Products and specifications discussed herein are subject to change by Aptina without notice.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Features
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 1©2005 Aptina Imaging Corporation All rights reserved.
1/6-Inch SOC VGA CMOS Digital Image Sensor
MT9V112I2ASTC
For the latest data sheet, refer to Aptina’s Web site: www.aptina.com
Features
•Aptina
® DigitalClarity CMOS Imaging technology
System-On-a-Chip (SOC)—Completely integrated
camera system
Ultra-low power, low cost, progressive scan CMOS
image sensor
Superior low-light performance
On-chip image flow processor (IFP) performs
sophisticated processing:
Color recovery and correction
•Sharpening
Gamma
Lens shading correction,
On-the-fly defect correction
Filtered image downscaling to arbitrary size with
smooth, continuous zoom and pan
Automatic Features:
Auto exposure (AE)
Auto white balance (AWB)
Auto black reference (ABR)
•Auto flicker avoidance
Auto color saturation
Auto defect identification and correction
Fully automatic Xenon and LED-type flash support,
fast exposure adaptation
Multiple parameter contexts, easy/fast mode
switching
Camera control sequencer automates:
•Snapshots
Snapshots with flash
Video clips
•Simple two-wire serial programming interface
ITU-R BT.656 (YCbCr), 565RGB, 555RGB, or 444RGB
formats (progressive scan)
Raw and processed Bayer formats
Applications
Cellular phones
•PDAs
•Toys
Other battery-powered products
Notes:1.Measured at 1.0 lux*sec and 100% stauration
Ordering Information
Table 1: Key Performance Parameters
Parameter typical Value
Optical Format 1/6-inch (4:3)
Active Imager Size 2.30mm(H) x 1.73mm(V)
2.88mm Diagonal
Active Pixels 640H x 480V
Pixel Size 3.6μm x 3.6μm
Color Filter Array RGB Bayer Pattern
Shutter type Electronic Rolling Shutter
(ERS)
Maximum Data Rate/
Master Clock
12 MPS–13.5 MPS/
24 MHz27 MHz
Frame Rate (VGA 640H x 480V) 30 fps at 27 MHz
ADC Resolution 10-bit, on-chip
Responsivity 1.0V/lux-sec (550nm)
Dynamic Range 71dB
SNRMAX 44dB1
Supply Voltage I/O Digital 1.7V–3.1V
(VDD nominal)
Core Digital 1.7V–1.9V or 2.5V–3.1V
(1.8V or 2.8V nominal)
Analog 2.5V–3.1V
(2.8V nominal)
Power Consumption 76mW at 1.8V, 15 fps
Operating temperature –30°C to +70°C
Packaging 36-Ball ICSP, wafer or die
Table 2: Available Part Numbers
Part Number Description
MT9V112I2ASTC 36-Ball iCSP (standard)
MT9V112I9ASTC 36-Ball iCSP (lead-free)
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Table of Contents
PDF:6163688301/Source:7457997359 Aptina eserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 2©2005 Aptina Imaging Corporation All rights reserved.
Table of Contents
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Functional Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Internal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Register Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Register Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Typical Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Dout[7:0] Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Viewfinder/Preview and Full-Resolution/Snapshot Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Preview Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Snapshot Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Switching Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Tuning Frame Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Typical Resolutions, Modes, and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
RESET, Clocks, and STANDBY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
I/O Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
STANDBY Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Bus Idle State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Data Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Two-Wire Serial Interface Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
16-Bit Write Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
16-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
8-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Two-wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
36-Ball ICSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 3©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
List of Figures
List of Figures
Figure 1: Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 2: Internal Registers Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 3: Typical Configuration (connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 4: 36-Ball ICSP Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 5: Primary Sensor Core Clock Relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 6: Vertical Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 7: Horizontal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 8: AC Output Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 9: Typical Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 10: Write Timing to R0x09:0—Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 11: Read Timing from R0x09:0; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 12: Write Timing to R0x09:0—Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 13: Read Timing from R0x09:0; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 14: Two-wire Serial Bus Signal Timing at the Pins of the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 15: Two-wire Serial Bus Signal Timing at the Pins of the Sensor(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 16: 36-Ball ICSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
List of Tables
PDF:6163688301/Source:7457997359 Aptina eserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 4©2005 Aptina Imaging Corporation All rights reserved.
List of Tables
Table 1: Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 3: Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 4: Data Ordering in YCbCr Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 5: Output Data Ordering in Processed Bayer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 6: Output Data Ordering in RGB Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 7: Output Data Ordering in (8 + 2) Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 9: Blanking Parameter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 8: Register Address Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 10: User Blanking Minimum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 11: Blanking Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 12: STANDBY Effect on the Output State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 13: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 14: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 15: DC Electrical Characteristics (Condition 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 16: DC Electrical Characteristics (Condition 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 17: I/O Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 18: Operating Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 19: STANDBY Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 20: AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 21: Two-Wire Interface ID Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 22: Two-wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
General Description
PDF:6163688301/Source:7457997359 Aptina eserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 5©2005 Aptina Imaging Corporation All rights reserved.
General Description
The Aptina MT9V112 is a VGA-format, single-chip camera CMOS active-pixel digital
image sensor. this device combines the MT9V012 image sensor core with fourth-genera-
tion digital image flow processor technology from Aptina Imaging. It captures high-
quality color images at VGA resolution.
The VGA CMOS image sensor features DigitalClarity—the Aptina breakthrough low-
noise CMOS imaging technology that achieves CCD image quality (based on signal-to-
noise ratio and low-light sensitivity) while maintaining the inherent size, cost, and inte-
gration advantages of CMOS.
The sensor is a complete camera-on-a-chip solution designed specifically to meet the
low-power, low-cost demands of battery-powered products such as cellular phones,
PDAs, and toys. It incorporates sophisticated camera functions on-chip and is program-
mable through a simple two-wire serial interface.
The MT9V112 performs sophisticated processing functions including color recovery,
color correction, sharpening, programmable gamma correction, auto black reference
clamping, auto exposure, automatic 50Hz/60Hz flicker avoidance, lens shading correc-
tion, auto white balance, and on-the-fly defect identification and correction. Additional
features include day/night mode configurations; special camera effects such as sepia
tone and solarization; and interpolation to arbitrary image size with continuous filtered
zoom and pan. The device supports both Xenon and LED-type flash light sources in
several snapshot modes.
The MT9V112 can be programmed to output progressive-scan images up to 30 frames
per second (fps). The image data can be output in any one of six 8-bit formats:
ITU-R BT.656 (formerly CCIR656, progressive scan only) YCbCr
565RGB
555RGB
444RGB
Raw Bayer
•Processed Bayer
The FRAME_VALID and LINE_VALID signals are output on dedicated balls, along with a
pixel clock that is synchronous with valid data.
Functional Overview
The MT9V112 is a fully-automatic, single-chip camera, requiring only a power supply,
lens, and clock source for basic operation. Output video is streamed via a parallel 8-bit
DOUT port, shown in Figure 1, Functional Block Diagram, on page 6. The output pixel
clock is used to latch data, while FRAME_VALID and LINE_VALID signals indicate the
active video. The MT9V112 internal registers are configured using a two-wire serial inter-
face.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Functional Overview
PDF:6163688301/Source:7457997359 Aptina eserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 6©2005 Aptina Imaging Corporation All rights reserved.
Figure 1: Functional Block Diagram
The device can be put in a low-power sleep mode by asserting STANDBY and shutting
down the clock. Output signals can be tri-stated. Both tri-stating output signals and
entry in STANDBY mode also can be achieved via two-wire serial interface register
writes.
The MT9V112 accepts input clocks up to 27 MHz, delivering up to 30 fps for VGA resolu-
tion images.
Internal Architecture
Internally, the MT9V112 consists of a sensor core and an image flow processor. The IFP is
divided in two sections: the colorpipe (CP), and the camera controller .
The sensor core captures raw Bayer-encoded images that are then input to the IFP.
The CP section of the IFP processes the incoming stream to create interpolated, color-
corrected output, and the CC section controls the sensor core to maintain the desired
exposure and color balance, and to support snapshot modes.
Register Overview
The sensor core, CP, and CC registers are grouped in three separate address spaces,
shown in Figure 2, Internal Registers Grouping, on page 7.
SRAM
Line Buffers
Image Flow Processor
Colorpipe
Image Flow Processor
Camera Control
Image Data
Control Bus
(Two-Wire Serial
Interface Transactions)
Pixel Data
SCLK
SDATA
CLKIN
STANDBY
VDDQ/DGND
/DGND
VAA /AGND
VAAPIX
Lens shading correction
Color interpolation
Filtered resize and zoom
Defect correction
Color correction
Gamma correction
Color conversion + formatting
Auto exposure
Auto white balance
Flicker detect/avoid
Camera control:
Snapshots, flash, video clip
D
OUT [7:0]
PIXCLK
FRAME_ V ALI D
LINE_ V ALI D
STROBE
Control Bus
(Two-Wire Serial Interface Transactions)
+ Sensor control (gains, shutter, etc.)
Sensor Core
. 640H x 480V
. 1/6-inch optical format
. Auto black compensation
. Programmable analog gain
. Programmable exposure
. 10-bit ADC
. H/W context switch to/from preview
. Bayer RGB output
Control Bus
(Two-Wire Serial
Interface
Transactions)
VDD
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 7©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Functional Overview
Figure 2: Internal Registers Grouping
Notes:
Internal registers are grouped in three address spaces. Program R240 selects the desired address space.
The register notation is defined in the section below. When accessing internal registers
via the two-wire serial interface, select the desired address space by programming the
R240 register.
The sensor registers are summarized in Table 12, “Sensor Registers – Address Page 0,” on
page 70. The colorpipe registers are summarized in Table 8, “Colorpipe Registers –
Address Page 1,” on page 20. The camera control registers are summarized in Table 9,
Camera Control Registers – Address Page 2,” on page 23.
Register Notation
The following register address notations are used:
R<decimal address>:<address page>
Example: R9:0—Shutter width register in sensor page (page 0). Used to uniquely
specify a register.
R<decimal address>
Example: R240—Page address register. Used when the register address is global
in all three pages or when by context the address page is understood.
0x<2 digit hex address>
Example: 0xF0—Page address register. Used when the register address is global
in all three pages, or when by context the address page is understood.
0x<3 digit hex address>
Example: 0x105— Page 1, Aperture Correction register (0x05). Same as 0x<2 digit
hex address> notation; leading digit signifies page number.
When accessing internal registers via the two-wire serial interface, select the desired
address space by programming the R240 register.
The MT9V112 accelerates mode-switching with hardware-assisted context switching,
and supports taking snapshots, flash snapshots, and video clips using a configurable
sequencer.
Image Flow Processor
Sensor Core
Registers
R0:0–
R255:0
Page 0
Color Pipeline
Registers
Page 1
Camera Control
Registers
R0:2–
R255:2
Page 2
R0:1–
R255:1
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 8©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Typical Connections
The MT9V112 supports a range of color formats derived from four primary color repre-
sentations: YCbCr, RGB, raw Bayer (unprocessed, directly from the sensor), and pro-
cessed Bayer (Bayer format data regenerated from processed RGB). The device also
supports a variety of output signaling/timing options:
Standard FRAME_VALID/LINE_VALID video interface with gated pixel clocks
ITU-R BT.656 marker-embedded video interface with either gated or uniform pixel
clocking
Typical Connections
Figure 3, Typical Configuration (connection), on page 8 shows typical MT9V112 device
connections. For low-noise operation, the MT9V112 requires separate power supplies
for analog and digital. Incoming digital and analog ground conductors can be tied
together next to the die. Both power supply rails should be decoupled to ground using
capacitors. The use of inductance filters is not recommended.
The MT9V112 also supports different digital core (VDD/DGND) and I/O power (VDDQ/
DGND) power domains that can be at different voltages.
Figure 3: Typical Configuration (connection)
Notes: 1. MT9V112 STANDBY can be connected to customer’s ASIC controller directly or to
Digital GND, depending on the capability of the controller.
2. A 1.5KΩ resistor value is recommended, but may be greater for slower two-wire speed.
3. The bus connecting the sensor to the camera port is called the pixel bus.
A
GND
0.1µF
0.1µF
V
AA
D
GND
1µF
V
DD
0.1µF
D
GND
1µF
V
DD
Q VAAPIX
1µF
A
GND
0.1µF 1µF
V
DD
Q
Power
V
AA
Power
VAAPIX
Power
1.5kW
2
1.5kW
2
S
DATA
SCLK
RESET#
TEST_ENABLE
FRAME_VALID
PIXCLK
LINE_VALID
D
OUT
[7:0]
CLKIN
S
ADDR
STANDBY
D
GND
Q D
GND
A
GND
D
GND
A
GND
V
DD
Power
V
DD
Q
V
DD
V
AA
VAAPIX
To CMOS
Camera
Port
3
To Xenon
or LED
Flash Driver
Two-Wire
Serial Interface
Master Clock
STROBE
STANDBY from
Controller
or Digital GND
1
RESET#
8
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 9©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Typical Connections
Figure 4: 36-Ball ICSP Assignment
A
B
C
D
E
F
Top View
(Ball Down)
2
DOUT3
DGND
DOUT2
DOUT
VDDQ
PIXCLK
3
DOUT5
DOUT4
DGND
DGND
STROBE
SCLK
1
VDD
DOUT0
DOUT1
DOUT
SADDR
VDD
4
DOUT7
DOUT6
DGND
DGND
STAND
BY
6
VDD
LINE
VDD
VAA
AGND
VAAPIX
5
CLKIN
VDDQ
FRAME
DGND
SDATA
_LSB0 _LSB1
RESET#
_VALID
_VALID
TEST_
ENABLE
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 10 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Typical Connections
Notes: 1. A proper reset sequence requires an active CLKIN signal after the RESET# signal has been driven low. For
more details about the reset sequence refer to the MT9V112 Developer Guide.
Table 3: Ball Descriptions
Ball Assignment Name Type Description
A5 CLKIN Input Master clock in sensor.
E4 RESET# Input Active LOW: RESET1.
E1 SADDR Input Two-Wire Serial Interface Device ID selection 1:0xBA, 0:0x90.
D5 TEST_ENABLE Input Tie to DGND for normal operation. (Manufacturing use only.)
F3 SCLK Input Two-Wire Serial Interface Clock.
F4 STANDBY Input Multifunctional signal to control device addressing, power-down, and state
functions (covering output enable function).
F5 SDATA Input/Output Two-Wire Serial Interface Data I/O.
B1, C1, C2, A2, B3,
A3, B4, A4 DOUT[7:0]2Output Pixel Data Output bit 0, DOUT[7] (most significant bit (MSB)), DOUT[0] (least
significant bit (LSB)).
D1 DOUT_LSB0 Output Sensor bypass mode output 0—typically left unconnected for normal SOC
operation.
D2 DOUT_LSB1 Output Sensor bypass mode output 1—typically left unconnected for normal SOC
operation.
C5 FRAME_VALID Output Active HIGH: FRAME_VALID; indicates active frame.
B6 LINE_VALID Output Active HIGH: LINE_VALID, DATA_VALID; indicates active pixel.
F2 PIXCLK Output Pixel clock output.
E3 STROBE Output Active HIGH: STROBE (Xenon) or turn on (LED) flash.
E6 AGND Supply Analog ground.
B2, C3, C4, D3,
D4, E5
DGND Supply Core digital ground.
D6 VAA Supply Analog power: 2.5V–3.1V (2.8V nominal).
F6 VAAPIX Supply Pixel array analog power supply: 2.5V–3.1V (2.8V nominal).
A1, A6, C6, F1 VDD Supply Core digital power: 1.7V–1.9V or 2.5V–3.1V (1.8V or 2.8V nominal).
B5, E2 VDDQ Supply I/O digital power: 1.7V–3.1V (VDD nominal).
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V1112_DS - Rev. L 6/10 EN 11 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Typical Connections
DOUT[7:0] Output Data Ordering
Data ordering formats are defined in the following tables.
Table 4: Data Ordering in YCbCr Mode
Mode Byte Byte + 1 Byte + Byte + 3
Default Cbi Yi Cri Yi+1
Swap CrCb Cri Yi Cbi Yi+1
SwapYC Yi Cbi Yi+1 Cri
Swap CrCb, SwapYC Yi Cri Yi+1 Cbi
Table 5: Output Data Ordering in Processed Bayer Mode
Mode Line Byte Byte + 1 Byte + 2 Byte + 3
Default First Gi Ri+1 Gi+2 Ri+3
Second Bi Gi+1 Bi+2 Gi+3
Flip Bayer Col First Ri Gi+1 Ri+2 Gi+3
Second Gi Bi+1 Gi+2 Bi+3
Flip Bayer Row First Bi Gi+1 Bi+2 Gi+3
Second Gi Ri+1 Gi+2 Ri+3
Flip Bayer Col,
Flip Bayer Row
First Gi Bi+1 Gi+2 Bi+3
Second Ri Gi+1 Ri+2 Gi+3
Table 6: Output Data Ordering in RGB Mode
Mode
(Swap disabled) Byte D7 D6 D5 D4 D3 D2 D1 D0
RGB565 First R7 R6 R5 R4 R3 G7 G6 G5
Second G4 G3 G2 B7 B6 B5 B4 B3
RGB555 First 0R7R6R5R4R3G7G6
Second G5 G4 G3 B7 B6 B5 B4 B3
RGB444x First R7R6 R5R4G7G6G5G4
SecondB7B6B5B40000
RGBx444 First 0 0 0 0 R7 R6 R5 R4
Second G7 G6 G5 G4 B7 B6 B5 B4
Table 7: Output Data Ordering in (8 + 2) Bypass Mode
Mode Byte D7 D6 D5 D4 D3 D2 D1 D0
8 + 2 bypassFirstB9B8B7B6B5B4B3B2
Second000000B1B0
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 12 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
Modes and Timing
This section provides .an overview of typical usage modes for the MT9V112.
Contexts
The MT9V112 supports hardware-accelerated context switching. A number of parame-
ters have two copies of their setup registers; this allows two “contexts” to be loaded at
any given time. These are referred to as context A and context B. Context selection for
any single parameter is determined by the global context control register (GCCR, see
R200:2).
There are copies of this register in each address page. A write to any one of them has the
identical effect. However, a read from address page 0 only returns the subset bits of R200
that are specific to the sensor core.
Contexts are generically named because they can be utilized for a variety of purposes.
One typical usage model is to define context A as viewfinder or preview mode and
context B as snapshot mode. The device defaults are configured with this in mind. this
mechanism enables the user to have settings for viewfinder and snapshot modes loaded
at the same time, and then switch between them with a single write to a register (e.g.,
R200:2).
Viewfinder/Preview and Full-Resolution/Snapshot Modes
No context switching is necessary in the sensor core because this is a single ADC device.
Context switching occurs in the colorpipe stage.
Preview Mode
QVGA (320 x 240) images are generated at up to 30 fps. The reduced-size images are gener-
ated by a scaling down operation. The sensor always outputs a VGA size image to the
colorpipe in both context A and context B.
Snapshot Mode
VGA (640 x 480) images are generated at up to 30 fps. this is typically selected by setting
R200:n[10] = 1 selecting resize/zoom context B.
Switching Modes
Typically, switching to snapshot mode is achieved by writing R200:2 = 0x9F0B. this
restarts the sensor and sets most contexts to context B. Following this write, a read from
R200:1 or R200:2 results in 0x1F0B being read.
The MSB is cleared automatically by the sensor. A read from R200:0 results in 0x000B, as
only the lower 4 bits and the restart MSB are implemented in the sensor core.
Clocks
The sensor core is a master in the system. The sensor core frame rate defines the overall
image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced
by the sensor configuration, and are also a function of certain image flow pipeline func-
tions—particularly resize. The relationship of the primary clocks are depicted in Figure 5
on page 13.
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 13 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
The image flow pipeline typically generates up to 16-bits per pixel—for example, YCbCr
or RGB565—but has only an 8-bit port through which to communicate this pixel data.
There is no phase-locked loop (PLL), so the primary input clock (CLKIN) must be twice
the fundamental pixel rate (defined by the sensor pixel clock).
To generate VGA images at 30 fps, the sensor core requires a clock in the 24 MHz–
27 MHz range. The device defaults assume a 24 MHz clock, and minimum clock
frequency is 2 MHz.
Figure 5: Primary Sensor Core Clock Relationships
Note: If R13:0[12] = 0 then the Master Clock will be equal to the frequency of CLKIN.
If R13:0[12] = 1 then the Master Clock will be 1/2 of the frequency of CLKIN.
Frequency of Master Clock = 2*Frequency of Pixel Clock
Tuning Frame Rates
Actual frame rates can be tuned by adjusting various sensor parameters. The sensor
registers are in address page 0, some of which are shown in Table 8.
10 bits/pixel
1 pixel/clock
16 bits/pixel
1 pixel/clock
16 bits/pixel (typical)
0.5 pixel/clock
Output Interface
Pixel Clock
Master Clock
Sensor Core
CLKIN
2
0
1
R13:0[12]
Colorpipe
10
16
8
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 14 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
Default Blanking Calculations
the MT9V112 default blanking calculations are shown in Table 9.
In the MT9V112, the sensor core adds four border pixels all the way around the image,
taking the active image size to 648 x 488 in full power mode. this is achieved through the
default settings:
Oversize and show border bits are set by default
Oversize and show border bits are not context switchable, and therefore, their loca-
tion is only in read mode context B.
Table 8: Register Address Functions
Register Function
R0x04:0 Column width, typically 640 in the MT9V112
R0x03:0 Row width, typically 480 in the MT9V112
R0x07:0, R0x05:0 Horizontal blanking, default is 203 (units of sensor pixel clocks)
R0x08:0, R0x06:0 Vertical blanking, default is 11
(rows including black rows)
Table 9: Blanking Parameter Calculations
Parameter Calculation
PC_PERIOD Sensor Pixel Clock Period (2/24)μs = 0.083μs
A: Active Data time (per line): R0 x 04:0 + 8 (border) * PC_PERIOD 648 x (2/24) = 54μs
Q: Horizontal Blanking: [R0 x 05:0 | R0 x 07:0] * PC_PERIOD 154 x (2/24) = 12.83μs
Row time = Q + A 66.83μs
P: Frame Start / End Blanking: 6 * PC_PERIOD 6 x (2/24) = 0.5μs
V: Vertical Blanking: [R0 x 06:0 | R0 x 08:0] * (Q + A) + (Q - 2 * P) (11 x 66.83) + (12.83 - 1.0) = 747μs
F: Total Frame time: (R0 x 03:0 + [R0 x 06:0 | R00 x 08:0]) * (Q + A) (488 + 11) x 66.83μs = 33349.83 ?s 30 fps
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 15 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
User Blanking Calculations
When calculating blanking for different clock rates, minimum values for horizontal
blanking and vertical blanking must be taken into account. Table 10 shows minimum
values for each register.
.
Output Timing
Figure 6: Vertical Timing
Figure 7: Horizontal Timing
Table 10: User Blanking Minimum Values
Parameter Minimum
Horizontal Blanking 132 (sensor pixel clocks)
Vertical Blanking 6 + Reg0x22:0[2:0] rows
Line 0 Line 1 LineN-3 LineN-2 LineN-1
Line 0
F
RAME_VALID
LINE_VALID
D[7:0]
EF
DBCA
NO DATA
10 FF 00 00 80 CB0 Y0 CR1 Y1 CB3 Y3 CRn
-1 Yn FF 00 00 9D
PIXCLK
L
INE_VALID
D[7:0]
10
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 16 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
Typical Resolutions, Modes, and Timing
The parameters listed in Table 11 are illustrated in a waveform diagram, Figure 6,
Vertical Timing, on page 15. Figure 20, AC Electrical Characteristics, on page 23 provides
values for these parameters in some common resolutions and operating modes.
Table 11: Blanking Definitions
Designation Definition
(A) FRAME_VALID (rising edge) to LINE_VALID (rising edge) delay
(B) LINE_VALID (falling edge) to FRAME_VALID (falling edge) delay
(C) LINE_VALID (HIGH/valid) time
(D) LINE_VALID (LOW/horizontal blanking) time
(E) FRAME_VALID (HIGH/valid) time
(F) FRAME_VALID (LOW/vertical blanking) time
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 17 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Modes and Timing
RESET, Clocks, and STANDBY
RESET
Power-up reset is asserted/de-asserted on RESET#. It is active LOW. In this reset state, all
control registers have the default values.
Soft reset is asserted/de-asserted by the two-wire serial interface program. In soft-reset
mode, the two-wire serial interface and register ring bus are still running. All control
registers are reset using default values. See R13:0.
Clocks
The MT9V112 has two primary clocks; a master clock coming from the CLKIN signal,
and a pixel clock via a clock-gated operation running at half frequency of the master
clock. All device clocks are turned off in power-down mode. When the MT9V112 oper-
ates in sensor stand-alone mode, the image flow pipeline clocks can be shut off to
conserve power. See R13:0.
When the MT9V112 is operated with the MT9M111 in a dual-camera application, the
MT9V112 employs a divide-by-two clock option, allowing a 54 MHz input to the master
clock. For more information about this feature, see the R13:0 register description on
page 74 in Table 13.
STANDBY
STANDBY is a multifunctional signal that controls power-down, device addressing, and
tri-state functions. Table 12 shows how STANDBY affects the output signal state. When
the sensor is in standby mode (hard or soft) CLKIN must be active (toggling) for
commands and data to be received by the two-wire serial interface bus.
Hard standby is asserted/de-asserted on STANDBY. It is active HIGH. In this hard
standby state, all internal clocks are turned off and the analog block is in STANDBY
mode to save power consumption. The signal state is High-Z when R13:0[4] = 0 and
R13:0[6] = 0.
Two-wire interface ID addressing is based on the result of SADDR XOR R13:0[10]. (The
R13:0[10] default is “0”.) the R13:0[10] bit is not writable when STANDBY is asserted “1.
Soft standby is asserted/de-asserted by a two-wire serial interface to R13:0[2]. In soft
standby, all internal clocks are turned off, the analog block is in standby mode, but the
signal state is not affected. Following the assertion of either hard or soft STANDBY, the
analog circuitry completes reading the current row and then enters the standby state. It
is necessary to keep clocking the sensor for an entire row time to ensure proper entry
into the standby state.
Table 12: STANDBY Effect on the Output State
Output
Disable
R13:0[4] Drive Signal
R13:0[6] STANDBY Output State
000Driven
001High-Z
01xDriven
1xxHigh-Z
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 18 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
Electrical Specifications
Operating Conditions
Note: Recommended die operating temperature range is from Ta = –20°C to 40°C. The sensor image quality may
degrade above 40°C.
Notes: 1. Stresses above those listed may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at these or any other condi-
tions above those indicated in the product specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliabil-
ity.
Table 13: Operating Conditions
Symbol Definition MIN Typical MAX Units
VDDQ I/O Digital Voltage 1.7 VDD 3.1 V
VDD Core Digital Voltage (condition 1) 2.5 2.8 3.1 V
Core Digital Voltage (condition 2) 1.7 1.8 1.9 V
VAA Analog Voltage 2.5 2.8 3.1 V
VAAPIX Pixel Supply Voltage 2.5 2.8 3.1 V
TCOperating temperature ( At Junction) –30 30 70 °C
Table 14: Absolute Maximum Ratings
Symbol Parameter Condition
Rating
UnitMIN MAX
VDD Digital power (2.8V) -0.3 4.0 V
VDDQ I/O power -0.3 4.0 V
VAA Analog power (2.8V) -0.3 4.0 V
VAAPIX Pixel array power -0.3 4.0 V
VIN DC Input Voltage -0.3 VDDQ+0.3 V
VOUT DC Output Voltage -0.3 VDDQ+0.3 V
TSTG1Storage temperature -40 85 °C
ILZ High Impedance Output
Leakage Current
VIN = VDDQ or DGND -10 10 μA
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 19 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
DC Electrical Characteristics
Table 15: DC Electrical Characteristics (Condition 1)
VDD = 2.8V, VAA = 2.8V, VAAPIX = 2.8V, VDDQ = 2.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30°C, Light Condition = Dark
Symbol Definition MIN Typical MAX Units
VIH Voltage Input High 2.5 2.8 3.1 V
VIL Voltage Input Low –0.3 0 0.3 V
IIL Current Input leakage Low –5 5 μA
IIH Current Input leakage High –5 5 μA
VOH Voltage Output High VDDQ-0.3 VDDQ V
VOL Voltage Output Low 000.3V
IOH Current Output High 12 15 mA
IOL Current Output Low 14 17 mA
Table 16: DC Electrical Characteristics (Condition 2)
VDD = 1.8V, VAA = 2.8V, VAAPIX = 2.8V, VDDQ = 1.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30°C, Light Condition = Dark
Symbol Definition MIN Typical MAX Units
VIH Voltage Input High 1.7 1.8 1.9 V
VIL Voltage Input Low –0.3 0 0.3 V
IIL Current Input leakage Low –5 5 μA
IIH Current Input leakage High –5 5 μA
VOH Voltage Output High VDDQ-0.3 VDDQ V
VOL Voltage Output Low 0 0 0.3 V
IOH Current Output High 8 10 mA
IOL Current Output Low 10 12 mA
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 20 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
I/O Parameters
Note: I/O pins exhibit the characteristics of either the input signals or the output signals as defined in this
table depending on the mode of the pin.
Table 17: I/O Parameters
VAA = 2.8V, VAAPIX = 2.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30°C, Light Condition = Dark
Signal Parameter Definitions Condition Min Typical Max Units
All
Outputs
Load capacitance 30 pF
Output signal slew VDD = VDDQ = 2.8V, 30pF load 0.25 1.25 V/ns
VDD = VDDQ = 1.8V, 30pF load 0.1 0.6 V/ns
All Inputs Signal CAP Input signal capacitance 5 pF
CLKIN freq Master clock frequency Absolute minimum 2 MHz
VGA at 30 fps 24 27 MHz
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 21 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
Power Consumption
STANDBY Power Consumption
Table 18: Operating Power Consumption
VAA = 2.8V, VAAPIX = 2.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30 °C,Light Condition = 90 lux
Mode fps Definition (VDD,VDDQ = 2.8V) (VDD,VDDQ = 1.8V) Units
TYP MAX TYP MAX
VGA 30 fps Operating IDD 15 25 9 16 mA
Operating IAA 19 22 19 22 mA
Operating IDDQ 11 30 5 17 mA
Operating IAAPIX 1111mA
VGA 30 fps Total power consumption w/o IDDQ 98 136 72 94 mW
VGA 15 fps Operating IDD 15 20 9 12 mA
Operating IAA 19 22 19 22 mA
Operating IDDQ 10 19 5 11 mA
Operating IAAPIX 1111mA
VGA 15 fps Total power consumption w/o IDDQ 98 122 72 88 mW
QVGA 30 fps Operating IDD 15 25 9 15 mA
Operating IAA 19 22 19 22 mA
Operating IDDQ 9144 8mA
Operating IAAPIX 1212mA
QVGA 30 fps Total power consumption w/o IDDQ 98 136 72 94 mW
QVGA 15 fps Operating IDD 15 20 9 12 mA
Operating IAA 19 22 19 22 mA
Operating IDDQ 8114 7mA
Operating IAAPIX 1111mA
QVGA 15 fps Total power consumption w/o IDDQ 98 121 72 88 mW
Table 19: STANDBY Power Consumption
VAA = 2.8V, VAAPIX = 2.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30 °C
Definition MAX
(VDD,VDDQ = 2.8V) MAX
(VDD,VDDQ = 1.8V) Units
Hard STANDBY IDD (without clock) 1 1 μA
Hard STANDBY IDDQ (without clock) 4 2 μA
Hard STANDBY IAA (without clock) 1 1 μA
Hard STANDBY IAAPIX (without clock) 1 1 μA
Total Power Consumption (without clock) 20 11 μW
Hard STANDBY IDD (with clock) 821 487 μA
Hard STANDBY IDDQ (with clock) 22 8 μA
Hard STANDBY IAA (with clock) 1 1 μA
Hard STANDBY IAAPIX (with clock) 1 1 μA
Total Power Consumption (with clock) 2366 897 μW
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 22 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
I/O Timing
By default, the MT9V112 launches pixel data, FRAME_VALID, and LINE_VALID synchro-
nously with the falling edge of PIXCLK. The expectation is that the user captures data,
FRAME_VALID, and LINE_VALID using the rising edge of PIXCLK. The timing diagram is
shown in Figure 8. As an option, the polarity of the PIXCLK can be inverted from the
default. this is achieved by programming R58:1[9] or R155:1[9] to “0.
Figure 8: AC Output Timing Diagram
t
PHLp
t
PLHp
t
FVSETUP
t
LVSETUP
t
DSETUP
t
DHOLD
t
CLKIN _ HIGH
t
CLKIN _ LOW
t
PIXCLK _ HIGH
t
PIXCLK _ LOW
CLK
PIXCLK
FV
LV
t
R
t
F
D
OUT
[7:0]
D
OUT
[7:0] D
OUT
[7:0]
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 23 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
AC Electrical Characteristics
Table 20: AC Electrical Characteristics
VDD = 2.8V, VAA = 2.8V, VAAPIX = 2.8V, VDDQ = 2.8V, fCLKIN = 27 MHz (50% duty cycle), Ta = 30°C,
Light Condition = Dark
Symbol Definition MIN Typical MAX Units
fCLKIN Input clock frequency 13.5 27 MHz
tRPixel clock rise time 10 ns
tFPixel clock fall time 10 ns
tPLHP CLKIN to PIXCLK propagation delay (L–H) 48 ns
tPHLP CLKIN to PIXCLK propagation delay (H–L) 48 ns
tLVSETUP Setup time for LINE_VALID before rising edge of
PIXCLK
1/2 PIXCLK
Period
ns
tFVSETUP Setup time for FRAME_VALID before rising edge
of PIXCLK
1/2 PIXCLK
Period
ns
tDSETUP Setup time for DOUT before rising edge of
PIXCLK
1/2 PIXCLK
Period
ns
tDHOLD Hold time for DOUT after rising edge of PIXCLK 1/2 PIXCLK
Period
ns
tCLKIN_HIGH Master clock duty cycle (High time) 40 50 60 %
tCLKIN_LOW Master clock duty cycle (Low time) 40 50 60 %
tPIXCLK_HIGH Pixel clock duty cycle (High time) 40 50 60 %
tPIXCLK_LOW Pixel clock duty cycle (Low time) 40 50 60 %
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 24 ©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Electrical Specifications
Spectral Characteristics
Figure 9: Typical Spectral Characteristics
Quantum Efficiency
0
5
10
15
20
25
30
35
40
350 450 550 650 750 850 950 1050
Quantum Efficiency (%)
Wavelength (nm)
B
GR
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 1©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Appendix A
Appendix A
Serial Bus Description
Registers are written to and read from the MT9V112 through the two-wire serial inter-
face bus. The sensor is a serial interface slave controlled by the serial clock (SCLK),
which is driven by the serial interface master. Data is transferred in and out of the
MT9V112 through the serial data (SDATA) line. The SDATA line is pulled up to VDDQ off-
chip by a 1.5KΩ resistor. Either the slave or the master device can pull the SDATA line
down—the serial interface protocol determines which device is allowed to pull the SDATA
line down at any given time.
Protocol
The two-wire serial interface defines several different transmission codes, as follows:
•Start bit
(No) Acknowledge bit
•8-bit message
•Stop bit
Slave device 8-bit address
SADDR and R13:0[10] are used to select between two different addresses in case of
conflict with another device. If SADDR XOR R13:0[10] is LOW, the slave address is 0x90; if
SADDR XOR R13:0[10] is HIGH, the slave address is 0xBA. See Table 21.
.
Sequence
A typical read or write sequence begins with the master sending a start bit. After the start
bit, the master sends the 8-bit slave device address. The last bit of the address determines
if the request is a read or a write, where a “0” indicates a write and a “1” indicates a read.
The slave device acknowledges its address by sending an acknowledge bit back to the
master.
If the request was a write, the master transfers the 8-bit register address for where a write
should take place. The slave sends an acknowledge bit to indicate that the register
address has been received. The master then transfers the data, eight bits at a time, with
the slave sending an acknowledge bit after each eight bits.
The MT9V112 uses 16-bit data for its internal registers, thus requiring two 8-bit transfers
to write to one register. After 16 bits are transferred, the register address is automatically
incremented, so that the next 16 bits are written to the next register address. The master
stops writing by sending a start or stop bit.
A typical read sequence is executed as follows. The master sends the write mode slave
address and 8-bit register address, just as in the write request. The master then sends a
start bit and the read mode slave address. The master clocks out the register data, eight
Table 21: Two-Wire Interface ID Switching
SADDR R13:0[10] Two-Wire Interface ID
0 0 0x90
0 1 0xBA
1 0 0xBA
1 1 0x90
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 2©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
bits at a time, and sends an acknowledge bit after each 8-bit transfer. The register
address is auto-incremented after every 16 bits is transferred. The data transfer is
stopped when the master sends a no-acknowledge bit.
Bus Idle State
The bus is idle when both the data and clock lines are HIGH. Control of the bus is initi-
ated with a start bit, and the bus is released with a stop bit. Only the master can generate
the start and stop bits.
Start Bit
The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line
is HIGH.
Stop Bit
The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line
is HIGH.
Slave Address
The 8-bit address of a two-wire serial interface device consists of 7 bits of address and 1 bit
of direction. A “0” in the LSB of the address indicates write mode, and a “1” indicates
read mode. The write address of the sensor is 0xBA; the read address is 0xBB. This
applies only when the SADDR is set HIGH.
Data Bit Transfer
One data bit is transferred during each clock pulse. The serial interface clock pulse is
provided by the master. The data must be stable during the HIGH period of the two-wire
serial interface clock—it can only change when the serial clock is LOW. Data is trans-
ferred eight bits at a time, followed by an acknowledge bit.
Acknowledge Bit
The master generates the acknowledge clock pulse. The transmitter (which is the master
when writing, or the slave when reading) releases the data line, and the receiver signals
an acknowledge bit by pulling the data line LOW during the acknowledge clock pulse.
No-Acknowledge Bit
The no-acknowledge bit is generated when the data line is not pulled down by the
receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate
a read sequence.
Two-Wire Serial Interface Sample
Write and read sequences (SADDR = 1).
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 3©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
16-Bit Write Sequence
A typical write sequence for writing 16 bits to a register is shown in Figure 10. A start bit
sent by the master starts the sequence, followed by the write address. The image sensor
sends an acknowledge bit and expects the register address to come first, followed by the
16-bit data. After each 8-bit transfer, the image sensor sends an acknowledge bit.
All 16 bits must be written before the register is updated. After 16 bits are transferred, the
register address is automatically incremented so that the next 16 bits are written to the
next register. The master stops writing by sending a start or stop bit.
Figure 10: Write Timing to R0x09:0—Value 0x0284
16-Bit Read Sequence
A typical read sequence is shown in Figure 11. The master writes the register address, as
in a write sequence. Then a start bit and the read address specify that a read is about to
occur from the register. The master then clocks out the register data, 8 bits at a time. The
master sends an acknowledge bit after each 8-bit transfer.
The register address should be incremented after every 16 bits is transferred. The data
transfer is stopped when the master sends a no-acknowledge bit.
Figure 11: Read Timing from R0x09:0; Returned Value 0x0284
SCLK
S
DATA
0xBA Address
Start Sto
p
ACK ACK ACK ACK
Reg 0x09 0000 0010 1000 0100
SCLK
SDATA
0xBA Address
Start Start Stop
ACK ACK ACK ACK NACK
Reg0x09 0xBB Address 0000 0010 1000 0100
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 4©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
8-Bit Write Sequence
To be able to write one byte at a time to the register, a special register address is added.
The 8-bit write is started by writing the upper eight bits to the desired register, then
writing the lower eight bits to the special register address (R0xF1:0). The register is not
updated until all 16 bits have been written. It is not possible to update just half of a
register. In Figure 12, a typical sequence for an 8-bit write is shown. The second byte is
written to the special register (R0xF1:0).
Figure 12: Write Timing to R0x09:0—Value 0x0284
8-Bit Read Sequence
To read one byte at a time, the same special register address is used for the lower byte.
The upper eight bits are read from the desired register. By following this with a read from
the special register (R0xF1:0), the lower eight bits are accessed (Figure 13). The master
sets the no-acknowledge bits.
Figure 13: Read Timing from R0x09:0; Returned Value 0x0284
SCLK
S
DATA
0xBA Address
Start Sto
p
ACK
ACK ACK
ACK
Reg0x09 0xBA Address
Start ACKACK
Reg0xF10000 0010 1000 0100
SCLK
S
DATA
0xBA Address
Start Start
ACK ACK ACK NACK
Reg0x09 0xBB Address 0000 0010
SCLK
S
DATA
0xBA Address
Start Start Stop
ACK ACK ACK NACK
Reg0xF1 0xBB Address 1000 0100
• • •
• • •
(
continued)
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 5©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
Two-wire Serial Bus Timing
The two-wire serial interface operation requires a certain minimum of master clock
cycles between transitions. These are specified in the table below in master clock cycles.
Note: T = one master clock cycle
Figure 14: Two-wire Serial Bus Signal Timing at the Pins of the Sensor
Table 22: Two-wire Serial Bus Timing
VDD = 2.8V, VAA = 2.8V, VAAPIX = 2.8V, VDDQ = 1.8V Ta = 55°C
Symbol Definition MIN TYP MAX Units
fic Two_Wire Serial Bus Input Clock Frequency 400 KHz
tic Two-Wire Serial Bus Input Clock period 2500 ns
ticl Two-Wire Serial Bus Clock Low 1000 1250 1500 ns
tich Two-Wire Serial Bus Clock High 1000 1250 1500 ns
tiss Setup time for start condition 600 ns
tihs Hold time for start condition 600 ns
tisd Setup time for input data 600 ns
tihd Hold time for input data 600 ns
toaa Output data delay time 600 ns
toda Output data hold time 600 ns
tisp Setup time of stop condition 600 ns
tihp Hold time for stop condition 600 ns
cIN Input pin capacitance 3.5 pF
cLOAD SDATA max load capacitance 30 pF
RSD SDATA pull-up resistor 1.5 KΩ
tic
ticl tich
tiss tihdtisd
toaa toda
tisp
SCLK
SDATA
(Sensor Receiving
Data from the Master)
SDATA
(Sensor Sending
Data to the Master)
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 6©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
Figure 15: Two-wire Serial Bus Signal Timing at the Pins of the Sensor(2)
SCLK
t
ihs
t
ihp
SDATA
(Input to Sensor)
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 7©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample
36-Ball ICSP Package
Figure 16: 36-Ball ICSP Package
Note: All dimensions in millimeters.
SEATING PLANE
5.80 ±0.075
2.90 ±0.051.875
2.90 ±0.05
ENCAPSULANT: EPOXY
IMAGE SENSOR DIE
LID MATERIAL: BOROSILICATE GLASS 0.40 THICKNESS
OPTICAL AREA
OPTICAL CENTER
PACKAGE CENTER
1.17 ±0.10
0.22
(FOR REFERENCE ONLY)
0.95 (FOR REFERENCE ONLY)
4.00
CTR
2.304 CTR
3.75
4.00
CTR
1.728
CTR
1.875
0.75 TYP
0.75 TYP
5.80 ±0.075
0.375 ±0.075
0.575 ±0.050
0.175
(FOR REFERENCE ONLY)
C
L
C
L
3.75
SUBSTRATE MATERIAL: PLASTIC LAMINATE
SOLDER BALL MATERIAL: 62% Sn, 36% Pb, 2% Ag OR
96.5% Sn, 3% Ag, 0.5% Cu
BALL PADS Ø 0.27 SOLDER MASK DEFINED
0.10 A
B
BALL A1
BALL A1 ID
BALL A6
36X Ø0.35
DIMENSIONS APPLY TO
SOLDER BALLS POST
REFLOW. THE PRE-REFLOW
DIAMETER IS Ø0.33
BALL A1
CORNER
2.714 ±0.075
0.186
(FOR REFERENCE ONLY)
MAXIMUM ROTATION OF OPTICAL AREA RELATIVE TO PACKAGE EDGES: 1º
MAXIMUM TILT OF OPTICAL AREA RELATIVE TO 0.3º.
MAXIMUM TILT OF OPTICAL AREA RELATIVE TO TOP OF COVER GLASS: 0.3º.
B
PIXEL
(0,0)
2.900 ±0.075
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 8©2005 Aptina Imaging Corporation. All rights reserved.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Revision History
Revision History
Rev. L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6/2/10
Updated to non-confidential
Rev. K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5/5/2010
Updated to Aptina template
Transfered registers to a seperate document
Rev. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/30/2006
Added note to Table 1 on page 1 and updated Figure 15 on page 6.
Rev. H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/10/2006
Updated Note 2 in Table 3 on page 10.
Rev. G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3/2/2006
Updated Table 22 on page 5 for output delay time from 3T to 4T and hold time for
output data from 4T to 3T.
Rev. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2/2/2006
Moved Value of Output Delay Time (3T) from Min column to Max column in Table 22
on page 5.
Updated descriptions of SDATA in Table 14 on page 5.
Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/19/2006
Figure 5 on page 13 added more detail and Figure 7: Horizontal Timing on page 15
updated last data out value to 9D (was 90).
Table 3 definition of RESET changed from async to sync, Table 13 R0x00D Reset Bit 12
definition expanded, Table 12 columns swapped, and Table 17 note added, Table 19
column headings changed from Typical to MAX.
Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8/3/2005
New outline drawing (36_ICSP(5_8x5_8)SMD_MTG-341.eps) per PCN1543-
K12A_PHC, Figure 16 on page 7.
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7/29/2005
R161 changed to R161:1, new description and bits definition
R161 changed to R164:1, new description
R13:0[4] new description
R32:0[10] is now reserved
R33:0[10] is now reserved
R40:2[12] new description
•IFP Block Diagram Edit
•Table 1 Edit
Conversion to 1 column template
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11/15/2004
Operating Conditions
DC Electrical Characteristics (two conditions)
Operating Power Consumption
•STANDBY Power Consumption
•Two-Wire Serial Bus Timing
Two-Wire Serial Bus Signal Timing (two figures)
10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com
Aptina, Aptina Imaging, DigitalClarity, and the Aptina logo are the property of Aptina Imaging Corporation
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final,
these specifications are subject to change, as further product development and data characterization sometimes occur.
MT9V112 - SOC VGA DIGITAL IMAGE SENSOR
Revision History
PDF:6163688301/Source:7457997359 Aptina reserves the right to change products or specifications without notice.
MT9V112_DS - Rev. L 6/10 EN 9©2005 Aptina Imaging Corporation All rights reserved.
AC Electrical Characteristics
•AC Timing Diagram
Register Summary 0x format
Register Description - standardized bit value definitions and register format
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10/6/2004
•Initial release