VN20AN HIGH SIDE SMART POWER SOLID STATE RELAY TYPE V DSS R DS( on) I OUT VC C VN20AN 60 V 0.05 33 A 36 V OUTPUT CURRENT (CONTINUOUS): 33A @ Tc=25oC LOGIC LEVEL 5V COMPATIBLE INPUT THERMAL SHUT-DOWN UNDER VOLTAGE PROTECTION OPEN DRAIN DIAGNOSTIC OUTPUT FAST DEMAGNETIZATION OF INDUCTIVE LOAD DESCRIPTION The VN20AN is a monolithic device made using SGS-THOMSON Vertical Intelligent Power Technology, intended for driving resistive or inductive loads with one side grounded. Built-in thermal shut-down protects the chip from over temperature and short circuit. The diagnostic output indicates an over temperature status. Fast turn-off of inductive load is achieved by negative (-18V) load voltage at turn-off. PENTAWATT (vertical) PENTAWATT (horizontal) PENTAWATT (in-line) ORDER CODES: PENTAWATT vertical VN20AN PENTAWATT horizontal VN20AN (011Y) PENTAWATT in-line VN20AN (012Y) BLOCK DIAGRAM September 1994 1/11 VN20AN ABSOLUTE MAXIMUM RATING Symbol V( BR)DSS Parameter Drain-Source Breakdown Voltage Unit 60 V Output Current (cont.) 33 A IR Reverse Output current -33 A II N Input Current 10 mA -4 V 10 mA 2000 V IO UT -V CC Reverse Supply Voltage ISTA T Status Current (sink) VE SD Electrostatic discharge (1.5 k, 100 pF) P tot Tj T stg o Power Dissipation at T c 25 C Junction Operating Temperature Storage Temperature CONNECTION DIAGRAM CURRENT AND VOLTAGE CONVENTIONS 2/11 Value 100 W -40 to 150 o C -55 to 150 o C VN20AN THERMAL DATA R thj-cas e Rthj- amb Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max Max o 1.25 60 o C/W C/W ELECTRICAL CHARACTERISTICS (VCC = 9 to 36 V; Tcase = 25 oC unless otherwise specified) POWER Symbol VC C * R on IS Parameter Test Conditions Min. o 7 o Supply Voltage -40 C < Tj < 125 C On State Resistance I OU T = 14 A I OU T = 2 A V CC = 30 V T j = 125 oC Supply Current Off State VC C = 30 V On State V CC = 30 V On State V CC = 30 V T j = 125 o C Typ. 0.04 Max. Unit 36 V 0.05 0.09 1 9 7 mA mA mA Max. Unit SWITCHING Symbol Parameter Test Conditions Min. Typ. Turn-on Delay Time Of I OU T = 14 A Resistive Load Output Current Input Rise Time < 0.1 s 30 s Rise Time Of Output Current I OU T = 14 A Resistive Load Input Rise Time < 0.1 s 65 s Turn-off Delay Time Of I OU T = 14 A Resistive Load Output Current Input Rise Time < 0.1 s 65 s Fall Time Of Output Current I OU T = 14 A Resistive Load Input Rise Time < 0.1 s 25 s (di/dt) on Turn-on Current Slope I OU T = 14 A I OU T = I OV 25 o C < Tj < 125 o C 25 o C < Tj < 125 oC 0.5 1 A/s A/s (di/dt) off Turn-off Current Slope I OU T = 14 A I OU T = I OV 25 o C < Tj < 125 o C 25 o C < Tj < 125 oC 1.5 4 A/s A/s VD EMAG Inductive Load Clamp Voltage I OU T = 14 A -40 oC < Tj < 125 oC t d(on) tr t d(off ) tf -24 -18 -14 V Min. Typ. Max. Unit 0.8 V (*) V LOGIC INPUT (-40 oC Tj 125 oC unless otherwise specified) Symbol Parameter V IL Input Low Level Voltage V IH Input High Level Voltage V I(hy st.) Input Hysteresis Voltage II N V ICL Input Current Input Clamp Voltage Test Conditions 2 0.5 V IN = 5 V V IN = 2 V V IN = 0.8 V I IN = 10 mA I IN = -10 mA 250 V 600 300 25 5.5 6 -0.7 -0.3 A A A V V 3/11 VN20AN ELECTRICAL CHARACTERISTICS (continued) o o PROTECTION AND DIAGNOSTICS (-40 C Tj 125 C unless otherwise specified) Symbol Parameter V STAT Status Voltage Output Low Test Conditions ISTA T Status Leakage Current V STA T = 5 V V US D Under Voltage Shut Down V SCL Status Clamp Voltage I OV Over Current Min. Typ. I STAT = 1.6 mA I STAT = 10 mA I STAT = -10 mA Max. Unit 0.4 V 10 A 3.5 6 7 V 5.5 6 -0.7 -0.3 V V R LOA D < 10 m o A 2.5 A Average Current In Short Circuit R LOA D < 10 m I DOFF Leakage Current V CC = 30 V TTS D Thermal Shut-down Temperature 140 o C TR Reset Temperature 125 o C I av Tc = 85 C 80 1 (*) The Vih is internally clamped at about 6V. It is possi ble to connect this pin to a hi gher vol tagevia an external resi stor cal culated to not exceed 10 mA at the i nput pin. TRUTH TABLE INPUT DIAGNOSTIC OUTPUT Normal Operation L H H H L H Over-temperature H L L Under-voltage X H L WAVEFORMS 4/11 mA VN20AN FUNCTIONAL DESCRIPTION The device has a diagnistic output which indicates over temperature conditions. The truth table shows input, diagnostic output status and output voltage level in normal operation and fault conditions. The output signals are processed by internal logic. To protect the device against short circuit and over current conditions, the thermal protection turns the integrated Power MOS off at a minimum junction temperature of 140 oC. When the o temperature returns to 125 C the switch is automatically turned on again. To ensure the protection in all VCC conditions and in all the junction temperature range it is necessary to limit the voltage drop across Drain and Source (pin 3 and 5) at 28V accordinf to: Vds = VCC - IOV * (Ri + Rw + Rl) where: Ri = internal resistence of Power Supply Rw = Wires resistance Rl = Short Circuit resistance Driving inductive loads, an internal function of the device ensures the fast demagnetization with typical voltage (Vdemag) of -18V. This function allows the reduction of the power dissipation according to the formula: Pdem = 0.5 * Lload * (Iload)2 * [(VCC + Vdem)/Vdem] * f where f = Switcning Frequency Based on this formula it is possible to know the value of inductance and/or current to avoid a thermal shut-down. PROTECTING THE DEVICE AGAINST REVERSE BATTERY The simpliest way to protect the device against a continuous reverse battery voltage (-36V) is to insert a Schottky diode between pin 1 (GND) and ground, as shown in the typical application circuit (Fig. 3). The consequences of the voltage drop across this diode are as follows: If the input is pulled to power GND, a negative voltage of -Vf is seen by the device. (Vil, Vih thresholds and Vstat are increased by Vf with respect to power GND). The undervoltage shut-down level is increased by Vf. If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to node [1] (see application circuit in fig. 4), which becomes the common signal GND for the whole control board avoiding shift of Vih, Vil and Vstat. This solution allows the use of a standard diode. Over Current Test Circuit 5/11 VN20AN Typical Application Circuit With A Schottky Diode For Reverse Supply Protection Typical Application Circuit With Separate Signal Ground 6/11 VN20AN RDS(on) vs Junction Temperature RDS(on) vs Supply Voltage RDS(on) vs Output Current Input voltages vs Junction Temperature Output Current Derating 7/11 VN20AN Pentawatt (vertical) MECHANICAL DATA DIM. mm TYP. MIN. A C D D1 E F F1 G G1 H2 H3 L L1 L2 L3 L5 L6 L7 M M1 Dia 2.4 1.2 0.35 0.8 1 3.2 6.6 MAX. 4.8 1.37 2.8 1.35 0.55 1.05 1.4 3.6 7 10.4 10.4 3.4 6.8 10.05 MIN. inch TYP. 0.094 0.047 0.014 0.031 0.039 0.126 0.260 0.134 0.268 MAX. 0.189 0.054 0.110 0.053 0.022 0.041 0.055 0.142 0.276 0.409 0.409 0.396 17.85 15.75 21.4 22.5 0.703 0.620 0.843 0.886 2.6 15.1 6 3 15.8 6.6 0.102 0.594 0.236 0.118 0.622 0.260 4.5 4 0.177 0.157 3.65 3.85 0.144 0.152 E L D1 C D M A M1 L1 L2 G G1 L3 H3 L5 F1 H2 L7 L6 8/11 F Dia. P010E VN20AN Pentawatt (horizontal) MECHANICAL DATA DIM. mm MIN. TYP. A inch MAX. MIN. TYP. 4.8 C MAX. 0.189 1.37 0.054 D 2.4 2.8 0.094 0.110 D1 1.2 1.35 0.047 0.053 E 0.35 0.55 0.014 0.022 F 0.8 1.05 0.031 0.041 F1 1 1.4 0.039 G 3.2 3.4 3.6 0.126 0.134 0.142 G1 6.6 6.8 7 0.260 0.268 0.276 H2 10.4 0.055 0.409 H3 10.05 10.4 0.396 0.409 L 14.2 15 0.559 0.590 L1 5.7 6.2 0244 L2 14.6 15.2 0.598 L3 3.5 4.1 0.137 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 0.161 L7 6 6.6 0.236 0.260 Dia 3.65 3.85 0.144 0.152 P010F 9/11 VN20AN Pentawatt (In- Line) MECHANICAL DATA mm DIM. MIN. TYP. inch MAX. MIN. TYP. MAX. A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110 D1 1.2 1.35 0.047 0.053 E 0.35 0.55 0.014 0.022 F 0.8 1.05 0.031 0.041 F1 1 1.4 0.039 G 3.2 3.4 3.6 0.126 0.134 0.142 G1 6.6 6.8 7 0.260 0.268 0.276 H2 0.055 10.4 0.409 H3 10.05 10.4 0.396 L2 23.05 23.4 23.8 0.907 0.921 0.937 0.409 L3 25.3 25.65 26.1 0.996 1.010 1.028 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 0.260 Dia 3.65 3.85 0.144 0.152 P010D 10/11 VN20AN Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A 11/11