LTC5585
16
5585fa
pin FuncTions
IP2Q, IP2I (Pin 1, Pin 4): IIP2 Adjustment Analog Control
Voltage Input for Q and I Channel. A decoupling capacitor
is recommended on this pin. A low output resistance volt-
age source is recommended for driving these pins. These
pins should be left floating if unused.
DCOQ, DCOI (Pin 2, Pin 3): DC Offset Analog Control
Voltage Input for Q and I Channel. A decoupling capaci-
tor is recommended on this pin. A low output resistance
voltage source is recommended for driving these pins.
These pins should be left floating if unused.
RF (Pin 5): RF Input. External matching is used to obtain
good return loss across the RF input frequency range.
The RF pin is internally shorted to ground through internal
transformer windings. The RF pin should be DC-blocked
with a 1000pF coupling capacitor.
GND (Pins 6, 8, 13, 14, Exposed Pad Pin 25): Ground.
These pins must be soldered to the RF ground plane on
the circuit board. The backside exposed pad ground con-
nection should have a low inductance connection and
good thermal contact to the printed circuit board ground
plane using many through-hole vias. See Figures 2 and 3.
EN (Pin 7): Enable Pin. When the voltage on the EN pin
is a logic high, the chip is completely turned on; the chip
is completely turned off for a logic low. An internal 200k
pull-down resistor ensures the chip remains disabled if
there is no connection to the pin (open-circuit condition).
VBIAS (Pin 9): This pin can be pulled to ground through
a resistor to lower the current consumption of the chip.
See Applications Information.
VCC (Pin 10): Positive Supply Pin. This pin should be
bypassed with shunt 1000pF and 1µF capacitors.
EDC (Pin 11): DC Offset Adjustment Mode Enable Pin.
When the voltage on the EDC pin is a logic high, the DC
offset control circuitry is enabled. The circuitry is disabled
for a logic low. An internal 200k pull-down resistor ensures
the circuitry remains disabled if there is no connection to
the pin (open-circuit condition).
EIP2 (Pin 12): IP2 Offset Adjustment Mode Enable Pin.
When the voltage on the EIP2 pin is a logic high, the IP2
adjustment circuitry is enabled. The circuitry is disabled
for a logic low. An internal 200k pull-down resistor ensures
the circuitry remains disabled if there is no connection to
the pin (open-circuit condition).
LO+,LO– (Pin 15, Pin 16): LO Inputs. External matching
is required to obtain good return loss across the LO input
frequency range. Can be driven single ended or differen-
tially with an external transformer. The LO pins should be
DC-blocked with a 1000pF coupling capacitor.
VCAP, CMQ, CMI (Pin 17, Pin 18, Pin 19): Common Mode
Bypass Capacitor Pins. It is recommended that CMI and
CMQ be connected to VCAP through 0.1µF capacitors.
Nothing else should be connected to VCAP since it is con-
nected to VCC inside the chip.
I+, I–, Q+, Q– (Pin 23, Pin 22, Pin 21, Pin 20): Differential
Baseband Output Pins for the I Channel and Q Channel.
The DC bias point is VCC – 1.5V for each pin. These pins
must have an external 100Ω or an inductor pull-up to VCC.
REF (Pin 24): Voltage Reference Input for Analog Control
Voltage Pins. A decoupling capacitor is recommended
on this pin. A low output resistance voltage source is
recommended for driving this pin. This pin should be left
floating if unused.