Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
PQ05TZ51/PQ05TZ11 Series
Outline Dimensions (Unit : mm)
Surface Mount Type Low Power-Loss Voltage Regulators
Features
Low power-loss(Dropout voltage: MAX 0.5V)
Surface mount type package(Equivalent to EIAJ SC-63)
Output current:
(0.5A : PQ2TZ55, PQ3TZ50/53, PQ05TZ51 series)
(1.0A : PQ2TZ15, PQ05TZ11 series)
Output voltage precision: ±2.5%
Built-in ON/OFF control function
Low dissipation current at OFF-state(Iqs: MAX.5µA)
Tape packaged type is also available.
(φ330mm reel: 3 000pcs.)
Applications
Personal computers
Personal information tools(PDA)
Various OA equipment
• Please refer to the chapter " Handling Precautions ".
2.5V output
3.0V output
3.3V output
5V output
9V output
12V output
0.5A output
PQ2TZ55
PQ3TZ50
PQ3TZ53
PQ05TZ51
PQ09TZ51
PQ12TZ51
1.0A output
PQ2TZ15
PQ05TZ11
PQ09TZ11
PQ12TZ11
Model Line-ups
Parameter Symbol
Rating
Unit
V
IN
V
C
I
O
P
D
T
j
T
opr
T
stg
T
sol
10 24
10 24
0.5
1
8
150
20 to +80
40 to +150
260(For 10s)
V
V
A
W
˚C
˚C
˚C
˚C
Input voltage
ON/OFF control terminal voltage
Output current
Power dissipation
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
1
1
2
3
1
All are open except GND and applicable terminals.
2
P
D
:With infinite heat sink.
3
Overheat protection may operate at 125<=T
j
<=150˚C
Absolute Maximum Ratings
(T
a
=25˚C)
PQ2TZ55, PQ3TZ50/53, PQ05TZ51 series
PQ2TZ15, PQ05TZ11 series
PQ2TZ
X
5
PQ3TZ5
X
PQ
XX
TZ51
PQ
XX
TZ11
2TZ55
6.6MAX
9.7MAX
2.5MIN
5.2±0.5
2.3±0.5
5.5±0.5
(0.5)
(0.5)
(0.9) (1.7)
0.5
+0.2
0.1
4(1.27)
(0~0.25)
DC input(VIN)
ON/OFF control terminal(VC)
DC output(VO)
NC
GND
Heat sink is common to (VO).
Specific IC
Internal connection diagram
1
12
2
3
3
3
4
5
5
1 2 3
3
45
Notice In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig. 2 Test Circuit for Ripple Rejection
e
i
VIN 2.7V
IO
e
o
RL
0.33µF
47µF
+
+
VC
f=120Hz(sine wave)
e
i(rms)
=0.5V
VIN=3.3V(PQ2TZ55/15)
5V(PQ3TZ50/53)
7V(PQ05TZ51/11)
11V(PQ09TZ51/11)
14V(PQ12TZ51/11)
IO=0.5A(PQ2TZ15)
IO=0.3A(PQ2TZ55/PQ3TZ50/53/PQxxTZ51/11)
RR=20 log(e
i(rms)
/e
o(rms)
)
1
2
3
5
V
Fig. 1 Test Circuit
A
V
A
A
V
IN
I
q
I
C
I
O
V
O
V
C
R
L
0.33µF
47µF
+
1
2
3
5
Input voltage
Output voltage
Load regulation
Line regulation
Temperature coefficient of output voltage
Ripple rejection
Dropout voltage
4 ON-state voltage for control
ON-state current for control
OFF-state voltage for control
OFF-state
current for
control
Quiescent
current
Output OFF-state consumption current
PQ2TZ55/15
PQ3TZ50
PQ3TZ53
PQ2TZ55/15
PQ3TZ50
PQ3TZ53
PQ05TZ51/11
PQ09TZ51/11
PQ12TZ51/11
PQ05TZ51/11
PQ2TZ55/15
PQ3TZ50/53
PQ05TZ51/11
PQ2TZ55/15
PQ3TZ50/53
PQ05TZ51/11
PQ2TZ55/15
PQ3TZ50/53
Symbol
VIN
Vo
RegL
RegI
TcVo
RR
Vi-o
Vc(on)
Ic(on)
Vc(off)
Ic(off)
Iq
Iqs
Conditions
––
5, 9
5, 6
Io=5mA, 10
Tj=0 to 125˚C, Io=5mA, 5
Refer to Fig.2
7, 9
5, 8, 9
5, 9
5
5, Vc=0.4V
5, Io=0A
5, Vc=0.4V, Io=0A
MIN.
3.0
3.4
3.7
2.438
2.925
3.218
4.88
8.87
11.7
––
––
––
45
––
––
2.0
––
––
––
––
––
––
TYP.
––
––
––
2.5
3.0
3.3
5.0
9.0
12.0
0.2
0.1
±0.01
60
0.2
––
––
––
––
––
4
––
––
MAX.
10.0
10.0
10.0
2.562
3.075
3.382
5.12
9.22
12.3
2.0
2.5
––
––
0.5
0.5
––
200
0.8
2
10
10
5
Unit
V
V
%
%
%/˚C
dB
V
V
µA
V
µA
mA
µA
Parameter
Electrical Characteristics
(Unless otherwise specified, conditions shall be4,VC=2.7V, Ta=25˚C)
4
PQ2TZ55 : Io=0.3A, V
IN
=3.3V, PQ2TZ15 : Io=0.5A, V
IN
=3.3V
5
PQ2TZ51/11 :V
IN
=7V, PQ09TZ51/11 : V
IN
=11V, PQ12TZ51/11 : V
IN
=14V, PQ3TZ50/53 : V
IN
=5V
6
PQxxTZ51, PQ3TZ50/53, PQ2TZ55 : Io=5mA to 0.5A, PQxxTZ51, PQ2TZ15 : Io=5mA to 1.0A
7
Input voltage shall be the value when output voltage is 95% in comparison with the initial value.
8
In case of opening control terminal , output voltage turns off.
9
PQxxTZ51, PQ3TZ50/53 : Io=0.3A, PQxxTZ11, PQ2TZ55 : Io=0.5A, PQ2TZ15 : Io=1.0A
PQ3TZ50 : V
IN
=3.4V, PQ3TZ53 : V
IN
=3.7V, PQ2TZ55/15 : V
IN
=3V
10
PQ05TZ51/11 : V
IN
=6V to 16V, PQ09TZ51/11 : V
IN
=10V to 20V, PQ12TZ51/11 : V
IN
=13V to 23V, PQ3TZ50/53 : V
IN
=4V to 10V,
PQ2TZ55/15 : V
IN
=3V to 10V
2
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig. 3 Power Dissipation vs. Ambient
Temperature Fig. 4 Overcurrent Protection
Characteristics
Fig. 5 Overcurrent Protection
Characteristics(PQ2TZ15)
Fig. 8 Output Voltage Deviation vs.
Junction Temperature(PQ2TZ55)
Relative output voltage (%)
Output current I
O
(A)
0
0
20
40
60
80
100
0.3 0.6 0.9 1.2 1.5 1.8 2.1
PQxxTZ5/51
PQxxTZ1/11
Fig. 6 Overcurrent Protection Characteristics
(Typical Value)(PQ3TZ50/53)
Fig. 7
Overcurrent Protection Characteristics
(Typical Value)(PQxxTZ51/11)
(PQ2TZ55)
Note)
Oblique line portion : Overheat protection may operate in this area.
;;;
;;;
;;;
P
D
:With infinite heat sink
Power dissipation P
D
(W)
Ambient temperature T
a
(˚C)
0
20 0
P
D
4020 60 80
5
10
0 0.5 1.0 1.5 2.0
Output voltage V
O
(V)
Output current I
O
(A)
3
1
2
0
V
IN
=4.5V
V
IN
=7.5V
V
IN
=3.0V
T
j
=25˚C
V
IN
=3.5V
0 0.5 1.0 1.5 2.52.0
3
1
2
0
Output voltage V
O
(V)
Output current I
O
(A)
V
IN
=4.5V
V
IN
=7.5V
V
IN
=3.0V
T
j
=25˚C
V
IN
=3.5V
100
80
40
60
20
0
Relative output voltage (%)
Output current I
O
(A)
0 0.5 1.0 1.5 2.0
V
i-o
=5V
V
i-o
=2V
V
i-o
=0.5V
T
a
=25˚C
V
i-o
=1V
1.0
25 0 25 50 75 100 125
0.6
0.2
0.2
0.6
0.8
0.4
0.0
0.4
0.8 V
IN
=3.3V
I
O
=0.3A
1.0
Output voltage deviation V
O
(mV)
Junction temperature T
j
(˚C)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig. 9 Output Voltage Deviation vs.
Junction Temperature (PQ2TZ15) Fig.10 Output Voltage Deviation vs. Junction
Temperature(PQ3TZ50/PQ3TZ53)
Output voltage deviation V
O
(mV)
Junction temperature T
j
(˚C)
25 0
0
50
45
40
35
30
25
20
15
10
5
5
10
15
20
25
30
35
25 50 75 100 125
V
IN
=7V , I
O
=5mA , V
C
=2.7V
25 0
0
90
80
70
60
50
40
30
20
10
10
20
30
40
50
60
70
25 50 75 100 125
VIN=11V , IO=5mA , VC=2.7V
Output voltage deviation VO (mV)
Junction temperature T
j
(˚C)
Output voltage deviation V
O
(mV)
Junction temperature T
j
(˚C)
25 0
0
90
80
70
60
50
40
30
20
10
10
20
30
40
50
60
70
25 50 75 100 125
V
IN
=14V , I
O
=5mA , V
C
=2.7V
Fig.11 Output Voltage Deviation vs. Junction
Temperature(PQ05TZ51/11)
Fig.13 Output Voltage Deviation vs. Junction
Temperature(PQ12TZ51/11)
Fig.12 Output Voltage Deviation vs. Junction
Temperature(PQ09TZ51/11)
Fig.14 Output Voltage vs. Input Voltage
(PQ2TZ55)
VIN=5V
IO=0.3A
25 0 5025 10075 125
30
20
10
0
10
20
30
Output voltage deviation VO (mV)
Junction temperature T
j
(˚C)
0012345
1
2
3
R
L
=R
L
=5
R
L
=10
Output voltage V
O
(V)
Input voltage V
IN
(V)
Tj
=25˚C
1.0
10 0 25 50 75 100 125
0.6
0.2
0.2
0.6
0.8
0.4
0.0
0.4
0.8 V
IN
=3.3V
I
O
=0.5A
1.0
Output voltage deviation V
O
(mV)
Junction temperature Tj (˚C)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
0012345
1
2
3
R
L
=R
L
=2.5
R
L
=5
Output voltage V
O
(V)
Input voltage V
IN
(V)
Tj
=25˚C
Fig.15 Output Voltage vs. Input Voltage
(PQ2TZ15) Fig.16 Output Voltage vs. Input Voltage
Fig.17 Output Voltage vs. Input Voltage
(PQ3TZ50)
(PQ3TZ53)
001234 65
1
2
3
4
R
L
=R
L
=6
R
L
=10
Output voltage V
O
(V)
Input voltage V
IN
(V)
Ta
=25˚C
001234 65
1
2
3
4
RL=RL=6
RL=10
Output voltage VO (V)
Input voltage VIN (V)
Ta =25˚C
Output voltage V
O
(V)
Input voltage V
IN
(V)
012345678
1
2
3
4
5
6
7V
C
=2.7V , C
i
=0.33µF , C
0
=47µF
R
L
=20R
L
=10
R
L
=
Fig.18 Output Voltage vs. Input Voltage
(PQ05TZ51)
Output voltage V
O
(V)
Input voltage V
IN
(V)
05 15
10
5
15 V
C
=2.7V , C
i
=0.33µF , C
0
=47µF
T
j
=25˚C
R
L
=36
R
L
=18
R
L
=
10
Fig.19 Output Voltage vs. Input Voltage
(Typical Value) (PQ09TZ51)
Output voltage VO (V)
Input voltage VIN (V)
10
05 15
10
5
15 VC=2.7V , C
i
=0.33µF , C0=47µF
T
j
=25˚C
RL=24
RL=48
RL=
Fig.20 Output Voltage vs. Input Voltage
(Typical Value) (PQ12TZ51)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig.22 Output Voltage vs. Input Voltage
(PQ09TZ11)
Fig.21 Output Voltage vs. Input Voltage
(Typical Value) (PQ05TZ11)
Fig.23 Output Voltage vs. Input Voltage
(PQ12TZ11)
Output voltage V
O
(V)
Input voltage V
IN
(V)
012345678
1
2
3
4
5
6
7
8V
C
=2.7V , Ci=0.33µF , C
0
=47µF
Tj=25˚C
R
L
=5
R
L
=10
R
L
=
Output voltage V
O
(V)
Input voltage V
IN
(V)
10
05 15
10
5
15 V
C
=2.7V , C
i
=0.33µF , C
0
=47µF
T
j
=25˚C
R
L
=12
R
L
=24
R
L
=
Output voltage VO (V)
Input voltage VIN (V)
10
05 15
10
5
15 VC=2.7V , Ci=0.33µF , C0=47µF
Tj=25˚C
RL=9
RL=18
RL=
Fig.24 Circuit Operating Current vs. Input
Voltage (PQ2TZ55)
Fig.25 Circuit Operating Current vs. Input
Voltage (PQ2TZ15) Fig.26 Circuit Operating Current vs. Input
Voltage (PQ3TZ50)
0052413
10
20
RL=
RL=5
RL=10
Circuit operating current IBIAS (mA)
Input voltage VIN (V)
T
j
=25˚C
0052413
10
20
R
L
=
R
L
=2.5
R
L
=5
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
T
j
=25˚C
001234 65
10
20
30
R
L
=
R
L
=10
R
L
=6
T
a
=25˚C
40
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig.27 Circuit Operating Current vs. Input
Voltage (PQ3TZ53)
Fig.29 Circuit Operating Current vs. Input
Voltage (PQ09TZ51)
Fig.31 Circuit Operating Current vs. Input
Voltage (PQ05TZ11)
Fig.30 Circuit Operating Current vs. Input
Voltage (PQ12TZ51)
Fig.32 Circuit Operating Current vs. Input
Voltage (PQ09TZ11)
Fig.28 Circuit Operating Current vs. Input
Voltage (PQ05TZ51)
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
012345678
10
20
30
V
C
=2.7V , C
i
=0.33µF
C
0
=47µF
R
L
=20
R
L
=10
R
L
=
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
0 5 10 15
10
20
30
V
C
=2.7V , Ci=0.33µF , C
0
=47µF
RL=36
RL=18
RL=
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
0 5 10 15
10
20
30
V
C
=2.7V , C
i
=0.33µF , C
0
=47µF
R
L
=48
R
L
=24
R
L
=
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
012345678
10
20
30
V
C
=2.7V , Ci=0.33µF
C
0
=47µF
R
L
=10
R
L
=5
R
L
=
0 5 10 15
10
20
30
V
C
=2.7V , C
i
=0.33µF , C
0
=47µF
R
L
=18
R
L
=9
R
L
=
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
001234 65
10
20
30
R
L
=
R
L
=10
R
L
=6
T
a
=25˚C
40
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig.33 Circuit Operating Current vs. Input
Voltage (PQ12TZ11)
Input voltage V
IN
(V)
Circuit operating current I
BIAS
(mA)
0 5 10 15
10
20
30
V
C
=2.7V , C
i
=0.33µF
C
0
=47µF
R
L
=24
R
L
=12
R
L
=
Fig.34 Dropout Voltage vs. Junction
Temperature
25 0 5025 10075 125
0.5
0.4
0.2
0.3
0.1
0
Dropout voltage V
i
O (V)
Junction temperature T
j
(˚C)
VIN :Value when output voltage is 95%
in comparison with the initial value.
IO=0.5A
IO=0.4A
IO=0.3A
IO=0.2A
IO=0.1A
Fig.35
Dropout Voltage vs. Junction Temperature
(PQ05TZ51/PQ09TZ51/PQ12TZ51)
Junction temperature T
j
(˚C)
Dropout voltage V
iO
(V)
20 0 20 40 60 80 100 120
0
0.05
0.10
0.15
0.20
0.25
0.30 I
O
=0.5A
I
O
=0.4A
I
O
=0.3A
I
O
=0.2A
I
O
=0.1A
Fig.36
Dropout Voltage vs. Junction Temperature
(PQ05TZ11/PQ09TZ11/PQ12TZ11)
Junction temperature T
j
(˚C)
Dropout voltage V
iO
(V)
20 0 20 40 60 80 100 120
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
I
O
=1.0A
I
O
=0.75
A
I
O
=0.5A
I
O
=0.25
A
Fig.37 Quiescent Current vs. Junction
Temperature (PQ2TZ55) Fig.38 Quiescent Current vs. Junction
Temperature (PQ2TZ15)
0
25 0 25 50 75 100 125
1.0
2.0
3.0
4.0
VIN =3.3V
IO =0A
5.0
Quiescent current I
q
(mA)
Junction temperature T
j
(˚C)
0
25 0 25 50 75 100 125
1.0
2.0
3.0
4.0
V
IN
=3.3V
I
O
=0A
5.0
Quiescent current I
q
(mA)
Junction temperature T
j
(˚C)
(PQ3TZ50/PQ3TZ53)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
0
25 0 25 50 75 100 125
3
1
4
2
VIN =5V
IO =0A
5
Quiescent current Iq (mA)
Junction temperature Tj (˚C)
Fig.39 Quiescent Current vs. Junction
Temperature (Typical Value) Fig.40 Quiescent Current vs. Junction
Temperature (PQxxTZ51/11)
Junction temperature Tj (˚C)
Quiescent current Iq (mA)
0 25 50 75 100 12520
0
1
2
3
4
5VIN=7V (PQ05TZ51/11)
VIN=11V (PQ09TZ51/11)
VIN=14V (PQ12TZ51/11)
IO=0A
VC=2.7V
25 0 5025 10075 125
3.0
2.5
1.5
2.0
0.5
1.0
0
ON-state voltage for control VC(ON) (V)
Junction temperature Tj (˚C)
VIN =5V
IO=0.3A
Fig.41 ON-state Voltage for Control vs.
Junction Temperature(Typical Value)
Input ripple frequency f
(kHz)
Ripple rejection RR (dB)
0
0.1 101 100
20
40
60
80
10
30
50
70
V
IN
=5V
Io=0.3A
e
i(rms)
=0.5V
Fig.42 Ripple Rejection vs. Input Ripple
Frequency
Fig.43 Ripple Rejection vs. Input Ripple Frequency
(PQ05TZ51/PQ09TZ51/PQ12TZ51)
Ripple rejection RR (dB)
Input ripple frequency f
(kHz)
Tj=25˚C
RR=20 log(ei(rms)/eo(rms))
I
O
=0.3A
e
i(rms)
=0.5V(sine wave)
0.1 1 10 100
30
35
40
45
50
55
60
65
70
V
IN
=7V (PQ05TZ51)
=11V (PQ09TZ51)
=14V (PQ12TZ51)
PQ05TZ51 PQ09TZ51
PQ12TZ51
Fig.44
Ripple Rejection vs. Input Ripple Frequency
(PQ05TZ11/PQ09TZ11/PQ12TZ11)
Ripple rejection RR (dB)
Input ripple frequency f
(kHz)
T
j
=25˚C
RR=20 log(ei(rms)/eo(rms))
I
O
=0.3A
ei(rms)=0.5V(sine wave)
0.1 1 10 100
30
35
40
45
50
55
60
65
70
PQ05TZ11
PQ09TZ11
PQ12TZ11
V
IN
=7V (PQ05TZ11)
=11V (PQ09TZ11)
=14V (PQ12TZ11)
(PQ3TZ50/PQ3TZ53)
(PQ3TZ50/PQ3TZ53) (PQ3TZ50/PQ3TZ53)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig.45
Ripple Rejection vs. Output Current
(PQ05TZ51/PQ09TZ51/PQ12TZ51)
Fig.46
Ripple Rejection vs. Output Current
(PQ05TZ11/PQ09TZ11/PQ12TZ11)
Output current I
O
(A)
Ripple rejection RR (dB)
0 0.1 0.2 0.3 0.4 0.5
10
20
30
40
50
60
70
80
90
100
PQ05TZ51 PQ09TZ51
PQ12TZ51
T
j
=25˚C
f=120Hz
(sine wave)
ei(rms)=0.5V
V
IN
=7V (PQ05TZ51)
=11V (PQ09TZ51)
=14V (PQ12TZ51)
Output current I
O
(A)
Ripple rejection RR (dB)
0 0.5 1.0
10
20
30
40
50
60
70
80
90
100
PQ05TZ11 PQ09TZ11
PQ12TZ11
T
j
=25˚C
f=120Hz
(sine wave)
e
i(rms)
=0.5V
V
IN
=7V (PQ05TZ11)
=11V (PQ09TZ11)
=14V (PQ12TZ11)
Fig.47 Output Peak Current vs. Junction
Temperature(Typical Value)
(PQ3TZ50/PQ3TZ53)
25 0 5025 10075 125
2.0
1.5
1.0
0.5 I
OP
:Output current when
Output voltage is 95%
in comparison with
the initial value
0
Output peak current I
OP
(A)
Junction temperature Tj (˚C)
2V
1V
0.5V
V
IN
V
O
=5V
Output peak current I
OP
(A)
Dropout voltage V
i
O
(V)
I
OP
:Output current when
output voltage is 95%
in comparison with
the initial value
012345678910
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
Fig.48
Output Peak Current vs. Dropout Voltage
(PQ05TZ51/PQ09TZ51/PQ12TZ51)
Junction temperature T
j
(˚C)
Output peak current IOP (A)
0 25 50 75 100 12520
0.9
1.0
1.1
1.2
1.3
1.4
1.5 VINVO=2V
1V
0.5V
I
OP
:Output current when
output voltage is 95%
in comparison with
the initial value
Fig.50
Output Peak Current vs. Junction Temperature
(PQ05TZ51/PQ09TZ51/PQ12TZ51)
Output peak current I
OP
(A)
Dropout voltage V
iO
(V)
012345678910
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
I
OP
:Output current when
output voltage is 95%
in comparison with
the initial value
Fig.49
Output Peak Current vs. Dropout Voltage
(PQ05TZ11/PQ09TZ11/PQ12TZ11)
Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series
Fig.51
Output Peak Current vs. Junction Temperature
(PQ05TZ11/PQ09TZ11/PQ12TZ11)
Sleeve-packaged products
Model Line-ups for Tape-packaged Products
Tape-packaged products
High-precision output type
PQ2TZ55/PQ3TZ50/PQ05TZ51 series
PQ2TZ15/PQ3TZ53/PQ05TZ11 series
High-precision output type
PQ2TZ55U/PQ3TZ50U/PQ05TZ5U series
PQ2TZ15U/PQ3TZ53U/PQ05TZ1U series
Output current
0.5A output
1.0A output
Load
VO
VIN
CO
DC input
+
High : Output ON
Low or Open : Output OFF
ON/OFF
signal
1
2
3
5
ON/OFF Operation
As shown in the figure,ON/OFF control function is available.
Fig.52 Power Dissipation vs. Ambient
Temperature (Typical Value)
Junction temperature T
j
(˚C)
Output peak current IOP (A)
0 25 50 75 100 12520
2.0
1.5
VINVO=2V
1V
0.5V
IOP:Output current when
output voltage is 95%
in comparison with
the initial value
0
20 0
Cu area 740mm2
Cu area 180mm2
Cu area 100mm2
Cu area 70mm2
Cu area 36mm2
20 40 60 80 100
1
2
3
Power dissipation PD (W)
Ambient temperature T
a
(˚C)
PWB
Material : Glass-cloth epoxy resin
Size : 50x50x1.6mm
Cu thickness : 35µm
PWB
Cu
NOTICE
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
--- Personal computers
--- Office automation equipment
--- Telecommunication equipment [terminal]
--- Test and measurement equipment
--- Industrial control
--- Audio visual equipment
--- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
--- Traffic signals
--- Gas leakage sensor breakers
--- Alarm equipment
--- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
--- Space applications
--- Telecommunication equipment [trunk lines]
--- Nuclear power control equipment
--- Medical and other life support equipment (e.g., scuba).
Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
other than those recommended by SHARP or when it is unclear which category mentioned above controls the
intended use.
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.