Silego Technology, Inc. Rev 1.04
000-0046721-104 Revised August 29, 2014
GreenPAK 3
Programmable Mixed Signal Array
SLG46721
Block Diagram
Features
Logic & Mixed Signal Circuits
Highly Versatile Macro Cells
Read Back Protection (Read Lock)
1.8 V (±5%) to 5 V (±10%) Supply
Operating Tempe ra tu r e Range: -40°C to 85°C
RoHS Compliant / Halogen-Free
20-pin STQFN: 2 x 3 x 0.55 mm, 0.4 mm pitch
Applications
Personal Computers and Servers
PC Peripherals
Consumer Electronics
Data Communications Equipment
Handheld and Portable Electronics
Pin Configuration
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
2
3
414
15
16
17
GPI
VDD 1
STQFN-20
(Top View)
GPIO
GPIO 5
6GPIO
GPIO
12
13
GPIO 7GND
11
GPIO
GPIO
89
GPIO
10
GPIO
GPIO
18
19
GPIO
20
3-bit
LUT3_8 or
Pipe Delay
Pin 6
GPIO
Vref
Programmable
Delay
RC Oscillator
Pin 7
GPIO
Pin 1
VDD
Pin 2
GPI
Pin 3
GPIO
Pin 4
GPIO
Pin 5
GPIO
Pin 20
GPIO Pin 19
GPIO Pin 18
GPIO
Pin 8
GPIO Pin 9
GPIO Pin 10
GPIO
Pin 12
GPIO
Pin 11
GND
Pin 17
GPIO
Pin 16
GPIO
Pin 15
GPIO
Pin 14
GPIO
Pin 13
GPIO
INV_0
ACMP0
ACMP1
ACMP2
ACMP3
FILTER_0
INV_1
Additional Logic Functions
Look Up Tables (LUTs)
Counters/Delay Generators
CNT0 CNT4CNT1
CNT5 CNT6
2-bit
LUT2_4 3-bit
LUT3_0
2-bit
LUT2_5
3-bit
LUT3_1 3-bit
LUT3_5
3-bit
LUT3_4
3-bit
LUT3_6 3-bit
LUT3_9
3-bit
LUT3_7
Combination Function Macrocells
2-bit
LUT2_0
or DFF4
2-bit
LUT2_2
or DFF6
2-bit
LUT2_1
or DFF5
2-bit
LUT2_3
or DFF7
3-bit
LUT3_3
or DFF3
3bit
LUT3_2
or DFF2
4-bit
LUT4_1
or CNT3
4-bit
LUT4_0
or CNT2
FILTER_1
POR
000-0046721-104 Page 1 of 97
SLG46721
1.0 Overview
The SLG46721 provides a small, low power component for commonly used mixed-signal functions. The user creates their circuit
design by programming the one time Non-V olatile Memory (NVM) to configure the interconnect logic, the I/O Pins and the macro
cells of the SLG46721. This high ly versatile device allows a wide variety of mixed-sign al functions to be de signed within a ver y
small, low power single integrated circu it. The macro cells in the device include the following:
Four Analog Comparators (ACMP)
Two Voltage References (Vref)
Nine Combinatorial Look Up Tables (LUTs)
Two 2-bit LUTs
Seven 3-bit LUTs
Nine Combination Function Macrocells
Four Selectable DFF/Latch or 2-bit LUTs
Two Selectable DFF/Latch or 3-bit LUTs
One Selectable Pipe Delay or 3-bit LUT
Two Selectable CNT/DLY or 4-bit LUTs
Five Counter / Delay Generators (CNT/DLY)
One 14-bit delay/counter
One 14-bit delay/counte r with external clock/reset
Three 8-bit delays/counters
Pipe Delay – 16 stage/3 output (Part of Combination Function Macrocell)
Programmable Delay
Additional Logic Functions – 2 Inverters / 2 Deglitch Filters
RC Oscillator (RC OSC)
000-0046721-104 Page 2 of 97
SLG46721
2.0 Pin Description
2.1 Functional and Programming Pin Description
Pin # Pin Name Function Programming Function
1 VDD Power Supply Power Supply
2 GPI General Purpose Input VPP (Programming Voltage)
3 GPIO General Purpose I/O with OE Reset
4 GPIO General Purpose I/O N/A
5 GPIO General Purpose I/O with OE N/A
6 GPIO General Purpose I/O or Analog Comparator 0 (+) N/A
7 GPIO General Purpose I/O with OE or Analog Comparator 0 (-) N/A
8 GPIO General Purpose I/O or POR Output N/A
9 GPIO General Purpose I/O with OE N/A
10 GPIO General Purpose I/O or Analog Comparator 1 (+) N/A
11 GND Ground Ground
12 GPIO General Purpose I/O or External Vref (ACMP1 IN-) N/A
13 GPIO General Purpose I/O with OE or Analog Comparator 2 (+) N/A
14 GPIO General Purpose I/O with OE or Analog Comparator 2 (-)
(ACMP3 IN-) N/A
15 GPIO General Purpose I/O or Analog Comparator 3 (+) N/A
16 GPIO General Purpose I/O with OE Programming Mode Control
17 GPIO General Purpose I/O Programming ID Pin
18 GPIO General Purpose I/O with OE and Vref output (VREF1) Programming SDIO Pin
19 GPIO General Purpose I/O with OE and Vref output (VREF0) Programming SRDWB Pin
20 GPIO General Purpose I/O or External Clock Input Programming SCL Pin
000-0046721-104 Page 3 of 97
SLG46721
3.0 User Programmability
The SLG46721 is a user programmable device with One-T ime-Programmable (OTP) memory elements that are able to construct
combinatorial logic elements. Three of the I/O Pins provide a connection for the bit patterns into the OTP on board memory. A
programming development kit allows the user the a bility to create initial device s. Once the design is finali zed, th e programmi ng
code (.gpx file) is forwarded to Silego to integrate into a production process.
Figure 1. Steps to create a custom Silego GreenPAK device
3URGXFW
'HILQLWLRQ
&XVWRPHU&UHDWHVWKHLURZQGHVLJQLQ
*UHHQ3$.'HVLJQHU
3URJUDP(QJLQHHULQJ6DPSOHVZLWK
*UHHQ3$.3URJUDPPHU
&XVWRPHUYHULILHV*UHHQ3$.
LQV\VWHPGHVLJQ
(PDLOJS[ILOHWR
*UHHQ3$.#VLOHJRFRP
(PDLO3URGXFW,GHD'HILQLWLRQ'UDZLQJRU
6FKHPDWLFWR*UHHQ3$.#VLOHJRFRP
6LOHJR$SSOLFDWLRQV(QJLQHHUVZLOOUHYLHZGHVLJQ
VSHFLILFDWLRQVZLWKFXVWRPHU
6DPSOHVDQG'HVLJQ&KDUDFWHUL]DWLRQ
5HSRUWVHQWWRFXVWRPHU
&XVWRPHUYHULILHV*UHHQ3$.GHVLJQ
&XVWRP*UHHQ3$.SDUW
HQWHUVSURGXFWLRQ
*UHHQ3$.'HVLJQ
DSSURYHGLQV\VWHPWHVW
*UHHQ3$.'HVLJQ
DSSURYHG
*UHHQ3$.'HVLJQ
DSSURYHG
000-0046721-104 Page 4 of 97
SLG46721
4.0 Ordering Information
Part Number Type
SLG46721V 20-pin STQFN
SLG46721VTR 20-pin STQFN - Tape and Reel (3k units)
000-0046721-104 Page 5 of 97
SLG46721
5.0 Electrical Specifications
5.1 Absolute Maximum Conditions
5.2 Electrical Characteristics (1.8 V ±5% VDD)
Parameter Min. Max. Unit
VHIGH to GND -0.3 7 V
Voltage at Input Pin -0.3 7 V
Current at Input Pin -1.0 1.0 mA
Storage Temperature Range -65 150 °C
Junction Temperature -- 150 °C
ESD Protection (Human Body Model) 2000 -- V
ESD Protection (Charged Device Model) 1300 -- V
Moisture Sensitivity Level 1
Symbol Parameter Condition/Note Min. Typ. Max. Unit
VDD Supply Voltage 1.71 1.80 1.89 V
TAOperating Temperature -40 25 85 °C
VPP Programming Voltage 7.25 7.50 7.75 V
VAIR Analog Input Voltage Range
(common mode) IN-, also IN+ past the gain divider stage 0 -- 1.1 V
VAIH Analog Input Voltage
HIGH-Level allowable input voltage at analog pi ns 0 -- VDD V
VIH HIGH-Level Input Voltage Logic Input 1.100 -- -- V
Logic Input with Schmitt Trigger 1.270 -- -- V
Low-Level Logic Input 0.980 -- -- V
VIL LOW-Level Input Voltage Logic Input -- -- 0.69 0 V
Logic Input with Schmitt Trigger -- -- 0.440 V
Low-Level Logic Input -- -- 0.520 V
IIH HIGH-Level Input Current Logic Input Pins; VIN = 1.8 V -1.0 -- 1.0 μA
IIL LOW-Level Input Current Logic Input Pins; VIN = 0 V -1.0 -- 1.0 μA
VOH HIGH-Level Outp ut Voltage
Push-Pull, IOH = 100 μA, 1X Driver 1.690 1.789 -- V
PMOS OD, IOH = 100 μA, 1X Driver 1.690 1.789 -- V
Push-Pull, IOH = 100 μA, 2X Driver 1.700 1.794 -- V
PMOS OD, IOH = 100 μA, 2X Driver 1.700 1.794 -- V
VOL LOW-Level Output Voltage
Push-Pull, IOL= 100 μA, 1X Driver -- 0.008 0.030 V
Push-Pull, IOL = 100 μA, 2X Driver -- 0.004 0.010 V
Open Drain, IOL = 100 μA, 1X Driver -- 0.005 0.020 V
Open Drain, IOL = 100 μA, 2X Driver -- 0.003 0.010 V
IOH HIGH-Level Outp ut Current
Push-Pull, VOH = VDD - 0.2, 1X Driver 1.066 1.703 -- mA
PMOS OD, VOH = VDD - 0.2, 1X Driver 1.067 1.703 -- mA
Push-Pull, VOH = VDD - 0.2, 2X Driver 2.216 3.406 -- mA
PMOS OD, VOH = VDD - 0.2, 2X Driver 2.220 3.406 -- mA
000-0046721-104 Page 6 of 97
SLG46721
IOL LOW-Level Output Current
Push-Pull, VOL = 0.15 V, 1X Driver 0.917 1.689 -- mA
Push-Pull, VOL = 0.15 V, 2X Driver 1.834 3.378 -- mA
Open Drain, VOL = 0.15 V, 1X Driver 1.375 2.534 -- mA
Open Drain, VOL = 0.15 V, 2X Driver 2.750 5.068 -- mA
Open Drain, VOL = 0.15 V, Su per Drive 5.500 10.136 -- mA
IOMaximum Average or DC
Current Per each chip side -- -- 90 mA
TSU Startup Time from VDD rising past 1.6 V -- 1 -- ms
Symbol Parameter Condition/Note Min. Typ. Max. Unit
000-0046721-104 Page 7 of 97
SLG46721
5.3 Electrical Characteristics (3.3 V ±10% VDD)
Symbol Parameter Condition/Note Min. Typ. Max. Unit
VDD Supply Voltage 3.0 3.3 3.6 V
TAOperating Temperature -40 25 85 °C
VPP Programming Voltage 7.25 7.50 7.75 V
VAIR Analog Input Voltage Range
(common mode) IN-, also IN+ past the gain divider stage 0 -- 1.2 V
VAIH Analog Input Voltage
HIGH-Level allowable input voltage at analog pi ns 0 -- VDD V
VIH HIGH-Level Input Voltage Logic Input 1.780 -- -- V
Logic Input with Schmitt Trigger 2.130 -- -- V
Low-Level Logic Input 1.130 -- -- V
VIL LOW-Level Input Voltage Logic Input -- -- 1.21 0 V
Logic Input with Schmitt Trigger -- -- 0.950 V
Low-Level Logic Input -- -- 0.690 V
IIH HIGH-Level Input Current Logic Input Pins; VIN = 3.3 V -1.0 -- 1.0 μA
IIL LOW-Level Input Current Logic Input Pins; VIN = 0 V -1.0 -- 1.0 μA
VOH HIGH-Level Outp ut Voltage
Push-Pull, IOH = 3 mA, 1X Driver 2.735 3.120 -- V
PMOS OD, IOH = 3 mA, 1X Driver 2.735 3.120 -- V
Push-Pull, IOH = 3 mA, 2X Driver 2.870 3.210 -- V
PMOS OD, IOH = 3 mA, 2X Driver 2.870 3.210 -- V
VOL LOW-Level Output Voltage
Push-Pull, IOL= 3 mA, 1X Driver -- 0.130 0.228 V
Push-Pull, IOL = 3 mA, 2X Driver -- 0.060 0.108 V
Open Drain, IOL = 3 mA, 1X Driver -- 0.080 0.147 V
Open Drain, IOL = 3 mA, 2X Driver -- 0.040 0.080 V
IOH HIGH-Level Outp ut Current
Push-Pull, VOH = 2.4 V, 1X Driver 6.045 12.080 -- mA
PMOS OD, VOH = 2.4 V, 1X Driver 6.045 12.080 -- mA
Push-Pull, VOH = 2.4 V, 2X Driver 11.543 24.160 -- mA
PMOS OD, VOH = 2.4 V, 2X Driver 11.522 24.160 -- mA
IOL LOW-Level Output Current
Push-Pull, VOL = 0.4 V, 1X Driver 4.875 8.244 -- mA
Push-Pull, VOL = 0.4 V, 2X Driver 9.750 16.488 -- mA
Open Drain, VOL = 0.4 V, 1X Driver 7.313 12.370 -- mA
Open Drain, VOL = 0.4 V, 2X Driver 14.541 24.740 -- mA
Open Drain, VOL = 0.4 V, Super Drive 25.801 49.480 -- mA
IOMaximum Average or DC
Current Per each chip side -- -- 90 mA
TSU Startup Time from VDD rising past 1.6 V -- 1 -- ms
000-0046721-104 Page 8 of 97
SLG46721
5.4 Electrical Characteristics (5 V ±10% VDD)
Symbol Parameter Condition/Note Min. Typ. Max. Unit
VDD Supply Voltage 4.5 5.0 5.5 V
TAOperating Temperature -40 25 85 °C
VPP Programming Voltage 7.25 7.50 7.75 V
VAIR Analog Input Voltage Range
(common mode) IN-, also IN+ past the gain divider stage 0 -- 1.2 V
VAIH Analog Input Voltage
HIGH-Level allowable input voltage at analog pi ns 0 -- VDD V
VIH HIGH-Level Input Voltage Logic Input 2.640 -- -- V
Logic Input with Schmitt Trigger 3.160 -- -- V
Low-Level Logic Input 1.230 -- -- V
VIL LOW-Level Input Voltage Logic Input -- -- 1.84 0 V
Logic Input with Schmitt Trigger -- -- 1.510 V
Low-Level Logic Input -- -- 0.780 V
IIH HIGH-Level Input Current Logic Input Pins; VIN = 5 V -1.0 -- 1.0 μA
IIL LOW-Level Input Current Logic Input Pins; VIN = 0 V -1.0 -- 1.0 μA
VOH HIGH-Level Outp ut Voltage
Push-Pull, IOH = 5 mA, 1X Driver 4.19 4.78 -- V
PMOS OD, IOH = 5 mA, 1X Driver 4.19 4.78 -- V
Push-Pull, IOH = 5 mA, 2X Driver 4.32 4.89 -- V
PMOS OD, IOH = 5 mA, 2X Driver 4.32 4.89 -- V
VOL LOW-Level Output Voltage
Push-Pull, IOL= 5 mA, 1X Driver -- 0.157 0.270 V
Push-Pull, IOL = 5 mA, 2X Driver -- 0.076 0.140 V
Open Drain, IOL = 5 mA, 1X Driver -- 0.102 0.180 V
Open Drain, IOL = 5 mA, 2X Driver -- 0.051 0.110 V
IOH HIGH-Level Outp ut Current
Push-Pull, VOH = 2.4 V, 1X Driver 22.08 34.04 -- mA
PMOS OD, VOH = 2.4 V, 1X Driver 22.08 34.04 -- mA
Push-Pull, VOH = 2.4 V, 2X Driver 41.76 68.08 -- mA
PMOS OD, VOH = 2.4 V, 2X Driver 41.69 68.08 -- mA
IOL LOW-Level Output Current
Push-Pull, VOL = 0.4 V, 1X Driver 7.215 11.580 -- mA
Push-Pull, VOL = 0.4 V, 2X Driver 13.831 23.160 -- mA
Open Drain, VOL = 0.4 V, 1X Driver 10.820 17.380 -- mA
Open Drain, VOL = 0.4 V, 2X Driver 17.343 34.760 -- mA
Open Drain, VOL = 0.4 V, Super Drive 30.964 69.520 -- mA
IOMaximum Average or DC
Current Per each chip side -- -- 90 mA
TSU Startup Time from VDD rising past 1.6 V -- 1 -- ms
000-0046721-104 Page 9 of 97
SLG46721
5.5 IDD Estimator
5.6 Timing Estimator
Table 1. Typical Current estimated for each bloc k.
Symbol Parameter Note VDD = 1.8 V VDD = 3.3 V VDD = 5.0V Unit
I Current
Chip Quiescent 1.0 1.0 1.0 μA
Vref 64 78 75 μA
Vref Buffer (each) 0.5 12 12 μA
OSC 25 kHz, predivide = 1 3.4 5.1 7 μA
OSC 2 MHz, predivide = 1 44 85 135 μA
OSC 2 MHz, predivide = 8 23 33 41 μA
1x push-pull + 4 pF @ 25 kHz 0.4 5 16 μA
1x push-pull + 4 pF @ 2 MHz 22 47 106 μA
1st ACMP used (includes Vref) 73 86 81 μA
Each additional ACMP add 3.7 4.1 4.8 μA
Table 2. Typical Delay estimated for each block.
Symbol Parameter Note VDD = 1.8 V VDD = 3.3V V DD = 5.0V Unit
rising falling rising falling rising falling
tpd Delay Digital Input without Schmitt Trigger 42 45 17 19 12 13 ns
tpd Delay Digital Input with Schmitt T rigger 42 43 16 17 18 12 ns
tpd Delay Low Voltage Digital input 45 428 17 177 12 120 ns
tpd Delay Digital input-- PMOS 42 - 17 - 12 - ns
tpd Delay Digital input-- NMOS - 80 - 27 - 18 ns
tpd Delay Output enable from pin, OE Hi-Z to 1 53 - 21 - 15 - ns
tpd Delay Output enable from pin, OE Hi-Z to 0 50 - 20 - 14 - ns
tpd Delay LUT2bit(LATCH) 34 33 14 13 10 9 ns
tpd Delay LATCH(LUT2bit) 30 34 14 13 10 9 ns
tpd Delay LUT3bit(LATCH) 38 37 18 15 13 10 ns
tpd Delay LATCH+nRESET(LUT3bit) 45 42 21 17 15 12 ns
tpd Delay LUT4bit 28 33 14 13 10 9 ns
tpd Delay LUT2bt 19 26 10 10 7 7 ns
tpd Delay LUT3bit 28 34 14 13 10 9 ns
tpd Delay CNT/DLY 40 38 18 15 13 11 ns
tpd Delay P_DLY1C 380 377 166 163 123 120 ns
tpd Delay P_DLY2C 720 718 314 312 233 231 ns
tpd Delay P_DLY3C 1061 1060 462 460 343 341 ns
tpd Delay P_DLY4C 1396 1400 609 609 451 451 ns
tpd Delay Filter 200 200 78 78 53 53 ns
tpd Delay ACMP (5mV across inputs) 3000 3000 2000 2000 2000 2000 ns
tw width I/O with 1X push pull (min transmitted) 20 20 20 20 20 20 ns
tw width filter (min transmitted) 150 150 55 55 35 35 ns
000-0046721-104 Page 10 of 97
SLG46721
5.7 Typical Counter/Delay Offset Me asurements
5.8 Expected Delays and Widths
Table 3. Typical Counter/Delay Offset Measurements.
Parameter RC OSC
Freq RC OSC Power VDD = 1.8 V VDD = 3.3V VDD = 5.0V Unit
offset 25kHz auto 19 14 12 μs
offset 2MHz auto 7 4 4 μs
frequency settling time 25kHz auto 19 14 12 μs
frequency settling time 2MHz auto 14 14 14 μs
variable (CLK period) 25kHz forced 0-40 0-40 0-40 μs
variable (CLK period) 2MHz forced 0-0.5 0-0.5 0-0.5 μs
tpd (non-delayed edge) 25kHz/2MHz either 35 14 10 ns
Table 4. Expected Delays and Widths (typical).
Symbol Parameter Note VDD = 1.8 V VDD = 3.3V VDD = 5.0V Unit
time1 Width, 1 cell mode:(any)edge detect, edge detect output 325 150 110 ns
time1 Width, 2 cell mode:(any)edge detect, edge detect output 740 300 225 ns
time1 Width, 3 cell mode:(any)edge detect, edge detect output 1020 450 340 ns
time1 Width, 4 cell mode:(any)edge detect, edge detect output 1350 600 450 ns
time2 Delay, 1 cell mode:(any)edge detect, edge detect output 44 18 14 ns
time2 Delay, 2 cell mode:(any)edge detect, edge detect output 44 18 14 ns
time2 Delay, 3 cell mode:(any)edge detect, edge detect output 44 18 14 ns
time2 Delay, 4 cell mode:(any)edge detect, edge detect output 44 18 14 ns
time1 Width, 1 cell mode: delayed (any)edge detect, delayed
edge detect output 340 150 110 ns
time1 Width, 2 cell mode: delayed (any)edge detect, delayed
edge detect output 670 300 220 ns
time1 Width, 3 cell mode: delayed (any)edge detect, delayed
edge detect output 1000 450 335 ns
time1 Width, 4 cell mode: delayed (any)edge detect, delayed
edge detect output 1340 600 450 ns
time2 Delay, 1 cell mode: delayed (any)edge detect, delayed
edge detect output 570 220 140 ns
time2 Delay, 2 cell mode: delayed (any)edge detect, delayed
edge detect output 570 220 140 ns
time2 Delay, 3 cell mode: delayed (any)edge detect, delayed
edge detect output 570 220 140 ns
time2 Delay, 4 cell mode: delayed (any)edge detect, delayed
edge detect output 570 220 140 ns
time2 Delay, 1 cell mode: both edge delay, edge detect output 382 375 126 ns
time2 Delay, 2 cell mode: both edge delay, edge detect output 713 169 237 ns
time2 Delay, 3 cell mode: both edge delay, edge detect output 1045 318 350 ns
time2 Delay, 4 cell mode: both edge delay, edge detect output 1370 466 460 ns
time2 Delay, 1 cell mode: both edge delay, delayed edge detect
output 900 613 250 ns
time2 Delay, 2 cell mode: both edge delay, delayed edge detect
output 1250 520 360 ns
000-0046721-104 Page 1 1 of 97
SLG46721
5.9 Typ ical Pulse Width Perfor mance
time2 Delay, 3 cell mode: both edge delay, delayed edge detect
output 1600 680 480 ns
time2 Delay, 4 cell mode: both edge delay, delayed edge detect
output 1900 815 600 ns
Table 5. Typical Pulse Width Performance.
Parameter VDD = 1.8 V VDD = 3.3V VDD = 5.0V Unit
Filtered Pulse Width < 150 < 55 < 35 ns
Table 4. Expected Delays and Widths (typical).
Symbol Parameter Note VDD = 1.8 V VDD = 3.3V VDD = 5.0V Unit
000-0046721-104 Page 12 of 97
SLG46721
6.0 Summary of Macro Cell Function
6.1 I/O Pins
Digital Input (low voltage or normal voltage, with or without Schmitt Trigger)
Open Drain Outputs
Push Pull Outputs
Analog I/O
10 kΩ/100 kΩ/1 MΩ pull-up/pull-down resistors
40 mA Open Drain Superdrive output
6.2 Connection Matrix
Digital matrix for circuit connections based on user design
6.3 Analog Comparators (4 total)
Selectable hysteresis 0 mV/25 mV/50 mV/200 mV
6.4 Vo ltage Reference
Used for references on Analog Comparators
Can also be driven to external pins
6.5 Combinational Logi c Lo ok Up Tables (LUTs – 9 total)
Two 2-bit Lookup Tables
Seven 3-bit Lookup Tables
6.6 Combination Function Macrocells (9 total)
Four Sele ctable DFF/Latch or 2-bit LUTs
Two Selectable DFF/Latch or 3-bit LUTs
One Selectable Pipe Delay or 3-bit LUT
Two Selectable CNT/DLY or 4-bit LUTs
6.7 Delays/Counters (5 total)
One 14-bit delay/counter: Range 1- 16384 clock cycles
One 14-bit delay/counter with external clock/reset: Range 1-16384 clock cycles
Three 8-bit delays/counters: Range 1-255 clock cycles
6.8 Pipe Delay (Part of Combination Function Macrocell)
16 stage / 3 output
One 1 stage fixed output
Two 1-16 stage selectable outputs.
6.9 Programmable Delay
125 ns/250 ns/375 ns/500 ns @ 3.3 V
Includes Edge Detection function
6.10 Additional Logic Functions (4 total)
Two Inverter macro cells
Two Deglitch filter macro cells
000-0046721-104 Page 13 of 97
SLG46721
6.11 RC Oscillator
25 kHz and 2 MHz selectable frequency
First stage divider (4): OSC/1, OSC/2, OSC/4, and OSC/8
Second stage divider (5): OSC/1, OSC/4, selectable (OSC/8, OSC/12, OSC/24, or OSC/64), OSC/3, and additional OSC/3
(from selectable output)
000-0046721-104 Page 14 of 97
SLG46721
7.0 I/O Pins
The SLG46721 has a total of 18 multi-fu nction I/O pins which can function as either a user define d Input or Output, as well as
serving as a special function (such as outp utting the voltage reference), or serving as a signal for programming of the on-ch ip
Non Volatile Memory (NVM).
Normal Mode pin definitions are as follows:
•Pin 1: V
DD power supply
Pin 2: general purpose input
Pin 3: general purpose input or output with OE
Pin 4: general purpose input or output
Pin 5: general purpose input or output with OE
Pin 6: general purpose input or output or analog comparator 0(+)
Pin 7: general purpose input or output with OE or analog comparator 0(-)
Pin 8: general purpose input or output or POR ou tput
Pin 9: general purpose input or output with OE
Pin 10: general purpose input or output or analog comparator 1(+)
Pin 11: grou nd
Pin 12: general purpose input or output or analog comparator 1(-)
Pin 13: general purpose input or outp ut with OE or analog comparator 2(+)
Pin 14: general purpose input or outp ut with OE or analog comparator 2(-)
Pin 15: general purpose input or output or analog comparator 3(+)
Pin 16: general purpose input or outp ut with OE
Pin 17: general purpose input or outp ut
Pin 18: general purpose input or output with OE and Vref output (VREF2)
Pin 19: general purpose input or output with OE and Vref output (VREF1)
Pin 20: general purpose input or output or external clock input
Programming Mode pin definitions are as follows:
•Pin 1: V
DD power supply
•Pin 2: V
PP programming voltage
Pin 11: grou nd
Pin 16: programmi ng mode control
Pin 17: programming ID pin
Pin 18: programmi ng SDIO pin
Pin 19: programmi ng SRDWB pin
Pin 20: programming SCL pin
Of the 18 user defined I/O pins on the SLG46721, all but one of the pins (Pin 2) can serve as both digital input and digital output.
Pin 2 can only serve as a digital input pin.
7.1 Input Modes
Each I/O pin can be confi gured as a digital input pin with/without buffered Schmitt Trigger, or can also be configured as a low
voltage digital input. Pins 6, 7, 10, 12, 13, 14, and 15 can also be configured to serve as analog inputs to the on-chip comparators.
Pins 18 and 19 can also be configured as analog referen ce voltage inputs.
7.2 Output Modes
Pins 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, and 20 can all be configured as digital output pins.
7.3 Pull Up/Down Resistors
All I/O pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors
are 10 kΩ, 100 kΩ and 1 MΩ. In the case of Pin 2, the resistors are fixed to a pull-down configuration. In the case of all other I/O
pins, the internal resistors can be configur ed as either pull-up or pull-downs.
000-0046721-104 Page 15 of 97
SLG46721
7.4 I/O Register Settings
7.4.1 PIN 2 Register Settings
7.4.2 PIN 3 Register Settings
Table 6. PIN 2 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 2 Mode Control <830:829> 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
PIN 2 Pull Down
Resistor Value
Selection
<832:831> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
Table 7. PIN 3 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 3 Mode Control
(sig_pin3_oe =0) <834:833> 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
PIN 3 Mode Control
(sig_pin3_oe =1) <836:835> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 3 Pull Up/Down
Resistor Value
Selection
<838:837> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 3 Pull Up/Down
Resistor Selection <839> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 16 of 97
SLG46721
7.4.3 PIN 4 Register Settings
7.4.4 PIN 5 Register Settings
Table 8. PIN 4 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 4 Mode Control <842:840> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Open Drain NMOS
PIN 4 Pull Up/Down
Resistor Value
Selection
<844:843> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 4 Pull Up/Down
Resistor Selection <845> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 4 Driver
Strength Selection <846> 0: 1X
1: 2X
Table 9. PIN 5 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 5 Mode Control
(sig_pin5_oe =0) <848:847> 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
PIN 5 Mode Control
(sig_pin5_oe =1) <850:849> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 5 Pull Up/Down
Resistor Value
Selection
<852:851> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 5 Pull Up/Down
Resistor Selection <853> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 17 of 97
SLG46721
7.4.5 PIN 6 Register Settings
7.4.6 PIN 7 Register Settings
Table 10. PIN 6 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 6 Mode Control <856:854> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Analog Input & Open Drain
PIN 6 Pull Up/Down
Resistor Value
Selection
<858:857> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 6 Pull Up/Down
Resistor Selection <859> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 6 Driver
Strength Selection <860> 0: 1X
1: 2X
Table 11. PIN 7 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 7 Mode Control
(sig_pin7_oe =0) <862:861> 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
PIN 7 Mode Control
(sig_pin7_oe =1) <864:863> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 7 Pull Up/Down
Resistor Value
Selection
<866:865> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 7 Pull Up/Down
Resistor Selection <867> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 18 of 97
SLG46721
7.4.7 PIN 8 Register Settings
7.4.8 PIN 9 Register Settings
Table 12. PIN 8 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 8 Mode Control <870:868> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Open Drain NMOS
PIN 8 Pull Up/Down
Resistor Value
Selection
<872:871> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 8 Pull Up/Down
Resistor Selection <873> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 8 Driver
Strength Selection <874> 0: 1X
1: 2X
Table 13. PIN 9 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 9 Mode Control
(sig_pin9_oe =0) <876:875> 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
PIN 9 Mode Control
(sig_pin9_oe =1) <878:877> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 9 Pull Up/Down
Resistor Value
Selection
<880:879> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 9 Pull Up/Down
Resistor Selection <881> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 19 of 97
SLG46721
7.4.9 PIN 10 Register Settings
7.4.10 PIN 12 Register Settings
Table 14. PIN 10 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 10 Mode
Control <884:882> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Analog Input & Open Drain
PIN 10 Pull
Up/Down Resistor
Value Selection
<886:885> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 10 Pull
Up/Down Resistor
Selection
<887> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 10 Driver
Strength Selection <888> 0: 1X
1: 2X
PIN 10 Super Drive
(4X, NMOS Open
Drain) Selection
<889> 0: Super Drive Off
1: Super Drive On (if <884:882> = ‘101’)
Table 15. PIN 12 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 12 Mode
Control <892:890> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Analog Input & Open Drain
PIN 12 Pull
Up/Down Resistor
Value Selection
<894:893> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 12 Pull
Up/Down Resistor
Selection
<895> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 12 Driver
Strength Selection <896> 0: 1X
1: 2X
PIN 12 Super Drive
(4X, NMOS Open
Drain) Selection
<897> 0: Super Drive Off
1: Super Drive On (if <892:890> = ‘101’)
000-0046721-104 Page 20 of 97
SLG46721
7.4.11 PIN 13 Register Settings
7.4.12 PIN 14 Register Settings
Table 16. PIN 13 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 13 Mode
Control
(sig_pin13_oe =0)
<899:898> 00: Digital Input with out Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
PIN 13 Mode
Control
(sig_pin13_oe =1)
<901:900> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 13 Pull
Up/Down Resistor
Value Selection
<903:902> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 13 Pull
Up/Down Resistor
Selection
<904> 0: Pull Down Resistor
1: Pull Up Resistor
Table 17. PIN 14 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 14 Mode
Control
(sig_pin14_oe =0)
<906:905> 00: Digital Input with out Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
PIN 14 Mode
Control
(sig_pin14_oe =1)
<908:907> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 14 Pull
Up/Down Resistor
Value Selection
<910:909> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 14 Pull
Up/Down Resistor
Selection
<911> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 21 of 97
SLG46721
7.4.13 PIN 15 Register Settings
7.4.14 PIN 16 Register Settings
Table 18. PIN 15 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 15 Mode
Control <914:912> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Analog Input & Open Drain
PIN 15 Pull
Up/Down Resistor
Value Selection
<916:915> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 15 Pull
Up/Down Resistor
Selection
<917> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 15 Driver
Strength Selection <918> 0: 1X
1: 2X
Table 19. PIN 16 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 16 Mode
Control
(sig_pin16_oe =0)
<920:919> 00: Digital Input with out Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
PIN 16 Mode
Control
(sig_pin16_oe =1)
<922:921> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 16 Pull
Up/Down Resistor
Value Selection
<924:923> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 16 Pull
Up/Down Resistor
Selection
<925> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 22 of 97
SLG46721
7.4.15 PIN 17 Register Settings
7.4.16 PIN 18 Register Settings
Table 20. PIN 17 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 17 Mode
Control <928:926> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Open Drain NMOS
PIN 17 Pull
Up/Down Resistor
Value Selection
<930:929> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 17 Pull
Up/Down Resistor
Selection
<931> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 17 Driver
Strength Selection <932> 0: 1X
1: 2X
Table 21. PIN 18 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 18 Mode
Control
(sig_pin18_oe =0)
<934:933> 00: Digital Input with out Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
PIN 18 Mode
Control
(sig_pin18_oe =1)
<936:935> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 18 Pull
Up/Down Resistor
Value Selection
<938:937> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 18 Pull
Up/Down Resistor
Selection
<939> 0: Pull Down Resistor
1: Pull Up Resistor
000-0046721-104 Page 23 of 97
SLG46721
7.4.17 PIN 19 Register Settings
7.4.18 PIN 20 Register Settings
Table 22. PIN 19 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 19 Mode
Control
(sig_pin19_oe =0)
<941:940> 00: Digital Input with out Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
PIN 19 Mode
Control
(sig_pin18_oe =1)
<943:942> 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Open Drain NMOS 2X
PIN 19 Pull
Up/Down Resistor
Value Selection
<945:944> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 19 Pull
Up/Down Resistor
Selection
<946> 0: Pull Down Resistor
1: Pull Up Resistor
Table 23. PIN 20 Register Settings
Signal Function Register Bit
Address Register Definition
PIN 20 Mode
Control <949:947> 000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110: Open Drain PMOS
111: Open Drain NMOS
PIN 20 Pull
Up/Down Resistor
Value Selection
<951:950> 00: Floating
01: 10 kΩ Resistor
10: 100 kΩ Resistor
11: 1 MΩ Resistor
PIN 20 Pull
Up/Down Resistor
Selection
<952> 0: Pull Down Resistor
1: Pull Up Resistor
PIN 20 Driver
Strength Selection <953> 0: 1X
1: 2X
000-0046721-104 Page 24 of 97
SLG46721
7.5 GPI Structure
7.5.1 GPI Structure (for Pin 2)
Figure 2. PIN 2 GPI Structure Diagram
PAD
Digital In
S0
S1
S2
S3
Floating
10 kΩ
90 kΩ
900 kΩ
Res_sel[1:0]
00: floating
01: 10 kΩ
10: 100 kΩ
11: 1 MΩ
wosmt_en
smt_en
lv_en Low Voltage
Input
Schmitt Trigger
Input
Non-Schmitt
Trigger Input
Input Mode [1:0]
00: Digital In without Schmitt Trigger, wosmt_en=1
01: Digital In with Schmitt Trigger, smt_en=1
10: Low Voltage Digital In mode, lv_en = 1
11: Reserved
000-0046721-104 Page 25 of 97
SLG46721
7.6 Matrix OE IO Structure
7.6.1 Matrix OE IO Structure (for Pins 3, 5, 7, 9, 13, 14, 16, 18, 19)
Figure 3. Matrix OE IO Structure Diagram
PAD
Digital In
S0
S1
S2
S3
Floating
S0
S1
pull_up_en
10 kΩ
90 kΩ
900 kΩ
Res_sel[1:0]
00: floating
01: 10 kΩ
10: 100 kΩ
11: 1 MΩ
wosmt_en
smt_en
lv_en Low Voltage
Input
Schmitt Trigger
Input
Non-Schmitt
Trigger Input
Input Mode [1:0]
00: Digital In without Schmitt Trigger, wosmt_en=1
01: Digital In with Schmitt Trigger, smt_en=1
10: Low Voltage Digital In mode, lv_en = 1
11: analog IO mode
Output Mode [1:0]
00: 1x push-pull mode, pp1x_en=1
01: 2x push-pull mode, pp2x_en=1, pp1x_en=1
10: 1x NMOS open drain mode, od1x_en=1
11: 2x NMOS open drain mode, od2x_en=1, od1x_en=1
Analog IO
(For PINs 7, 13, 14, 18 and 19 only )
Digital Out
Digital Out
OE
od2x_en
OE
od1x_en
Digital Out
OE
pp2x_en
Digital Out
OE
pp1x_en
000-0046721-104 Page 26 of 97
SLG46721
7.7 Register OE IO Structure
7.7.1 Register OE IO Structure (for Pins 4, 6, 8, 15, 17, 20)
Figure 4. Register OE IO Structure Diagram
PAD
Digital In
S0
S1
S2
S3
Floating
S0
S1
pull_up_en
10 kΩ
90 kΩ
900 kΩ
Res_sel[1:0]
00: floating
01: 10 kΩ
10: 100 kΩ
11: 1 MΩ
wosmt_en
smt_en
lv_en Low V oltage
Input
Schmitt Trigger
Input
Non-Schmitt
Trigger Input
Mode [2:0]
000: Digital In without Schmitt Trigger, wosmt_en=1, OE = 0
001: Digital In with Schmitt Trigger, smt_en=1, OE = 0
010: Low Voltage Digital In mode, lv_en = 1, OE = 0
011: analog IO mode
100: push-pull mode, pp_en=1, OE = 1
101: NMOS open drain mode, odn_en=1, OE = 1
110: PMOS open drain mode, odp_en=1, OE = 1
111: analog IO and NMOS open-drain mode, odn_en=1 and AIO_en=1
Analog IO
Digital Out
Digital Out
OE
odn_en
OE
odn_en
Digital Out
OE
2x_en
pp_en
2x_en
odp_en
Digital Out
OE
pp_en
2x_en
odp_en
000-0046721-104 Page 27 of 97
SLG46721
7.8 Register OE IO Structure with Super Driver
7.8.1 Register OE IO Structure with Super Driver (for Pins 10, 12)
Figure 5. Register OE IO with Super Driver Structure Diagram
PAD
Digital In
S0
S1
S2
S3
Floating
S0
S1
pull_up_en
10 kΩ
90 kΩ
900 kΩ
Res_sel[1:0]
00: floating
01: 10 kΩ
10: 100 kΩ
11: 1 MΩ
wosmt_en
smt_en
lv_en Low V oltage
Input
Schmitt Trigger
Input
Non-Schmitt
Trigger Input
Mode [2:0]
000: Digital In wit hout Schmitt Trigger, wosmt_en=1
001: Digital In wit h Schmitt Trigger, smt_en=1
010: Low Voltage Digital In mode, lv_en = 1
011: analog IO mode
100: push-pull mode, pp_en=1
101: NMOS open drain mode, odn_en=1
110: PMOS open drain mode, odp_en=1
111: analog IO and NMOS open-drain mode, odn_en=1 and AIO_en=1
Analog IO
Digital Out
Digital Out
OE
odn_en
OE
odn_en
Digital Out
OE
2x_en
pp_en
2x_en
odp_en
Digital Out
OE
pp_en
odp_en
Digital Out
OE
odn_en
4x_en
000-0046721-104 Page 28 of 97
SLG46721
8.0 Connection Matrix
The Connection Matrix in the SLG46721 is used to create the internal routing for internal functions of the device once it is
programmed. The registers are programmed from the one-time NVM cell during Test Mode Operation. All of the connection point
for each logic cell withi n the SLG4 6721 has a specific dig ital bit code a ssigned to it that is either set to acti ve “High” or inactive
“Low” based on the design that is created. Once the 1024 register bits within the SLG46721 are programmed a fully custom circuit
will be created.
The Connection Matrix has 64 inputs and 92 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to a particular
source macrocell, including I/O pins, LUTs, analog comparators, other digital resources and VDD and VSS. Th e input to a digital
macrocell uses a 6-bit register to select one of these 64 input lines.
For a complete list of the SLG46721’s register table, see Section 20.0 Appendix A - SLG46721 Register Definition.
Figure 6. Connection Matrix
VSS 0
Pin 2 Digital In 1
Pin 3 Digital In 2
Pin 4 Digital In 3
Matrix Input Signal
Functions N
Resetb_core 62
VDD 63
N
Function
Registers
91
Input of INV_1
reg<551:546>
0
PIN3 Digital Output
Source
reg<5:0>
1
PIN3 Output Enable
reg<11:6>
2
PIN4 Digital Output
Source
reg<17:12>
Matrix Inputs
Matrix Outputs
000-0046721-104 Page 29 of 97
SLG46721
8.1 Matrix Input Table
Table 24. Matrix Input Table
NMatrix Input Signal Function Matrix Decode
5 4 3 2 1 0
0 VSS 000000
1 pin2 digital input 0 0 0 0 0 1
2 pin3 digital input 0 0 0 0 1 0
3 pin4 digital input 0 0 0 0 1 1
4 pin5 digital input 0 0 0 1 0 0
5 pin6 digital input 0 0 0 1 0 1
6 pin7 digital input 0 0 0 1 1 0
7 pin8 digital input 0 0 0 1 1 1
8 pin9 digital input 0 0 1 0 0 0
9 pin10 digital input 0 0 1 0 0 1
10 ACMP_0 output 0 0 1 0 1 0
11 ACMP_1 output 0 0 1 0 1 1
12 ACMP_2 output 0 0 1 1 0 0
13 CNT_DLY0(14bit) output 0 0 1 1 0 1
14 CNT_DLY1(14bit with ext CK/Reset) output 0 0 1 1 1 0
15 CNT_DLY4(8 bit) output 0 0 1 1 1 1
16 CNT_DLY5(8 bit) output 0 1 0 0 0 0
17 CNT_DLY6(8 bit) output 0 1 0 0 0 1
18 ACMP_3 output 0 1 0 0 1 0
19 Inverting of DFF/LATCH_2 output 0 1 0 0 1 1
20 VSS (spare) 0 1 0 1 0 0
21 Inverting of DFF/LATCH_3 output 0 1 0 1 0 1
22 LUT4_0 output (CNT_DLY2 output (8 bit w/ ext CK,reset)) 0 1 0 1 1 0
23 LUT4_1 output (CNT_DLY3 output (8 bit w/ ext CK,reset)) 0 1 0 1 1 1
24 LUT3_0 output 0 1 1 0 0 0
25 LUT3_1 output 0 1 1 0 0 1
26 LUT3_2 output (DFF/LATCH_2 output with resetb or setb) 0 1 1 0 1 0
27 LUT3_3 output (DFF/LATCH_3 output with resetb or setb) 0 1 1 0 1 1
28 LUT3_4 output 0 1 1 1 0 0
29 LUT3_5 output 0 1 1 1 0 1
30 LUT3_6 output 0 1 1 1 1 0
31 LUT3_7 output 0 1 1 1 1 1
32 LUT3_8 output(1st stage pipe 1 del ay output) 1 0 0 0 0 0
33 LUT2_0 output (DFF/LATCH_4 output) 1 0 0 0 0 1
34 LUT2_1 output (DFF/LATCH_5 output) 1 0 0 0 1 0
35 LUT2_2 output (DFF/LATCH_6 output) 1 0 0 0 1 1
36 LUT2_3 output (DFF/LATCH_7 output) 1 0 0 1 0 0
37 LUT2_4 output 1 0 0 1 0 1
000-0046721-104 Page 30 of 97
SLG46721
38 LUT2_5 output 1 0 0 1 1 0
39 LUT3_9 output 1 0 0 1 1 1
40 pipe1 delay output0 1 0 1 0 0 0
41 pipe1 delay output1 1 0 1 0 0 1
42 filter_0 output 1 0 1 0 1 0
43 Edge detect output 1 0 1 0 1 1
44 Programmable delay with edge detector ou tput 1 0 1 1 0 0
45 internal oscillator output 1 0 1 1 0 1
46 internal oscillat or di vi d ed by 4 ou tput 1 0 1 1 1 0
47 internal oscill ator divided by 8, 12, 24, 64 output selection 1 0 1 1 1 1
48 internal oscillat or di vi d ed by 3 ou tput 1 1 0 0 0 0
49 matrix input <47> divided by 3 1 1 0 0 0 1
50 pin12 digital input 1 1 0 0 1 0
51 pin13 digital input 1 1 0 0 1 1
52 pin14 digital input 1 1 0 1 0 0
53 pin15 digital input 1 1 0 1 0 1
54 pin16 digital input 1 1 0 1 1 0
55 pin17 digital input 1 1 0 1 1 1
56 pin18 digital input 1 1 1 0 0 0
57 pin19 digital input 1 1 1 0 0 1
58 pin20 digital input 1 1 1 0 1 0
59 out of INV_0 gate 1 1 1 0 1 1
60 out of INV_1 gate 1 1 1 1 0 0
61 filter_1 output 1 1 1 1 0 1
62 Resetb_core as matrix input 1 1 1 1 1 0
63 VDD 111111
Table 24. Matrix Input Table
NMatrix Input Signal Function Matrix Decode
5 4 3 2 1 0
000-0046721-104 Page 31 of 97
SLG46721
8.2 Matrix Output Table
Table 25. Matrix Output Table
Register Bit
Address Matrix Output Signal Function Matrix Output
Number
reg<5:0> Matrix Out: PIN3 Digital Output Source 0
reg<11:6> Matrix Out: Output Enable of PIN3 1
reg<17:12> Matrix Out: PIN4 Digital Output Source 2
reg<23:18> Matrix Out: PIN5 Digital Output Source 3
reg<29:24> Matrix Out: Output Enable of PIN5 4
reg<35:30> Matrix Out: PIN6 Digital Output Source 5
reg<41:36> Matrix Out: PIN7 Digital Output Source 6
reg<47:42> Matrix Out: Output Enable of PIN7 7
reg<53:48> Matrix Out: PIN8 Digital Output Source 8
reg<59:54> Matrix Out: PIN9 Digital Output Source 9
reg<65:60> Matrix Out: Output Enable of PIN9 10
reg<71:66> Matrix Out: PIN10 Digital Output Source (Super Drive) 11
reg<77:72> Matrix Out: pdb (power down) for ACMP0 12
reg<83:78> Matrix Out: pdb (power down) for ACMP1 13
reg<89:84> Matrix Out: pdb (power down) for ACMP2 14
reg<95:90> Matrix Out: Input for delay0 or Counter0 external clock 15
reg<101:96> Matrix Out: Input for delay1 or counter1 reset input 16
reg<107:102> Matrix Out: Input for Counter1 external clock or delay1 external clock 17
reg<113:108> Matri x Out: Input for delay4 or Counter4 external clock 18
reg<119:114> Matrix Out: Input for delay5 or Counter5 external clock 19
reg<125:120> Matrix Out: Input for delay6 or Counter6 external clock 20
reg<131:126> Matrix Out: Input fo r filter_0 21
reg<137:132> Matrix Out: Input fo r filter_1 22
reg<143:138> Matrix Out: pdb (power down) for ACMP3 23
reg<149:144> Matri x Out: In0 of LUT3_9 24
reg<155:150> Matri x Out: In1 of LUT3_9 25
reg<161:156> Matri x Out: In2 of LUT3_9 26
reg<167:162> Matri x Out: In0 of LUT4_0 or Input for Counter2 (delay2) extern al clock 27
reg<173:168> Matrix Out: In1 of LUT4_0 or Input for delay2 (counter2 reset input) 28
reg<179:174> Matri x Out: In2 of LUT4_0 29
reg<185:180> Matri x Out: In3 of LUT4_0 30
reg<191:186> Matrix Out: In0 of LUT4_1 or Input for Counter3(d elay3) external clock 31
reg<197:192> Matri x Out: In1 of LUT4_1 or Input fo r delay3 (counter3 reset input) 32
reg<203:198> Matri x Out: In2 of LUT4_1 33
reg<209:204> Matri x Out: In3 of LUT4_1 34
reg<215:210> Matri x Out: In0 of LUT3_0 35
reg<221:216> Matri x Out: In1 of LUT3_0 36
reg<227:222> Matri x Out: In2 of LUT3_0 37
000-0046721-104 Page 32 of 97
SLG46721
reg<233:228> Matri x Out: In0 of LUT3_1 38
reg<239:234> Matri x Out: In1 of LUT3_1 39
reg<245:240> Matri x Out: In2 of LUT3_1 40
reg<251:246> Matrix Out: In0 of LUT3 _2 or Clock Input of DFF2 41
reg<257:252> Matrix Out: In1 of LUT3 _2 or Data Input of DFF2 42
reg<263:258> Matrix Out: In2 of LUT3 _2 or Resetb Input of DFF2 43
reg<269:264> Matrix Out: In0 of LUT3 _3 or Clock Input of DFF3 44
reg<275:270> Matrix Out: In1 of LUT3 _3 or Data Input of DFF3 45
reg<281:276> Matrix Out: In2 of LUT3 _3 or Resetb (Setb) of DFF3 46
reg<287:282> Matri x Out: In0 of LUT3_4 47
reg<293:288> Matri x Out: In1 of LUT3_4 48
reg<299:294> Matri x Out: In2 of LUT3_4 49
reg<305:300> Matri x Out: In0 of LUT3_5 50
reg<311:306> Matrix Out: In1 of LUT3_5 51
reg<317:312> Matri x Out: In2 of LUT3_5 52
reg<323:318> Matri x Out: In0 of LUT3_6 53
reg<329:324> Matri x Out: In1 of LUT3_6 54
reg<335:330> Matri x Out: In2 of LUT3_6 55
reg<341:336> Matri x Out: In0 of LUT3_7 56
reg<347:342> Matri x Out: In1 of LUT3_7 57
reg<353:348> Matri x Out: In2 of LUT3_7 58
reg<359:354> Matrix Out: In0 of LUT3 _8 or Input of Pipe delay 59
reg<365:360> Matrix Out: In1 of LUT3 _8 or Resetb of Pipe delay 60
reg<371:366> Matrix Out: In2 of LUT3_8 or Clock of Pipe delay 61
reg<377:372> Matrix Out: In0 of LUT2 _0 or Clock Input of DFF4 62
reg<383:378> Matrix Out: In1 of LUT2 _0 or Data Input of DFF4 63
reg<389:384> Matrix Out: In0 of LUT2 _1 or Clock Input of DFF5 64
reg<395:390> Matrix Out: In1 of LUT2 _1 or Data Input of DFF5 65
reg<401:396> Matrix Out: In0 of LUT2 _2 or Clock Input of DFF6 66
reg<407:402> Matrix Out: In1 of LUT2 _2 or Data Input of DFF6 67
reg<413:408> Matrix Out: In0 of LUT2 _3 or Clock Input of DFF7 68
reg<419:414> Matrix Out: In1 of LUT2 _3 or Data Input of DFF7 69
reg<425:420> Matri x Out: In0 of LUT2_4 70
reg<431:426> Matri x Out: In1 of LUT2_4 71
reg<437:432> Matri x Out: In0 of LUT2_5 72
reg<443:438> Matri x Out: In1 of LUT2_5 73
reg<449:444> Matrix Out: Input for programmabl e delay & edge detector 74
reg<455:450> Matrix Out: Power down for osc 75
reg<461:456> Matri x Out: Pin12 Digital Output Source (Super Drive) 76
Table 25. Matrix Output Table
Register Bit
Address Matrix Output Signal Function Matrix Output
Number
000-0046721-104 Page 33 of 97
SLG46721
reg<467:462> Matrix Out: Pin13 Digital Output Source 77
reg<473:468> Matrix Out: Pin13 Output Enable 78
reg<479:474> Matrix Out: Pin14 Digital Output Source 79
reg<485:480> Matrix Out: Pin14 Output Enable 80
reg<491:486> Matrix Out: Pin15 Digital Output Source 81
reg<497:492> Matrix Out: Pin16 Digital Output Source 82
reg<503:498> Matrix Out: Pin16 Output Enable 83
reg<509:504> Matrix Out: Pin17 Digital Output Source 84
reg<515:510> Matrix Out: Pin18 Digital Output Source 85
reg<521:516> Matrix Out: Pin18 Output Enable 86
reg<527:522> Matrix Out: Pin19 Digital Output Source 87
reg<533:528> Matrix Out: Pin19 Output Enable 88
reg<539:534> Matrix Out: Pin20 Digital Output Source 89
reg<545:540> Matrix Out: Input of INV_0 gate 90
reg<551:546> Matrix Out: Input of INV_1 gate 91
Table 25. Matrix Output Table
Register Bit
Address Matrix Output Signal Function Matrix Output
Number
000-0046721-104 Page 34 of 97
SLG46721
9.0 Combinatorial Logic
Combinatorial logic is supporte d via nine Lookup Tables (LUTs) within the SLG46721. There are two 2-bit LUTs and seven 3-bit
LUTs. T he device al so in clude s eigh t Combina tion F unction Macrocells that ca n be used a s LUTs. For more details, p lease see
Section 10.0 Combination Function Macro Cells.
Inputs/Outputs for the nine LUTs are configured from the connection matrix with specific logic functions being defined by the state
of NVM bits. The outputs of the LUTs can be configured to any user defined function, including the following standard digital logic
devices (AND, NAND, OR, NOR, XOR, XNOR).
9.1 2-Bit LUT
The two 2-bit LUTs each take in two input signals from the connection matrix and produce a single output, which goes back into
the connection matrix. .
Each 2-bit LUT uses a 4-bit register signal to define their outpu t functions;
2-Bit LUT4 is defined by reg<590:587>
2-Bit LUT5 is defined by reg<594:591>
The table below shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be
created within each of the two 2-bit LUT logic cells.
Figure 7. 2-bit LUTs
Ta b le 28. 2-bit LUT S tandard Digital Functions.
Function MSB LSB
AND-2 1000
NAND-2 0 1 1 1
OR-2 1110
NOR-2 0 0 0 1
XOR-2 0110
XNOR-2 1001
2-bit LUT4 OUT
IN1
IN0
reg <590:587>
From Connection
Matrix Output <70>
From Connection
Matrix Output <71>
To Connection
Matrix Input <37> 2-bit LUT5 OUT
IN1
IN0
reg <594:591>
From Connection
Matrix Output <72>
From Connection
Matrix Output <73>
To Connection
Matrix Input <38>
Table 26. 2-bit LUT4 Truth Table.
IN1 IN0 OUT
0 0 reg <587>
0 1 reg <588>
1 0 reg <589>
1 1 reg <590>
Table 27. 2-bit LUT5 Truth Table.
IN1 IN0 OUT
0 0 reg <591>
0 1 reg <592>
1 0 reg <593>
1 1 reg <594>
000-0046721-104 Page 35 of 97
SLG46721
9.2 3-Bit LUT
The seven 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes back
into the connection matrix.
Figure 8. 3-bit LUTs
3-bit LUT0 OUT
IN1
IN0
reg <606:599>
From Connection
Matrix Output <35>
From Connecti on
Matrix Output <36> To Connection
Matrix Input <24> 3-bit LUT1 OUT
IN1
IN0
reg <614:607>
From Connection
Matrix Output <38>
From Connection
Matrix Output <39> To Connection
Matrix Input <25>
IN2
From Connection
Matrix Output <37> IN2
From Connection
Matrix Output <40>
3-bit LUT4 OUT
IN1
IN0
reg <638:631>
From Connection
Matrix Output <47>
From Connecti on
Matrix Output <48> To Connection
Matrix Input <28> 3-bit LUT5 OUT
IN1
IN0
reg <646:639>
From Connection
Matrix Output <50>
From Connection
Matrix Output <51> To Connection
Matrix Input <29>
IN2
From Connection
Matrix Output <49> IN2
From Connection
Matrix Output <52>
3-bit LUT6 OUT
IN1
IN0
reg <654:647>
From Connection
Matrix Output <53>
From Connecti on
Matrix Output <54> To Connection
Matrix Input <30> 3-bit LUT7 OUT
IN1
IN0
reg <662:655>
From Connection
Matrix Output <56>
From Connection
Matrix Output <57> To Connection
Matrix Input <31>
IN2
From Connection
Matrix Output <55> IN2
From Connection
Matrix Output <58>
3-bit LUT9 OUT
IN1
IN0
reg <961:954>
From Connection
Matrix Output <24>
From Connecti on
Matrix Output <25> To Connection
Matrix Input <39>
IN2
From Connection
Matrix Output <26>
000-0046721-104 Page 36 of 97
SLG46721
Table 29. 3-bit LUT0 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <599>
0 0 1 reg <600>
0 1 0 reg <601>
0 1 1 reg <602>
1 0 0 reg <603>
1 0 1 reg <604>
1 1 0 reg <605>
1 1 1 reg <606>
Table 30. 3-bit LUT1 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <607>
0 0 1 reg <608>
0 1 0 reg <609>
0 1 1 reg <610>
100 reg <611>
1 0 1 reg <612>
1 1 0 reg <613>
1 1 1 reg <614>
Table 31. 3-bit LUT4 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <631>
0 0 1 reg <632>
0 1 0 reg <633>
0 1 1 reg <634>
1 0 0 reg <635>
1 0 1 reg <636>
1 1 0 reg <637>
1 1 1 reg <638>
Table 32. 3-bit LUT5 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <639>
0 0 1 reg <640>
0 1 0 reg <641>
0 1 1 reg <642>
1 0 0 reg <643>
1 0 1 reg <644>
1 1 0 reg <645>
1 1 1 reg <646>
Table 33. 3-bit L UT6 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <647>
0 0 1 reg <648>
0 1 0 reg <649>
0 1 1 reg <650>
1 0 0 reg <651>
1 0 1 reg <652>
1 1 0 reg <653>
1 1 1 reg <654>
Table 34. 3-bit L UT7 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <655>
0 0 1 reg <656>
0 1 0 reg <657>
0 1 1 reg <658>
1 0 0 reg <659>
1 0 1 reg <660>
1 1 0 reg <661>
1 1 1 reg <662>
Table 35. 3-bit L UT9 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <954>
0 0 1 reg <955>
0 1 0 reg <956>
0 1 1 reg <957>
1 0 0 reg <958>
1 0 1 reg <959>
1 1 0 reg <960>
1 1 1 reg <961>
000-0046721-104 Page 37 of 97
SLG46721
Each 3-bit LUT uses a 8-bit register signal to define their outpu t functions;
3-Bit LUT0 is defined by reg<606:599>
3-Bit LUT1 is defined by reg<614:607>
3-Bit LUT4 is defined by reg<638:631>
3-Bit LUT5 is defined by reg<646:639>
3-Bit LUT6 is defined by reg<654:647>
3-Bit LUT7 is defined by reg<662:655>
3-Bit LUT9 is defined by reg<961:954>
The table below shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be
created within each of the six 3-bit LUT logic cells.
Ta b le 36. 3-bit LUT S tandard Digital Functions.
Function MSB LSB
AND-3 10000000
NAND-3 01111111
OR-3 11111110
NOR-3 00000001
XOR-3 10010110
XNOR-3 01101001
000-0046721-104 Page 38 of 97
SLG46721
10.0 Combination Function Macro Cells
The SLG46721 has nine combination function macrocells that can serve more than one logic or timing function. In each case,
they can serve as a Look Up Tabl e (LUT), or as another log ic or timing functio n. See the list bel ow for t he functions that can be
implemented in these macrocells;
Four macroce l l s that can serve as either 2-bit LUTs or as D Flip Flops.
Two macrocells that can serve as either 3-bit LUTs or as D Flip Flops.
One macrocell that can serve as either 3-bit LUT or as Pipe Delay
Two macrocells that can serve as either 4-bit LUTs or as 8-Bit Counter / Delays
Inputs/Outputs for the nine combination function macrocells are configured from the connection matrix with specific logic functions
being defined by the state of NVM bits.
When used as a LUT to implement combinatorial logic functi ons, the outpu ts of the LUTs ca n be configu red to an y user defin ed
function, includi ng the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).
When used as a D Flip Flop / Latch, the source and destination of the inputs and outputs for the DFF/Latches are configured from
the connection matrix. All DFF/Latch macrocells have user sel ection for initia l state, and all have the option to connect both the
Q and Q Bar outputs to the connection matrix. The macrocells DFF2, DFF3 have an additional input from the matrix that can
serve as a nSet or nReset function to the macrocell.
The operation of the D Flip-Flo p and Latch will follow the functional descrip tions below:
DFF: CLK is rising edge triggere d, then Q = D; otherwise Q will not change
Latch: if CLK = 0, then Q = D
10.1 2-Bit LUT or D Flip Flop Macrocells
There are four macrocells that can serve as either 2-bit LUTs or as D Flip Flops. When used to implement LUT functions, the 2-bit
LUTs each take in two input signals from the connection matrix and produce a single output, which goes back into the connection
matrix. When used to implement D Flip Flop function, the two input signals from the connection matrix go to the data (d) and clock
(clk) inputs for the Flip Flop, with the output going back to the connection matrix.
Figure 9. 2-bit LUT0 or DFF4
DFF4
clk
D
2-bit LUT0 OUT
IN0
IN1
To Connection Matrix
Input <33>
4-bits NVM
From Connection Matrix Output <63>
1-bit NVM
reg <574:571>
reg <595>
From Connect ion Matrix O utput <62> Q/nQ
reg <572> Output Select (Q or nQ)
000-0046721-104 Page 39 of 97
SLG46721
Figure 10. 2-bit LUT1 or DFF5
Figure 11. 2-bit LUT2 or DFF6
From Connection Matrix Output <65>
reg <578:575>
reg <596>
From Connection Matrix Output <64>
To Connection Matrix
Input <34>
DFF5
clk
D
2-bit LUT1 OUT
IN0
IN1
4-bits NVM
1-bit NVM
Q/nQ
reg <576> Output Select (Q or nQ)
From Connection Matrix Output <67>
reg <582:579>
From Connection Mat rix Output <66>
To Connection Matrix
Input <35>
DFF6
clk
D
2-bit LUT2 OUT
IN0
IN1
4-bits NVM
1-bit NVM
Q/nQ
reg <580> Output Select (Q or nQ)
reg <597>
000-0046721-104 Page 40 of 97
SLG46721
10.1.1 2-Bit LUT or D Flip Flop Macrocells Used as 2-Bit LUTs
Each Macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:
2-Bit LUT0 is defined by reg<574:571>
2-Bit LUT1 is defined by reg<578:575>
2-Bit LUT2 is defined by reg<582:579>
2-Bit LUT3 is defined by reg<586:583>
Figure 12. 2-bit LUT3 or DFF7
DFF7
2-bit LUT3
From Connection Matrix Output <69>
reg <586:583>
reg <598>
From Connect ion Matrix O utput <68>
To Connection Matrix
Input <36>
clk
D
OUT
IN0
IN1
4-bits NVM
1-bit NVM
Q/nQ
reg <584> Output Select (Q or nQ)
Table 37. 2-bit LUT0 Truth Table.
IN1 IN0 OUT
0 0 reg <571>
0 1 reg <572>
1 0 reg <573>
1 1 reg <574>
Table 38. 2-bit LUT1 Truth Table.
IN1 IN0 OUT
0 0 reg <575>
0 1 reg <576>
1 0 reg <577>
1 1 reg <578>
Table 39. 2-bit LUT2 Truth Table.
IN1 IN0 OUT
0 0 reg <579>
0 1 reg <580>
1 0 reg <581>
1 1 reg <582>
Table 40. 2-bit LUT3 Truth Table.
IN1 IN0 OUT
0 0 reg <583>
0 1 reg <584>
1 0 reg <585>
1 1 reg <586>
000-0046721-104 Page 41 of 97
SLG46721
10.1.2 2-Bit LUT or D Flip Flop Macrocells Used as D Flip Flop Register Settings
Table 41. DFF4 Register Settings
Signal Function Register Bit
Address Register Definition
LUT2_0 or DFF4
Select 595 0: LUT2_0
1: DFF4
DFF4 or Latch
Select 571 0: DFF function
1: Latch function
DFF4 Output Select 572 0: Q output
1: nQ output
DFF4 Initial Polarity
Select 573 0: Low
1: High
Table 42. DFF5 Register Settings
Signal Function Register Bit
Address Register Definition
LUT2_1 or DFF5
Select 596 0: LUT2_1
1: DFF5
Select or Latch
select 575 0: DFF function
1: Latch function
DFF5 Output Select 576 0: Q output
1: nQ output
DFF5 Initial Polarity
Select 577 0: Low
1: High
Table 43. DFF6 Register Settings
Signal Function Register Bit
Address Register Definition
LUT2_2 or DFF6
Select 597 0: LUT2_2
1: DFF6
DFF6 or Latch
Select 579 0: DFF function
1: Latch function
DFF6 Output Select 580 0: Q output
1: nQ output
DFF6 Initial Polarity
Select 581 0: Low
1: High
Table 44. DFF7 Register Settings
Signal Function Register Bit
Address Register Definition
LUT2_3 or DFF7
Select 598 0: LUT2_3
1: DFF7
DFF7 or Latch
Select 583 0: DFF function
1: Latch function
DFF7 Output Select 584 0: Q output
1: nQ output
DFF7 Initial Polarity
Select 585 0: Low
1: High
000-0046721-104 Page 42 of 97
SLG46721
10.2 3-Bit LUT or D Flip Flop with Set/Reset Macrocells
There are two macrocells that can serve as either 3-bit LUTs or as D Flip Flops. When used to implement LUT functions, the 3-bit
LUTs each take in three input signals from the connection matrix and produce a single output, which goes back into the connection
matrix. When used to implement D Flip Flop function, the three input signals from the connection matrix go to th e data (d) and
clock (clk) and Set/Reset (rRST/nSET) inputs for the Flip Flop, with the output going back to the connection matrix.
Figure 13. 3-bit LUT2 or DFF2
Figure 14. 3-bit LUT3 or DFF3
DFF3
clk
D
8-bits NVM
1-bit NVM
3-bit LUT3 OUT
IN1
IN2
IN0
nRST/nSET
From Connection
Matrix Output <46>
From Connection
Matrix Output <45>
From Connection
Matrix Output <44>
reg <630:623>
reg <672 >
To Connection Matrix<
Input 27>
reg <624> Output Select (Q or nQ)
Q/nQ
000-0046721-104 Page 43 of 97
SLG46721
10.2.1 3-Bit LUT or D Flip Flop Macrocells Used as 3-Bit LUTs
Each Macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:
3-Bit LUT2 is defined by reg<622:615>
3-Bit LUT3 is defined by reg<630:623>
10.2.2 3-Bit LUT or D Flip Flop Macrocells Used as D Flip Flop Register Settings
Table 47. DFF2 Register Settings
Signal Function Register Bit
Address Register Definition
LUT3_2 or DFF2
Select reg<671> 0: LUT3_2
1: DFF2
DFF2 or Latch
Select reg<615> 0: DFF function
1: Latch function
DFF2 Output Select reg<616> 0: Q output
1: nQ output
DFF2 rstb/setb
Select reg<617> 1: setb from matrix out
0: resetb from matrix out
DFF2 Initial Polarity
Select reg<618> 0: Low
1: High
Table 48. DFF3 Register Settings
Signal Function Register Bit
Address Register Definition
LUT3_3 or DFF3
Select reg<672> 0: LUT3_3
1: DFF3
DFF3 or Latch
Select reg<623> 0: DFF function
1: Latch function
DFF3 Output Select reg<624> 0: Q output
1: nQ output
DFF3 rstb/setb
Select reg<625> 1: setb from matrix out
0: resetb from matrix out
DFF3 Initial Polarity
Select reg<626> 0: Low
1: High
Table 45. 3-bit LUT2 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <615>
0 0 1 reg <616>
0 1 0 reg <617>
0 1 1 reg <618>
1 0 0 reg <619>
1 0 1 reg <620>
1 1 0 reg <621>
1 1 1 reg <622>
Table 46. 3-bit L UT3 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <623>
0 0 1 reg <624>
0 1 0 reg <625>
0 1 1 reg <626>
1 0 0 reg <627>
1 0 1 reg <628>
1 1 0 reg <629>
1 1 1 reg <630>
000-0046721-104 Page 44 of 97
SLG46721
10.3 3-Bit LUT or Pipe Delay Macrocell
There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay.
When used to implement LUT functions, the 3-bit LUT take in three input signals from the connection matrix and produces a single
output, which goes back into the connection matrix.
When used as a pipe delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK) and Reset (RST). The pipe
delay cell is built from 16 D Flip-Flop logic ce lls that provi de the three dela y options, two of which are user sele ctable. The DFF
cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell. The first delay option (OUT2) is fixed at
the output of the first flip-flop stage. The other tw o outputs (OUT 0 and OUT1) pro vide user sel ectable options for 1 – 16 stages
of delay There are delay output points for each set of the OUT0 and OUT1 outputs to a 4-input mux that is controlled by reg
<666:663> for OUT0 and reg <670:667> for OUT1. The 4-input mux is used to control the selection of the amount of delay.
The overall time of the delay is based on the clock used in the SLG46721 design. Each DFF cell has a time delay of the inverse
of the clock time (either external clock or the RC Oscillator within the SLG46721). The sum of the number of DFF cells used will
be the total time delay of the Pipe Delay logic cell.
Figure 15. 3-bit LUT8 or Pipe Delay
3-bit LUT8 OUT
IN1
IN0
reg <670:663>
From Connection
Matrix Output <59>
From Connection
Matrix Output <60>
IN2
From Connection
Matrix Output <61>
16 Flip flop Block
IN
RST
CLK
From Connection
Matrix Output <60>
From Connection
Matrix Output <59>
From Connection
Matrix Output <61>
reg <670:667>
reg <666:663>
To Connection
Matrix Input<41>
To Connection
Matrix Input <40 >
OUT1
OUT0
reg <964>
0
1
To Connection
Matrix Input <34>
OUT2
reg <963>
0
1
000-0046721-104 Page 45 of 97
SLG46721
10.3.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUTs
Each Macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:
3-Bit LUT8 is defined by reg<670:663>
10.3.2 3-Bit LUT or Pipe Dela y Macrocells Used as Pipe Delay Regi ster Settings
Table 50. Pipe Delay Register Settings
Signal Function Register Bit
Address Register Definition
LUT3_8 or Pipe
Delay Output Select reg<963> 0: LUT3_8
1: 1 Pipe Delay Output
OUT0 select reg<666:663>
OUT1 select reg<670:667>
Pipe delay OUT1
Polarity Select Bit reg<964> 0: Non-inverted
1: Inverted
Table 49. 3-bit LUT8 Truth Table.
IN2 IN1 IN0 OUT
0 0 0 reg <663>
0 0 1 reg <664>
0 1 0 reg <665>
0 1 1 reg <666>
1 0 0 reg <667>
1 0 1 reg <668>
1 1 0 reg <669>
1 1 1 reg <670>
000-0046721-104 Page 46 of 97
SLG46721
10.4 4-Bit LUT or 8- Bit Counter / Delay Macrocells
There are two macrocells that can serve as either 4-bit LUTs or as Counter / Delays. When used to implement LUT functions, the
4-bit LUTs each take in four input signals from the connection matrix and produce a single output, which goes back into the
connection matrix. When used to implement 8-Bit Counter / Delays function, two of the four input signals from the connection
matrix go to the external clock (ext_ clk) and reset (DLY _n/CNT_Reset) for the cou nter/delay, with the output goi ng back to the
connection matrix.
Figure 16. 4-bit LUT0 or CNT/DLY2
CNT/DLY2 OUT
clk
DLY_n/CNT_Reset
4-bit LUT0
OUT
IN0
IN1
16-bits NVM
1-bit NVM
IN2
IN3
To Connection
Matrix Input <22>
From Connection Matrix Output <28>
reg <688:673>
reg <705>
From Connection
Matrix Output <27>
From Connection Matrix Output <30>
From Connection Matrix Output <29>
000-0046721-104 Page 47 of 97
SLG46721
Figure 17. 4-bit LUT1 or CNT/DLY3
CNT/DLY3 OUT
clk
DLY_n/CNT_Reset
4-bit LUT1
OUT
IN0
IN1
16-bits NVM
1-bit NVM
IN2
IN3
From Connection Matrix Output <32>
reg <704:689>
reg <706>
From Connection
Matrix Output <31>
From Connection Matrix Output <34>
From Connection Matrix Output <33>
To Connection
Matrix Input <23>
000-0046721-104 Page 48 of 97
SLG46721
10.4.1 4-Bit LUT or 8-Bit Counter / Delay Macroc ells Used as 4-Bit LUTs
Each Macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:
4-Bit LUT0 is defined by reg<688:673>
4-Bit LUT1 is defined by reg<704:689>
Ta b le 53. 4-bit LUT S tandard Digital Functions.
Function MSB LSB
AND-4 1000000000000000
NAND-40111111111111111
OR-4 1111111111111110
NOR-4 0000000000000001
XOR-4 0110100111001110
XNOR-41001011000110001
Table 51. 4-bit LUT0 Truth Table.
IN3 IN2 IN1 IN0 OUT
0000reg <673>
0001reg <674>
0010reg <675>
0011reg <676>
0100reg <677>
0101reg <678>
0110reg <679>
0111reg <680>
1000reg <681>
1001reg <682>
1010reg <683>
1011reg <684>
1100reg <685>
1101reg <686>
1110reg <687>
1111reg <688>
Table 52. 4-bit LUT1 Truth Table.
IN3 IN2 IN1 IN0 OUT
0000reg <689>
0001reg <690>
0010reg <691>
0011reg <692>
0100reg <693>
0101reg <694>
0110reg <695>
0111reg <696>
1000reg <697>
1001reg <698>
1010reg <699>
1011reg <700>
1100reg <701>
1101reg <702>
1110reg <703>
1111reg <704>
000-0046721-104 Page 49 of 97
SLG46721
10.4.2 4-Bit LUT or 8-Bit Counter / Delay Macrocells Used as 8-Bit Counte r / Delay Register Settings
Table 54. CNT/DLY2 Register Settin gs
Signal Function Register Bit
Address Register Definition
LUT4_0 or
Counter2 Select reg<705> 0: LUT4_0
1: Counter2
Counter/delay2
Mode Selection reg<673> 0: Delay Mode
1: Counter Mode
Counter/delay2
Clock Source Select reg<676:674> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock / 8
111: Counter1 Overflow
Counter/delay2
Control Data reg<684:677> 1 – 256 (delay time = (counter control data +1) /freq)
Delay2 Mode Select
or asynchronous
counter reset
reg<686:685> 00: on both falling and rising edges (for delay & counter reset)
01: on falling edge only (for delay & counter reset)
10: on rising edge only (for delay & counter reset)
11: no delay on either falling or rising edges / high level reset
Table 55. CNT/DLY3 Register Settin gs
Signal Function Register Bit
Address Register Definition
LUT4_1 or
Counter3 Select reg<706> 0: LUT4_1
1: Counter3
Counter/delay3
Mode Selection reg<689> 0: Delay Mode
1: Counter Mode
Counter/delay3
Clock Source Select reg<692:690> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock / 8
111: Counter2 Overflow
Counter/delay3
Control Data reg<700:693> 1 – 256 (delay time = (counter control data +1) /freq)
Delay3 Mode Select
or asynchronous
counter reset
reg<702:701> 00: on both falling and rising edges (for delay & counter reset)
01: on falling edge only (for delay & counter reset)
10: on rising edge only (for delay & counter reset)
11: no delay on either falling or rising edges / high level reset
000-0046721-104 Page 50 of 97
SLG46721
11.0 Analog Comparators (ACMP)
There are four Analog Comparator (ACMP) macro cells in the SLG46721. In order for the ACMP cells to be used in a GreenPAK
design, the power up signals (ACMP0_pdb, ACMP1_pdb, ACMP2_pdb and ACMP3_pdb) need to be active. By connectin g to
signals coming from the Connection Matrix, it is possible to have each ACMP be on continuousl y, off continuously, or switched
on periodically based on a digital signal coming from the Connection Matrix. When ACMP is powered down, output is low.
Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a
selectable gain stage before connection to the analog comparator. Each of the ACMP cell s has a negative input signal that is
either created from an internal VREF or provided by way of the external sources.
PWR UP = 1 => ACMP is powered up.
PWR UP = 0 => ACMP is powered down.
During powerup, the ACMP output will remain low, and then become valid 120 μs (max) after POR signal goes high. If Low
Bandwidth option enabled, then the ACMP output initial izes in the high state.
Vref accuracy is optimized near 1000 mV selectio n.
Input bias curre nt < 1 n A (typ). The Gain divider is unbu ffered and consists of 1 MΩ resistors. IN- voltage range: 0 - 1.2 V. Can
use Vref selection VDD/4 and VDD/3 to maintain this input range.
Each of the ACMP cells has a selection for the bandwidth of the input signal, which can be used to save power when low bandwidth
signals are input into the analog comparator.
Low bandwidth: For VDD 1.8 V or less, this option will connect a low pass filter with 180 kHz upper frequency. And if input
frequency > 200 kHz, the output will retain its previous value.
Buffer can be used only for VDD > 2.7 V. Enabling the Analog buffer will influence the ACMP response time.
Note that power supply control options have influence on Analog blocks operation.
Note: Any ACMP powered ON enables the BandGap circuit as well, and an analog voltage will appear on Vref (even when Force
BandGap is disabled).
Each cell also has a hysteresis selection, to offer hysteresis of 0 mV, 25 mV, 50 mV or 200 mV.
Hysteresis: Input signal hysteresis options are disable, 25mV, 50mV, 200mV.
ACMP0 IN+ options are pin 6 , buffered pin6, VDD
ACMP1 IN+ options are pin 10 , buffered pin10 , ACMP0 IN+
ACMP2 IN+ options are pin 13 , ACMP0 IN+
ACMP3 IN+ options are pin 15 , ACMP0 IN+, ACMP2 IN+
000-0046721-104 Page 51 of 97
SLG46721
11.1 ACMP0 Block Diagram
Figure 18. ACMP0 Block Diagram
11011
11010
11001-
00000
Internal
Vref
PIN7: ACMP0(-)
PIN12: ACMP1(-)
110
100
0X1
PIN6: ACMP0(+)
External VDD 1.71 V ~ 5.5 V
External VDD
2.7 V ~ 5.5 V
Selectable
Gain
reg <803:802>
to ACMP1, ACMP2,
ACMP3’s MUX input
Vref
+
-
From Connection
Matrix Output <12>
pdb
LBW
Selection
ibias
reg <804>
Hysteresis
Selection
reg <801:800>
L/S
ON after
100 μs Delay
To Connection
Matrix Input< 10 >
reg <799:795>
*PIN6_aio_en; reg <569>; reg <805>
*PIN6_aio_en:
if reg <855:854>=’11’ then 1, otherwise: 0
000-0046721-104 Page 52 of 97
SLG46721
11.2 ACMP0 Register Settings
Table 56. ACMP0 Register Settings
Signal Function Register Bit
Address Register Definition
Analog Buffer at
ACMP0 Enable reg<569> 1: Enable Analog Buffer
0: Disable Analog Buffer
ACMP0 In Voltage
Select reg<799:795> 00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 40 0 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN7)
ACMP0 Hysteresis
Enable reg<801:800> 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
ACMP0 Positive
Input Divider reg <80 3:802> 00: 1.00X
01: 0.50X
10: 0.33X
11: 0.25X
ACMP0 Low
Bandwidth (Max: 1
MHz) Enable
reg<804> 1: On
0: Off
ACMP0 Positive
Input Source Select
VDD
reg<805> 0: Disable
1: Enable
000-0046721-104 Page 53 of 97
SLG46721
11.3 ACMP1 Block Diagram
Figure 19. ACMP1 Block Diagram
11011
11010
11001-
00000
Internal
Vref
PIN12: ACMP1(-)
PIN12: ACMP1(-)
110
100
0X1
PIN10: ACMP1(+)
From ACMP0’s MUX output
External VDD
2.7 V ~ 5.5 V
Selectable
Gain
reg <814:813>
Vref
+
-
From Connection
Matrix Output <13>
pdb
LBW
Selection
ibias
reg <816>
Hysteresis
Selection
reg <812:811>
L/S
ON after
100 μs Delay
To Connection
Matrix Input <11>
reg <810:806>
*PIN10_aio_en; reg <570>; reg <817>
*PIN10_aio_en:
if reg <883:882>=’11’ then 1, otherwise: 0
000-0046721-104 Page 54 of 97
SLG46721
11.4 ACMP1 Register Settings
Table 57. ACMP1 Register Settings
Signal Function Register Bit
Address Register Definition
Analog Buffer at
ACMP1 Enable reg<570> 1: Enable Analog Buffer
0: Disable Analog Buffer
ACMP1 Negative
Input Voltage Select reg<810:806> 00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 40 0 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN12)
ACMP1 Hysteresis
Enable reg<812:811> 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
ACMP1 Positive
Input Divider reg <81 4:813> 00: 1.00X
01: 0.50X
10: 0.33X
11: 0.25X
ACMP1 Low
Bandwidth (Max: 1
MHz) Enable
reg<816> 0: Off
1: On
ACMP1 Positive
Input Source Select
PIN6
reg<817> 0: Disable
1: Enable
000-0046721-104 Page 55 of 97
SLG46721
11.5 ACMP2 Block Diagram
Figure 20. ACMP2 Block Diagram
11011
11010
11001-
00000
Internal
Vref
PIN14: ACMP2(-)
PIN12: ACMP1(-)
10
01
PIN13: ACMP1(+)
From ACMP0’s MUX output
Selectable
Gain
reg <826:825>
to ACMP3’s MUX input
Vref
+
-
From Connection
Matrix Output <14>
pdb
LBW
Selection
ibias
reg <827>
Hysteresis
Selection
reg <824:823>
L/S
ON after
100 μs Delay
To Connection
Matrix Input <12>
reg <822:818>
*PIN13_aio_en;reg<828>
*PIN13_aio_en:
if reg <899:898>=’11’ & reg
<473:468>=’000000’ then 1, otherwise: 0
000-0046721-104 Page 56 of 97
SLG46721
11.6 ACMP2 Register Settings
Table 58. ACMP2 Register Settings
Signal Function Register Bit
Address Register Definition
ACMP2 Negative
Input Voltage Select reg<822:818> 00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 40 0 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN14)
ACMP2 Hysteresis
Enable reg<824:823> 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
ACMP2 Positive
Input Divider reg <82 6:825> 00: 1.00X
01: 0.50X
10: 0.33X
11: 0.25X
ACMP2 Low
Bandwidth (Max: 1
MHz) Enable
reg<827> 0: Off
1: On
ACMP2 Positive
Input Source Select
PIN6
reg<828> 0: Disable
1: Enable
000-0046721-104 Page 57 of 97
SLG46721
11.7 ACMP3 Block Diagram
Figure 21. ACMP3 Block Diagram
11011
11010
11001-
00000
Internal
Vref
PIN14: ACMP2(-)
PIN12: ACMP1(-)
100
010
001
PIN15: ACMP3(+)
From ACMP2’s MUX output
Selectable
Gain
reg <560:559>
Vref
+
-
From Connection
Matrix Output <23>
pdb
LBW
Selection
ibias
reg <561>
Hysteresis
Selection
reg <558:557>
L/S
ON after
100 μs Delay
To Connection
Matrix input <18>
reg <556:552>
*PIN15_aio_en; reg < 562>; reg<563>
*PIN15_aio_en:
if reg <913:912>=’11’ then 1, otherwise: 0
From ACMP0’s MUX output
000-0046721-104 Page 58 of 97
SLG46721
11.8 ACMP3 Register Settings
Table 59. ACMP3 Register Settings
Signal Function Register Bit
Address Register Definition
ACMP3 Negative
Input Voltage Select reg<556:552> 00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 40 0 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN14)
ACMP3 Hysteresis
Enable reg<558:557> 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
ACMP3 Positive
Input Divider reg <56 0:559> 00: 1.00X
01: 0.50X
10: 0.33X
11: 0.25X
ACMP3 Low
Bandwidth (Max: 1
MHz) Enable
reg<561> 1: On
0: Off
ACMP3 Positive
Input Source Select
PIN6
reg<562> 0: Disable
1: Enable
ACMP3 Positive
Input Source Select
PIN13
reg<563> 0: Disable
1: Enable
000-0046721-104 Page 59 of 97
SLG46721
12.0 Digital Storage Elements (DFFs/Latches)
There are six Combination Function macrocells that can be used to implement D-Flip Flop or Latch functions. Please see Section
10.1 2-Bit LUT or D Flip Flop Macrocells and Section 10.2 3-Bit LUT or D Flip Flop with Set/Reset Macrocells for the description
of this Combination Function macrocell.
Initial Polarity Operations
Figure 22. DFF Polarity Operations
VDD
Data
Clock
POR
nReset (Case 1)
Q with nReset (Case 1)
nReset (Case 2)
Q with nReset (Case 2)
Initial Polarity: High
000-0046721-104 Page 60 of 97
SLG46721
13.0 Counters/Delay Generators (CNT/DLY)
There are five configurable counters/delay generators in the SLG46721. Two of these counters/delay generators (CNT/DLY 0
and 1) are 14-bit, and three of the counters/delay generators (CNT/DLY 4, 5, 6) are 8-bit. For flexibility, each of these macrocells
has a large selection of internal and external clock sources, as well as the option to chai n from the output of the previous (N-1)
CNT/DLY macrocell, to implement longer count / delay circuits.
One of the counter/delay generator macrocells (CNT/DL Y 1) has two inputs from the connection matrix, one for Delay Input/Reset
Input (Delay_In/Reset_In), and one for an external counter/clock source. Four of the counter/delay generator macrocells
(CNT/DL Y 0, 4, 5, 6) have one input from the connection matrix, which has a shared function of either a Delay Input or an external
clock input.
CNT/DLY6 has one extra output on which a short pulse will be generated according to the configured edge on the input signal if
detected.
Note that there are also two Combination Function Macrocells that can implement either 4-bit LUTs or 8-bit counter / delays, For
more information please see Section 10.4 4-Bit LUT or 8- Bit Counter / Delay Macrocells.
Figure 23. CNT/DLY0
CNT/DLY0
Counter_end
clk
To Connection
Matrix Input <13>
From Connection
Matrix Output <15>
Count_end_out_x-1
reg <713>
0
1
2
3
4
5
6
7
ext. clock
RC Osc/64
RC Osc/24
RC Osc/12
RC Osc/4
RC Osc
Counter Control Data
reg <730:717>
reg <716:714>
0
1
0
1
Delay_out
Delay_IN/CNT_ext_clk
Delay_IN
CNT clock
Edge Detector
000-0046721-104 Page 61 of 97
SLG46721
Figure 24. CNT/DLY1
Figure 25. CNT/DLY4
CNT/DLY1
Counter_end
clk
To Connection
Matrix Input <14>
From Connection
Matrix Output <16>
Count_end_out_x-1
reg <733>
0
1
2
3
4
5
6
7
ext. clock from CM Out<17>
RC Osc/64
RC Osc/24
RC Osc/12
RC Osc/4
RC Osc
Counter Control Data
reg <750:737>
reg <736:734>
0
1
0
1
Delay_out
Delay_IN
Reset_IN
Edge Detector
CNT/DLY4
Counter_end
clk
To Connection
Matrix Input <15>
From Connection
Matrix Output <18>
Count_end_out_x-1
reg <753>
0
1
2
3
4
5
6
7
ext. clock
RC Osc/64
RC Osc/24
RC Osc/12
RC Osc/4
RC Osc
Counter Control Data
reg <764:757>
reg <756:754>
0
1
0
1
Delay_out
Delay_IN/CNT_ext_clk
Delay_IN
CNT clock
Edge Detector
000-0046721-104 Page 62 of 97
SLG46721
Figure 26. CNT/DLY5
Figure 27. CNT/DLY6
CNT/DLY5
Counter_end
clk
To Connection
Matrix Input <16>
From Connection
Matrix Output <19>
Count_end_out_x-1
reg <767>
0
1
2
3
4
5
6
7
ext. clock
RC Osc/64
RC Osc/24
RC Osc/12
RC Osc/4
RC Osc
Counter Control Data
reg <778:771>
reg <770:768>
0
1
0
1
Delay_out
Delay_IN/CNT_ext_clk
Delay_IN
CNT clock
Edge Detector
CNT/DLY6
Counter_end
clk
To Connection
Matrix Input <17>
From Connection
Matrix Output <20>
Count_end_out_x-1
reg <781>
0
1
2
3
4
5
6
7
ext. clock
RC Osc/64
RC Osc/24
RC Osc/12
RC Osc/4
RC Osc
Counter Control Data
reg <792:785>
reg <784:782>
0
1
0
1
Delay_out
Delay_IN/CNT_ext_clk
Delay_IN
CNT clock
Edge Detector
To Connection
Matrix Input <43>
Edge Detector output
000-0046721-104 Page 63 of 97
SLG46721
13.1 CNT/DLY T iming Diagrams
Figure 28. Delay Mode Timing
Figure 29. Counter Mode Timing
delay_in
RC osc: force power on
(always running)
Delay output
Asynchronous delay variable Asynchronous delay variable
delay = period x (counter data + 2) + variable
variable is from 0 to 1 clock period delay = period x (counter data + 2) + variable
variable is from 0 to 1 clock period
Delay mode (edge select: both, counter data:3)
delay_in
RC osc: auto power on
(powers up from delay in)
Delay output
offset offset
delay = offset + period x (counter data + 2)
offset = approx. 4-22 μs at room temp. delay = offs et + period x (counter data + 2)
offset = approx. 4-22 μs at room temp.
delay_in
CLK
Counter output
Count start in 2 clk after reset
4 clk period pulse
Count mode (count data:3), Counter reset (rising edge detect reset by delay_in input)
000-0046721-104 Page 64 of 97
SLG46721
13.2 CNT/DLY0 Register Settings
13.3 CNT/DLY1 Register Settings
Table 60. CNT/DLY0 Register Settin gs
Signal Function Register Bit
Address Register Definition
Counter/Delay0
Mode Select reg<713> 0: Delay Mode
1: Counter Mode
Counter/Delay0
Clock Source Select
(external clock is
only for counter
mode)
reg<716:714> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter6 Overflow
Counter0 Control
Data/Delay0 Time
Control
reg<730:717> 1-1 6384: (delay time = (counter control data +2) /freq)
Delay0 Mode Select reg <73 2:731> 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
Table 61. CNT/DLY1 Register Settin gs
Signal Function Register Bit
Address Register Definition
Counter/Delay1
Mode Select reg<733> 0: Delay Mode
1: Counter Mode
Counter/Delay1
Clock Source select reg<736:734> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter0 Overflow
Counter1 Control
Data/Delay1 Time
Control
reg<750:737> 1-1 6384: (delay time = (counter control data +2) /freq)
Delay1 Mode Select
or asynchronous
counter reset
reg<752:751> 00 : Delay on both falling and rising edges (for delay & counter reset)
01: Delay on falling edge only (fo r delay & counter reset)
10: Delay on rising edge only (for delay & counter reset)
11: No delay on either falling or rising edges / high level reset for counter mode
000-0046721-104 Page 65 of 97
SLG46721
13.4 CNT/DLY4 Register Settings
13.5 CNT/DLY5 Register Settings
Table 62. CNT/DLY4 Register Settin gs
Signal Function Register Bit
Address Register Definition
Counter/Delay4
Mode Select reg<753> 0: Delay Mode
1: Counter Mode
Counter/Delay4
Clock Source Select
(external clock is
only for counter
mode)
reg<756:754> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter3 Overflow
Counter4 Control
Data/Delay4 Time
Control
reg<764:757> 1-256: (delay time = (co unter control data +2) /freq)
Delay4 Mode Select reg <76 6:765> 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
Table 63. CNT/DLY5 Register Settin gs
Signal Function Register Bit
Address Register Definition
Counter/Delay5
Mode Select reg<767> 0: Delay Mode
1: Counter Mode
Counter/Delay5
Clock Source Select
(external clock is
only for counter
mode)
reg<770:768> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter4 Overflow
Counter5 Control
Data/Delay5 Time
Control
reg<778:771> 1-256: (delay time = (co unter control data +2) /freq)
Delay5 Mode Select reg <78 0:779> 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
000-0046721-104 Page 66 of 97
SLG46721
13.6 CNT/DLY6 Register Settings
Table 64. CNT/DLY6 Register Settin gs
Signal Function Register Bit
Address Register Definition
Counter/Delay6
Mode Select reg<781> 0: Delay Mode
1: Counter Mode
Counter/Delay6
Clock Source Select
(external clock is
only for counter
mode)
reg<784:782> 000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter5 Overflow
Counter6 Control
Data/Delay6 Time
Control
reg<792:785> 1-256: (delay time = (co unter control data +2) /freq)
Delay6 Mode Select reg <79 4:793> 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
000-0046721-104 Page 67 of 97
SLG46721
14.0 Pipe Delay (PD)
The SLG46721 has a pip e delay logic cell that is shared with the LUT3_8 in one of the Combination Function macro cells. The
user can select one of these functions to use in a design, but not both. Please see Section 10.3 3-Bit LUT or Pipe Delay Macrocell
for the description of this Combination Function macrocell.
000-0046721-104 Page 68 of 97
SLG46721
15.0 Programmable Delay / Edge Detector
The SLG46721 has a progra mmable time de lay logic cell avail able that can generate a de lay that is selectable fro m one of four
timings (time1) configured in the GreenP AK Designer. The programmable time delay cell can generate one of four different delay
patterns, rising edge detection, falling edge detection, both edge detection and both edge delay . These four patterns can be further
modified with the addition of delayed edge detection, which adds an extra unit of delay as well as glitch rejection during the delay
period. See the timing diagrams below for further information.
15.1 Programmable Delay Timing Diagram - Edge Detector Output
Figure 30. Programmable Delay
Figure 31. Edge Detector Output
Programmable
Delay OUT
IN
reg <966:965>
From Connection Matrix Output <74> To Connection
Matrix Input <44>
reg <968 :967>
reg <969>
Delayed Edge Detector Output
Edge Mode Selection
Delay Value Selection
time1
Edge Detector
Output
IN
Rising Edge Detector
Falling Edge Detector
Both Edge Detector
Both Edge Delay
time1
time1 can be set by register value
time2 is a fixed value at ~200 ns
000-0046721-104 Page 69 of 97
SLG46721
15.2 Programmable Delay Timing Diagram - Glitch Filtering For Edge Detector Output
Figure 32. Delayed Edge Detector Output
Figure 33. Glitch Filtering for Edge Detector Output
Delayed Edge
Detector Output
Delayed Rising Edge Detector
Delayed Falling Edge Detector
Delayed Both Edge Detector
Delayed Both Edge Delay
time2 time2
time1 can be set by register value (125 ns, 250 ns, 375 ns, 500ns)
time2 is a fixed value at ~200 ns
IN
time1 time1
Edge
Detector Output
Delayed Edge
Detector Output
IN
Rising Edge Detector
Falling Edge Detector
Both Edge Detector
Both Edge Delay
Rising Edge Detector
Falling Edge Detector
Both Edge Detector
Both Edge Delay
000-0046721-104 Page 70 of 97
SLG46721
15.3 Programmable De lay Register Settings
Table 65. Programmable Delay Register Settings
Signal Function Register Bit
Address Register Definition
Delay value select
for programmable
delay & edge
detector
(VDD = 3.3V , typical
condition)
reg<966:965> 00: 125 ns
01: 250 ns
10: 375 ns
11: 500 ns
Select the edge
mode of
programmable
delay & edge
detector
reg<968:967> 00: Rising Edge Detector
01: Falling Edge Detector
10: Both Edge Detector
11: Both Edge Delay
Select edge
detector output
mode
reg<969> 0: Non-Delayed Output
1: Delayed Output
000-0046721-104 Page 71 of 97
SLG46721
16.0 Additional Logic Functions
The SLG46721 has four additional logic functions that are connected directly to the Connection Matrix inputs and outputs. There
are two inverters, which can switch the polarity of any Connection Matrix signal, and there are also two deglitch filters.
16.1 INV_0 Gate
16.2 INV_1 Gate
16.3 Deglitch Filter
Figure 34. INV_0 Gate
Figure 35. INV_1 Gate
Figure 36. Deglitch Filter
INV_0 Gate
From Connection Matrix Output <90> To Connection Matrix Input <59>
INV_1 Gate
From Connection Matri x Output <91> To Connection Matrix Input <60>
From Connection Matrix Output <21>
To Connection Matrix Input <42>
From Connection Matrix Output <22>
To Connection Matrix Input <61>
Filter_0
Filter_1
reg <709 >
reg <962>
C
C
R
R
000-0046721-104 Page 72 of 97
SLG46721
17.0 Voltage Reference (VREF)
17.1 Voltage Reference Overview
The SLG46721 has a Voltage Reference Macrocell to provide references to the four analog comparators. This macrocell can
supply a user selection of fixed voltage references, /3 and /4 reference off of the VDD power supply to the device, and externally
supplied voltage references from pins 7,12 and 1 4. The macrocell also has the option to output reference voltages on pins 18
and 19. See table below for the avai lable selections for each analog comparator. Also see Figure 37 belo w, which shows the
reference output structure.
17.2 VREF Selection Table
Table 66. VREF Selection Table.
SEL<4:0> CMP0_VREF CMP1_VREF CMP2_VREF CMP3_VREF
11011 vref_ext_acmp0 vref_ext_acmp1 vref_ext_acmp2 vref_ext_acmp2
11010 vref_ext_acmp1 vref_ext_acmp1 vref_ext_acmp1 vref_ext_acmp1
11001 VDD / 4 VDD / 4 VDD / 4 VDD / 4
11000 VDD / 3 VDD / 3 VDD / 3 VDD / 3
10111 1.20 1.20 1.20 1.20
101101.151.151.151.15
10101 1.10 1.10 1.10 1.10
10100 1.05 1.05 1.05 1.05
100111.001.001.001.00
10010 0.95 0.95 0.95 0.95
10001 0.90 0.90 0.90 0.90
10000 0.85 0.85 0.85 0.85
01111 0.80 0.80 0.80 0.80
011100.750.750.750.75
01101 0.70 0.70 0.70 0.70
01100 0.65 0.65 0.65 0.65
010110.600.600.600.60
01010 0.55 0.55 0.55 0.55
01001 0.50 0.50 0.50 0.50
01000 0.45 0.45 0.45 0.45
00111 0.40 0.40 0.40 0.40
001100.350.350.350.35
00101 0.30 0.30 0.30 0.30
00100 0.25 0.25 0.25 0.25
000110.200.200.200.20
00010 0.15 0.15 0.15 0.15
00001 0.10 0.10 0.10 0.10
00000 0.05 0.05 0.05 0.05
VDD Practial VREF Range Note
2.0 V - 5.5 V 50 mV ~1.2 V
1.7 V - 2.0V 50 mV ~1.1 V Higher than 1.1 V negative input, the comparator may show wrong result
000-0046721-104 Page 73 of 97
SLG46721
17.3 VREF Block Diagram
Figure 37. Voltage Reference Block Diagram
CMP0_VREF
CMP1_VREF
CMP2_VREF
CMP3_VREF
reg <799:795>
reg <810:806>
reg <822:818>
reg <556:552>
VDD / 3
VDD / 4
ext_vref_acmp2
(Pin14)
ext_vref_acmp1
(Pin12)
ext_vref_acmp0
(Pin7)
reg <981> 000
001
100
101
110
000
001
100
101
110
reg <998 > VDD / 2
VDD / 3
VDD / 4
reg <994:992>
reg <997:995>
1
0
OP
reg <982>
Vref Out_1 (Pin19)
Pin19_aio_en
1
0
OP
reg <983>
Vref Out_2 (Pin18)
Pin18_aio_en
External VDD
2.7 V - 5.5 V
Vref Out_1 is floating in case of reg<994:992>=111 & reg<982>=0
Vref Out_2 is floating in case of reg<997:995>=111 & reg<983>=0
000-0046721-104 Page 74 of 97
SLG46721
18.0 RC Oscillator (RC Osc)
18.1 RC Oscillator Overview
The SLG46721 has tw o inte rnal RC oscill ators, one that runs at 25 kHz and one that runs at 2 MHz. The user can se lect one of
these fundamental frequencies for the RC OSC Macro cell, or the fundamental frequency can also come from an exte rnal clock
input (Pin 20). There are two divider stages that allow the user flexibility for introducing clock signals on various Connection Matrix
Input lines. The first stage divider allows the selection of /1, /2, /4 or /8 divide down frequency from the fundamental. The second
stage divider has an input of one frequency from the first stage divider, and outputs five different frequencies on Connection Matrix
Input lines <45>, <46>, <47>, <48>, and <49>. See Figure 38 below for details of the frequencies for each of these five Connection
Matrix Inputs.
If PWR DOWN input of oscillator is LOW, the oscillator will be turned on. If PWR DOWN input of oscillator is HIGH the oscillator
will be turned off. The PWR DOWN signal has the highest priority.
18.2 RC OSC Block Diagram
Figure 38. RC OSC Block Diagram
Internal RCO
reg <708>
0: 25 kHz
1: 2 MHz
Pin 20 Ext. Clock
Ext. Clk Sel reg <712>
/ 4
/ 8
/ 12
/ 24
/ 64
/ 3
/ 3
To Connection Matrix Input <45>
To Connection Matrix Input <46>
To Connection Matrix Input <49>
To Connection Matrix Input <48>
0
1
2
3
To Connection Matrix Input <47>
reg <711:710>
DIV /1/2/4/8
reg <566:565>
First Stage
Divider
Second Stage
Divider
0
1
From Connection Matrix Output <75>
PWR DOWN
000-0046721-104 Page 75 of 97
SLG46721
19.0 Power On Reset (POR)
19.1 POR Overview
The Power On Reset (POR) Macrocell will produce a high or “1” signal as an output when the device power supply (VDD) rises
to approximately 1.4 V. The typical internal delay for POR to release POR_IO will be 1 ms + α depending o n the power slope,
because there is adaptive power-up sequence. The next internal signal will be POR_CORE and then POR_IO_DL Y, each of which
is further delayed by approximately 1 µs. The rise of POR_IO_DLY will trigger the I/O pins to exit tri-state, and the device will
become active.
19.2 POR Timing Diagram
19.2.1 Initialization
All internal blocks by default have initial low level. Starting from indicated powerup time of 1.15 V - 1.6 V, blocks in GPAK3 are
powered on while forced to the reset state, All outputs are in Hi-Z a nd chip starts loading data from NVM. Then the reset signal
is released for internal blocks and they start to initialize according to the following sequence:
1. Input PINs, ACMP, pull up/down;
2. LUTs;
3. DFFs, Delays/Counters, Pipe Delay;
4. POR output to matrix;
5. Output PIN corresponds to the internal log ic
The VREF output pin driving signal can precede POR output signal going high by 3 μs - 5 μs. The POR signal going high indicates
the mentioned powerup sequence is complete.
Note: The maximum voltage applied to any PIN should not be higher than the VDD l evel. There are ESD Diodes between PIN
–> VDD and PIN –> GND on each PIN. So if the input signal a pplied to PIN is higher than VDD , then current will sink throu gh
the diode to VDD. Exceeding VDD results in leakage current on the input PIN, an d VDD will be pulled up, following the vol tage
on the input PIN.There is no effect from input pin when input voltage is applied at the same time as VDD.
Figure 39. POR Timing Diagram
VDD
POR IO
POR CORE
POR_IO_DLY
RST
1.4 V
1 ms + α
1 μs
1 μs
Output PAD Determined by function logic
Tri-state
Initial state determined
by registers s[1:0]
000-0046721-104 Page 76 of 97
SLG46721
19.2.2 Power Down
During powerdown, bl ocks in SLG46721 are powered off and logic blocks may switch states after falling below 1.4 V. The I/O
buffers are disabled when POR goes low at VDD~1 V. Please note that during a slow rampdow n, outputs can possibly switch
state during this time.
Figure 40. Power Down
Outputs can possibly switch state during this time
VDD (V)
Time
1.6 V
1.15 V
2 V
1 V 1 V VREF Out Signal
000-0046721-104 Page 77 of 97
SLG46721
20.0 Appendix A - SLG46721 Register Definition
Register Bit
Address Signal Functi on Regis t er Bit Definition
reg<5:0> Matrix Out: PIN3 Digital Output Source
reg<11:6> Matrix Out: Output Enable of PIN3
reg<17:12> Matr ix Out: PIN4 Digital Output Source
reg<23:18> Matr ix Out: PIN5 Digital Output Source
reg<29:24> Matrix Out: Output Enable of PIN5
reg<35:30> Matr ix Out: PIN6 Digital Output Source
reg<41:36> Matr ix Out: PIN7 Digital Output Source
reg<47:42> Matrix Out: Output Enable of PIN7
reg<53:48> Matr ix Out: PIN8 Digital Output Source
reg<59:54> Matr ix Out: PIN9 Digital Output Source
reg<65:60> Matrix Out: Output Enable of PIN9
reg<71:66> Matrix Out: PIN10 Digital Output Source (Super Drive)
reg<77:72> Matrix Out: pdb (power down) for ACMP0
reg<83:78> Matrix Out: pdb (power down) for ACMP1
reg<89:84> Matrix Out: pdb (power down) for ACMP2
reg<95:90> Matrix Out: Input for delay0 or Counter0 external clock
reg<101:96> Matrix Out: Input for delay1 or counter1 reset input
reg<107:102> Matrix Out: Input for Counter1 external clock or delay1
external clock
reg<113:108> Matrix Out: Input for delay4 or Counter4 external clock
reg<119:114> Matrix Out: Input for delay5 or Coun ter5 external clock
reg<125:120> Matrix Out: Input for delay6 or Counter6 external clock
reg<131:126> Matrix Out: Input for filter_0
reg<137:132> Matrix Out: Input for filter_1
reg<143:138> Matrix Out: pdb (power down) for ACMP3
reg<149:144> Matrix Out: In0 of LUT3_9
reg<155:150> Matrix Out: In1 of LUT3_9
reg<161:156> Matrix Out: In2 of LUT3_9
reg<167:162> Matrix Out: In0 of LUT4_0 or Input for Counter2(delay2)
external clock
reg<173:168> Matrix Out: In1 of LUT4_0 or Input for delay2(counter2
reset input)
reg<179:174> Matrix Out: In2 of LUT4_0
reg<185:180> Matrix Out: In3 of LUT4_0
reg<191:186> Matrix Out: In0 of LUT4_1 or Input for Counter3(delay3)
external clock
reg<197:192> Matrix Out: In1 of LUT4_1 or Input for delay3(counter3
reset input)
reg<203:198> Matrix Out: In2 of LUT4_1
reg<209:204> Matrix Out: In3 of LUT4_1
reg<215:210> Matrix Out: In0 of LUT3_0
reg<221:216> Matrix Out: In1 of LUT3_0
reg<227:222> Matrix Out: In2 of LUT3_0
000-0046721-104 Page 78 of 97
SLG46721
reg<233:228> Matrix Out: In0 of LUT3_1
reg<239:234> Matrix Out: In1 of LUT3_1
reg<245:240> Matrix Out: In2 of LUT3_1
reg<251:246> Matrix Out: In0 of LUT3_2 or Clock Input of DFF2
reg<257:252> Matrix Out: In1 of LUT3_2 or Data Input of DFF2
reg<263:258> Matrix Out: In2 of LUT3_2 or Resetb Input of DFF2
reg<269:264> Matrix Out: In0 of LUT3_3 or Clock Input of DFF3
reg<275:270> Matrix Out: In1 of LUT3_3 or Data Input of DFF3
reg<281:276> Matrix Out: In2 of LUT3_3 or Resetb (Setb) of DFF3
reg<287:282> Matrix Out: In0 of LUT3_4
reg<293:288> Matrix Out: In1 of LUT3_4
reg<299:294> Matrix Out: In2 of LUT3_4
reg<305:300> Matrix Out: In0 of LUT3_5
reg<311:306> Matrix Out: In1 of LUT3_5
reg<317:312> Matrix Out: In2 of LUT3_5
reg<323:318> Matrix Out: In0 of LUT3_6
reg<329:324> Matrix Out: In1 of LUT3_6
reg<335:330> Matrix Out: In2 of LUT3_6
reg<341:336> Matrix Out: In0 of LUT3_7
reg<347:342> Matrix Out: In1 of LUT3_7
reg<353:348> Matrix Out: In2 of LUT3_7
reg<359:354> Matrix Out: In0 of LUT3_8 or Input of Pipe delay
reg<365:360> Matrix Out: In1 of LUT3_8 or Resetb of Pipe delay
reg<371:366> Matrix Out: In2 of LUT3_8 or Clock of Pipe delay
reg<377:372> Matrix Out: In0 of LUT2_0 or Clock Input of DFF4
reg<383:378> Matrix Out: In1 of LUT2_0 or Data Input of DFF4
reg<389:384> Matrix Out: In0 of LUT2_1 or Clock Input of DFF5
reg<395:390> Matrix Out: In1 of LUT2_1 or Data Input of DFF5
reg<401:396> Matrix Out: In0 of LUT2_2 or Clock Input of DFF6
reg<407:402> Matrix Out: In1 of LUT2_2 or Data Input of DFF6
reg<413:408> Matrix Out: In0 of LUT2_3 or Clock Input of DFF7
reg<419:414> Matrix Out: In1 of LUT2_3 or Data Input of DFF7
reg<425:420> Matrix Out: In0 of LUT2_4
reg<431:426> Matrix Out: In1 of LUT2_4
reg<437:432> Matrix Out: In0 of LUT2_5
reg<443:438> Matrix Out: In1 of LUT2_5
reg<449:444> Matrix Out: Input for programmable delay & edge detec-
tor
reg<455:450> Matrix Out: Power down for osc
reg<461:456> Matrix Out: Pin12 Digital Output Source (Super Drive)
reg<467:462> Matrix Out: Pin13 Digital Output Source
reg<473:468> Matrix Out: Pin13 Output Enable
reg<479:474> Matrix Out: Pin14 Digital Output Source
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 79 of 97
SLG46721
reg<485:480> Matrix Out: Pin14 Output Enable
reg<491:486> Matrix Out: Pin15 Digital Output Source
reg<497:492> Matrix Out: Pin16 Digital Output Source
reg<503:498> Matrix Out: Pin16 Output Enable
reg<509:504> Matrix Out: Pin17 Digital Output Source
reg<515:510> Matrix Out: Pin18 Digital Output Source
reg<521:516> Matrix Out: Pin18 Output Enable
reg<527:522> Matrix Out: Pin19 Digital Output Source
reg<533:528> Matrix Out: Pin19 Output Enable
reg<539:534> Matrix Out: Pin20 Digital Output Source
reg<545:540> Matrix Out: Input of INV_0
reg<551:546> Matrix Out: Input of INV_1
reg<556:552> ACMP3 IN voltage select
00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 400 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05V 10101: 1.1 V
10110: 1.15V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF (PIN12)
11011: EXT_VREF (PIN14)
reg<558:557> ACMP3 hysteresis Enable 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
reg<560:559> ACMP3 positive Input divider 00: 1.0X
01: 0.5X
10: 0.33X
11: 0.25X
reg<561> ACMP3 low bandwidth (typ: Max.1Mhz) enable. 0: Off
1: On
reg<562> ACMP3 positive input source select PIN6 0: Disabled
1: Enabled
reg<563> ACMP3 positive input source select PIN13 0: Disabled
1: Enabled
reg<564> VDD bypass enable 0: Regulator auto on
1: Regulator off (VDD bypass)
reg<566:565> OSC clock pre-divider 00: Div1
01: Div2
10: Div4
11: Div8
reg<568:567> Reserved Reserved
reg<569> Analog buffer at ACMP0 enable 0: Disable analog buffer
1: Enable analog buffer
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 80 of 97
SLG46721
reg<570> Analog buffer at ACMP1 enable 0: Disable analog buffer
1: Enable analog buffer
reg<574:571>
LUT2_0 Data (if reg.<595>=0) or DFF4 / Latch Select
reg<571> DFF4 or Latch select 0: DFF function
1: Latch fu nct i on
reg<572> DFF4 output select 0: Q output
1: nQ output
reg<573> DFF4 initial polarity select 0: Low
1: High
reg<578:575>
LUT2_1 Data (if reg.<596>=0) or DFF5 / Latch Select
reg<575> DFF5 or Latch select 0: DFF function
1: Latch fu nct i on
reg<576> DFF5 output select 0: Q output
1: nQ output
reg<577> DFF5 initial polarity select 0: Low
1: High
reg<582:579>
LUT2_2 Data (if reg.<597>=0) or DFF6 / Latch Select
reg<579> DFF6 or Latch select 0: DFF function
1: Latch fu nct i on
reg<580> DFF6 output select 0: Q output
1: nQ output
reg<581> DFF6 initial polarity select 0: Low
1: High
reg<586:583>
LUT2_3 Data (if reg.<598>=0) or DFF7 / Latch Select
reg<583> DFF7 or Latch select 0: DFF function
1: Latch fu nct i on
reg<584> DFF7 output select 0: Q output
1: nQ output
reg<585> DFF7 initial polarity select 0: Low
1: High
reg<590:587> LUT2_4 data
reg<594:591> LUT2_5 data
reg<595> LUT2_0 or DFF4 select 0: LUT2_0
1: DFF4
reg<596> LUT2_1 or DFF5 select 0: LUT2_1
1: DFF5
reg<597> LUT2_2 or DFF6 select 0: LUT2_2
1: DFF6
reg<598> LUT2_3 or DFF7 select 0: LUT2_3
1: DFF7
reg<606:599> LUT3_0 data
reg<614:607> LUT3_1 data
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 81 of 97
SLG46721
reg<622:615>
LUT3_2 Data (if reg.<671>=0) or DFF2 / Latch Select)
reg<615> DFF2 or La tch select 0: DFF function
1: Latch fu nct i on
reg<616> DFF2 output select 0: Q output
1: nQ output
reg<617> DFF2 rstb/setb select 0: resetb from matrix output
1: setb from matrix output
reg<618> DFF2 initial polarity select 0: Low
1: High
reg<630:623>
LUT3_3 Data (if reg.<672>=0) or DFF3 / Latch Select
reg<623> DFF3 or Latch select 0: DFF function
1: Latch fu nct i on
reg<624> DFF3 output select 0: Q output
1: nQ output
reg<625> DFF3 rstb/setb select 0: resetb from matrix output
1: setb from matrix output
reg<626> DFF3 initial polarity select 0: Low
1: High
reg<638:631> LUT3_4 data
reg<646:639> LUT3_5 data
reg<654:647> LUT3_6 data
reg<662:655> LUT3_7 data
reg<670:663> LUT3_8 data or pipe number select
reg<666:663>: OUT0 select
reg<670:667>: OUT1 select
reg<671> LUT3_2 or DFF2 select 0: LUT3_2
1: DFF2
reg<672> LUT3_3 or DFF3 select 0: LUT3_3
1: DFF3
reg<688:673>
LUT4_0 data or Counter / Delay 2 mode selection
reg<673> Counter/delay2 mode selection 0: Delay Mode
1: Counter Mode
reg<676:674> Counter/delay2 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter1 Overflow
reg<684:677> Counter/delay2 Control Data 1 – 256 (delay time = (counter control data +2) /freq)
reg<686:685> Delay2 Mode Select or asynchronous
counter reset
00: on both falling and rising edges (for delay & coun-
ter reset)
01: on falling edge only (for delay & counter reset)
10: on rising edge only (for delay & counter reset)
11: no delay on either falling or rising edges / high
level reset
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 82 of 97
SLG46721
reg<704:689>
LUT4_1 data or Counter / Delay 3 mode selection
reg<689> Counter/delay3 mode selection 0: Delay Mode
1: Counter Mode
reg<692:690> Counter/delay3 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter2 Overflow
reg<700:693> Counter/delay3 Control Data 1 – 256 (delay time = (counter control data +2) /freq)
reg<702:701> Delay3 Mode Select or asynchronous
counter reset
00: on both falling and rising edges (for delay & coun-
ter reset)
01: on falling edge only (for delay & counter reset)
10: on rising edge only (for delay & counter reset)
11: no delay on either falling or rising edges / high
level reset
reg<705> LUT4_0 or Counter2 select 0: LUT4_0
1: Counter2
reg<706> LUT4_1 or Counter3 select 0: LUT4_1
1: Counter3
reg<707> Force RC oscill ator on 0: Auto Power on
1: Force Power on
reg<708> RC Oscillator frequency control 0: 25k
1: 2M
reg<709> Filter_ 0 output polar ity select 0: Filter_0 output
1: Filter_0 output inverted
reg<711:710> Internal Oscillator frequency divider control 00: OSC/8
01: OSC/12
10: OSC/24
11: OSC/64
reg<712> External Clock Source Select 0: Internal Oscillator
1: External Clock from Pin20
reg<713> Counter/delay0 mode selection 0: Delay Mode
1: Counter Mode
reg<716:714> Counter/delay0 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter6 Overflow
reg<730:717> Counter0 Control Data/Delay0 Time Control 1-16384: (delay time = (counter control data +2)
/freq)
reg<732:731> Delay0 Mode Select 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
reg<733> Counter/delay1 mode selection 0: Delay Mode
1: Counter Mode
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 83 of 97
SLG46721
reg<736:734> Counter/delay1 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter0 Overflow
reg<750:737> Counter1 Control Data/Delay1 Time Control 1-16384: (delay time = (counter control data +2)
/freq)
reg<752:751> Delay1 Mode Select or asynchronous counter reset
00: on both falling and rising edges (for delay & coun-
ter reset)
01: on falling edge only (for delay & counter reset)
10: on rising edge only (for delay & counter reset)
11: no delay on either falling or rising edges / high
level reset for counter mode
reg<753> Counter/delay4 mode selection 0: Delay Mode
1: Counter Mode
reg<756:754> Counter/delay4 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter3 Overflow
reg<764:757> Counter4 Control Data/Delay4 Time Control 1-256: (delay time = (counter control data +2) /freq)
reg<766:765> Delay4 Mode Select 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
reg<767> Counter/delay5 mode selection 0: Delay Mode
1: Counter Mode
reg<770:768> Counter/delay5 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter4 Overflow
reg<778:771> Counter5 Control Data/Delay5 Time Control 1-256: (delay time = (counter control data +2) /freq)
reg<780:779> Delay5 Mode Select 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
reg<781> Counter/Delay6 output source select 0: Delay Output
1: Counter Output
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 84 of 97
SLG46721
reg<784:782> Counter/delay6 Clock Source select
000: Internal OSC Clock
001: OSC/4
010: OSC/12
011: OSC/24
100: OSC/64
101: External Clock
110: External Clock/8
111: Counter5 Overflow
reg<792:785> Counter6 Control Data/Delay6 Time Control 1-256: (delay time = (counter control data +2) /freq)
reg<794:793> Delay6 Mode Select 00: Delay on both falling and rising edges
01: Delay on falling edge only
10: Delay on rising edge only
11: No delay on either falling or rising edges
reg<799:795> ACMP0 IN voltage select
00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 400 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN7)
reg<801:800> ACMP0 hysteresis Enable 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
reg<803:802> ACMP0 positive Input divider 00: 1.0X
01: 0.5X
10: 0.33X
11: 0.25X
reg<804> ACMP0 lo w bandwidth (Max: 1 MHz) enable. 0: off
1: on
reg<805> ACMP0 positive input source select VDD 0: Disabled
1: Enabled
reg<810:806> ACMP1 IN voltage select
00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 400 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN12)
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 85 of 97
SLG46721
reg<812:811> ACMP1 hysteresis Enable 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
reg<814:813> ACMP1 positive Input divider 00: 1.0X
01: 0.5X
10: 0.33X
11: 0.25X
reg<815> Reserved must be set to 0
reg<816> ACMP1 low bandwidth (typ: Max.1Mhz) enable. 0: off
1: on
reg<817> ACMP1 positive input source select PIN6 0: Disabled
1: Enabled
reg<822:818> ACMP2 IN voltage select
00000: 50 mV 00001: 100 mV
00010: 150 mV 00011: 200 mV
00100: 250 mV 00101: 300 mV
00110: 350 mV 00111: 400 mV
01000: 450 mV 01001: 500 mV
01010: 550 mV 01011: 600 mV
01100: 650 mV 01101: 700 mV
01110: 750 mV 01111: 800 mV
10000: 850 mV 10001: 900 mV
10010: 950 mV 10011: 1 V
10100: 1.05 V 10101: 1.1 V
10110: 1.15 V 10111: 1.2 V
11000: VDD/3 11001: VDD/4
11010: EXT_VREF(PIN12)
11011: EXT_VREF(PIN14)
reg<824:823> ACMP2 hysteresis Enable 00: Disabled (0 mV)
01: Enabled (25 mV)
10: Enabled (50 mV)
11: Enabled (200 mV)
reg<826:825> ACMP2 positive Input divider 00: 1.0X
01: 0.5X
10: 0.33X
11: 0.25X
reg<827> ACMP2 low bandwidth (Max: 1MHz) enable. 0: off
1: on
reg<828> ACMP2 positive input source select PIN6 and PIN13 0: Disabled
1: Enabled
reg<830:829> PIN2 mode control 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
reg<832:831> PIN2 pull down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<834:833> PIN3 mode control (sig_pin3_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 86 of 97
SLG46721
reg<836:835> PIN3 mode control (sig_pin3_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<838:837> PIN3 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<839> PIN3 pu ll up/down resistor enable 0: pull down resistor enable
1: pull up resistor enable
reg<842:840> PIN4 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Open Drain NMOS
reg<844:843> PIN4 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<845> PIN4 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<846> PIN4 driver strength selection 0: 1X
1: 2X
reg<848:847> PIN5 mode control (sig_pin5_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
reg<850:849> PIN5 mode control (sig_pin5_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<852:851> PIN5 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<853> PIN5 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<856:854> PIN6 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Analog Input & Open Drain
reg<858:857> PIN6 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<859> PIN6 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 87 of 97
SLG46721
reg<860> PIN6 driver strength selection 0: 1X
1: 2X
reg<862:861> PIN7 mode control (sig_pin7_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
reg<864:863> PIN7 mode control (sig_pin7_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<866:865> PIN7 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<867> PIN7 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<870:868> PIN8 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Open Drain NMOS
reg<872:871> PIN8 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<873> PIN8 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<874> PIN8 driver strength selection 0: 1X
1: 2X
reg<876:875> PIN9 mode control (sig_pin9_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
reg<878:877> PIN9 mode control (sig_pin9_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<880:879> PIN9 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<881> PIN9 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<884:882> PIN10 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Analog Input & Open Drain
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 88 of 97
SLG46721
reg<886:885> PIN10 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<887> PIN10 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<888> PIN10 driver strength selection 0: 1X
1: 2X
reg<889> PIN10 super drive(4X, NMOS open dr ain) selection 0: super drive off
1: super drive on (if reg<884:882> = 101)
reg<892:890> PIN12 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Analog Input & Open Drain
reg<894:893> PIN12 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<895> PIN12 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<896> PIN12 driver strength selection 0: 1X
1: 2X
reg<897> PIN12 super drive(4X, NMOS open drain) selection 0: super drive off
1: super drive on (if reg<892:890> = 101)
reg<899:898> PIN13 mode control (sig_pin13_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
reg<901:900> PIN13 mode control (sig_pin13_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<903:902> PIN13 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<904> PIN13 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<906:905> PIN14 mode control (sig_pin14_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
reg<908:907> PIN14 mode control (sig_pin14_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<910:909> PIN14 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 89 of 97
SLG46721
reg<911> PIN14 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<914:912> PIN15 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Analog Input/Output
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Analog Input & Open Drain
reg<916:915> PIN15 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<917> PIN15 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<918> PIN15 driver strength selection 0: 1X
1: 2X
reg<920:919> PIN16 mode control (sig_pin16_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Reserved
reg<922:921> PIN16 mode control (sig_pin16_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<924:923> PIN16 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<925> PIN16 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<928:926> PIN17 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Open Drain NMOS
reg<930:929> PIN17 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<931> PIN17 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<932> PIN17 driver strength selection 0: 1X
1: 2X
reg<934:933> PIN18 mode control (sig_pin18_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 90 of 97
SLG46721
reg<936:935> PIN18 mode control (sig_pin18_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<938:937> PIN18 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<939> PIN18 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<941:940> PIN19 mode control (sig_pin19_oe =0) 00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger
10: Low Voltage Digital Input
11: Analog Input/Output
reg<943:942> PIN19 mode control (sig_pin19_oe =1) 00: Push Pull 1X
01: Push Pull 2X
10: Open Drain NMOS 1X
11: Ope n Drain NMOS 2X
reg<945:944> PIN19 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<946> PIN19 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<949:947> PIN20 mode control
000: Digital Input without Schmitt Trigger
001: Digital Input with Schmitt Trigger
010: Low Voltage Digital Input
011: Reserved
100: Push Pull
101: Open Drain NMOS
110 : Op en Drain PMOS
111: Open Drain NMOS
reg<951:950> PIN20 pull up/down resistor value selection 00: Floating
01: 10K
10: 100K
11: 1M
reg<952> PIN20 pull up/down resistor select 0: pull down resistor enable
1: pull up resistor enable
reg<953> PIN20 driver strength selection 0: 1X
1: 2X
reg<961:954> LUT3_9 data
reg<962> Filter_ 1 output polar ity select 0: Filter_1 output
1: Filter_1 output inverted
reg<963> L UT3_8 or pipe delay outp ut select 0: LUT3_8
1: 1pipe delay output
reg<964> Pi pe delay OUT1 polarity select bit 0: non-inverted
1: inverted
reg<966:965> Delay value select for programmable delay & edge de-
tector
(VDD = 3.3V, typical condition)
00: 125 ns
01: 250 ns
10: 375 ns
11: 500 ns
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 91 of 97
SLG46721
reg<968:967> Select the edge mode of programmable delay & edge
detector
00: rising edge detector
01: falling edge detector
10: both edge detector
11: both edge delay
reg<969> Select edge detector output mode 0: edge detector output
1: delayed edge detector output
reg<977:970> 8-bit pattern id
reg<978> GPIO qui ck charge enable 0: Disable
1: Enable
reg<979> N VM data read disabl e 0: Disable (program data can be read)
1: Enable (Program data cannot be read)
reg<980> N VM power down 0: None (or programming enable)
1: Power Down (or programming disable)
reg<981> Force bandgap on 0: Auto-mode
1: Enable
reg<982> VREF1 Ou tput Active Buffer Control 0: Disabled (bypass Active Buffer)
1: Enabled
reg<983> VREF2 Ou tput Active Buffer Control 0: Disabled (bypass Active Buffer)
1: Enabled
reg<991:984> Reserved
reg<994:992> VREF1 Output Source Select
000: ACMP0 reference voltage
001: ACMP1 reference voltage
100: VDD/2
101: VDD/3
110: VDD/4
111: Hi-Z
reg<997:995> VREF2 Output Source Select
000: ACMP2 reference voltage
001: ACMP3 reference voltage
100: VDD/2
101: VDD/3
110: VDD/4
111: Hi-Z
reg<998> Power Divider Power 0: Power down
1: Power On
reg<999> POR Auto Power detect 0: Enable
1: Disable
reg<1000> Charge pump for analog block enable (when VDD
<=2.7V turn on) 0: Disable (automatic on/off control)
1: Enable (always on)
reg<1002:1001> Reserved
reg<1007:1003> Reserved
reg<1013:1008> Reserved
Reg<1015:1014> Reserved
reg<1023:1016> Reserved
Register Bit
Address Signal Functi on Regis t er Bit Definition
000-0046721-104 Page 92 of 97
SLG46721
21.0 Package Top Marking System Definition
Part Code
Datecode Lot
Revision
– Part ID Field: identifies the specific device configuration
– Date Code Field: Coded date of manufacture
– Lot Code: Designates Lot #
– Assembly Site/COO: Specifies Assembly Site/Country of Origin
– Revision Code: Device Revision
XXXXX
DD
LLL
C
RR
COO
000-0046721-104 Page 93 of 97
SLG46721
22.0 Package Drawing and Dimensions
STQFN 20L 2x3mm 0.4P COL Package
JEDEC MO-220, Variation WECE
IC Net Weight: 0.015 g
000-0046721-104 Page 94 of 97
SLG46721
23.0 Tape and Reel Specifications
23.1 Carrier Tape Drawing and Dimensions
Package
Type # of
Pins
Nominal
Package Size
[mm]
Max Units Reel &
Hub Size
[mm]
Leader (min) Trailer (min) Tape
Width
[mm]
Part
Pitch
[mm]
per Reel per Box Pockets Length
[mm] Pockets Length
[mm]
STQFN
20L 2x3
mm 0.4P
COL 20 2 x 3 x 0.55 3,000 3,000 178 / 60 100 400 100 400 8 4
Package
Type
Pocket BTM
Length Pocket BTM
Width Pocket
Depth Index Hole
Pitch Pocket
Pitch Index Hole
Diameter
Index Hole
to Tape
Edge
Index Hole
to Pocket
Center Tape Width
A0 B0 K0 P0 P1 D0 E F W
STQFN 20L
2x3 mm
0.4P COL 2.2 3.15 0.76 4 4 1.5 1.75 3.5 8
Refer to EIA-481 specification
000-0046721-104 Page 95 of 97
SLG46721
24.0 Recommended Land Pattern
25.0 Recommended Reflow Soldering Profile
Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.30 mm3 (nominal). More
information can be found at www.jedec.org.
Units: μm
000-0046721-104 Page 96 of 97
SLG46721
26.0 Revision History
Date Version Change
8/29/2014 1.04 Added Emulator Reset description for Pin 3.
Fixed table formatting for some tables
8/06/2014 1.03 Updated Electrical Characteristics VIH/VIL/VOH/VOL values
7/29/2014 1.02 Fixed ESD information
7/7/2014 1.01
Clarified Register OE IO Structure with Super Driver diagram
Fixed typos and Cleanup
Added POR to Block Diagram
Removed Power Supply range when using 2M internal OSC (fixed)
Fixed Package Outline Drawing (re m oved incorrect side view)
4/15/2014 1.0 P roduction Release
3/18/2014 0.54 Updated block diagrams and timing diagrams for clarity
Moved items from Appendix B into their respective sections and removed Appendix B
2/3/2014 0.53 Fixed typos and Cleanup
11/21/2013 0.52 Added ESD Ratings and MSL to Absolute Maximum Conditions
11/20/2013 0.51 Updated Package Outline Drawing
Updated Tape and Reel Specifications
Added Recommended Land pattern
10/21/2013 0.5 Updated Electrical Specifications
10/9/2013 0.41 Updated VIH for Logic Input
10/2/2013 0.4 Updated VIH/VIL values
9/11/13 0.31 Adjusted RC OSC Block Diagram
7/17/2013 0.3 Added IO Structures
5/7/2013 0.2 Added new sections
Updated Tape and Reel spec
11/14/2012 0.1 Initial release
000-0046721-104 Page 97 of 97
SLG46721
Silego Website & Support
Silego Technology Website
Silego Technology provides onlin e support via ou r website at http://www.silego.com/.This website is used as a means to make
files and information easily available to customers.
For more information regarding Silego Green products, please visit:
http://greenpak.silego.com/
http://greenpak2.silego.com/
http://greenpak3.silego.com/
http://greenfet.silego.com/
http://greenfet2.silego.com/
http://greenclk.silego.com/
Products are also available for purchase directly from Silego at the Silego Online Store at http://store.silego.com/.
Silego Technical Support
Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest
software releases are available at the Silego website or can be requested di rectly at info@silego.com.
For specific GreenPAK design or applications questions and support please send e-mail requests to GreenPAK@silego.com
Users of Silego products can receive assistance through several channels:
Online Training
Silego Technology has live training assistance and sales support available at http://www.silego.com/. Please cont act us to sched -
ule a 1 on 1 training session with one of our application engineers.
Contact Your Local Sales Representative
Customers can contact their local sales representative or field application engineer (F AE) for support. Local sales offices are also
available to help customers. More information regarding your local representative is available at the Silego website or send a
request to info@silego.com
Contact Silego Directly
Silego can be contacted directly via e-mail at info@silego.com or user submission form, located at the following URL:
http://support.silego.com/
Other Information
The latest Silego Technology press releases, listing of seminars and events, listings of world wide Silego Technology offices and
representatives are all available at http://www.silego.com/
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SY STEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIAB ILITY ARISING OUT OF SUCH APPLICA-
TIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIG N, FUNCTIONS AND RELI ABILITY
WITHO UT NOTICE.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Silego:
SLG46721V