Enable High to Address Transition Min 0 0 0 0 ns
tWHDX tDH Write Enable High to Data Transition Min 0 0 0 0 ns
tWHEH tCH Write Enable High to Chip Enable High Min 0 0 0 0 ns
tWHEL Write Enable High to Chip Enable Low Min 25 25 30 30 ns
tWHGL Write Enable High to Output Enable Low Min 20 20 30 30 ns
tWHWL tWPH Write Enable High to Write Enable Low Min 25 25 30 30 ns
tWLWH tWP Write Enable Low to Write Enable High Min 45 45 50 50 ns
tWPHWH Write Protect High to Write Enable High Min 45 45 50 50 ns
M28W160CT, M28W160CB
26/49
Figure 11. Write AC Waveforms, Chip Enable Controlled
E
G
DQ0-DQ15 COMMAND CMD or DATA STATUS REGISTER
VPP
VALIDA0-A19
tAVAV
tQVVPL
tAVEH tEHAX
PROGRAM OR ERASE
tWLEL tEHWH
tEHDX
tDVEH
tELEH
tEHEL
tVPHEH
POWER-UP AND
SET-UP COMMAND CONFIRM COMMAND
OR DATA INPUT STATUS REGISTER
READ
1st POLLING
tELQV
AI03815b
W
tWPHEH
WP
tEHGL
tQVWPL
27/49
M28W160CT, M28W160CB
Table 17. W rite AC Characteristics, Chip Enable Controlled
Not e: 1. Sampled only, not 100% tested.
2. Appli cable if VPP is se en as a logic i nput (V PP < 3. 6V).
Symbol Alt Parameter M28W160C Unit
70 85 90 100
tAVAV tWC Write Cycle Time Min 70 85 90 100 ns
tAVEH tAS Address Valid to Chip Enable High Min 45 45 50 50 ns
tDVEH tDS Data Valid to Chip Enable High Min 45 45 50 50 ns
tEHAX tAH Chip Enable High to Address
Transition Min 0 0 0 0 ns
tEHDX tDH Chip Enable High to Data Transition Min 0 0 0 0 ns
tEHEL tCPH Chip Enable High to Chip Enable Low Min 25 25 30 30 ns
tEHGL Chip Enable High to Output Enable
Low Min 25 25 30 30 ns
tEHWH tWH Chip Enable High to Write Enable High Min 0 0 0 0 ns
tELEH tCP Chip Enable Low to Chip Enable High Min 45 45 50 50 ns
tELQV Chip Enable Low to Output Valid Min 70 85 90 100 ns
tQVVPL (1,2) Output Valid to VPP Low Min 0 0 0 0 ns
tQVWPL Data Valid to Write Protect Low Min 0 0 0 0 ns
tVPHEH (1) tVPS VPP High to Chip Enable High Min 200 200 200 200 ns
tWLEL tCS Write Enable Low to Chip Enable Low Min 0 0 0 0 ns
tWPHEH Write Protect High to Chip Enable High Min 45 45 50 50 ns
M28W160CT, M28W160CB
28/49
Figure 12. Power-Up and Reset AC Waveforms
Table 18. Po wer-Up and Reset AC Characteristics
No te : 1. The device Reset is po ssibl e but not gu aranteed if tPLPH < 10 0ns.
2. Sampled only, not 100% tested.
3. It is im portant to assert R P in order to al l ow prop er CPU init i al i zation during power up or reset .
Symbol Parameter Test Condition M28W160C Unit
70 85 90 100
tPHWL
tPHEL
tPHGL
Reset High to Write Enable Low, Chip
Enable Low, Output Enable Low
During
Program
and Erase Min 50 50 50 50 µs
others Min 30 30 30 30 ns
tPLPH(1,2) Reset Low to Reset High Min 100 100 100 100 ns
tVDHPH(3) Supply Voltages High to Reset High Min 50 50 50 50 µs
AI03537b
W,
RP
tPHWL
tPHEL
tPHGL
E, G
VDD, VDDQ
tVDHPH
tPHWL
tPHEL
tPHGL
tPLPH
Power-Up Reset
29/49
M28W160CT, M28W160CB
PACKAGE MECHANICAL
Figure 13. TSOP 48 - 48 lead Plastic Thin Small Outli ne, 12 x 20mm, Package Outline
Not e: Drawing is not to scale.
Table 19. TSOP48 - 48 lead Plastic Thin Small Ou tline, 12 x 20mm, Packag e Mech anical Data
Not e: Drawing is not to scale
Symbol mm inches
Typ Min Max Typ Min Max
A 1.20 0.0472
A1 0.05 0.15 0.0020 0.0059
A2 0.95 1.05 0.0374 0.0413
B 0.17 0.27 0.0067 0.0106
C 0.10 0.21 0.0039 0.0083
D 19.80 20.20 0.7795 0.7953
D1 18.30 18.50 0.7205 0.7283
E 11.90 12.10 0.4685 0.4764
e 0.50 0.0197
L 0.50 0.70 0.0197 0.0279
α
N48 48
CP 0.10 0.0039
TSOP-a
D1
E
1 N
CP
B
e
A2
A
N/2
D
DIE
C
LA1 α
M28W160CT, M28W160CB
30/49
Figure 14. TFBGA4 6 6. 39x6 .37 m m - 8x6 ball array, 0.75mm pitch, Bottom View Packa ge Ou tline
Drawing is not to scale.
Table 20. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data
E1E
D1
D
bA2
A1
A
BGA-Z13
ddd
e
e
FD
FE
SD
SE
BALL "A1"
Symbol millimeters inches
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.200 0.0079
A2 1.000 0.0394
b 0.400 0.350 0.450 0.0157 0.0138 0.0177
D 6.390 6.290 6.490 0.2516 0.2476 0.2555
D1 5.250 0.2067
ddd 0.100 0.0039
E 6.370 6.270 6.470 0.2508 0.2469 0.2547
e 0.750 0.0295
E1 3.750 0.1476
FD 0.570 0.0224
FE 1.310 0.0516
SD 0.375 0.0148
SE 0.375 0.0148
31/49
M28W160CT, M28W160CB
Figure 15. TFBGA4 6 Daisy Chain - Pa ckag e Connections (Top view thro ug h package)
Figure 16. TFBGA46 Daisy Chain - PCB Connections pro posal (Top view through package)
AI03298
C
B
A
87654321
E
D
F
AI3299
C
B
A
87654321
E
D
F
START
POINT
END
POINT
M28W160CT, M28W160CB
32/49
PART NUMBERING
Table 21. Ordering Information Scheme
Table 22. Daisy Chain Orderi ng Sch eme
Note:Devices are shipped from the factor y with the memory content bits erased to ’1’. For a list of available
options (Speed, Pac kage, etc.) or for further inf ormation on any aspect of this device, please contact
the ST Sales Office nearest to you.
Example: M28W160CT 90 N 6 T
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V
Device Function
160C = 16 Mbit (1 Mb x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
70 = 70 ns
85 = 85 ns
90 = 90 ns
100 = 100 ns
Package
N = TSOP48: 12 x 20 mm
ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
Option
T = Tape & Reel 24mm Packing
S = Tape & Reel 16mm Packing
Example: M28W160C -ZB T
Device Type
M28W160C
Daisy Chain
-ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch
Option
T = Tape & Reel Packing
33/49
M28W160CT, M28W160CB
APPENDIX A. BLOCK ADDRESS TABLES
Table 23. Top Boot Block Addresses,
M28W160CT Table 24. Bottom Bo ot Block Addresses,
M28W160CB
#Size
(KWord) Address Range
0 4 FF000-FFFFF
1 4 FE000-FEFFF
2 4 FD000-FDFFF
3 4 FC000-FCFFF
4 4 FB000-FBFFF
5 4 FA000-FAFFF
6 4 F9000-F9FFF
7 4 F8000-F8FFF
8 32 F0000-F7FFF
99 32 E8000-EFFFF
10 32 E0000-E7FFF
11 32 D8000-DFFFF
12 32 D0000-D7FFF
13 32 C8000-CFFFF
14 32 C0000-C7FFF
15 32 B8000-BFFFF
16 32 B0000-B7FFF
17 32 A8000-AFFFF
18 32 A0000-A7FFF
19 32 98000-9FFFF
20 32 90000-97FFF
21 32 88000-8FFFF
22 32 80000-87FFF
23 32 78000-7FFFF
24 32 70000-77FFF
25 32 68000-6FFFF
26 32 60000-67FFF
27 32 58000-5FFFF
28 32 50000-57FFF
29 32 48000-4FFFF
30 32 40000-47FFF
31 32 38000-3FFFF
32 32 30000-37FFF
33 32 28000-2FFFF
34 32 20000-27FFF
35 32 18000-1FFFF
36 32 10000-17FFF
37 32 08000-0FFFF
38 32 00000-07FFF
#Size
(KWord) Address Range
38 32 F8000-FFFFF
37 32 F0000-F7FFF
36 32 E8000-EFFFF
35 32 E0000-E7FFF
34 32 D8000-DFFFF
33 32 D0000-D7FFF
32 32 C8000-CFFFF
31 32 C0000-C7FFF
30 32 B8000-BFFFF
29 32 B0000-B7FFF
28 32 A8000-AFFFF
27 32 A0000-A7FFF
26 32 98000-9FFFF
25 32 90000-97FFF
24 32 88000-8FFFF
23 32 80000-87FFF
22 32 78000-7FFFF
21 32 70000-77FFF
20 32 68000-6FFFF
19 32 60000-67FFF
18 32 58000-5FFFF
17 32 50000-57FFF
16 32 48000-4FFFF
15 32 40000-47FFF
14 32 38000-3FFFF
13 32 30000-37FFF
12 32 28000-2FFFF
11 32 20000-27FFF
10 32 18000-1FFFF
9 32 10000-17FFF
8 32 08000-0FFFF
7 4 07000-07FFF
6 4 06000-06FFF
5 4 05000-05FFF
4 4 04000-04FFF
3 4 03000-03FFF
2 4 02000-02FFF
1 4 01000-01FFF
0 4 00000-00FFF
M28W160CT, M28W160CB
34/49
APPENDIX B. COMMON FL ASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC ap-
proved, standardized data structure that can be
read from the Flash memory device. It allows a
system sof tware t o query the de vic e to determine
various electrical and timing parameters, density
information and functions supported by t he mem-
ory. The system can interface easily with the de-
vice, enabling the s oftware to upgrad e itse lf when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the m em ory. Tables 25 , 26,
27, 28, 29 and 30 show the addresses used to re-
trieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is writ-
ten (see Table 30, Security Code area). This area
can be accessed only in Read mode by the final
user. It is impos sible to change t he secu rity num -
ber after it has been written by ST. Issue a Read
command to return to Read mode.
Table 25. Query Structure Overview
Note: Query data are always presented on the lowest order data outputs.
Table 26. CFI Query Identification String
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ 8-DQ15 are ‘0’.
Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information
10h CFI Query Identification String Command set ID and algorithm data offset
1Bh System Interface Information Device timing & voltage information
27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table Additional information specific to the Primary
Algorithm (optional)
A Alternate Algorithm-specific Extended Query table Additional information specific to the Alternate
Algorithm (optional)
Offset Data Description Value
00h 0020h Manufacturer Code ST
01h 88CEh
88CFh Device Code Top
Bottom
02h-0Fh reserved Reserved
10h 0051h "Q"
11h 0052h Query Unique ASCII String "QRY" "R"
12h 0059h "Y"
13h 0003h Primary Algorithm Command Set and Control Interface ID code 16 bit ID code
defining a specific algorithm Intel
compatible
14h 0000h
15h 0035h Address for Primary Algorithm extended Query table (see Table 28) P = 35h
16h 0000h
17h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor -
specified algorithm supported (0000h means none exists) NA
18h 0000h
19h 0000h Address for Alternate Algorithm extended Query table
(0000h means none exists) NA
1Ah 0000h
35/49
M28W160CT, M28W160CB
Table 27. CFI Query System In terface Information
Offset Data Description Value
1Bh 0027h VDD Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 mV 2.7V
1Ch 0036h VDD Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4 BCD value in volts
bit 3 to 0 BCD value in 100 mV 3.6V
1Dh 00B4h VPP [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV 11.4V
1Eh 00C6h VPP [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV 12.6V
1Fh 0004h Typical time-out per single word program = 2n µs 16µs
20h 0004h Typical time-out for Double Word Program = 2n µs 16µs
21h 000Ah Typical time-out per individual block erase = 2n ms 1s
22h 0000h Typical time-out for full chip erase = 2n ms NA
23h 0005h Maximum time-out for word program = 2n times typical 512µs
24h 0005h Maximum time-out for Double Word Program = 2n times typical 512µs
25h 0003h Maximum time-out per individual block erase = 2n times typical 8s
26h 0000h Maximum time-out for chip erase = 2n times typical NA
M28W160CT, M28W160CB
36/49
Table 28. Device Geometry Definition
Offset W or d
Mode Data Description Value
27h 0015h Device Size = 2n in number of bytes 2 MByte
28h
29h 0001h
0000h Flash Device Interface Code description x16
Async.
2Ah
2Bh 0002h
0000h Maximum number of bytes in multi-byte program or page = 2n 4
2Ch 0002h Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size. 2
M28W160CT
2Dh
2Eh 001Eh
0000h Region 1 Information
Number of identical-size erase block = 001Eh+1 31
2Fh
30h 0000h
0001h Region 1 Information
Block size in Region 1 = 0100h * 256 byte 64 KByte
31h
32h 0007h
0000h Region 2 Information
Number of identical-size erase block = 0007h+1 8
33h
34h 0020h
0000h Region 2 Information
Block size in Region 2 = 0020h * 256 byte 8 KByte
M28W160CB
2Dh
2Eh 0007h
0000h Region 1 Information
Number of identical-size erase block = 0007h+1 8
2Fh
30h 0020h
0000h Region 1 Information
Block size in Region 1 = 0020h * 256 byte 8 KByte
31h
32h 001Eh
0000h Region 2 Information
Number of identical-size erase block = 001Eh+1 31
33h
34h 0000h
0001h Region 2 Information
Block size in Region 2 = 0100h * 256 byte 64 KByte
37/49
M28W160CT, M28W160CB
Table 29. Primary Algorithm- Speci fic Extended Qu ery Ta ble
No te : 1. See T able 26, of fset 15 for P pointer defin i tion.
Offset
P = 35h (1) Data Description Value
(P+0)h = 35h 0050h
Primary Algorithm extended Query table unique ASCII string “PRI”
"P"
(P+1)h = 36h 0052h "R"
(P+2)h = 37h 0049h "I"
(P+3)h = 38h 0031h Major version number, ASCII "1"
(P+4)h = 39h 0030h Minor version number, ASCII "0"
(P+5)h = 3Ah 0066h Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
bit 0 Chip Erase supported (1 = Yes, 0 = No)
bit 1 Suspend Erase supported (1 = Yes, 0 = No)
bit 2 Suspend Program supported (1 = Yes, 0 = No)
bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No)
bit 4 Queued Erase supported (1 = Yes, 0 = No)
bit 5 Instant individual block locking supported (1 = Yes, 0 = No)
bit 6 Protection bits supported (1 = Yes, 0 = No)
bit 7 Page mode read supported (1 = Yes, 0 = No)
bit 8 Synchronous read supported (1 = Yes, 0 = No)
bit 31 to 9 Reserved; undefined bits are ‘0’
No
Yes
Yes
No
No
Yes
Yes
No
No
(P+6)h = 3Bh 0000h
(P+7)h = 3Ch 0000h
(P+8)h = 3Dh 0000h
(P+9)h = 3Eh 0001h Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1 Reserved; undefined bits are ‘0’ Yes
(P+A)h = 3Fh 0003h Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
bit 15 to 2 Reserved for future use; undefined bits are ‘0’
Yes
Yes
(P+B)h = 40h 0000h
(P+C)h = 41h 0030h VDD Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV
3V
(P+D)h = 42h 00C0h VPP Supply Optimum Program/Erase voltage
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV
12V
(P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available 01
(P+F)h = 44h 0080h Protection Field 1: Protection Description
This field describes user-available. One Time Programmable (OTP)
Protection register bytes. Some are pre-programmed with device unique
serial numbers. Others are user programmable. Bits 0–15 point to the
Protection register Lock byte, the section’s first byte.
The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7 Lock/bytes JEDEC-plane physical low address
bit 8 to 15 Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n " such that 2n = factory pre-programmed bytes
bit 24 to 31 "n " such that 2n = user programmable bytes
80h
(P+10)h = 45h 0000h 00h
(P+11)h = 46h 0003h 8 Byte
(P+12)h = 47h 0003h 8 Byte
(P+13)h = 48h Reserved
M28W160CT, M28W160CB
38/49
Table 30. Security Code Area
Offset Data Description
80h 00XX Protection Register Lock
81h XXXX
64 bits: unique device number
82h XXXX
83h XXXX
84h XXXX
85h XXXX
64 bits: User Programmable OTP
86h XXXX
87h XXXX
88h XXXX
39/49
M28W160CT, M28W160CB
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figu re 17 . Program Fl owchar t an d Pseud o C od e
No te : 1. Stat us chec k of b1 ( Prote ct ed Blo ck ), b3 (VPP Inv al i d) an d b4 (Program Error) can be mad e after each program operati on or after
a sequence.
2. If an er ror is found, the St atus Re gi ster must be cleared before fu rther P rogram/ E rase Controll e r operat ions.
Write 40h or 10h
AI03538b
Start
Write Address
& Data
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
M28W160CT, M28W160CB
40/49
Figu re 18. Double Word Prog ra m Fl owc ha rt a nd Pseudo Co de
No te : 1. Stat us chec k of b1 ( Prote ct ed Blo ck ), b3 (VPP Inv al i d) an d b4 (Program Error) can be mad e after each program operati on or after
a sequence.
2. If an er ror is found, the St atus Re gi ster must be cleared before fu rther P rogram/ E rase operati ons.
3. Address 1 an d Ad dress 2 must be co nsecuti ve a ddresse s di f fering only for bi t A0.
Write 30h
AI03539b
Start
Write Address 1
& Data 1 (3)
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
Write Address 2
& Data 2 (3)
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
41/49
M28W160CT, M28W160CB
Figure 19. Program Suspend & Resume Flowchart and Pseudo Code
Write 70h
AI03540b
Read Status
Register
YES
NO
b7 = 1
YES
NO
b2 = 1
Program Continues
Write D0h
Read data from
another address
Start
Write B0h
Program Complete
Write FFh
Read Data
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
}
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
}
Write FFh
M28W160CT, M28W160CB
42/49
Figure 20. Erase Flowcha rt and Pseudo Code
Note: If an error is found, the Status Regi st er must be cl eared before fu rther Program/Erase o perations.
Write 20h
AI03541b
Start
Write Block
Address & D0h
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
YES
b4, b5 = 1
VPP Invalid
Error (1)
Command
Sequence Error (1)
NO
NO
b5 = 0 Erase Error (1)
End
YES
NO
b1 = 0 Erase to Protected
Block Error (1)
YES
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
} while (status_register.b7== 0) ;
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
}
43/49
M28W160CT, M28W160CB
Figure 21. Erase Suspend & Resume Flow chart and Pseud o Code
Write 70h
AI03542b
Read Status
Register
YES
NO
b7 = 1
YES
NO
b6 = 1
Erase Continues
Write D0h
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
Start
Write B0h
Erase Complete
Write FFh
Read Data
Write FFh
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
}
else
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
M28W160CT, M28W160CB
44/49
Figu re 22 . Lo cki ng Operations Fl ow c hart and Pse ud o C ode
Write
01h, D0h or 2Fh
AI04364
Read Block
Lock States
YES
NO
Locking
change
confirmed?
Start
Write 60h locking_operation_command (address, lock_operation) {
writeToFlash (any_address, 0x60) ; /*configuration setup*/
if (readFlash (address) ! = locking_state_expected)
error_handler () ;
/*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/
}
Write FFh
Write 90h
End
if (lock_operation==LOCK) /*to protect the block*/
writeToFlash (address, 0x01) ;
else if (lock_operation==UNLOCK) /*to unprotect the block*/
writeToFlash (address, 0xD0) ;
else if (lock_operation==LOCK-DOWN) /*to lock the block*/
writeToFlash (address, 0x2F) ;
writeToFlash (any_address, 0x90) ;
45/49
M28W160CT, M28W160CB
Figure 23. Protection Register Program Flowchart and Pseudo Code
No te : 1. Stat us chec k of b1 ( Prote ct ed Blo ck ), b3 (VPP Inv al i d) an d b4 (Program Error) can be mad e after each program operati on or after
a sequence.
2. If an er ror is found, the St atus Re gi ster must be cleared before fu rther P rogram/ E rase Controll e r operat ions.
Write C0h
AI04381
Start
Write Address
& Data
Read Status
Register
YES
NO
b7 = 1
YES
NO
b3 = 0
NO
b4 = 0
VPP Invalid
Error (1, 2)
Program
Error (1, 2)
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
End
YES
NO
b1 = 0 Program to Protected
Block Error (1, 2)
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
if (status_register.b4==1) /*program error */
error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
}
M28W160CT, M28W160CB
46/49
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 31. Write State Machine Current/Next, sheet 1 of 2.
Note: Cm d = Command, Elect .S g. = Elec tr oni c Signature, Ers = Er ase, Prog. = P rogram, Pr ot = Protection, Sus = S uspend.
Curre nt
State SR
bit 7
Data
When
Read
Command Input (and Next State)
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read
Status
(70h)
Clear
Status
(50h)
Read Array “1 A rray Read Array Prog.Setup Ers. Se tup Read Array Read Sts. Read Array
Read
Status “1 Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Read
Elect.Sg. “1” Electronic
Signature Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Read CFI
Query “1” CFI Read Arra y Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Lo ck Setup “1 S tatus Lock Command Error Lock
(complete) Lock Cmd
Error Lock
(complete) Lock Command Error
Lock Cm d
Error “1” Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Lock
(complete) “1 Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Prot. Prog.
Setup “1 Status Protec t i on Regis ter Pro gram
Prot. Prog.
(continue) “0” S ta tus Protectio n Regis ter Progr am continue
Prot. Prog.
(complete) “1 Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Prog. Setup “1” Status Program
Program
(continue) “0” S ta tus P rogram (continue ) Prog. Sus
Re ad S ts Program (continu e)
Prog. Sus
Status “1 Status Prog. Sus
Read Arra y P rogram Suspend t o
Re ad A rray Program
(continue) P rog. Su s
Rea d Array Program
(continue) Prog. S u s
Read Sts Pro g. S u s
Read Array
Prog. Sus
Read Array “1 Array Prog. Sus
Read Arra y P rogram Suspend t o
Re ad A rray Program
(continue) P rog. Su s
Rea d Array Program
(continue) Prog. S u s
Read Sts Pro g. S u s
Read Array
Prog. Sus
Read
Elect.Sg. “1” Electronic
Signature Prog. Sus
Read Arra y P rogram Suspend t o
Re ad A rray Program
(continue) P rog. Su s
Rea d Array Program
(continue) Prog. S u s
Read Sts Pro g. S u s
Read Array
Prog. Sus
Read CFI “1 CFI Prog. Sus
Read Arra y P rogram Suspend t o
Re ad A rray Program
(continue) P rog. Su s
Rea d Array Program
(continue) Prog. S u s
Read Sts Pro g. S u s
Read Array
Program
(complete) “1 Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Erase
Setup “1 Status Erase Command Error Erase
(continue) Erase
CmdError Erase
(continue) Erase Command Error
Erase
Cmd.Error “1” Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
Erase
(continue) “0” S ta tus Eras e (continue) Erase Sus
Re ad S ts E rase (con tinue)
Eras e Sus
Rea d Sts “1 Status E rase S u s
Read Arra y Program
Setup Erase Sus
Read Array Erase
(continue) E rase Sus
Rea d Array Erase
(continue) Eras e Sus
Read Sts Er ase S us
Read Array
Eras e Sus
Read Array “1 Array Erase Su s
Read Arra y Program
Setup Erase Sus
Read Array Erase
(continue) E rase Sus
Rea d Array Erase
(continue) Eras e Sus
Read Sts Er ase S us
Read Array
Eras e Sus
Read
Elect.Sg. “1” Electronic
Signature Erase Sus
Read Arra y Program
Setup Erase Sus
Read Array Erase
(continue) E rase Sus
Rea d Array Erase
(continue) Eras e Sus
Read Sts Er ase S us
Read Array
Eras e Sus
Read CFI “1 CFI Erase S u s
Read Arra y Program
Setup Erase Sus
Read Array Erase
(continue) E rase Sus
Rea d Array Erase
(continue) Eras e Sus
Read Sts Er ase S us
Read Array
Erase
(complete) “1 Status Read Array Program
Setup Erase
Setup Rea d Array Read
Status Read Array
47/49
M28W160CT, M28W160CB
Table 32. Write State Machine Current/Next, sheet 2 of 2.
Note: Cm d = Command, Elect .S g. = Elec tr oni c Signature, Prog. = Program, Prot = P rot ection.
Current State
Command Input (and Next State)
Read Elect.Sg .
(90h)
Read CFI
Q u ery
(98h)
Lock S etup
(60h) Prot . Pr og .
Setup (C0h) Lock Confirm
(01h) Lock Down
Confirm (2Fh )
Unlock
Confirm
(D0h)
Read Arra y Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
Read Sta tus Re ad E l ect.Sg. R ead CFI Query Lock Set up Prot. Prog.
Setup Read Arra y
Read Ele ct .Sg. Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
Read CFI Query Read Elect .Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
Lock Setup Lock Com m a nd Error Lock (compl et e)
Loc k Cmd Error Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
Lock (c omplete) Re ad E l ect.Sg. R ead CFI Query Lock Set up Prot. Prog.
Setup Read Arra y
Prot. Prog.
Setup Prot ection Register Progr am
Prot. Prog.
(continue) Protection Register Program (continue)
Prot. Prog.
(complete) Read E l ect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
Prog. Setup Program
Program
(continue) Program (continue)
Prog. Sus p end
Read Status Pr og. Suspend
Re ad E l ect.Sg. Prog. Suspend
Read CFI Query P rogram Su spend Read Array Program
(continue)
Pr og. Suspen d
Read Array Prog. Suspend
Re ad E l ect.Sg. Prog. Suspend
Read CFI Query P rogram Su spend Read Array Program
(continue)
Pr og. Suspen d
Read Elect.Sg. Prog. Suspend
Re ad E l ect.Sg. Prog. Suspend
Read CFI Query P rogram Su spend Read Array Program
(continue)
Pr og. Suspen d
Read CFI Pr og. Suspend
Re ad E l ect.Sg. Prog. Suspend
Read CFI Query P rogram Su spend Read Array Program
(continue)
Program
(complete) Read Elect.Sg. Read CFIQuery Lock Setup Prot. Prog.
Setup Read Arra y
Erase Setup Erase Command Error Erase
(continue)
Erase
Cmd.Error Read Elect.Sg. R ead CFI Query Lock Set up Prot. Prog.
Setup Read Arra y
Eras e (continue) Erase (continue)
Erase Suspend
Read Status Erase Suspend
Re ad E l ect.Sg. Erase Suspend
Read CFI Query Lo ck Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read Array Erase Suspend
Re ad E l ect.Sg. Erase Suspend
Read CFI Query Lo ck Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read Elect.Sg. Erase Suspend
Re ad E l ect.Sg. Erase Suspend
Read CFI Query Lo ck Setup Erase Suspend Read Array Erase
(continue)
Erase Suspend
Read CFI Query Erase Suspend
Re ad E l ect.Sg. Erase Suspend
Read CFI Query Lo ck Setup Erase Suspend Read Array Erase
(continue)
Eras e
(complete) Read E l ect.Sg. Read CFI Query Lock Setup Prot. Prog.
Setup Read Arra y
M28W160CT, M28W160CB
48/49
RE VISION HISTORY
Table 33. D ocum ent Revision History
Date Version Revision Details
January 2001 -01 First Issue
3/06/01 -02 Document type: from Preliminary Data to Data Sheet
70ns Speed Class added
24-Apr-2001 -03 Completely rewritten and restructured, 85ns speed class added.
29-May-2001 -04 Corrections made to CFI data.
31-May-2001 -05 Corrections to TFBGA46 package dimensions.
02-Jul-2001 -06 Corrections to Table 3. Commands (Lock, Unlock, Lock-Down)
31-Oct-2001 -07 VDDQ Maximum changed to 3.3V
Commands Table, Read CFI Query Address on 1st cycle changed to ‘X’ (Table 3)
tWHEL description clarified (Table 16)
16-May-2002 -08 VDDQ Maximum changed to 3.6V, TFBGA package dimensions added to description.
19-Feb-2003 8.1
Revision numbering modified: a minor revision will be indicated by incrementing the
digit after the dot, and a major revision, by incrementing the digit before the dot
(revision version 08 equals 8.0). Revision History moved to end of document.
Data Retention parameter added to Table 7, Program, Erase Times and Program/
Erase Endurance Cycles. S option added to Table 21, Ordering Information Scheme,
and T option specified.
49/49
M28W160CT, M28W160CB
Info rm atio n fur ni shed is bel i eved to be ac curate an d rel i able. However, STMicroelect ronics assumes no responsibili t y for t he consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is grant ed
by i m pl i cation or oth erwise unde r any pat ent or paten t rights of STMi croel ectron i cs . Speci fications mentioned i n thi s public at ion are s ubject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for u se as crit i cal component s in l i fe suppo rt devices or syst em s without exp ress writ t en approval of STM i croelectronics.
The ST log o i s regis tered tr ademark of STMic roelectroni cs
All other na mes are the p roperty of thei r respective ow ners.
© 2003 ST Microelectronics - All Rights Reserved
STMic ro electronics GRO UP OF COMPANI ES
Aust ralia - B razil - Canada- China - Finland - France - Ger many - Ho ng Kong - India - Ital y - Japan - Ma l aysia - Malta - Mo rocco -
Sin gapore - S pai n - Sweden - Swit zerla nd - United King dom - U.S.A .
www.st.com