Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series PQ05TZ51/PQ05TZ11 Series Surface Mount Type Low Power-Loss Voltage Regulators Features Low power-loss(Dropout voltage: MAX 0.5V) Surface mount type package(Equivalent to EIAJ SC-63) Output current: (0.5A : PQ2TZ55, PQ3TZ50/53, PQ05TZ51 series) (1.0A : PQ2TZ15, PQ05TZ11 series) Output voltage precision: 2.5% Built-in ON/OFF control function Low dissipation current at OFF-state(Iqs: MAX.5A) Tape packaged type is also available. (330mm reel: 3 000pcs.) (Unit : mm) Outline Dimensions 5.20.5 (0.5) 9.7MAX 3 (1.7) 5.50.5 2TZ55 (0~0.25) Applications (0.9) 0.5 +0.2 -0.1 2.5MIN 2.30.5 6.6MAX 4-(1.27) (0.5) Personal computers Personal information tools(PDA) Various OA equipment 1 2.5V output 3.0V output 3.3V output 5V output 9V output 12V output 2 3 5 4 Model Line-ups 0.5A output PQ2TZ55 PQ3TZ50 PQ3TZ53 PQ05TZ51 PQ09TZ51 PQ12TZ51 1.0A output PQ2TZ15 Internal connection diagram PQ05TZ11 PQ09TZ11 PQ12TZ11 Absolute Maximum Ratings Parameter 1 Input voltage ON/OFF control terminal voltage PQ2TZ55, PQ3TZ50/53, PQ05TZ51 series Output current PQ2TZ15, PQ05TZ11 series 2 Power dissipation 3 Junction temperature Operating temperature Storage temperature Soldering temperature 1 3 1 Specific IC 1 2 3 4 5 DC input(VIN) ON/OFF control terminal(VC) DC output(VO) NC GND 2 5 Heat sink is common to 3 (VO). (Ta=25C) Rating Symbol PQ2TZX5 PQXXTZ51 PQ3TZ5X PQXXTZ11 VIN 10 24 VC 10 24 0.5 IO 1 PD 8 Tj 150 Topr -20 to +80 Tstg -40 to +150 Tsol 260(For 10s) Unit V V A W C C C C 1 All are open except GND and applicable terminals. PD:With infinite heat sink. 3 Overheat protection may operate at 125<=Tj<=150C 2 Notice * Please refer to the chapter " Handling Precautions ". In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/ Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series Electrical Characteristics (Unless otherwise specified, conditions shall be4,VC=2.7V, Ta=25C) Parameter PQ2TZ55/15 PQ3TZ50 Input voltage PQ3TZ53 PQ2TZ55/15 PQ3TZ50 PQ3TZ53 Output voltage PQ05TZ51/11 PQ09TZ51/11 PQ12TZ51/11 Load regulation Line regulation Temperature coefficient of output voltage Ripple rejection PQ05TZ51/11 PQ2TZ55/15 Dropout voltage PQ3TZ50/53 4 ON-state voltage for control ON-state current for control OFF-state voltage for control PQ05TZ51/11 OFF-state PQ2TZ55/15 current for PQ3TZ50/53 control PQ05TZ51/11 Quiescent PQ2TZ55/15 current PQ3TZ50/53 Output OFF-state consumption current 4 5 6 7 8 9 10 Symbol Conditions VIN -- MIN. 3.0 3.4 3.7 2.438 2.925 3.218 4.88 8.87 11.7 -- -- -- 45 -- TYP. -- -- -- 2.5 3.0 3.3 5.0 9.0 12.0 0.2 0.1 0.01 60 0.2 MAX. 10.0 10.0 10.0 2.562 3.075 3.382 5.12 9.22 12.3 2.0 2.5 -- -- 0.5 5, 9 RegL RegI TcVo RR 5, 6 Vi-o 7, 9 -- -- 0.5 Vc(on) Ic(on) Vc(off) 5, 8, 9 2.0 -- -- -- -- -- -- 200 0.8 V A V Ic(off) 5, Vc=0.4V -- -- 2 A -- 4 10 Iq 5, Io=0A -- -- 10 Iqs 5, Vc=0.4V, Io=0A -- -- 5 Io=5mA, 10 Tj=0 to 125C, Io=5mA, 5 Refer to Fig.2 5, 9 5 PQ05TZ51/11 : VIN=6V to 16V, PQ09TZ51/11 : VIN=10V to 20V, PQ12TZ51/11 : VIN=13V to 23V, PQ3TZ50/53 : VIN=4V to 10V, PQ2TZ55/15 : VIN=3V to 10V Fig. 2 Test Circuit Test Circuit for Ripple Rejection 1 VIN 1 3 2 5 0.33F 47F A VC V 47F + 3 ei 2 VIN 0.33F IO VC + 5 IO A + A Iq VO V Vo PQ2TZ55 : Io=0.3A, VIN=3.3V, PQ2TZ15 : Io=0.5A, VIN=3.3V PQ2TZ51/11 :VIN=7V, PQ09TZ51/11 : VIN=11V, PQ12TZ51/11 : VIN=14V, PQ3TZ50/53 : VIN=5V PQxxTZ51, PQ3TZ50/53, PQ2TZ55 : Io=5mA to 0.5A, PQxxTZ51, PQ2TZ15 : Io=5mA to 1.0A Input voltage shall be the value when output voltage is 95% in comparison with the initial value. In case of opening control terminal 2 , output voltage turns off. PQxxTZ51, PQ3TZ50/53 : Io=0.3A, PQxxTZ11, PQ2TZ55 : Io=0.5A, PQ2TZ15 : Io=1.0A PQ3TZ50 : VIN=3.4V, PQ3TZ53 : VIN=3.7V, PQ2TZ55/15 : VIN=3V Fig. 1 Unit RL V eo 2.7V RL IC f=120Hz(sine wave) ei(rms)=0.5V VIN=3.3V(PQ2TZ55/15) 5V(PQ3TZ50/53) 7V(PQ05TZ51/11) 11V(PQ09TZ51/11) 14V(PQ12TZ51/11) IO=0.5A(PQ2TZ15) IO=0.3A(PQ2TZ55/PQ3TZ50/53/PQxxTZ51/11) RR=20 log(ei(rms)/eo(rms)) V % % %/C dB V mA A Low Power-Loss Voltage Regulators Fig. 3 10 ;;; ;;; ;;; Power Dissipation vs. Ambient Temperature PQ05TZ51/PQ05TZ11 Series Fig. 4 PD:With infinite heat sink 3 Output voltage VO (V) Power dissipation PD (W) 5 VIN=3.0V VIN=3.5V 1 Fig. 6 Overcurrent Protection Characteristics(PQ2TZ15) 3 Tj =25C VIN=3.0V VIN=3.5V 1 VIN=7.5V 0 0.5 1.0 1.5 2.0 Output current IO (A) 0 2.0 Ta =25C Vi-o=0.5V Vi-o=1V 60 Vi-o=5V 40 Vi-o=2V 20 0 Fig. 8 100 0.5 1.0 1.5 Output current IO (A) Overcurrent Protection Characteristics (Typical Value)(PQ3TZ50/53) 80 2.5 Fig. 7 Overcurrent Protection Characteristics (Typical Value)(PQxxTZ51/11) VIN=7.5V 100 VIN=4.5V 2 0 0 Relative output voltage (%) Fig. 5 VIN=4.5V 2 0 20 40 60 80 Ambient temperature Ta (C) Note) Oblique line portion : Overheat protection may operate in this area. Output voltage VO (V) Tj =25C PD 0 -20 0 0.5 1.0 1.5 Output current IO (A) 2.0 Output Voltage Deviation vs. Junction Temperature(PQ2TZ55) 1.0 Output voltage deviation VO (mV) Relative output voltage (%) Overcurrent Protection Characteristics (PQ2TZ55) 80 PQxxTZ5/51 60 PQxxTZ1/11 40 20 0 0 0.3 0.6 0.9 1.2 1.5 1.8 Output current IO (A) 2.1 VIN=3.3V 0.8 IO=0.3A 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -25 0 25 50 75 100 Junction temperature Tj (C) 125 Low Power-Loss Voltage Regulators Fig. 9 30 VIN=3.3V 0.8 IO=0.5A 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -10 0 25 50 75 100 Junction temperature Tj (C) 25 50 75 100 0 Junction temperature Tj (C) 10 0 -10 -20 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 125 Fig.13 Output Voltage Deviation vs. Junction Temperature(PQ12TZ51/11) -25 -25 Output voltage VO (V) Output voltage deviation VO (mV) 125 Tj =25C RL=10 2 RL= RL=5 1 0 125 0 25 50 75 100 Junction temperature Tj (C) Fig.14 Output Voltage vs. Input Voltage (PQ2TZ55) VIN=14V , IO=5mA , VC=2.7V 0 25 50 75 100 Junction temperature Tj (C) 125 VIN=11V , IO=5mA , VC=2.7V 3 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 0 25 50 75 100 Junction temperature Tj (C) Fig.12 Output Voltage Deviation vs. Junction Temperature(PQ09TZ51/11) Output voltage deviation VO (mV) Output voltage deviation VO (mV) -25 VIN=7V , IO=5mA , VC=2.7V VIN=5V IO=0.3A 20 -30 -25 125 Fig.11 Output Voltage Deviation vs. Junction Temperature(PQ05TZ51/11) 35 30 25 20 15 10 5 0 - 5 -10 -15 -20 -25 -30 -35 -40 -45 -50 Fig.10 Output Voltage Deviation vs. Junction Temperature(PQ3TZ50/PQ3TZ53) Output voltage deviation VO (mV) Output voltage deviation VO (mV) 1.0 Output Voltage Deviation vs. Junction Temperature (PQ2TZ15) PQ05TZ51/PQ05TZ11 Series 0 1 2 3 4 Input voltage VIN (V) 5 Low Power-Loss Voltage Regulators Fig.15 Output Voltage vs. Input Voltage (PQ2TZ15) 4 Tj =25C RL=5 2 RL= RL=2.5 1 0 Fig.16 Output Voltage vs. Input Voltage (PQ3TZ50) Output voltage VO (V) Output voltage VO (V) 3 PQ05TZ51/PQ05TZ11 Series 0 1 2 3 4 Input voltage VIN (V) Fig.17 Output Voltage vs. Input Voltage (PQ3TZ53) 4 3 RL=6 RL= RL=10 2 1 0 5 Ta =25C 0 1 2 3 4 5 Input voltage VIN (V) 6 Fig.18 Output Voltage vs. Input Voltage (PQ05TZ51) VC=2.7V , Ci=0.33F , C0=47F Ta =25C 3 RL= Output voltage VO (V) Output voltage VO (V) 7 RL=6 RL=10 2 1 6 RL= 5 4 RL=20 RL=10 3 2 1 0 0 1 2 3 4 5 Input voltage VIN (V) 6 Fig.19 Output Voltage vs. Input Voltage (Typical Value) (PQ09TZ51) 15 VC=2.7V , Ci=0.33F , C0=47F Tj=25C 10 RL= RL=36 RL=18 5 0 10 5 Input voltage VIN (V) 15 1 2 3 4 5 6 Input voltage VIN (V) 7 8 Fig.20 Output Voltage vs. Input Voltage (Typical Value) (PQ12TZ51) Output voltage VO (V) Output voltage VO (V) 15 0 VC=2.7V , Ci=0.33F , C0=47F Tj=25C RL= 10 RL=48 RL=24 5 0 10 5 Input voltage VIN (V) 15 Low Power-Loss Voltage Regulators Fig.21 Output Voltage vs. Input Voltage (Typical Value) (PQ05TZ11) 8 Fig.22 Output Voltage vs. Input Voltage (PQ09TZ11) 15 Output voltage VO (V) VC=2.7V , Ci=0.33F , C0=47F Tj=25C 7 Output voltage VO (V) PQ05TZ51/PQ05TZ11 Series 6 5 RL= 4 RL=10 RL=5 3 2 VC=2.7V , Ci=0.33F , C0=47F Tj=25C 10 RL= RL=18 RL=9 5 1 0 1 2 3 4 5 6 Input voltage VIN (V) 7 8 Fig.23 Output Voltage vs. Input Voltage (PQ12TZ11) VC=2.7V , Ci=0.33F , C0=47F Tj=25C RL= 10 RL=24 RL=12 5 15 Fig.24 Circuit Operating Current vs. Input Voltage (PQ2TZ55) Circuit operating current IBIAS (mA) Output voltage VO (V) 15 10 5 Input voltage VIN (V) 0 Tj =25C 20 10 RL=5 RL=10 RL= 0 10 5 Input voltage VIN (V) 0 0 15 5 40 Tj =25C 20 RL=2.5 RL=5 10 2 3 4 Input voltage VIN (V) Fig.26 Circuit Operating Current vs. Input Voltage (PQ3TZ50) Circuit operating current IBIAS (mA) Circuit operating current IBIAS (mA) Fig.25 Circuit Operating Current vs. Input Voltage (PQ2TZ15) 1 RL= Ta =25C 30 20 RL=6 RL=10 RL= 10 0 0 0 1 2 3 4 Input voltage VIN (V) 5 0 1 2 3 4 5 Input voltage VIN (V) 6 Low Power-Loss Voltage Regulators Fig.27 Circuit Operating Current vs. Input Voltage (PQ3TZ53) PQ05TZ51/PQ05TZ11 Series Fig.28 Circuit Operating Current vs. Input Voltage (PQ05TZ51) Ta =25C Circuit operating current IBIAS (mA) Circuit operating current IBIAS (mA) 40 30 RL=6 RL=10 20 RL= 10 VC=2.7V, Ci=0.33F C0=47F 30 20 10 RL=10 RL=20 RL= 0 1 2 3 4 5 Input voltage VIN (V) 6 Fig.29 Circuit Operating Current vs. Input Voltage (PQ09TZ51) Circuit operating current IBIAS (mA) VC=2.7V, Ci=0.33F, C0=47F 30 20 10 RL=18 RL=36 RL= 0 5 10 Input voltage VIN (V) 30 20 RL=5 RL=10 RL= 0 1 2 3 4 5 6 Input voltage VIN (V) 7 8 2 3 4 5 6 Input voltage VIN (V) 7 8 VC=2.7V, Ci=0.33F, C0=47F 30 20 RL=24 10 RL=48 0 RL= 5 10 Input voltage VIN (V) 15 Fig.32 Circuit Operating Current vs. Input Voltage (PQ09TZ11) Circuit operating current IBIAS (mA) Circuit operating current IBIAS (mA) VC=2.7V , Ci=0.33F C0=47F 1 Fig.30 Circuit Operating Current vs. Input Voltage (PQ12TZ51) 15 Fig.31 Circuit Operating Current vs. Input Voltage (PQ05TZ11) 10 0 Circuit operating current IBIAS (mA) 0 VC=2.7V, Ci=0.33F, C0=47F 30 20 RL=9 10 RL=18 RL= 0 5 10 Input voltage VIN (V) 15 Low Power-Loss Voltage Regulators Fig.34 Dropout Voltage vs. Junction Temperature (PQ3TZ50/PQ3TZ53) 0.5 VC=2.7V , Ci=0.33F C0=47F Dropout voltage Vi-O (V) Circuit operating current IBIAS (mA) Fig.33 Circuit Operating Current vs. Input Voltage (PQ12TZ11) PQ05TZ51/PQ05TZ11 Series 30 20 10 RL=12 VIN :Value when output voltage is 95% in comparison with the initial value. 0.4 0.3 IO=0.5A IO=0.4A 0.2 IO=0.3A IO=0.2A IO=0.1A 0.1 RL=24 RL= 0 5 10 Input voltage VIN (V) 0 -25 15 Fig.35 Dropout Voltage vs. Junction Temperature (PQ05TZ51/PQ09TZ51/PQ12TZ51) 0 25 50 75 100 Junction temperature Tj (C) 125 Fig.36 Dropout Voltage vs. Junction Temperature (PQ05TZ11/PQ09TZ11/PQ12TZ11) 0.40 IO=0.5A Dropout voltage Vi-O (V) Dropout voltage Vi-O (V) 0.30 0.25 IO=0.4A 0.20 IO=0.3A 0.15 IO=0.2A 0.10 IO=0.1A 0.05 IO=1.0A 0.35 0.30 0.25 IO=0.75A 0.20 IO=0.5A 0.15 0.10 IO=0.25A 0.05 0 -20 0 20 40 60 80 100 120 -20 Junction temperature Tj (C) Fig.37 Quiescent Current vs. Junction Temperature (PQ2TZ55) Fig.38 Quiescent Current vs. Junction Temperature (PQ2TZ15) 5.0 5.0 VIN =3.3V IO =0A Quiescent current Iq (mA) VIN =3.3V IO =0A Quiescent current Iq (mA) 0 20 40 60 80 100 120 Junction temperature Tj (C) 4.0 3.0 2.0 1.0 0 -25 0 25 50 75 100 Junction temperature Tj (C) 125 4.0 3.0 2.0 1.0 0 -25 0 25 50 75 100 Junction temperature Tj (C) 125 Low Power-Loss Voltage Regulators Fig.39 Quiescent Current vs. Junction Temperature (Typical Value) (PQ3TZ50/PQ3TZ53) PQ05TZ51/PQ05TZ11 Series Fig.40 Quiescent Current vs. Junction Temperature (PQxxTZ51/11) 5 5 Quiescent current Iq (mA) Quiescent current Iq (mA) VIN =5V IO =0A 4 3 2 1 0 -25 0 25 50 75 100 Junction temperature Tj (C) 2.5 1.5 1.0 0.5 0 25 50 75 100 Junction temperature Tj (C) 125 Ripple Rejection vs. Input Ripple Frequency (PQ05TZ51/PQ09TZ51/PQ12TZ51) PQ05TZ51 50 40 30 20 VIN=5V 10 Io=0.3A ei(rms)=0.5V 0 0.1 1 10 Input ripple frequency f (kHz) 65 PQ09TZ51 Ripple rejection RR (dB) Ripple rejection RR (dB) 60 100 70 60 55 125 Fig.44 Ripple Rejection vs. Input Ripple Frequency (PQ05TZ11/PQ09TZ11/PQ12TZ11) 70 65 0 25 50 75 100 Junction temperature Tj (C) 70 2.0 Fig.43 1 80 VIN =5V IO=0.3A 0 -25 2 Fig.42 Ripple Rejection vs. Input Ripple Frequency (PQ3TZ50/PQ3TZ53) Ripple rejection RR (dB) ON-state voltage for control VC(ON) (V) 3.0 3 0 -20 125 Fig.41 ON-state Voltage for Control vs. Junction Temperature(Typical Value) (PQ3TZ50/PQ3TZ53) 4 VIN=7V (PQ05TZ51/11) VIN=11V (PQ09TZ51/11) VIN=14V (PQ12TZ51/11) IO=0A VC=2.7V PQ12TZ51 50 Tj=25C 45 VIN=7V (PQ05TZ51) =11V (PQ09TZ51) 40 =14V (PQ12TZ51) IO=0.3A 35 ei(rms)=0.5V(sine wave) RR=20 log(ei(rms)/eo(rms)) 30 0.1 1 10 Input ripple frequency f (kHz) 100 PQ05TZ11 60 55 PQ09TZ11 PQ12TZ11 50 Tj=25C 45 VIN=7V (PQ05TZ11) =11V (PQ09TZ11) 40 =14V (PQ12TZ11) IO=0.3A 35 ei(rms)=0.5V(sine wave) RR=20 log(ei(rms)/eo(rms)) 30 0.1 1 10 Input ripple frequency f (kHz) 100 Low Power-Loss Voltage Regulators Fig.46 Ripple Rejection vs. Output Current (PQ05TZ11/PQ09TZ11/PQ12TZ11) 100 100 90 90 80 PQ05TZ51 70 Ripple rejection RR (dB) Ripple rejection RR (dB) Fig.45 Ripple Rejection vs. Output Current (PQ05TZ51/PQ09TZ51/PQ12TZ51) PQ05TZ51/PQ05TZ11 Series PQ09TZ51 60 PQ12TZ51 50 Tj=25C VIN=7V (PQ05TZ51) =11V (PQ09TZ51) =14V (PQ12TZ51) ei(rms)=0.5V f=120Hz (sine wave) 40 30 20 10 0 0.1 0.2 0.3 0.4 Output current IO (A) PQ12TZ11 40 Tj=25C VIN=7V (PQ05TZ11) =11V (PQ09TZ11) =14V (PQ12TZ11) ei(rms)=0.5V f=120Hz (sine wave) 30 20 0.5 Output current IO (A) 1.0 Fig.48 Output Peak Current vs. Dropout Voltage (PQ05TZ51/PQ09TZ51/PQ12TZ51) 1.7 Output peak current IOP (A) Output peak current IOP (A) 50 0 VIN-VO =5V 2V 1V 1.0 0.5V 1.6 1.5 1.4 1.3 1.2 IOP:Output current when output voltage is 95% in comparison with the initial value 1.1 1 125 Fig.49 Output Peak Current vs. Dropout Voltage (PQ05TZ11/PQ09TZ11/PQ12TZ11) 0 1 2 3 4 5 6 7 8 9 10 Dropout voltage Vi-O (V) Fig.50 Output Peak Current vs. Junction Temperature (PQ05TZ51/PQ09TZ51/PQ12TZ51) 1.5 2.5 VIN-VO=2V 2.3 2.2 2.1 2.0 1.9 IOP:Output current when output voltage is 95% in comparison with the initial value 1.8 1.7 1.6 0 1 2 3 4 5 6 7 8 9 10 Dropout voltage Vi-O (V) Output peak current IOP (A) 2.4 Output peak current IOP (A) 60 0.5 2.0 0.5 IOP:Output current when Output voltage is 95% in comparison with the initial value 0 -25 0 25 50 75 100 Junction temperature Tj (C) PQ05TZ11 PQ09TZ11 70 10 Fig.47 Output Peak Current vs. Junction Temperature(Typical Value) (PQ3TZ50/PQ3TZ53) 1.5 80 1.4 1.3 1V 1.2 1.1 0.5V 1.0 IOP:Output current when output voltage is 95% in comparison with 0.9 the initial value -20 0 25 50 75 100 Junction temperature Tj (C) 125 Low Power-Loss Voltage Regulators PQ05TZ51/PQ05TZ11 Series Fig.51 Output Peak Current vs. Junction Temperature (PQ05TZ11/PQ09TZ11/PQ12TZ11) Output peak current IOP (A) VIN-VO=2V 2.0 1V 0.5V 1.5 IOP:Output current when output voltage is 95% in comparison with the initial value -20 0 25 50 75 100 125 Junction temperature Tj (C) Fig.52 Power Dissipation vs. Ambient Temperature (Typical Value) Power dissipation PD (W) 3 Cu area 740mm2 2 Cu area 180mm2 Cu area 100mm2 PWB Cu 1 Cu area 70mm2 Cu area 36mm2 0 -20 Material : Glass-cloth epoxy resin Size : 50x50x1.6mm Cu thickness : 35m 60 80 0 20 40 Ambient temperature Ta (C) 100 ON/OFF Operation As shown in the figure,ON/OFF control function is available. DC input 1 VO 3 2 5 CO + Load PWB VIN ON/OFF signal High : Output ON Low or Open : Output OFF Model Line-ups for Tape-packaged Products Sleeve-packaged products Tape-packaged products Output current High-precision output type High-precision output type 0.5A output PQ2TZ55/PQ3TZ50/PQ05TZ51 series PQ2TZ55U/PQ3TZ50U/PQ05TZ5U series 1.0A output PQ2TZ15/PQ3TZ53/PQ05TZ11 series PQ2TZ15U/PQ3TZ53U/PQ05TZ1U series NOTICE The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: (i) The devices in this publication are designed for use in general electronic equipment designs such as: - - - Personal computers - -- Office automation equipment - -- Telecommunication equipment [terminal] - - - Test and measurement equipment - - - Industrial control - -- Audio visual equipment - -- Consumer electronics (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - - - Traffic signals - - - Gas leakage sensor breakers - - - Alarm equipment - -- Various safety devices, etc. (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - - - Space applications - -- Telecommunication equipment [trunk lines] - -- Nuclear power control equipment - -- Medical and other life support equipment (e.g., scuba). Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use. If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices. This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. Contact and consult with a SHARP representative if there are any questions about the contents of this publication.