SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
SiI-DS-1076-E.01
August 2016
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
2 SiI-DS-1076-E.01
Contents
1. General Description ...................................................................................................................................................... 7
Video Input ........................................................................................................................................................... 7
HDMI Output ........................................................................................................................................................ 7
Control Capability ................................................................................................................................................. 7
Digital Audio Interface .......................................................................................................................................... 7
Power Management ............................................................................................................................................. 7
Packaging .............................................................................................................................................................. 7
Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters .................................................... 8
2. Functional Description .................................................................................................................................................. 9
Video Data Input and Conversion ....................................................................................................................... 10
Input Clock Multiplier/Divider .................................................................................................................... 10
Video Data Capture ..................................................................................................................................... 10
Embedded Sync Decoding ........................................................................................................................... 10
Data Enable Generator ............................................................................................................................... 10
Color Space Converter ................................................................................................................................ 10
4:2:2 to 4:4:4 Upsampler ............................................................................................................................ 11
4:4:4 to 4:2:2 Downsampler ....................................................................................................................... 11
Dither 10 to 8 .............................................................................................................................................. 11
Audio Data Capture Logic ................................................................................................................................... 11
I2C Slave Interface ............................................................................................................................................... 11
Control and Configuration .................................................................................................................................. 11
DDC Master I2C Interface .................................................................................................................................... 11
Interrupt Logic .................................................................................................................................................... 11
Hot Plug Detection Logic ..................................................................................................................................... 12
HDCP Encryption Engine/XOR Mask (SiI9024A Device Only) .............................................................................. 12
HDCP Key ROM (SiI9024A Device Only) .............................................................................................................. 12
TMDS Digital Core ........................................................................................................................................... 12
CEC Interface ................................................................................................................................................... 12
3. Electrical Specifications .............................................................................................................................................. 13
Absolute Maximum Conditions .......................................................................................................................... 13
Normal Operating Conditions ............................................................................................................................. 13
IOVCC Supply Voltage Requirements .......................................................................................................... 13
DC Specifications ................................................................................................................................................. 14
Digital I/O Specifications ............................................................................................................................. 14
DC Power Supply Specifications .................................................................................................................. 16
AC Specifications ................................................................................................................................................. 17
TMDS AC Timing Specifications ................................................................................................................... 17
Audio AC Timing Specifications ................................................................................................................... 18
Video Input AC Timing Specifications ......................................................................................................... 18
Control Signal Timing Specifications ........................................................................................................... 20
4. Timing Diagrams ......................................................................................................................................................... 21
Input Timing Diagrams ........................................................................................................................................ 21
Audio Timing Diagrams ....................................................................................................................................... 23
Power Supply Sequencing ................................................................................................................................... 24
Output Timing Diagrams ............................................................................................................................. 24
Minimum Horizontal Blanking Specification ....................................................................................................... 25
5. Ball and Pin Diagrams and Descriptions ..................................................................................................................... 26
Ball and Pin Diagrams ......................................................................................................................................... 26
81-Ball VFBGA Package ............................................................................................................................... 26
49-Ball VFBGA Package ............................................................................................................................... 27
72-Pin QFN Package .................................................................................................................................... 28
Ball and Pin Descriptions ..................................................................................................................................... 29
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 3
Video Input ................................................................................................................................................. 29
Audio Input ................................................................................................................................................. 30
CEC .............................................................................................................................................................. 30
Configuration and Control .......................................................................................................................... 31
25BDDC Bus ...................................................................................................................................................... 32
Differential Data ......................................................................................................................................... 32
Power and Ground ...................................................................................................................................... 33
6. Feature Information ................................................................................................................................................... 34
RGB to YCbCr Color Space Converter.................................................................................................................. 34
YCbCr to RGB Color Space Converter.................................................................................................................. 34
3D Video Formats ............................................................................................................................................... 34
Limitations .................................................................................................................................................. 35
S/PDIF Audio Input .............................................................................................................................................. 35
I2S Audio Inputs ................................................................................................................................................... 35
Supported Audio Sampling Rates ....................................................................................................................... 36
I2C Register Information ..................................................................................................................................... 37
DDC Support ....................................................................................................................................................... 37
DDC Stall Support ........................................................................................................................................ 38
Power Saving Modes and Wakeup Feature ........................................................................................................ 38
Wakeup Support in D3 Cold and D3 Hot Modes ......................................................................................... 38
Common Video Input Formats........................................................................................................................ 39
Data Bus Mappings ......................................................................................................................................... 40
Data Mappings for 81-ball and 72-pin Package .......................................................................................... 42
Data Mappings for 49-Ball Package ............................................................................................................ 58
7. Design Recommendations .......................................................................................................................................... 67
Power Supplies Decoupling ................................................................................................................................ 67
High-Speed TMDS Signals ................................................................................................................................... 67
Source Termination .................................................................................................................................... 67
ESD Protection ............................................................................................................................................ 68
Transmitter Layout Guidelines.................................................................................................................... 68
Hot Plug Signal Conditioning............................................................................................................................... 68
EMI Considerations ............................................................................................................................................. 68
Typical Circuits .................................................................................................................................................... 69
Power Supply Decoupling ........................................................................................................................... 69
HDMI Port Connections .............................................................................................................................. 70
Control Signal Connections ......................................................................................................................... 71
77BDigital Video Input Connections ................................................................................................................. 72
8. Packaging .................................................................................................................................................................... 73
49-Ball Package Dimensions ............................................................................................................................... 73
36B81-Ball Package Dimensions ............................................................................................................................... 74
72-Pin Package Dimensions ................................................................................................................................ 75
Marking Specification ......................................................................................................................................... 76
Ordering Information .......................................................................................................................................... 77
References .......................................................................................................................................................................... 78
Standards Documents..................................................................................................................................................... 78
Standards Groups ........................................................................................................................................................... 78
Lattice Semiconductor Documents ................................................................................................................................. 78
Technical Support ........................................................................................................................................................... 78
Revision History .................................................................................................................................................................. 79
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
4 SiI-DS-1076-E.01
Figures
Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown)................................................................................... 7
Figure 2.1. Functional Block Diagram ................................................................................................................................... 9
Figure 2.2. Transmitter Video Data Processing Path .......................................................................................................... 10
Figure 4.1. IDCK Clock Cycle/High/Low Times .................................................................................................................... 21
Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK ................................................................................. 21
Figure 4.3. Dual-Edge Setup/Hold Times to IDCK ............................................................................................................... 21
Figure 4.4. VSYNC and HSYNC Delay Times from/to DE ..................................................................................................... 22
Figure 4.5. DE High/Low Times ........................................................................................................................................... 22
Figure 4.6. Conditions for Use of RESET# ............................................................................................................................ 22
Figure 4.7. RESET# Minimum Timings................................................................................................................................. 22
Figure 4.8. I2S Input Timings ............................................................................................................................................... 23
Figure 4.9. S/PDIF Input Timings ......................................................................................................................................... 23
Figure 4.10. MCLK Timings .................................................................................................................................................. 23
Figure 4.11. Power Supply Sequencing ............................................................................................................................... 24
Figure 4.12. Differential Transition Times .......................................................................................................................... 24
Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data) ............................................................................................... 24
Figure 4.14. INT Output Signal Response to Interrupt Condition ....................................................................................... 24
Figure 5.1. 81-Ball Package Ball Diagram (Top View).......................................................................................................... 26
Figure 5.2. 49-Ball Package Ball Diagram (Top View).......................................................................................................... 27
Figure 5.3. 72-Pin Package Pin Diagram (Top View) ........................................................................................................... 28
Figure 6.1. Simplified Host I2C Interface using Master DDC Port ........................................................................................ 37
Figure 6.2. Master I2C Supported Transactions .................................................................................................................. 38
Figure 6.3. Parallel Input Video to HDMI Output Video Permutations ............................................................................... 41
Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package) .............................................................. 42
Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ................................................................. 43
Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ................................................................. 44
Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) ................................................. 44
Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ................................................................. 45
Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) ................................................. 46
Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................ 47
Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................ 47
Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................ 47
Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................ 48
Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................ 49
Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ......................................................... 49
Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ....................................................... 50
Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) ....................................................... 50
Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)...................................................... 51
Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package).................................................... 51
Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package).................................................... 52
Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package) ........................................... 53
Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ........................................... 54
Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package) .............................................. 55
Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) .............................................. 56
Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) .............................................. 57
Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package) .............................. 57
Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package) ................................................................................. 58
Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) .............................................................................. 59
Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package) ........................................................................... 60
Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package) ........................................................................ 61
Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) .............................................................................. 62
Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package) ................................................................... 63
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 5
Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) .................................................................. 64
Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 65
Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 66
Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package) ................................................ 66
Figure 7.1. Decoupling and Bypass Schematic .................................................................................................................... 67
Figure 7.2. Decoupling and Bypass Capacitor Placement ................................................................................................... 67
Figure 7.3. Transmitter to HDMI Connector Routing Top View ....................................................................................... 68
Figure 7.4. Power Supply Decoupling ................................................................................................................................. 69
Figure 7.5. HDMI Port Connection Schematic .................................................................................................................... 70
Figure 7.6. Controller Connections Schematic ................................................................................................................... 71
Figure 7.7. Digital Input Schematic ..................................................................................................................................... 72
Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT) ............................................................................................... 73
Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT) ............................................................................................... 74
Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU) ................................................................................................... 75
Figure 8.4. Marking Diagram (SiI902nARBT) ....................................................................................................................... 76
Figure 8.5. Marking Diagram (SiI902nAYBT) ....................................................................................................................... 76
Figure 8.6. Marking Diagram (SiI902nACNU) ...................................................................................................................... 77
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
6 SiI-DS-1076-E.01
Tables
Table 1.1. Summary of Features ........................................................................................................................................... 8
Table 3.1. Absolute Maximum Conditions .......................................................................................................................... 13
Table 3.2. Normal Operating Conditions ............................................................................................................................ 13
Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V ....................................................................................................... 14
Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V ....................................................................................................... 15
Table 3.5. TMDS I/O Specifications ..................................................................................................................................... 16
Table 3.6. Low Power Standby Mode Power Consumption ............................................................................................... 16
Table 3.7. Operating Mode Power Consumption ............................................................................................................... 16
Table 3.8. Power Operating Modes .................................................................................................................................... 17
Table 3.9. TMDS AC Specifications ...................................................................................................................................... 17
Table 3.10. I2S Input Port Timings ....................................................................................................................................... 18
Table 3.11. S/PDIF Input Port Timings ................................................................................................................................ 18
Table 3.12. Video Input AC Specifications: 1.8 V IOVCC ..................................................................................................... 18
Table 3.13. Video Input AC Specifications: 3.3 V IOVCC ..................................................................................................... 19
Table 3.14. Control Signal Timing Specifications ................................................................................................................ 20
Table 4.1. Minimum Horizontal Blanking Calculations ....................................................................................................... 25
Table 6.1. RGB to YCbCr Conversion Formulas ................................................................................................................... 34
Table 6.2. YCbCr-to-RGB Conversion Formulas .................................................................................................................. 34
Table 6.3. Supported 3D Video Formats ............................................................................................................................. 35
Table 6.4. Supported MCLK Frequencies ............................................................................................................................ 36
Table 6.5. S/PDIF Audio Formats Supported for each Video Format ................................................................................. 36
Table 6.6. I2S Audio Formats Supported for each Video Format ........................................................................................ 36
Table 6.7. Control of I2C Address with CI2CA Signal ........................................................................................................... 37
Table 6.8. D3 hot and D3 Cold Feature ............................................................................................................................... 38
Table 6.9. Video Input Formats........................................................................................................................................... 39
Table 6.10. Input Video Formats ........................................................................................................................................ 40
Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ................................................. 42
Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) .................................. 43
Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) .................................................... 45
Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) ............................... 46
Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) ................................................. 48
Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ............................ 49
Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) ............................. 51
Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ................................ 53
Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ..................... 54
Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ..................................... 55
Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ................................... 56
Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ................................... 57
Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package) ...................................................................... 58
Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package) ................................................................... 59
Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package) ................................................................ 60
Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package) ............................................................. 61
Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package) .................................................. 62
Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package) ....................................... 63
Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) ....................................................... 64
Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) ..................................................... 65
Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) ..................................................... 66
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 7
1. General Description
The Lattice Semiconductor SiI9022A/SiI9024A HDMI®
transmitter supports the High Definition Multimedia
Interface (HDMI) Specification on a wide range of mobile
products. High definition camcorders, digital still
cameras, and personal mobile devices connect directly to
a large installed base of HDMI TVs and DVI PC monitors
by using the flexible audio and video interfaces provided
by this ultra-low-power solution. S/PDIF or I2S inputs
enable a pure digital audio connection to virtually any
system audio processor or codec. This transmitter is the
next generation of its family and is an enhanced
replacement for the SiI9022/SiI9024 device, with lower
power and enhanced features.
The SiI9024A transmitter is pre-programmed with HDCP
keys and has completely self-sequencing HDCP detection
and authentication, including SHA-1 for repeaters. The
device supports High-bandwidth Digital Content
Protection (HDCP) for devices that require secure
content delivery.
Video Input
xvYCC metadata support
BTA-T1004 video input format
Integrated color space converter allows direct
connection to all major MPEG decoders, including
those that provide only an ITU-R.656 output
Internal DE generator supports non-embedded sync
formats
HDMI Output
HDMI, HDCP, and DVI compatible
TMDS core runs at 165 MHz
Video resolutions up to 1080p and UXGA (72-pin
QFN package supports 165 MHz dual-edge mode)
3D-capable at 720p/60, 1080i/60, and
1080p/24 frame-pack, side-by-side, L + D, and
Top-and-Bottom modes
HDMI Type A, Type-C, and micro-D connector
support
Control Capability
Consumer Electronics Control (CEC) interface
incorporates an HDMI-compliant CEC I/O with
hardware protocol and arbitration logic, and
requires no external calibration
Monitor detection is supported through both Hot
Plug and Receiver Sense circuits
Single slave I2C from host, passing through to master
I2C interface for DDC connection, simplifies board
layout and lowers cost
Defaults to SiI9020 transmitter register-compatible
mode for operation with existing legacy software
Digital Audio Interface
Four I2S inputs for Dolby Digital, DTS, or MPEG2
audio with programmable channel mapping (49-ball
package supports one I2S input)
DVD-Audio input (2 or up to 8 channels)
MCLK is not required for I2S and S/PDIF
S/PDIF input supports 2-channel PCM or compressed
Dolby Digital and DTS digital
2:1 and 4:1 down-sampling to handle 96 kHz and
192 kHz audio streams
Power Management
Flexible power management with hot-plug wakeup
Ultra-low power requirement: less than 90 mW
active, 150 W standby
Packaging
81-ball VFBGA (4.0 × 4.0 mm) package
72-pin QFN (10 × 10 mm) package
49-ball VFBGA (4.0 × 4.0 mm) package
Standard part covers extended (20 °C to +85 °C)
temperature range
Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
8 SiI-DS-1076-E.01
Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters
Table 1.1 summarizes the differences among the previous Lattice Semiconductor HDMI transmitters and the
SiI9022A/SiI9024A HDMI transmitters.
Table 1.1. Summary of Features
HDMI Transmitter
SiI9030
SiI9020
SiI9022
SiI9022-6
SiI9024
SiI9024-6
SiI9024A
SiI9022A
SiI9024A
VFBGA
QFN
Video Input
Clock duty cycle
60/40
60/40
70/30
70/30
70/30
70/30
70/30
70/30
70/30
Max frequency
150 MHz
84 MHz
82.5 MHz
165 MHz
82.5 MHz
165 MHz
165 MHz
165 MHz3
165 MHz3
Input signal level2
3.3 V
3.3 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
Audio Input
Max S/PDIF
frequency
96 kHz
96 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
I2S MCLK required?
Yes
Yes
Optional
Optional
Optional
Optional
Optional
Optional
Optional
S/PDIF MCLK
required?
Yes
Yes
Optional
Optional
Optional
Optional
Optional
Optional
Optional
DDC I2C Bus
Voltage Tolerance1
5 V
5 V
5 V
5 V
5 V
5 V
5 V
5 V
5 V
HDCP
Encryption engine
Yes
No
No
No
Yes
Yes
Yes
No
Yes
Auto authentication
No
No
No
No
Yes
Yes
Yes
No
Yes
Other
Core power supply
1.8 V
1.8 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
I/O power supply2
3.3 V
3.3 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8V4
3.3 V or
1.8 V4
Package
80-pin
TQFP
84-ball
TFBGA
84-ball
TFBGA or
81-ball
VFBGA
84-ball
TFBGA
84-ball
TFBGA or
81-ball
VFBGA
84-ball
TFBGA
81-ball
VFBGA or
49-ball
VFBGA
72-pin
QFN
72-pin QFN
Notes:
1. The DDC pads of the SiI9022A/SiI9024A device are 5 V compliant with or without IOVCC power supply. For other devices listed
above, the DDC pads are 5 V tolerant only when chip IOVCC is applied
2. The SiI9022A/SiI9024A 81-ball and 72-pin package supports both 1.8 V and 3.3 V threshold-compliant operation. The 49-ball
package only supports 1.8 V compliant I/O. Both devices have 3.3 V tolerant I/O when IOVCC is 1.8 V.
3. Supports up to 165 MHz dual-edge and single-edge modes.
4. For dual-edge mode above 82.5 MHz, only 3.3 V ± 10% can be used for IOVCC.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 9
2. Functional Description
The SiI9022A/SiI9024A HDMI transmitter provides a complete solution for transmitting HDMI-compliant digital audio
and video. Specialized audio and video processing is available within the transmitter to easily and cost-effectively add
HDMI capability to the consumer electronics devices. Figure 2.1 shows the functional block diagram of the chip. In the
49-ball package, DE and S/PDIF share the same pin.
TMDS
Digital
Core
Video Data
Input and
Conversion
I2C
Slave
Interface
DE
CSCL
HSYNC
VSYNC
IDCK
EXT_SWING
TXC±
TX0±
TX1±
TX2±
RESET#
Audio Data
Capture
Logic
Block
SPDIF
MCLK
INT
HPD
Interrupt Logic
control signals
audio data
SCK
WS
DSDA
DSCL
DDC
Master I2C
Interface
Control and
Configuration
Logic Block
CI2CA
Hot Plug
Detection Logic
CEC
Interface CEC
control signals
HDCP
Encryption
Engine/
XOR Mask
HDCP
Keys
SiI9024A
Transmitter only
(81-ball and 72-pin only)
CSDA
81-ball and 72-pin: D[23:0]
49-ball: D[15:0]
81-ball and 72-pin: SD[3:0]
49-ball: SD0
(81-ball and 72-pin only)
(81-ball and 72-pin only)
DE/SPDIF
(49-ball only)
Figure 2.1. Functional Block Diagram
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
10 SiI-DS-1076-E.01
Video Data Input and Conversion
Figure 2.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be
bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in
embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the
HSYNC and VSYNC signals.
Embedded
Sync
Decoding
Data Enable
Generator
4:2:2 to 4:4:4
Upsampler
YCbCr to RGB
Color Space
Converter
RGB to YCbCr
Color Space
Converter
Complete set of
signals required
for TMDS encoding.
HSYNC
VSYNC
IDCK
D[23:0] /
D[15:0]*
Dither 10 to 8
bypass CSC bypass CSC
Clock
HS,VS
HS,VS
bypass 422
Data
DE external DE
DE
DE
DE can be explicit input,
decoded from embedded
syncs, or generated from
Hsync and Vsync edges.
Video
Data
Capture
* For 49-ball VFBGA only bypass 444
4:4:4 to 4:2:2
Downsampler
bypass dither
To HDCP
or TMDS
Input
Clock
Multiplier/
Divider
Figure 2.2. Transmitter Video Data Processing Path
Input Clock Multiplier/Divider
The input pixel clock can be multiplied by 2 or 4, or divided by 2 (multiplied by 0.5). Video input formats which use a 2x
clock (such as YC Mux mode) can then be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x-to-4x,
and 2x-to-4x conversions are possible.
Video Data Capture
The video data capture block receives uncompressed digital video through an interface ranging from 8 to 16 bits in
width for the 49-ball package and from 8 to 24 bits in width for the 81-ball and 72-pin package. These interfaces have
two or three 8-bit data channels, which can be configured for the video formats shown in the RGB to YCbCr Color Space
Converter section on page 34. It provides a direct connection to major MPEG decoders. Registers set the bus width
(8/10/12/16/20/24-bit), format, and rising/falling edge latching according to the video format sent to the transmitter.
This information is passed over the HDMI link in the CEA-861D Auxiliary Video Information (AVI) InfoFrame packets.
Embedded Sync Decoding
The transmitter can create DE, HSYNC, and VSYNC signals using the start of active video (SAV) and end of active video
(EAV) codes within the ITU-R BT.656-format video stream.
Data Enable Generator
The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This
signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming
registers, the DE signal can define the size of the active display region. This feature is particularly useful when the
transmitter connects to MPEG decoders that do not provide a specific DE output signal.
Color Space Converter
Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video
formats supplied by AV processors and to provide full DVI 1.0 backward compatibility. The CSC can be adjusted to
perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 11
registers. See the RGB to YCbCr Color Space Converter and YCbCr to RGB Color Space Converter sections starting on
page 34 for more information.
4:2:2 to 4:4:4 Upsampler
Chrominance upsampling and downsampling increase or decrease the number of chrominance samples in each line of
video. Upsampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4
sampled video.
4:4:4 to 4:2:2 Downsampler
Downsampling reduces the number of chrominance samples in each line by half, converting 4:4:4 sampled video to
4:2:2 video.
Dither 10 to 8
The dither block takes the internally processed data and reduces it down to 8 bits for output.
Audio Data Capture Logic
The SiI9022A/SiI9024A device in the 81-ball and 72-pin packages have individual S/PDIF and I2S (SD[3:0]) inputs for
accepting digital audio input. The Feature Information section on page 34 provides more information about audio
formats and available sampling frequencies.
Due to the reduced lead count, the SiI9022A/SiI9024A transmitter in the 49-ball package has certain restrictions on the
audio because ball G6 is shared by both the S/PDIF and DE inputs. When the device is configured to use S/PDIF, the
video format must use either the DE generator mode or one of the YC 4:2:2 embedded sync formats.
I2C Slave Interface
The controller I2C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency
from 40 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all chip operating voltages are present. The
host uses this interface to configure the transmitter by reading from and writing to appropriate registers.
Control and Configuration
The register/configuration logic block incorporates all the registers required for configuring and managing the
transmitter. A separate logic block handles the configuration and operation of the CEC subsystem.
DDC Master I2C Interface
The transmitter has a master I2C port for direct connection to the HDMI cable. DDC read and write operations are
executed by reading and writing registers in the transmitter. This feature simplifies the system design and helps to
lower its cost. See the DDC Support section on page 37 for more information.
Interrupt Logic
The INT signal interrupts the host processor when certain conditions arise inside the transmitter. The INT output is
programmable to be either active HIGH or active LOW; see the Configuration and Control Signals section. Conditions
which create an interrupt include:
Monitor detect (either from the HPD input level, or from the Receiver Sense feature)
VSYNC (useful for synchronizing a host processor to the vertical timing interval)
HDCP event
CEC event
Audio interrupt.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
12 SiI-DS-1076-E.01
Hot Plug Detection Logic
The Hot Plug Detection Logic block determines if a receiver is connected to the SiI9022A/SiI9024A transmitter. When
HIGH, the HPD signal indicates to the transmitter that the EDID of the connected receiver is readable. A HIGH voltage is
at least 2.0 V, and a LOW voltage is less than 0.8 V.
HDCP Encryption Engine/XOR Mask (SiI9024A Device Only)
The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes
support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the
encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key
Selector Value (KSV) stored in the on-board ROM to calculate a number that is then applied to an XOR mask. This
process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle.
HDCP Key ROM (SiI9024A Device Only)
The SiI9024A transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM.
System manufacturers do not need to purchase key sets from the Digital Content Protection LLC. Lattice Semiconductor
handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the
highest level of security because there is no way to read the keys once the devices are programmed. Customers must
sign the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Lattice Semiconductor before
receiving samples of the transmitter.
TMDS Digital Core
The TMDS Digital Core performs 8-bit to 10-bit TMDS encoding on the audio, video, and auxiliary data received from
the Dither 10 to 8 block. This data is sent through three TMDS differential data lines along with a TMDS differential
clock. A resistor connected to the EXT_SWING signal controls the TMDS swing amplitude.
CEC Interface
The Consumer Electronics Control (CEC) Interface block provides CEC- compliant signals between CEC devices and a CEC
master. A CEC controller using the Lattice Semiconductor CEC Programming Interface (CPI) is included on the chip. This
controller has a high-level register interface accessible through the I2C interface and is used to send and receive CEC
commands. This controller makes CEC implementation very straightforward and removes the burden of managing bit
transitions on the CEC bus from the host CPU.
The SiI9022A/SiI9024A CEC logic is self-calibrating and does not require a calibration procedure as the previous
generation devices did.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 13
3. Electrical Specifications
Absolute Maximum Conditions
Table 3.1. Absolute Maximum Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
IOVCC
I/O supply voltage
0.3
4.0
V
1, 2, 3
AVCC12
TMDS analog supply voltage
0.3
1.5
V
1, 2
CVCC12
Digital core supply voltage
0.3
1.5
V
1, 2, 431H3
VI
Input voltage
0.3
4
V
1, 2
VO
Output voltage
0.3
4
V
1, 2
VI5V
Input voltage, 5 volt tolerant I/O
0.3
5.5
V
1, 2, 4
VO5V
Output voltage, 5 volt tolerant I/O
0.3
5.5
V
1, 2, 4
TJ
Junction temperature
125
C
TSTG
Storage temperature
65
150
C
Notes:
1. Permanent device damage can occur if absolute maximum conditions are exceeded.
2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.
3. Voltage undershoot or overshoot cannot exceed absolute maximum conditions.
4. HPD (input), DSCL (output), DSDA (input/output).
Normal Operating Conditions
Table 3.2. Normal Operating Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
IOVCC
I/O supply voltage: 1.8 V host
1.62
1.8
1.98
V
2
I/O supply voltage: 3.3 V host
3.0
3.3
3.6
V
2
AVCC12
TMDS analog supply voltage
1.08
1.2
1.32
V
1
CVCC12
Digital core supply voltage
1.08
1.2
1.32
V
1
VCCN
Allowable noise on AVCC
50
mVP-P
TA
Ambient temperature (with power applied)
20
25
85
C
Θja
Ambient thermal resistance (Theta JA)
75.3
C/W
3, 6
86.5
C/W
4, 6
28.5
C/W
5, 6
Θjc
Ambient thermal resistance (Theta JC)
22.6
C/W
3, 6
22.7
C/W
4, 6
13.1
C/W
5, 6
Notes:
1. CVCC12 and AVCC12 can be derived from the same power source.
2. The 81-ball and 72-pin package supports 3.3 V or 1.8 V; the 49-ball package supports 1.8 V only.
3. 81-ball package
4. 49-ball package
5. 72-pin package
6. Values for Θja and Θjc are provided for a 4-layer PCB, Airflow at 0 m/s.
See page 69 for schematics showing decoupling and power supply regulation.
IOVCC Supply Voltage Requirements
The 72-pin or 81-ball package SiI9022A/SiI9024A transmitter IOVCC supply can operate at either 3.3 V or 1.8 V, depending on
the input level to the IO_SEL pin provided by the host. When IOVCC = 1.8 V, the I/O is 3.3 V tolerant. However, to ensure the
input/output thresholds are within specifications, the IOVCC on the SiI9022A/SiI9024A transmitter should be the same as the
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
14 SiI-DS-1076-E.01
host IOVCC, and IO_SEL should be set to the correct value, as described for the signal in the Configuration and Control Signals
section.
The 49-ball package is hardwired to be used with IOVCC = 1.8 V only.
DC Specifications
Digital I/O Specifications
Under normal operating conditions unless otherwise specified.
Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V
In the 81-ball and 72-pin package, IO_SEL is tied to 1.8 V.
Symbol
Parameter
Signal Type
Signal Name3
Conditions
Min
Typ
Max
Units
Notes
VIH
HIGH-level input voltage
LVTTL
CEC_D
CI2CA
IO_SEL
1.2
V
VIL
LOW-level input voltage
0.60
V
VTH-
HIGH to LOW threshold
Schmitt
IDCK
HS
VS
DE
D[23:0]
0.68
V
VTH+
LOW to HIGH threshold
1.25
V
VTH-
HIGH to LOW threshold
Schmitt
MCLK
SCK
SD[3:0]
WS
SPDIF
0.45
V
VTH+
LOW to HIGH threshold
1.20
V
VTH-
HIGH to LOW threshold
Schmitt
HPD
0.65
V
VTH+
LOW to HIGH threshold
1.9
V
VTH-
HIGH to LOW threshold
Schmitt
RESET#
0.50
V
VTH+
LOW to HIGH threshold
1.2
V
VTH-
HIGH to LOW threshold
Schmitt
CSCL
CSDA
0.50
V
VTH+
LOW to HIGH threshold
1.32
V
VTH-
HIGH to LOW threshold
Schmitt
DSCL
DSDA
1.5
V
VTH+
LOW to HIGH threshold
3.0
V
VTH-
HIGH to LOW threshold
Schmitt
CEC_A
0.51
V
VTH+
LOW to HIGH threshold
1.15
V
VOH
HIGH-level output voltage
LVTTL
INT
1.4
V
4
VOL
LOW-level output voltage
0.3
V
VOLOD
LOW-level output voltage
Open Drain
INT
0.3
V
4
VCINL
Input clamp voltage
ICL = 18 mA
GND 0.8
V
2, 5
VCIPL
Input clamp voltage
ICL = 18 mA
VCC + 0.8
V
2, 5
IIL
Input leakage current
High impedance
10
10
µA
2, 9
IOL
Output drive current
Open Drain
DSCL
DSDA
VOUT = 0.4 V
3
mA
6, 8
IOL
Output drive current
Open Drain
CSCL
CSDA
VOUT = 0.4 V
4
mA
6, 8
IOL
Output drive current
Open Drain
CEC_A
VOUT = 0.4 V
3.5
mA
IOL
Output drive current
Open Drain
CEC_D
VOUT = 0.4 V
2.0
mA
IOL
Output drive current
LVTTL
INT
VOUT = 0.4 V
4
mA
6
IOH
Output drive current
LVTTL
INT
VOUT = 1.4 V
4
mA
Note: See notes under Table 3.4.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 15
Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V
In the 81-ball and 72-pin package, IO_SEL is connected to ground.
Symbol
Parameter
Signal Type
Signal Name3
Conditions
Min
Typ
Max
Units
Notes
VIH
HIGH-level input voltage
LVTTL
CEC_D
CI2CA
IO_SEL
2.0
V
VIL
LOW-level input voltage
0.80
V
VTH-
HIGH to LOW threshold
Schmitt
IDCK
HS
VS
DE
D[23:0]
1.25
V
VTH+
LOW to HIGH threshold
2.1
V
VTH-
HIGH to LOW threshold
Schmitt
MCLK
SCK
SD[3:0]
WS
SPDIF
0.75
V
VTH+
LOW to HIGH threshold
1.80
V
VTH-
HIGH to LOW threshold
Schmitt
HPD
0.80
V
VTH+
LOW to HIGH threshold
1.85
V
VTH-
HIGH to LOW threshold
Schmitt
RESET#
0.85
V
VTH+
LOW to HIGH threshold
1.75
V
VTH-
HIGH to LOW threshold
Schmitt
CSCL
CSDA
0.70
V
VTH+
LOW to HIGH threshold
1.77
V
VTH-
HIGH to LOW threshold
Schmitt
DSCL
DSDA
1.5
V
VTH+
LOW to HIGH threshold
3.0
V
VTH-
HIGH to LOW threshold
Schmitt
CEC_A
0.8
V
VTH+
LOW to HIGH threshold
1.83
V
VOH
HIGH-level output voltage
LVTTL
INT
2.4
V
4
VOL
LOW-level output voltage
0.4
V
VOLOD
LOW-level output voltage
Open Drain
INT
0.4
V
4, 8
VCINL
Input clamp voltage
ICL = 18 mA
GND 0.8
V
2, 5
VCIPL
Input clamp voltage
ICL = 18 mA
VCC + 0.8
V
2, 5
IIL
Input leakage current
High impedance
10
10
µA
2, 9
IOL
Output drive current
Open Drain
DSCL, DSDA
VOUT = 0.4 V
3
mA
7, 8
IOL
Output drive current
Open Drain
CSCL, CSDA
VOUT = 0.4 V
4
mA
7, 8
IOL
Output drive current
Open Drain
CEC_A
VOUT = 0.4 V
3.5
mA
IOL
Output drive current
Open Drain
CEC_D
VOUT = 0.4 V
2.0
mA
IOL
Output drive current
LVTTL
INT
VOUT = 0.4 V
4
mA
7
IOH
Output drive current
LVTTL
INT
VOUT = 2.4 V
4
mA
Notes to Table 3.3 and Table 3.4:
1. Guaranteed by characterization unless otherwise noted.
2. These limits are guaranteed by design.
3. See the Ball and Pin Diagrams and Descriptions starting on page 26 for signal type designations for all package signals.
4. INT can be programmed as push-pull or open-drain. As a push-pull output, it drives VOL and VOH as defined here.
5. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater
than 3 ns or for more than one third of the clock cycle, whichever is less. Exceeding the clamp current ICL listed in the Conditions
column of the table can result in permanent damage to the chip.
6. Minimum output drive specified at ambient = 85 ºC and IOVCC = 1.7 V. Typical output drive specified at ambient = 25 ºC and
IOVCC = 1.8 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 1.9 V.
7. Minimum output drive specified at ambient = 85 ºC and IOVCC = 3.0 V. Typical output drive specified at ambient = 25 ºC and
IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 3.6 V.
8. Do not remove IOVCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is completely idle.
9. Current leakage for input pins including audio and video pins will not exceed this range.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
16 SiI-DS-1076-E.01
Table 3.5. TMDS I/O Specifications
Symbol
Parameter
Signal Type
Conditions
Min
Typ
Max
Units
Notes
VOD
Differential outputs
single-ended swing amplitude
TMDS
RLOAD = 50 Ω
400
500
600
mV
1, 2
VDOH
Differential HIGH level output
voltage
TMDS
3.3
V
IDOS
Differential output short
circuit current
TMDS
VOUT = 0 V
5
μA
Note:
1. Limits are defined by the HDMI Specification.
2. REXT_SWING condition as defined in the Differential Data Signals section.
DC Power Supply Specifications
Table 3.6 and Table 3.7 list the power consumption in both power-down and active modes using different IOVCC
supplies. See Table 3.8 for an explanation of the power operating modes.
Table 3.6. Low Power Standby Mode Power Consumption
Symbol
Parameter
Mode
3.3 V IOVCC
1.8 V IOVCC
1.2 V AVCC
1.2 V CVCC
Units
Notes
Typ6
Max
Ty6p
Max
Typ6
Max
Typ6
Max
IPDQ
Complete power-down
current
D3 Cold
0.15
0.20
0.018
0.022
0.05
0.066
0.02
0.025
mA
1, 5
IPDQ
Complete power-down
current
D3 Hot
1.00
1.65
0.550
0.670
0.75
0.830
3.50
4.50
mA
1, 5
IPDQ
Quiet power-down current
D2
1.10
1.90
0.580
0.700
0.82
1.15
4.20
5.20
mA
1, 5
Table 3.7. Operating Mode Power Consumption
Symbol
Parameter
Mode
Frequency
3.3 V IOVCC
1.8 V IOVCC
1.2 V AVCC
1.2 V CVCC
Units
Notes
Typ6
Max
Typ6
Max
Typ6
Max
Typ6
Max
ICCT
Transmitter
supply
current
D0
Single-
Edge
Mode
74.25 MHz
4.0
5.4
1.0
2.4
7.5
11.8
18.0
26.7
mA
2, 3
148.5 MHz
5.3
8.9
1.7
3.4
15.4
19.9
32.0
43.4
mA
2, 3
162 MHz
5.0
8.7
1.5
3.2
16.5
20.9
33.0
45.6
mA
2, 3
D0 Dual-
Edge
Mode
74.25 MHz
4.2
5.4
1.3
2.4
9.5
11.8
20.0
26.7
mA
2, 3
148.5 MHz
7.3
10.0
2.0
3.9
18.0
20.9
34.0
44.0
mA
2, 3
162 MHz
7.0
9.6
1.8
3.8
18.2
22.8
36.0
46.4
mA
2, 3
Notes:
1. These values reflect the static device current with no IDCK clock applied.
2. Power is related to input clock (IDCK) frequency.
3. Maximum power limits measured with all power supplies at maximum normal operating conditions, minimum normal
operating ambient temperature, REXT_SWING as defined in the Differential Data Signals section on page 32, and a video pattern of
single-pixel vertical lines.
4. Power consumption was measured across all power rails at +10% VCC: IOVCC = 1.98 V or 3.6 V, CVCC12 = 1.32 V, and AVCC12
= 1.32 V.
5. IOVCC, CVCC12, and AVCC12 should not be removed in the low-power modes because input states and leakage current cannot
be guaranteed without all power supplies present.
6. Typical power consumption is shown for reference and may vary based on typical pattern usage of system.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 17
Table 3.8 describes the chip conditions for the various power consuming modes. Refer to the Programmer’s Reference
for details about setting different power operating modes.
Table 3.8. Power Operating Modes
Mode
Core
Running
Outputs
Powered
Oscillator
Powered
Inputs
Switching
Description
Comment
D3 Cold1,
2
Complete
Power
Down
No
No
No
No
Absolute
Minimum power.
Can still wake up through HPD, but
RSEN wake-up is disabled. Local I2C
interface is disabled. Hardware reset
is required to re-enable.
D3 Hot1, 2
Complete
Power
Down
Yes
No
No
No
Minimum power.
Can still wake up through HPD and
RSEN. Local I2C interface is disabled.
Hardware reset is required to re-
enable.
D2
Quiet
Power
Down
Yes
No
Yes
No
Slave I2C bus
available for
register access.
Monitor events while minimizing
transmitter power.
D0
Full Power
Yes
Yes
Yes
Yes
Full function.
Functional mode.
Notes:
1. A full hardware reset is required to wake the system up from D3 Hot or D3 Cold mode.
2. HPD must be low or Cable must not be connected prior to entering D3 Hot/Cold mode for wake-up to be valid.
AC Specifications
TMDS AC Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 3.9. TMDS AC Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Note
TDDF
VSYNC and HSYNC delay from DE falling edge
1
TCIP
Figure 4.4
1
TDDR
VSYNC and HSYNC delay to DE rising edge
1
TCIP
Figure 4.4
1
THDE
DE HIGH time
8191
TCIP
Figure 4.5
1
TLDE
DE LOW time
138
TCIP
Figure 4.5
1, 3
SLHT
Differential swing LOW-to-HIGH transition Time
RLOAD
= 50 Ω
75
ps
Figure 4.12
2, 4, 5
SHLT
Differential swing HIGH-to-LOW transition Time
75
ps
Figure 4.12
2, 4, 5
Notes:
1. Guaranteed by design.
2. Guaranteed by characterization.
3. TLDE (DE LOW time) minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138
pixel clocks of blanking to carry the audio packets. The minimum DE LOW time is 12 clocks for TMDS. For more details, see the
Minimum Horizontal Blanking Specification section (page 25). Minimum vertical blanking time is three horizontal line times.
4. Limits are defined by the HDMI Specification.
5. With REXT_SWING condition as defined in the Differential Data Signals section on page 32.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
18 SiI-DS-1076-E.01
Audio AC Timing Specifications
See the notes below Table 3.11.
Table 3.10. I2S Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
FS_I2S
Sample rate
32
192
kHz
TSCKCYC
I2S cycle time1
CL = 10 pF
360
400
440
ns
Figure 4.8
TSCKHIGH
I2S clock HIGH1
CL = 10 pF
110
ns
TSCKLOW
I2S Clock LOW1
CL = 10 pF
110
ns
TI2SSU
I2S setup time1
CL = 10 pF
60
ns
Figure 4.8
TI2SHD
I2S hold time1
CL = 10 pF
0
ns
Figure 4.8
TMCLKCYC
MCLK cycle time
CL = 10 pF
13.3
ns
Figure 4.10
FMCLK
MCLK frequency
CL = 10 pF
75
MHz
TMCLKDUTY
MCLK duty cycle
CL = 10 pF
40%
60%
TMCLKCYC
Figure 4.10
Table 3.11. S/PDIF Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
FS_SPDIF
Sample rate
32
192
kHz
TSPCYC
S/PDIF cycle time1
CL = 10 pF
1.0
UI
Figure 4.9
TSPDUTY
S/PDIF duty cycle1
CL = 10 pF
90%
110%
UI
Figure 4.9
TAUDDLY
Audio pipeline delay3
30
70
μs
Notes:
1. Refer to the I2S or S/PDIF specifications based on 2.5 MHz for I2S receiver.
2. Setup and hold minimum times are based on 13.388 MHz sampling, from Figure 3 of Philips I2S Specification.
3. Audio pipeline delay is measured from transmitter input signals to TMDS output. The video path delay is insignificant.
4. I2S and S/PDIF input timing is guaranteed by design to meet the listed specifications at default settings.
Video Input AC Timing Specifications
Table 3.12 lists the video input AC timing specifications when IOVCC is 1.8 V, and covers both package types. Table 3.13 on
the next page lists the timing when IOVCC is 3.3 V, and applies only to the 81-ball and 72-pin package. Data for both tables
are given for normal operating conditions unless otherwise specified.
Table 3.12. Video Input AC Specifications: 1.8 V IOVCC
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Note
TCIP
IDCK period, one pixel per clock
6
40
ns
Figure 4.2
1
FCIP
IDCK frequency, one pixel per clock
25
165
MHz
1
TCIP12
IDCK period, dual-edge clock
12
40
ns
Figure 9
2
FCIP12
IDCK frequency, dual-edge clock
25
82.5
MHz
2
TDUTY
IDCK duty cycle: 24-bit single-edge clocking
30%
70%
TCIP
Figure 4.1
IDCK duty cycle: 12-bit dual-edge clocking
40%
60%
TIJIT
Worst case IDCK clock jitter
2.0
ns
3, 4
TSIDF
Setup time to IDCK falling edge
Single-edge
clocking mode
0
ns
Figure 4.2
5, 6
THIDF
Hold time to IDCK falling edge
1.8
ns
Figure 4.2
6
TSIDR
Setup time to IDCK rising edge
0
ns
Figure 4.2
5, 7
THIDR
Hold time to IDCK rising edge
2.0
ns
Figure 4.2
7
TSIDF
Setup time to IDCK falling edge
12-bit dual-
edge clocking
mode
0
ns
Figure 9
8
THIDF
Hold time to IDCK falling edge
2.1
ns
Figure 9
8
TSIDR
Setup time to IDCK rising edge
0
ns
Figure 9
8
THIDR
Hold time to IDCK rising edge
2.5
ns
Figure 9
8
Note: See notes for Table 3.13.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 19
Table 3.13. Video Input AC Specifications: 3.3 V IOVCC
3.3 V IOVCC ± 10% unless otherwise noted.
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Note
TCIP
IDCK period, one pixel per clock
6
40
ns
Figure 4.2
1
FCIP
IDCK frequency, one pixel per clock
25
165
MHz
1
TCIP12
IDCK period, dual-edge clock
12
40
ns
Figure 9
2
FCIP12
IDCK frequency, dual-edge clock
25
82.5
MHz
2
TCIP12A
IDCK period, dual-edge clock
6
40
ns
Figure 9
2
FCIP12A
IDCK frequency, dual-edge clock
25
165
MHz
2
TDUTY
IDCK duty cycle: 24-bit single-edge clocking
30%
70%
TCIP
Figure 4.1
IDCK duty cycle: 12-bit dual-edge clocking
40%
60%
TCH
Clock HIGH time, dual-edge clocking
FCIP > 82.5 MHz
3.6
ns
Figure 4.1
TCL
Clock LOW time, dual-edge clocking
2.4
ns
TIJIT
Worst case IDCK clock jitter
2.0
ns
3, 4
TSIDF
Setup time to IDCK falling edge
Single-edge
clocking mode
0
ns
Figure 4.2
5, 6
THIDF
Hold time to IDCK falling edge
1.8
ns
Figure 4.2
6
TSIDR
Setup time to IDCK rising edge
0
ns
Figure 4.2
7
THIDR
Hold time to IDCK rising edge
2.0
ns
Figure 4.2
7
TSIDF
Setup time to IDCK falling edge
12-bit dual-
edge clocking
mode
0
ns
Figure 9
8
THIDF
Hold time to IDCK falling edge
1.9
ns
Figure 9
8
TSIDR
Setup time to IDCK rising edge
0
ns
Figure 9
8
THIDR
Hold time to IDCK rising edge
2.4
ns
Figure 9
8
Notes:
1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification.
2. TCIP12, TCIP12A, FCIP12, and FCIP12A apply in dual-edge mode. TCIP12 and TCIP12A are not controlling specifications.
3. Input clock jitter is estimated by triggering a digital scope at the rising edge of input clock, and measuring peak-to-peak time
spread of the rising edge of the input clock 1 s after the triggering.
4. Actual jitter tolerance can be higher depending on the frequency of the jitter.
5. Setup and hold time specifications apply to D[23:0] (81-ball and 72-pin package) or D[15:0] (49-ball package), DE, VSYNC, and
HSYNC input signals, relative to IDCK input clock.
6. Edge Select bit = 0.
7. Edge Select bit = 1.
8. Setup and hold limits are not affected by the Edge Select bit setting for 12-bit dual-edge clocking mode. (See the Programmer’s
Reference for information about the Edge Select bit setting.)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
20 SiI-DS-1076-E.01
Control Signal Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 3.14. Control Signal Timing Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Note
TRESET
RESET# signal LOW time required for reset
100
µs
Figure 4.6
Figure 4.7
1
TI2CDVD
SDA data valid delay from SCL falling edge on
READ command
CL = 400 pF
700
ns
Figure 4.13
2, 4
THDDAT
I2C data hold time
40400 kHz
2.0
ns
3, 4
TINT
Response time for INT output signal from
change in input condition (HPD, Receiver
Sense, VSYNC change, etc.).
RESET# =
HIGH
100
µs
Figure 4.14
5
FDSCL
Frequency on master DDC SCL signal
40
70
100
kHz
6
FCSCL
Frequency on CSCL signal
40
400
kHz
Notes:
1. Reset on RESET# signal can be LOW as CVCC12 and IOVCC become stable, or be pulled LOW for at least TRESET.
2. All standard-mode (100 kHz) I2C timing requirements are guaranteed by design and comply with the I2C Specification. These
timings apply to the slave I2C port (signals CSDA and CSCL) and to the master I2C port (signals DSDA and DSCL) with I2C stall
disabled.
3. This minimum hold time is required by CSCL and CSDA signals as an I2C slave. The device does not include the 300 ns internal
delay required by the I2C Specification (Version 2.1, Table 5, note 2).
4. Operation of I2C signals above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL described on page 14.
5. During RESET# = LOW, the INT output signal shows whether there is an attached and powered-on TMDS receiver. See the
description of the INT signal in the Configuration and Control Signals section on page 31.
6. The Master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I2C Standard Mode, or
100 kHz. Use of the Master DDC block does not require an active IDCK.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 21
4. Timing Diagrams
Data signals D[23:0] shown are available on the 81-ball and 72-pin device. Substitute D[15:0] for the 49-ball device.
Input Timing Diagrams
20%
80%
TDUTY
TCH
IDCK
TCIP
TCIP12
TCIP12A TCL
Figure 4.1. IDCK Clock Cycle/High/Low Times
50 % 50 %
IDCK
EDGE=0
TSIDF THIDF
50 % 50 %
50 % 50 %
IDCK
EDGE=1
TSIDR THIDR
50 % 50 %
no change allowed
no change allowed
TCIP
D[23:0] or D[15:0],
DE, HSYNC,VSYNC
D[23:0] or D[15:0],
DE, HSYNC,VSYNC
Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time
specifications.
D[23:0] are used in the 81-ball and 72-pin package; D[15:0] are used in the 49-ball package.
Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK
D[11:0] or D[15:4],
DE, HSYNC, VSYNC 50 % 50 %
IDCK
TSIDF THIDF
50 % 50 %
TSIDR THIDR
50 %
no change
allowed no change
allowed
Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup
and minimum hold time specifications.
D[11:0] are used in the 81-ball and 72-pin package; D[15:4] are used in the 49-ball package.
TCIP12
Figure 4.3. Dual-Edge Setup/Hold Times to IDCK
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
22 SiI-DS-1076-E.01
DE
VSYNC, HSYNC
50%
50%
TDDF TDDR
50%
50%
Figure 4.4. VSYNC and HSYNC Delay Times from/to DE
DE
TLDE
THDE
VIH
VIL
Figure 4.5. DE High/Low Times
RESET#
VCCmin
VCCmax
TRESET
VCC
Figure 4.6. Conditions for Use of RESET#
Note: VCC must be stable between its limits for Normal Operating Conditions for TRESET before RESET# goes HIGH.
RESET#
TRESET
Figure 4.7. RESET# Minimum Timings
Note: RESET# must be pulled LOW for TRESET before accessing registers. This can be done by holding RESET# LOW until TRESET after
stable power (as shown in Figure 4.6), or by pulling RESET# LOW from a HIGH state (as shown in Figure 4.7) for at least TRESET.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 23
Audio Timing Diagrams
SD[3:0], WS
SCK 0.8 V
2.0 V
0.8 V
2.0 V
TI2SSU TI2SHD
TSCKCYC TSCKDUTY TSCKDUTY
Figure 4.8. I2S Input Timings
SPDIF
50%
10%
90%
TSPDUTY
TSPCYC
Figure 4.9. S/PDIF Input Timings
MCLK
TMCLKCYC
TMCLKDUTY
50%50%
Figure 4.10. MCLK Timings
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
24 SiI-DS-1076-E.01
Power Supply Sequencing
Power sequencing is not usually required. Lattice Semiconductor recommends that all individual power supplies reach
their nominal levels within 5 ms in normal operation. Once powered on, the IOVCC, CVCC, and AVCC power supplies
should not be removed during any power mode including D0, D2, D3 Hot and D3 Cold.
1.2 V
(CVCC,
AVCC)
1.8 V
(IOVCC)
5 V
(DDC)
3.3 V
(IOVCC, CEC)
nominal 5 V
nominal 3.3 V
nominal 1.8 V
nominal 1.2 V T < 5 ms
Figure 4.11. Power Supply Sequencing
Output Timing Diagrams
SLHT
20% VOD
80% VOD
SHLT
Figure 4.12. Differential Transition Times
CSCL, DSCL
TI2CDVD
CSDA, DSDA
Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data)
INT Output
Interrupt
Condition TINT
Figure 4.14. INT Output Signal Response to Interrupt Condition
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 25
Minimum Horizontal Blanking Specification
Several cases define the minimum blanking time requirements. Vertical blanking times are normally multiples of the
horizontal line times and do not place a constraint on performance. (HDMI requires at least two line times in each
vertical blanking interval.) The minimum horizontal blanking time depends on the mode. An HSYNC or VSYNC edge can
occur in any clock cycle except when active video data is being transmitted. When HDMI is active, this includes the two
clocks of leading guard band for the active video data.
Table 4.1. Minimum Horizontal Blanking Calculations
Mode
Information Type
Clock Count
DVI Only
Defined by transmitter data sheet.
Total minimum horizontal blanking time
12
HDMI with No Data Islands
Defined by HDMI Spec (Section 5.2.3.2, page 46; and
Figure 5-3).
Minimum control period
12
Leading guard band
2
Total minimum horizontal blanking time
14
HDMI with One Data Island
HDMI allows a minimum of one data island, which can contain
one data packet.
Minimum control period
12
Leading guard band
2
Packet
32
Trailing guard band
2
Minimum control period
12
Leading guard band
2
Total minimum horizontal blanking time
62
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
26 SiI-DS-1076-E.01
5. Ball and Pin Diagrams and Descriptions
Ball and Pin Diagrams
81-Ball VFBGA Package
Figure 5.1 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 81-ball package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in
Figure 5.3 on page 28.
1
2
3
4
5
6
7
8
9
A
CEC_A
RSVDHO
AGND
TX1+
TX0+
TXC+
TXC-
AGND
EXT_SWING
B
CI2CA
VDDQ
TX2+
TX2-
TX1-
TX0-
CEC_D
IO_SEL
RSVDL
C
CSDA
CSCL
RESET#
CVCC12
IOGND
AVCC12
AVCC12
DSDA
DSCL
D
CGND
CGND
CVCC12
IOGND
IOVCC
IOGND
CVCC12
HPD
INT
E
D23
D22
D21
D20
IOVCC
SD1
CVCC12
IOVCC
IOVCC
F
D19
D18
D17
D16
CVCC12
SD2
SCK
WS
SD0
G
D15
D14
D9
D7
CGND
CVCC12
SPDIF
MCLK
SD3
H
D12
D11
IDCK
D6
CGND
D3
D1
D0
VSYNC
J
D13
D10
D8
D5
CGND
D4
D2
DE
HSYNC
Figure 5.1. 81-Ball Package Ball Diagram (Top View)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 27
49-Ball VFBGA Package
Figure 5.2 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 49-ball package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in
Figure 5.3 on the next page.
1
2
3
4
5
6
7
A
TX2+
TX1+
TX1-
TX0+
TX0-
TXC+
TXC-
B
CEC_A
TX2-
AGND
AVCC12
DSDA
RSVDL
EXT_SWING
C
CSDA
CSCL
VDDQ
CVCC12
RESET#
INT
DSCL
D
D15
D14
IOGND
CGND
HPD
WS
SD0
E
D13
D12
IOVCC
D6
SCK
D0
MCLK
F
D11
D10
IDCK
D5
D1
D2
VSYNC
G
D9
D8
D7
D4
D3
DE/SPDIF
HSYNC
Figure 5.2. 49-Ball Package Ball Diagram (Top View)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
28 SiI-DS-1076-E.01
72-Pin QFN Package
Figure 5.3 shows the pin diagram for the SiI9022A/SiI9024A transmitter in the 72-pin package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the pin functions.
SiI9022A
SiI9024A
Top View
2
1
4
3
6
5
8
7
10
9
12
11
14
13
16
15
18
17
20
19
22
21
24
23
26
25
28
27
30
29
32
31
34
33
36
35
53
54
51
52
49
50
47
48
45
46
43
44
41
42
39
40
37
38
71
72
69
70
67
68
65
66
63
64
61
62
59
60
57
58
55
56
HPD
CVCC12
INT
DSDA
RESET#
CEC_D
DSCL
D20 IOVCC
SCK
CGND
D19
WS
SD0
SD1
SD2
CSDA
MCLK
SD3
CSCL
D23
D22
D21 CVCC12
CVCC12
D12
D11
D17
D18
D16
D15
D14
D13
IOVCC
CVCC12
CVCC12
TX1+
TX1-
CEC_A
CI2CA
IO_SEL
TX2-
AVCC12
EXT_SWING
RSVDL
TX0+
AGND
AVCC12
TXC+
TXC-
IOGND
VDDQ
TX0-
TX2+
CVCC12
D5
D9
D10
IDCK
D7
D6
VSYNC
SPDIF
D3
D4
D1
D0
DE
HSYNC
IOVCC
D2
D8
Ground
Audio and video data input
TMDS output
Audio, video, and HDMI control I/O
Chip configuration and control
Power
Reserved and not connected
Figure 5.3. 72-Pin Package Pin Diagram (Top View)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 29
Ball and Pin Descriptions
Video Input
The digital video input signals all operate from the IOVCC power plane and are tolerant up to the voltage supplied to
that plane (1.8 V or 3.3 V). These balls or pins have internal weak pull-down resistors, and are high-impedance in D3
power-down mode.
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
81-Ball / 72-Pin
49-Ball
D0
E6
H8
32
Schmitt
Input
12-bit Input Pixel Data
Bus.
These pins or balls are
used in 12-bit dual-
edge mode and in
24-bit single-edge
mode.
16-bit Input Pixel Data
Bus.
D1
F5
H7
31
D2
F6
J7
30
D3
G5
H6
29
D4
G4
J6
28
D5
F4
J4
27
D6
E4
H4
25
D7
G3
G4
24
D8
G2
J3
23
D9
G1
G3
20
D10
F2
J2
19
D11
F1
H2
18
D12
E2
H1
17
Schmitt
Input
12-bit Input Pixel Data
Bus.
These pins or balls are
used only in 24-bit
single-edge mode. In
12-bit dual-edge mode
these signals should be
left unconnected.
D13
E1
J1
16
D14
D2
G2
15
D15
D1
G1
14
D16
NA
F4
13
D17
NA
F3
11
D18
NA
F2
10
D19
NA
F1
9
D20
NA
E4
8
D21
NA
E3
7
D22
NA
E2
6
D23
NA
E1
4
IDCK
F3
H3
22
Schmitt
Input
Input Data Clock.
DE
NA
J8
33
Schmitt
Input
Data Enable input control signal.
DE/SPDIF
G6
NA
NA
Schmitt
Input
Input DE Control Signal or S/PDIF.
HSYNC
G7
J9
34
Schmitt
Input
Horizontal sync input control signal.
VSYNC
F7
H9
35
Schmitt
Input
Vertical sync input control signal.
Note: Any unused video or control balls or pins listed in this section should be left not connected to conserve power.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
30 SiI-DS-1076-E.01
Audio Input
The digital audio input signals all operate from the IOVCC power plane, and are tolerant up to the voltage supplied to
that plane (1.8 V or 3.3 V). These balls or pins have weak internal pull-up resistors, and are high-impedance in D3
power-down mode.
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
SCK
E5
F7
45
Schmitt
Input
I2S Serial Clock.
WS
D6
F8
44
Schmitt
Input
I2S Word Select.
SD0
D7
F9
41
Schmitt
Input
I2S Serial Data 0.
SD1
NA
E6
40
Schmitt
Input
I2S Serial Data 1.
SD2
NA
F6
39
Schmitt
Input
I2S Serial Data 2.
SD3
NA
G9
37
Schmitt
Input
I2S Serial Data 3.
MCLK
E7
G8
38
Schmitt
Input
Audio Input Master Clock.
SPDIF
NA
G7
36
Schmitt
Input
S/PDIF Audio Input.
DE/SPDIF
G6
NA
NA
Schmitt
Input
S/PDIF audio or DE control input.
(Applies to 49-ball package only.)
Note: Any unused audio balls or pins listed in this section should be left not connected to conserve power. All data, clock, and
control inputs in this section have a weak internal pullup, which is switched off in D3 mode to reduce leakage current.
CEC
The CEC signals operate from an internally generated power plane, but are tolerant up to the 3.3 V power specified for
CEC.
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
CEC_A
B1
A1
71
CEC-compliant
Input/
Output
HDMI compliant CEC I/O to interface to CEC
devices.
CEC electrically compliant I/O. This ball or pin
connects to the CEC signal of all HDMI
connectors in the system.
For IOVCC = 3.3 V:
No external pullup resistor is required.
For IOVCC = 1.8 V:
A 51 kΩ pullup resistor in series with a Schottky
diode to a 3.3 V source is required; see Figure 7.5
on page 70.
As an input, the pad acts as a LVTTL Schmitt
triggered input. As an output, the pad acts as an
NMOS driver.
CEC_D
NA
B7
50
LVTTL
Input/
Output
CEC interface to local system.
This is an LVTTL I/O with a weak pull-up resistor.
This ball or pin typically connects to the local
CPU.
The CEC_D output can be disabled with
programming to allow the internal CEC logic to
handle the CEC_A signal.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 31
Configuration and Control
The configuration and control input and output signals all operate from the IOVCC 1.8 V or 3.3 V power plane, and are
tolerant up to and drive to the voltage supplied to that plane.
The CSCL, CSDA, DSCL, and DSDA signals are not true open-drain buffers. When no VCC is applied to the chip, these
signals can continue to draw a small current, and prevent the master IC from communicating with other devices on the
I2C bus. Therefore, do not remove VCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is
completely idle. Note that the level on the CI2CA signal is not latched internally and should not be changed during any
active I2C operations.
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
HPD
D5
D8
54
Schmitt
5 V tolerant
Input
Hot Plug Detect Input.
An external 10 kΩ pulldown resistor to GND on the
board is required.
INT
C6
D9
52
LVTTL
Output
Interrupt Output.
Configurable by a register setting to be either an
active-HIGH (push-pull) output or an active-LOW
(open-drain) output. In push-pull mode, the output
drives to the corresponding level for the IOVCC
power plane. In active-LOW (default) output, an
external pull-up to 3.3 V is required.
CI2CA
NA
B1
72
LVTTL
Input
I2C Device Address Select.
For 49-ball package:
Not available. Fixed LOW internally.
For 81-ball and 72-pin package:
A 4.7 kΩ external pull-down to GND or pull-up resistor to
IO_SEL voltage level MUST be connected to this signal for
proper operation.
See the Control and Configuration section on
page 11 for additional information
RESET#
C5
C3
51
Schmitt
Input
Reset signal (active LOW). When RESET# is LOW,
all input and output pins are not functional.
CSCL
C2
C2
1
Schmitt
Open-drain
Input/
Output
Local I2C Bus Clock.
This bus accesses the compatible mode registers, the
TPI registers, and the CPI registers. An external
4.7 kΩ pullup resistor on the board is required.
CSDA
C1
C1
2
Schmitt
Open-drain
Input/
Output
Local I2C Bus Data.
This accesses the compatible mode registers, the
TPI registers, and the CPI registers..
An external 4.7 kΩ pullup resistor on the board is
required.
IO_SEL
NA
B8
69
LVTTL
Input
I/O Select.
This input sets the I/O thresholds to the proper
level to match the I/O supply voltage.
LOW Selects 3.3 V I/O thresholds.
HIGH Selects 1.8 V I/O thresholds.
Connect IO_SEL to 1.8 V to select 1.8 V I/O
threshold and to ground to select 3.3 V I/O
threshold.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
32 SiI-DS-1076-E.01
25BDDC Bus
The DDC signals operate from an internally generated power plane, but are tolerant up to the 5 V power specified for
DDC.
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
DSCL
C7
C9
49
Schmitt
Open-drain
5 V tolerant
Input/
Output
DDC I2C Bus Clock.
This bus accesses the EDID and HDCP data on an
attached sink device. The DSCL signal is bi-directional,
since the transmitter monitors the state of DSCL so that
it can accommodate I2C clock stretching by the slave
device.
An external pullup resistor between 1.8 kΩ and 2.2 kΩ
on the board is required.
DSDA
B5
C8
48
Schmitt
Open-drain
5 V tolerant
Input/
Output
DDC I2C Bus Data.
This bus accesses the EDID and HDCP data on an
attached sink device.
An external pullup resistor between 1.8 kΩ and 2.2 kΩ
on the board is required.
Differential Data
Name
VFBGA
QFN
Type
Dir
Description
49-Ball
81-Ball
72-Pin
TX0+
A4
A5
62
TMDS
Output
TMDS output data pairs.
TX0-
A5
B6
61
TMDS
Output
TX1+
A2
A4
65
TMDS
Output
TX1-
A3
B5
64
TMDS
Output
TX2+
A1
B3
68
TMDS
Output
TX2-
B2
B4
67
TMDS
Output
TXC+
A6
A6
59
TMDS
Output
TMDS output clock pair.
TXC-
A7
A7
58
TMDS
Output
EXT_SWING
B7
A9
56
Analog
Input
Voltage Swing Adjust.
A resistor (REXT_SWING ) is connected from this ball or pin
to GROUND. This resistor determines the amplitude of
the voltage swing. The recommended value is 4.3 kΩ
±1% with internal source termination enabled and 5.1
kΩ ±1% without internal source termination. The value
of this resistor can be adjusted to optimize the signal
swing in the specific design.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 33
Power and Ground
Name
VFBGA
QFN
Type
Description
49-Ball
81-Ball
72-Pin
CVCC12
C4
C4, D3, D7,
E7, F5, G6
5, 12, 26,
42, 47, 53
Power
Digital Core VCC.
Connect to 1.2 V supply.
CGND
D4
D1, D2, G5,
H5, J5
43
Ground
Digital Core GND.
IOVCC
E3
D5, E5, E8,
E9
3, 21, 46
Power
I/O VCC.
Connect to either the 1.8 V or 3.3 V supply. This ball must be
connected to 1.8 V in the 49-ball package.
IOGND
D3
C5, D4, D6
57
Ground
I/O GND.
AVCC12
B4
C6, C7
60, 66
Power
Analog VCC.
Connect to 1.2 V supply.
AGND
B3
A3, A8
63
Ground
Analog GND.
RSVDH0
NA
A2
NA
No connect
Reserved.
This ball is not connected in the 81-ball package for downward
compatibility with the SiI9022A/SiI9024A transmitter. It can be left
open, or connected to ground or CVCC12 without adverse effect.
RSVDL
B6
B9
55
LVTTL Input
Reserved.
Must be tied LOW.
VDDQ
C3
B2
70
LVTTL Input
Reserved.
Must be tied LOW.
Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
34 SiI-DS-1076-E.01
6. Feature Information
RGB to YCbCr Color Space Converter
The RGBYCbCr color space converter can convert from video data RGB to standard definition or to high definition
YCbCr formats. Table 6.1 lists the conversion formulas that are used. The HDMI AVI packet defines the color space of
the incoming video.
Table 6.1. RGB to YCbCr Conversion Formulas
Video Format
Conversion
Formulas
CE Mode 16-235 RGB
640 × 480
ITU-R BT.601
Y = 0.299R′ + 0.587G′ + 0.114B′
Cb = –0.172R′ – 0.339G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.428G′ – 0.083B′ + 128
480i
ITU-R BT.601
576i
ITU-R BT.601
480p
ITU-R BT.601
576p
ITU-R BT.601
240p
ITU-R BT.601
288p
ITU-R BT.601
720p
ITU-R BT.709
Y = 0.213R′ + 0.715G′ + 0.072B′
Cb = –0.117R′ – 0.394G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.464G′ – 0.047B′ + 128
1080i
ITU-R BT.709
1080p
ITU-R BT.709
YCbCr to RGB Color Space Converter
The YCbCrRGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert
from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in
Table 6.2X. Note the difference between RGB range for CE modes and PC modes.
Table 6.2. YCbCr-to-RGB Conversion Formulas
Format change
Conversion
YCbCr Input Color Range
YCbCr 16-235 Input
to
RGB 16-235 Output
601*
R′ = Y + 1.371(Cr – 128)
G′ = Y – 0.698(Cr 128) 0.336(Cb 128)
B′ = Y + 1.732(Cb – 128)
7091
R′ = Y + 1.540(Cr – 128)
G′ = Y – 0.459(Cr 128) 0.183(Cb 128)
B′ = Y + 1.816(Cb 128)
YCbCr 16-235 Input
to
RGB 0-255 Output
601
R′ = 1.164((Y-16) + 1.371(Cr 128))
G′ = 1.164((Y-16) 0.698(Cr 128) 0.336(Cb 128))
B′ = 1.164((Y-16) + 1.732(Cb 128))
709
R′ = 1.164((Y-16) + 1.540(Cr 128))
G′ = 1.164((Y-16) 0.459(Cr 128) 0.183(Cb 128))
B′ = 1.164((Y-16) + 1.816(Cb 128))
*Note: No clipping can be done.
3D Video Formats
The SiI9022A/SiI9024A transmitter supports the 3D video modes described in the HDMI 1.4a Specification. All modes
support RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats and 8-bit color depth. External separate HSYNC, VSYNC,
and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream.
Table 6.3 lists only the maximum possible resolution with a given frame rate; for example, Side-by-Side mode is defined
for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 35
that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz and its
associated pixel frequency is supported.
Limitations
Frame Packing format: The Frame packing format requires Vact_space which must have constant video data. Dithering
should be disabled when transmitting the frame packing format.
The 1080p 24 Hz video format has a total of 2250 lines. However, the VRES counter (TPI 0x6C, 0x6D) of the
SiI9022A/SiI9024A device is only 11 bits, which provides for a maximum of 2047 lines. In this case, the VRES counter
will overflow and show the value of 0. This does not affect the output of the transmitter.
The DE generator is supported for all formats except 1080p 24 Hz. DE_LIN (TPI 0x68, 0x69) is only 11 bits (maximum
2047) while this value for 1080p 24 Hz should be 2205 lines.
Side-by-Side format: L frame and R frame are concatenated without a border. Since 4:4:4 to 4:2:2 downsampling and
4:2:2 dithering and upsampling to 4:4:4 has a decimation filter and looks at some adjacent pixels, these three features
should be avoided to prevent possible visible artifacts.
L + Depth format: No video processing should be used.
Top-and-Bottom format: There are no limitations.
Table 6.3. Supported 3D Video Formats
3D Format
Extended Definition
Resolution
Frame Rate (Hz)
Input Pixel Clock (MHz)
Frame Packing
1080p
24
148.5
720p
50 / 60
interlaced
1080i
50 / 60
L + Depth
1080p
24
720p
50/60
Side-by-Side
Full
1080i
50/60
720p
50/60
Half
1080p
50/60
1080p
24
74.25
720p
50/60
1080i 50/60
60
Top-and-Bottom
1080p
24
720p
50/60
S/PDIF Audio Input
The S/PDIF stream carries 2-channel uncompressed PCM data (IEC 60958) or a compressed bit stream for multi-channel
(IEC 61937) formats. The audio data capture logic described in the Audio Data Capture Logic section packetizes the
audio data according to the HDMI specification. The S/PDIF input supports audio sampling rates from 32 to 192 kHz. No
clock input is required for S/PDIF since the chip logic extracts the clock from the incoming S/PDIF data stream.
Optionally, an external MCLK source can be used.
I2S Audio Inputs
The 81-ball and 72-pin packages support four I2S inputs, SD0 through SD3, which allow transmission of DVD-Audio and
decoded Dolby Digital/DTS bit stream to A/V receivers and high-end displays. This interface supports 2-channel to 8-
channel audio with up to 192 kHz sampling rate. The input clock SCK is used to latch the incoming data; data must meet
specified setup and hold time requirements with respect to SCK.
The 49-ball package has only one I2S input, SD0, which supports only 2-channel audio up to 192 kHz sampling rate.
A separate master clock signal that is coherent with the I2S inputs is required for HDMI time-stamping purposes.
Coherent means that this clock signal and the I2S inputs must have been created from the same clock source. This clock
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
36 SiI-DS-1076-E.01
can be generated internally, using a PLL. As an option, the original MCLK signal used to strobe the I2S signals out from
the sourcing chip can be used. If the internal PLL is used, then an external MCLK input is not required.
Supported Audio Sampling Rates
The audio data can be down-sampled by one-half or one-fourth with register control. This feature allows the
transmitter to share the audio bus with a high-sample-rate audio DAC, while down-sampling audio for an attached
display that supports only lower rates. The transmitter supports conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96
to 48 kHz, and 88.2 to 44.1 kHz.
The appropriate registers must be configured to describe the format of audio provided to the transmitter. This
information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets.
Table 6.4 lists the supported MCLK frequencies and audio sample rates.
Table 6.4. Supported MCLK Frequencies
Multiple
of Fs
Audio Sample Rate, Fs
32 kHz1, 2
44.1 kHz1, 2
48 kHz1, 2
88.2 kHz1, 2
96 kHz1, 2
176.4 kHz2
192 kHz2
128
4.096 MHz
5.645 MHz
6.144 MHz
11.290 MHz
12.288 MHz
22.579 MHz
24.576 MHz
192
6.144 MHz
8.467 MHz
9.216 MHz
16.934 MHz
18.432 MHz
33.869 MHz
36.864 MHz
256
8.192 MHz
11.290 MHz
12.288 MHz
22.579 MHz
24.576 MHz
45.158 MHz
49.152 MHz
384
12.288 MHz
16.934 MHz
18.432 MHz
33.869 MHz
36.864 MHz
67.738 MHz
73.728 MHz
512
16.384 MHz
22.579 MHz
24.576 MHz
45.158 MHz
49.152 MHz
768
24.576 MHz
33.869 MHz
36.864 MHz
67.738 MHz
73.728 MHz
1024
32.768 MHz
45.158 MHz
49.152 MHz
1152
36.864 MHz
50.803 MHz
55.296 MHz
Notes:
1. 2-channel S/PDIF supported rate.
2. 2-channel and 8-channel I2S supported rate.
Table 6.5. S/PDIF Audio Formats Supported for each Video Format
Video Format
32 kHz
44.1 kHz
48 kHz
96 kHz
96 kHz48 kHz
192 kHz
2-ch
2-ch
2-ch
5.1-ch
2-ch
2-ch
2-ch
VGA
480i
480p
576p
720p and above
Note: = Supported, = Not Supported
Table 6.6. I2S Audio Formats Supported for each Video Format
Video Format
I2S Format
2-Channel Audio
8-Channel Audio
(81-Ball and 72-Pin package only)
32
44.1
48
88.2
96
9648
176.4
192
19248
48
88.2
96
192
VGA
480i
480p
576p
480p 2x
720p and above
Note: = Supported, = Not Supported
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 37
I2C Register Information
I2C registers monitor and control all functions of the transmitter. For devices in the 81-ball and 72-pin package, the
device I2C addresses can be altered setting the CI2CA signal LOW or HIGH as listed in Table 6.7. An external pull-up or
pull-down resistor (depending on the desired set of I2C addresses) is used to set the level on the CI2CA signal. Note that
the level on the CI2CA signal is not latched internally and should not be changed during any active I2C operations.
The CI2CA signal is not externally accessible on the 49-ball package and is internally connected to ground. As a result,
the device I2C addresses for devices in the 49-ball package cannot be changed and are fixed to the same addresses as
when the CI2CA signal is LOW.
Table 6.7. Control of I2C Address with CI2CA Signal
Internal Function
CI2CA = LOW
CI2CA = HIGH
49-Ball / 81-Ball / 72-Pin
81-Ball / 72-Pin
Transmitter Programming Interface (TPI) device address
0x72
0x76
CEC Programming Interface (CPI) device address
0xC0
0xC4
SiI9020-compatible internal registers: first device address
0x72
0x76
SiI9020-compatible internal registers: second device address
0x7A
0x7E
Two separate sets of registers are available for the transmitter subsystem.
SiI9020-compatible registers are nearly identical to those used by previous generations of Lattice Semiconductor
parts. These registers can run under the direct control of existing code on a host processor and are used to
perform audio/video format processing, CEA-861D InfoFrame packet formatting, and power-down control. Refer
to the SiI9020 HDMI PanelLink Transmitter Programmer’s Reference (listed in References section) for information
about these registers.
Transmitter Programming Interface (TPI) registers represent a higher-level interface. Lattice Semiconductor
recommends using the TPI registers instead of the SiI9020-compatible registers, because they automate in
hardware many functions such as audio N-value calculation, HDCP local link authentication and integrity checking,
and HDCP repeater authentication. The HDCP feature, which was not available on the SiI9020 transmitter, can only
be used through the TPI register interface of the SiI9024A device. Refer to the Programmer’s Reference (listed in
References section) for information on these registers.
For the CEC subsystem, a set of CEC Programming Interface registers fully automates CEC handling. Refer to the CEC
Programming Interface (CPI) Programmer’s Reference (listed in References section) for information on these registers.
DDC Support
The Master DDC block supports I2C transactions specified by VESA Enhanced Display Data Channel Standard (Section
3.1.2). The Master DDC block complies with the Standard Mode timing of the I2C specification, limited to 100 kHz by
Section 8.4.1 of the HDMI specification, and supports slave clock stretching as required by E-DDC. Figure 6.1 below and
Figure 7.6 on page 71 show the connection of the HDMI connector to the DDC ports of the transmitter. Figure 6.2 on the
next page shows the supported I2C transactions.
MPEG Chip
SiI9022A Transmitter
SiI9024A Transmitter
HDMI Connnector
Video
Audio
I2C
HDMI
DDC
CEC Programming
Interface registers
Transmitter
Programming
Interface registers
DDC Master access
Figure 6.1. Simplified Host I2C Interface using Master DDC Port
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
38 SiI-DS-1076-E.01
Sr
S slv addr + W device offset slv addr + R data 0 data n PAsAsAsAmAm
S = start
Sr = restart
As = slave acknowledge
Am = master acknowledge
N = no ack
P = stop
* Don't care for segment 0, ACK for segment 1 and above
Current Read
S slv addr + R data 0 data n PAsAmdata 1 AmAmN/As
Sequential Read
N/As
Sr
S slv addr + W device offset slv addr + R data 0 data n PAsAsAsAmAm
Enhanced DDC Read
N/As
Sr
0x60 segment
N/AsN/As*
S slv addr + W device offset data nAsdata 0 PAsAsAsN/As
Sequential Write
Figure 6.2. Master I2C Supported Transactions
DDC Stall Support
Stall feature is also supported on the SiI9022A/SiI9024A device. Stall can be enabled after ACK or on every cycle. This
feature can also reduce an incoming 400 kHz Local I2C speed to 100 kHz DDC. Lattice Semiconductor does not recommend
enabling this feature when the incoming local I2C speed and DDC speed is set to 100 kHz since additional I2C bus free time
is required. Additionally, if a sink device supports I2C speeds higher than 100 kHz, this feature should be disabled.
Power Saving Modes and Wakeup Feature
In addition to D2 mode, the SiI9022A/SiI9024A device supports 2 additional power saving modes which include the D3
Hot and D3 Cold mode. D3 Hot mode provides better power savings compared to D2 mode. D3 Cold mode offers the
best power savings compared to D2 and D3 Hot. Once in D3 Hot or Cold modes, the I2C registers are no longer
accessible, and to regain full access to the internal registers, the transmitter must be hardware reset.
The wakeup feature is an additional function to alert the host and re-enable the SiI9022A/SiI9024A device from D3 Cold
or D3 Hot mode. The wakeup feature works by sending an INT# signal to the host when an active display sink is
connected to the transmitter. The INT# signal is generated when either an active Receiver Sense or a Hotplug signal is
detected by the transmitter.
Wakeup Support in D3 Cold and D3 Hot Modes
To enable the wakeup feature in either D3 Hot or D3 Cold mode, adhere to the following sequences; refer to the
Programmer’s Reference for more details. Table 6.8 below summarizes the detection support of D3 Hot and Cold.
Table 6.8. D3 hot and D3 Cold Feature
Mode
RSEN
Detect
Hotplug
Detect
Minimum
Requirements
Condition
D3 Cold
Complete Power
Down
No
Yes
HPD low or Cable
Disconnected
HPD only. Cable must be disconnected
before entering D3 Cold.
D3 Hot
Complete Power
Down
Yes
Yes
RSEN disconnected
Can be used with Display Sinks with multi
input ports that disable input but keep HPD
high.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 39
6.9.1.1. D3 Cold Wakeup
The D3 Cold Wakeup feature sends an INT signal when connecting a cable produces a Hotplug signal. Lattice
Semiconductor recommends disconnecting the cable to theSiI9022A/SiI9024A transmitter before entering D3 Cold
mode.
1. 1. Disconnect the cable.
2. 2. Clear any pending interrupts.
3. 3. Perform a hardware reset of the transmitter.
4. 4. Program register 0xC7 to 0x00 to enter TPI mode.
5. 5. Set INT# source to Hotplug using register 0x3C.
6. 6. Clear any pending interrupts.
7. 7. Enter D3 Cold mode using register 0x1E.
6.9.1.2. D3 Hot Wakeup
Unlike the D3 Cold mode, the D3 Hot mode also supports using RSEN for a wakeup event. This allows the D3 Hot mode
to support a different usage model. In a situation where the sink may have additional input ports but may disable the
inputs while keeping the Hotplug active or vice versa, a change in either the RSEN or Hotplug signal prompts an INT#
signal from the transmitter. The INT# will trigger if there is any change in the HPD signal, such as a HIGH-to-LOW
change. Since this is not the intended wakeup event required, the host can choose to re-enter the D3 Hot mode.
8. 1. Cable can be disconnected or left connected.
9. 2. Set INT# source to either RSEN or HPD.
10. 3. Clear any pending interrupts.
11. 4. Enable D3 Hot mode via register 0x1E.
Common Video Input Formats
Table 6.9 lists the bus interface formats available to support common video input resolutions. The format number in
the left column of this table lists the input modes indicated in Table 6.10 on the next page that are required to support
each format. Additional discrete CEA and VESA resolutions meeting the requirements listed in Table 3.14 on page 20
and Table 4.1 on page 25 may also be supported.
Table 6.9. Video Input Formats
Format
Input Pixel Clock (MHz)
Notes
480i400H
1, 3
480p402H
2
XGA
720p
1080i
1080p24
1080p
UXGA
1
27
27
65
74.25
74.25
74.25
148.5
162
2
27
27
65
74.25
74.25
74.25
3
27
27
74.25
74.25
74.25
148.5
162
4
27
54
148.5
148.5
148.5
5
54
4
Notes:
1. 480i support also encompasses 576i support.
2. 480p support also encompasses 576p support.
3. 480i must be input at 27 MHz using pixel replication to be transmitted across the HDMI link.
4. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
40 SiI-DS-1076-E.01
Data Bus Mappings
The transmitter supports multiple input data mappings. Some have explicit control signals, and some have embedded
control signals. The selection of data mapping mode should be consistent at the signals and in the corresponding
register settings. Refer to the Programmer’s Reference for more details. All versions of this transmitter support up to a
maximum of 8-bit color depth in any mode.
Table 6.10. Input Video Formats
Input Mode
Input
Format
Data Bus
Width
Clock
Mode11
Sync Signals
Page
Notes
81-Ball/72-Pin
49-Ball
RGB 4:4:4
1
24
1x
Separate
42
6, 10
YCbCr 4:4:4
2
24
1x
Separate
42
1, 6, 10
YC 4:2:2 Separate Syncs
3
16, 2010, 2410
1x
Separate
43
58
2
YC 4:2:2 Embedded Syncs
1
16, 2010, 2410
1x
Embedded
46
59
2, 4
YC MUX 4:2:2 Separate Syncs
3
8, 1010, 1210
2x
Separate
49
60
2, 3, 4, 7
YC MUX 4:2:2 Embedded Syncs
4
8, 1010, 1210
2x
Embedded
51
61
2, 3, 4, 5, 7
RGB 4:4:4
1
12
dual-edge
Separate
54
63
8
YCbCr 4:4:4
1
12
dual-edge
Separate
54
63
1, 8
YC 4:2:2 Separate Syncs
1
8, 10, 12
dual-edge
Separate
55
64
2, 4, 8
YC 4:2:2 Embedded Syncs
1
12
dual-edge
Embedded
53
62
2, 4, 8
Notes:
1. 4:4:4 data contains one Cr, one Cb, and one Y value for every pixel.
2. 4:2:2 data contains one Cr and one Cb value for every two pixels, and one Y value for every pixel.
3. In YC MUX mode, data is input on one or two 8-bit channels. A 2x pixel clock is required.
4. Y and CbCr data can be input on 12 bits (as part of a 24-bit mode or as a 12-bit mode), but the two least-significant bits will be
zero since the internal data path is 10 bits wide.
5. Embedded sync decoding extracts the syncs. A 2x pixel clock is required. Note that the DE generator may be needed to convert
extracted sync timings to CEA-861D-compliant timings.
6. A 2x pixel clock can also be sent with 4:4:4 data. This is necessary when the receiver is required to reformat such a stream into
4:2:2 data or into a multiplexed YC MUX output format.
7. When sending a 2x pixel clock, the HDMI source must also send AVI InfoFrames with an accurate pixel replication
field. Refer to the HDMI Specification, section 6.4.
8. Dual-edge clocking is allowed for these video mappings. Frequencies above 82.5 MHz dual-edge mode are only supported by
the 72-pin QFN package and with IOVCC supplied at 3.3 V ± 10%.
9. The HDMI and the EIA/CEA-861D specifications require virtually every HDMI source to transmit an accurate AVI InfoFrame.
Even in the rare cases where it is not absolutely required, Lattice Semiconductor strongly recommends that an AVI InfoFrame
be transmitted during every vertical blanking interval.
10. Supported only in the 81-ball and 72-pin package.
11. Latching edge is programmable in single-edge clocking.
The transmitter can provide video across the HDMI link in various formats. Figure 6.3 on the next page shows an
overview of the processing blocks needed for some of the available format transformations from video input to HDMI
output. The TMDS encoding step is not shown in this figure. See also Figure 2.1 on page 9.
The mapping tables and timing diagrams beginning on page 42 are divided into two sections. The first is for the 81-ball
and 72-pin package, and begins on page 42; the second is for the 49-ball package, and begins on page 58. In these
tables, the term Swap indicates that the Y and the Cb/Cr pin assignments are reversed, meaning the Y signals of the
Swap mapping appear on the Cb/Cr signals of the standard mapping. The term Non-broken (NB) indicates that the
signal assignments of Y, Cb, and Cr signals are contiguous. For example, signals Y0 through Y9 appear on consecutive
data pins D[2:11], whereas in the standard mapping they may be broken by NC or Cb/Cr signals.
In the timing diagrams which follow, data bits labeled val do not convey pixel information and will contain values
defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence FF, 00, 00,
XY is specified by ITU-R BT.656.
Unused inputs should be left unconnected.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 41
DE
Generator
YCbCrToRGB
CSC
HSYNC
VSYNC
IDCK
D[23:0]
Clock
HS,VS bypass 422
DE external DE
DE
bypass CSC
DE
Generator
422to444
Upsampler YCbCrToRGB
CSC Dither10To8
IDCK
D[23:0] /
D[15:0]*
Clock
Data HS,VS
DE external DE
DE
bypass CSC
Up-sample to 4:4:4 for link Convert to RGB or allow
YCbCr, depending on EDID
DE
Generator
IDCK
D[23:0] /
D[15:0]* bypass dither
Clock
HS,VS
DE external DE
DE
bypass CSC
Transmit 4:2:2 Transmit YCbCr
bypass 422
422to444
Upsampler YCbCrToRGB
CSC Dither10To8
bypass CSC
Embedded syncs
with no explicit DE
bypass dither
bypass 422 bypass CSC
Transmit
4:2:2
Transmit YCbCr
RGB or YCbCr 4:4:4YCbCr 4:2:2 with syncsYCbCr 4:2:2 with syncs
RGB or YCbCr 4:4:4RGB or YCbCr 4:4:4YCbCr 4:2:2
YCbCr 4:2:2 emb. syncs
YCbCr 4:2:2 RGB or YCbCr 4:4:4
YCbCr 4:2:2 emb. syncs
Up-sample to
4:4:4 for link Convert to RGB or allow
YCbCr, depending on EDID
All signals required
for TMDS formatting.
Data
Data
DeMux656
IDCK
D[23:0] /
D[15:0]*
Clock
HS,VS
DE
Data
DeMux656
IDCK
D[23:0] /
D[15:0]*
Clock
HS,VS
DE
Data
HSYNC
VSYNC
HSYNC
VSYNC
Explicit syncs, with or without DE.
Explicit syncs, with
or without DE.
bypass dither
bypass 422 bypass CSC
Transmit
4:2:2
Transmit YCbCr
YCMux 4:2:2 with syncs
DeMux YC
2x IDCK
D[15:0] /
D[7:0]
Clock
HS,VS
DE
Data
YCbCr 4:2:2
DE
HSYNC
VSYNC
bypass dither
bypass 422 bypass CSC
YCMux 4:2:2 emb. syncs
DeMux YC
2x IDCK
D[15:0] /
D[7:0]*
Clock
YCbCr 4:2:2
DeMux656 HS,VS
DE
Data
Embedded syncs
with no explicit DE
Dither10To8
Dithering is required whenever
processing pixels in 10-bit internal
path, and outputting 8-bit values.
All signals required
for TMDS formatting.
All signals required
for TMDS formatting.
All signals required
for TMDS formatting.
* 49-ball VFBGA only
Figure 6.3. Parallel Input Video to HDMI Output Video Permutations
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
42 SiI-DS-1076-E.01
Data Mappings for 81-ball and 72-pin Package
6.11.1.1. RGB and YCbCr 4:4:4 Separate Sync Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each
column in Table 6.11 lists the first pixel of n + 1 pixels in the line of video. The figure below the table shows RGB and
YCbCr data; the YCbCr 4:4:4 data is given in braces {}.
Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin Name
24-bit Data Bus
RGB
YCbCr
D0
B0[0]
Cb0[0]
D1
B0[1]
Cb0[1]
D2
B0[2]
Cb0[2]
D3
B0[3]
Cb0[3]
D4
B0[4]
Cb0[4]
D5
B0[5]
Cb0[5]
D6
B0[6]
Cb0[6]
D7
B0[7]
Cb0[7]
D8
G0[0]
Y0[0]
D9
G0[1]
Y0[1]
D10
G0[2]
Y0[2]
D11
G0[3]
Y0[3]
D12
G0[4]
Y0[4]
D13
G0[5]
Y0[5]
D14
G0[6]
Y0[6]
D15
G0[7]
Y0[7]
D16
R0[0]
Cr0[0]
D17
R0[1]
Cr0[1]
D18
R0[2]
Cr0[2]
D19
R0[3]
Cr0[3]
D20
R0[4]
Cr0[4]
D21
R0[5]
Cr0[5]
D22
R0[6]
Cr0[6]
D23
R0[7]
Cr0[7]
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
D[23:16]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val R0[7:0]
{Cr0[7:0]} R1[7:0]
{Cr1[7:0]} R2[7:0]
{Cr2[7:0]} R3[7:0]
{Cr3[7:0]}
D[15:8] val G0[7:0]
{Y0[7:0]} G1[7:0]
{Y1[7:0]} G2[7:0]
{Y2[7:0]} G3[7:0]
{Y3[7:0]}
D[7:0] val B0[7:0]
{Cb0[7:0]} B1[7:0]
{Cb1[7:0]} B2[7:0]
{Cb2[7:0]} B3[7:0]
{Cb3[7:0]}
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
Rn-1[7:0]
{Crn-1[7:0]} val val val
Rn[7:0]
{Crn[7:0]}
Gn-1[7:0]
{Yn-1[7:0]} val val val
Gn[7:0]
{Yn[7:0]}
Bn-1[7:0]
{Cbn-1[7:0]} val val val
Bn[7:0]
{Cbn[7:0]}
Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 43
6.11.1.2. YC 4:2:2 Separate Sync Formats
The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the
chroma values (Cb and Cr) change only every second pixel. The data bus can be 16-bit, 20-bit, or 24-bit. HSYNC and
VSYNC are driven explicitly on their own pins. Each pair of columns in Table 6.12 and Table 6.13 list the first and second
pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {} show the Swap mode. The DE
HIGH time must contain an even number of pixel clocks.
Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
16-bit Data Bus
16-bit Data Bus
Swap
20-bit Data Bus
20-bit Data Bus
NB
20-bit Data Bus
Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D[1:0]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
D2
NC
NC
NC
NC
Y0[0]
Y1[0]
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
D3
NC
NC
NC
NC
Y0[1]
Y1[1]
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
D4
NC
NC
NC
NC
NC
NC
Y0[2]
Y1[2]
NC
NC
D5
NC
NC
NC
NC
NC
NC
Y0[3]
Y1[3]
NC
NC
D6
NC
NC
NC
NC
Cb0[0]
Cr0[0]
Y0[4]
Y1[4]
Y0[0]
Y1[0]
D7
NC
NC
NC
NC
Cb0[1]
Cr0[1]
Y0[5]
Y1[5]
Y0[1]
Y1[1]
D8
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
Y0[2]
Y1[2]
Y0[6]
Y1[6]
Cb0[2]
Cr0[2]
D9
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
Y0[3]
Y1[3]
Y0[7]
Y1[7]
Cb0[3]
Cr0[3]
D10
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
Y0[4]
Y1[4]
Y0[8]
Y1[8]
Cb0[4]
Cr0[4]
D11
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
Y0[5]
Y1[5]
Y0[9]
Y1[9]
Cb0[5]
Cr0[5]
D12
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
Y0[6]
Y1[6]
NC
NC
Cb0[6]
Cr0[6]
D13
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
Y0[7]
Y1[7]
NC
NC
Cb0[7]
Cr0[7]
D14
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
Y0[8]
Y1[8]
Cb0[0]
Cr0[0]
Cb0[8]
Cr0[8]
D15
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
Y0[9]
Y1[9]
Cb0[1]
Cr0[1]
Cb0[9]
Cr0[9]
D16
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
Cb0[2]
Cr0[2]
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
D17
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
Cb0[3]
Cr0[3]
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
D18
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
Cb0[4]
Cr0[4]
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
D19
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
Cb0[5]
Cr0[5]
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
D20
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
Cb0[6]
Cr0[6]
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
D21
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
Cb0[7]
Cr0[7]
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
D22
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
Cb0[8]
Cr0[8]
Cb0[8]
Cr0[8]
Y0[8]
Y1[8]
D23
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
Cb0[9]
Cr0[9]
Cb0[9]
Cr0[9]
Y0[9]
Y1[9]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
D[23:16]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
D[15:8] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
val val val
Yn-1[7:0] val val val
Yn[7:0]
Cbn-1[7:0] Crn-1[7:0]
{Cb0[7:0]} {Cr0[7:0]} {Cb2[7:0]} {Cr2[7:0]}
{Y0[7:0]} {Y1[7:0]} {Y2[7:0]} {Y3[7:0]} {Yn-1[7:0]} {Yn[7:0]}
{Cbn-1[7:0]} {Crn-1[7:0]}
Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
44 SiI-DS-1076-E.01
IDCK
DE
HSYNC,
VSYNC
D[7:6] val val val val
D[3:2] val val val val
D[23:16] val
D[15:8] val
val val val
val val val
Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0] Yn-1[1:0] Yn[1:0]
Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2] Cbn-1[9:2] Crn-1[9:2]
Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2] Yn-1[9:2] Yn[9:2]
Cbn-1[1:0] Crn-1[1:0]
Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0]
{Cb0[9:2]} {Cr0[9:2]} {Cb2[9:2]} {Cr2[9:2]} {Cbn-1[9:2]} {Crn-1[9:2]}
{Y0[9:2]} {Y1[9:2]} {Y2[9:2]} {Y3[9:2]} {Y-1[9:2]} {Yn[9:2]}
{Y0[1:0]} {Y1[1:0]} {Y2[1:0]} {Y3[1:0]} {Yn-1[1:0]} {Yn[1:0]}
{Cbn-1[1:0]} {Crn-1[1:0]}
{Cb0[1:0]} {Cr0[1:0]} {Cb2[1:0]} {Cr2[1:0]}
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 blank blank blankPixel n
Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 blank blank blankPixel n
IDCK
DE
HSYNC,
VSYNC
D[23:14] val
D[11:2] val
val val val
val val val
Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0]
Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn-1[9:0] Yn[9:0]
Cbn-1[9:0] Crn-1[9:0]
Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 45
Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
24-bit Data Bus
24-bit Data Bus NB
24-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D0
Y0[0]
Y1[0]
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
D1
Y0[1]
Y1[1]
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
D2
Y0[2]
Y1[2]
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
D3
Y0[3]
Y1[3]
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
D4
Cb0[0]
Cr0[0]
Y0[4]
Y1[4]
Y0[0]
Y1[0]
D5
Cb0[1]
Cr0[1]
Y0[5]
Y1[5]
Y0[1]
Y1[1]
D6
Cb0[2]
Cr0[2]
Y0[6]
Y1[6]
Y0[2]
Y1[2]
D7
Cb0[3]
Cr0[3]
Y0[7]
Y1[7]
Y0[3]
Y1[3]
D8
Y0[4]
Y1[4]
Y0[8]
Y1[8]
Cb0[4]
Cr0[4]
D9
Y0[5]
Y1[5]
Y0[9]
Y1[9]
Cb0[5]
Cr0[5]
D10
Y0[6]
Y1[6]
Y0[10]
Y1[10]
Cb0[6]
Cr0[6]
D11
Y0[7]
Y1[7]
Y0[11]
Y1[11]
Cb0[7]
Cr0[7]
D12
Y0[8]
Y1[8]
Cb0[0]
Cr0[0]
Cb0[8]
Cr0[8]
D13
Y0[9]
Y1[9]
Cb0[1]
Cr0[1]
Cb0[9]
Cr0[9]
D14
Y0[10]
Y1[10]
Cb0[2]
Cr0[2]
Cb0[10]
Cr0[10]
D15
Y0[11]
Y1[11]
Cb0[3]
Cr0[3]
Cb0[11]
Cr0[11]
D16
Cb0[4]
Cr0[4]
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
D17
Cb0[5]
Cr0[5]
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
D18
Cb0[6]
Cr0[6]
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
D19
Cb0[7]
Cr0[7]
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
D20
Cb0[8]
Cr0[8]
Cb0[8]
Cr0[8]
Y0[8]
Y1[8]
D21
Cb0[9]
Cr0[9]
Cb0[9]
Cr0[9]
Y0[9]
Y1[9]
D22
Cb0[10]
Cr0[10]
Cb0[10]
Cr0[10]
Y0[10]
Y1[10]
D23
Cb0[11]
Cr0[11]
Cb0[11]
Cr0[11]
Y0[11]
Y1[11]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4] Yn-1[11:4]
{Y0[3:0]} {Y1[3:0]} {Y2[3:0]} {Y3[3:0]}
Yn[11:4]
{Yn-1[3:0]} {Yn[3:0]}
Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4] Cbn-1[11:4] Crn-1[11:4]
{Y0[11:4]} {Y1[11:4]} {Y2[11:4]} {Y3[11:4]} {Yn-1[11:4]} {Yn[11:4]}
IDCK
DE
HSYNC,
VSYNC
D[7:4] val val val val
D[3:0] val val val val
D[23:16] val
D[15:8] val
val val val
val val val
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 blank blank blankPixel n
Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0] Cbn-1[3:0] Crn-1[3:0]
{Cb0[3:0]} {Cr0[3:0]} {Cb2[3:0]} {Cr2[3:0]} {Cbn-1[3:0]} {Crn-1[3:0]}
{Cb0[11:4]} {Cr0[11:4]} {Cb2[11:4]} {Cr2[11:4]} {Cbn-1[11:4]} {Crn-1[11:4]}
Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0] Yn-1[3:0] Yn[3:0]
Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
46 SiI-DS-1076-E.01
.
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 blank blank blankPixel n
IDCK
DE
HSYNC,
VSYNC
D[23:12] val
D[11:0] val
val val val
val val val
Cb0[11:0] Cr0[11:0] Cb2[11:0] Cr2[11:0]
Y0[11:0] Y1[11:0] Y2[11:0] Y3[11:0]
Cbn-1[11:0] Crn-1[11:0]
Yn-1[11:0] Yn[11:0]
Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package)
6.11.1.3. YC 4:2:2 Embedded Sync Formats
The Embedded Sync format is identical to the YC 4:2:2 Formats with Separate Syncs format, except that the syncs are
embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.14 and Table
6.15 list the first and second pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {}
show the Swap mode.
Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
16-bit Data Bus
16-bit Data Bus
Swap
20-bit Data Bus
20-bit Data Bus
Swap
20-bit Data Bus
NB
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D[1:0]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
D2
NC
NC
NC
NC
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
D3
NC
NC
NC
NC
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
D4
NC
NC
NC
NC
NC
NC
NC
NC
Y0[2]
Y1[2]
D5
NC
NC
NC
NC
NC
NC
NC
NC
Y0[3]
Y1[3]
D6
NC
NC
NC
NC
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
Y0[4]
Y1[4]
D7
NC
NC
NC
NC
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
Y0[5]
Y1[5]
D8
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
Y0[6]
Y1[6]
D9
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
Y0[7]
Y1[7]
D10
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
Y0[8]
Y1[8]
D11
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
Y0[9]
Y1[9]
D12
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
NC
NC
D13
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
NC
NC
D14
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
Y0[8]
Y1[8]
Cb0[8]
Cr0[8]
Cb0[0]
Cr0[0]
D15
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
Y0[9]
Y1[9]
Cb0[9]
Cr0[9]
Cb0[1]
Cr0[1]
D16
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
D17
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
D18
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
D19
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
D20
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
D21
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
D22
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
Cb0[8]
Cr0[8]
Y0[8]
Y1[8]
Cb0[8]
Cr0[8]
D23
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
Cb0[9]
Cr0[9]
Y0[9]
Y1[9]
Cb0[9]
Cr0[9]
HSYNC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
VSYNC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
DE
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 47
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[23:16]
IDCK
Active
video
EAV
D[15:8]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
{Cb0[7:0]} {Cr0[7:0]} {Cb2[7:0]} {Cr2[7:0]}
{Y0[7:0]} {Y1[7:0]} {Y2[7:0]} {Y3[7:0]}
Yn-1[7:0] Yn[7:0]
Cbn-1[7:0] Crn-1[7:0]
{Yn-1[7:0]} {Yn[7:0]}
{Cbn-1[7:0]} {Crn-1[7:0]}
Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0]
Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2]
Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2]
Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0]
{Cr0[9:2]} {Cb2[9:2]} {Cr2[9:2]}
{Y0[9:2]} {Y1[9:2]} {Y2[9:2]} {Y3[9:2]}
{Y0[1:0]} {Y1[1:0]} {Y2[1:0]} {Y3[1:0]}
{Cb0[1:0]} {Cr0[1:0]} {Cb2[1:0]} {Cr2[1:0]}
{Cb0[9:2]}
Yn-1[1:0] Yn[1:0]
Cbn-1[9:2] Crn-1[9:2]
Yn-1[9:2] Yn[9:2]
Cbn-1[1:0] Crn-1[1:0]
{Cbn-1[9:2]} {Crn-1[9:2]}
{Y-1[9:2]} {Yn[9:2]}
{Yn-1[1:0]} {Yn[1:0]}
{Cbn-1[1:0]} {Crn-1[1:0]}
D[23:16]
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[15:8]
IDCK
Active
video
EAV
D[7:6]
D[3:2]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[23:14]
IDCK
Active
video
EAV
D[11:2]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0]
Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn-1[9:0] Yn[9:0]
Cbn-1[9:0] Crn-1[9:0]
Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
48 SiI-DS-1076-E.01
Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
24-bitData Bus
24-bitData Bus
Swap
24-bitData Bus
NB
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D0
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
D1
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
D2
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
D3
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
D4
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
Y0[4]
Y1[4]
D5
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
Y0[5]
Y1[5]
D6
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
Y0[6]
Y1[6]
D7
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
Y0[7]
Y1[7]
D8
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
Y0[8]
Y1[8]
D9
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
Y0[9]
Y1[9]
D10
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
Y0[10]
Y1[10]
D11
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
Y0[11]
Y1[11]
D12
Y0[8]
Y1[8]
Cb0[8]
Cr0[8]
Cb0[0]
Cr0[0]
D13
Y0[9]
Y1[9]
Cb0[9]
Cr0[9]
Cb0[1]
Cr0[1]
D14
Y0[10]
Y1[10]
Cb0[10]
Cr0[10]
Cb0[2]
Cr0[2]
D15
Y0[11]
Y1[11]
Cb0[11]
Cr0[11]
Cb0[3]
Cr0[3]
D16
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
D17
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
D18
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
D19
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
D20
Cb0[8]
Cr0[8]
Y0[8]
Y1[8]
Cb0[8]
Cr0[8]
D21
Cb0[9]
Cr0[9]
Y0[9]
Y1[9]
Cb0[9]
Cr0[9]
D22
Cb0[10]
Cr0[10]
Y0[10]
Y1[10]
Cb0[10]
Cr0[10]
D23
Cb0[11]
Cr0[11]
Y0[11]
Y1[11]
Cb0[11]
Cr0[11]
HSYNC
NC
NC
NC
NC
NC
NC
VSYNC
NC
NC
NC
NC
NC
NC
DE
NC
NC
NC
NC
NC
NC
D[23:16]
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[15:8]
IDCK
Active
video
EAV
D[7:4]
D[3:0]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
nc nc nc nc nc nc nc nc
Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4]
{Y0[3:0]} {Y1[3:0]} {Y2[3:0]} {Y3[3:0]}
Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4]
{Y0[11:4]} {Y1[11:4]} {Y2[11:4]} {Y3[11:4]}
Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0]
{Cb0[3:0]} {Cr0[3:0]} {Cb2[3:0]} {Cr2[3:0]}
{Cb0[11:4]} {Cr0[11:4]} {Cb2[11:4]} {Cr2[11:4]}
Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0]
Yn-1[11:4] Yn[11:4]
{Yn-1[3:0]} {Yn[3:0]}
Cbn-1[11:4] Crn-1[11:4]
{Yn-1[11:4]} {Yn[11:4]}
Cbn-1[3:0] Crn-1[3:0]
{Cbn-1[3:0]} {Crn-1[3:0]}
n-1[11:4]} {Crn-1[11:4]}
Yn-1[3:0] Yn[3:0]
Cb
Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 49
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[23:12]
IDCK
Active
video
EAV
D[11:0]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
Cb0[11:0] Cr0[11:0] Cb2[11:0] Cr2[11:0]
Y0[11:0] Y1[11:0] Y2[11:0] Y3[11:0]
Cbn-1[11:0] Crn-1[11:0]
Yn-1[11:0] Yn[11:0]
Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)
6.11.1.4. YC Mux 4:2:2 Separate Sync Formats
The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on
page 43. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for
the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.16 lists the four clock cycles for the first two pixels of the line. Pixel values
for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the
second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the
pixels in a video line of n + 1 pixels.
Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
8-bit Data Bus
10-bit Data Bus
12-bit Data Bus
Clock cycle
Clock cycle
Clock cycle
First
Second
Third
Fourth
First
Second
Third
Fourth
First
Second
Third
Fourth
D0
NC
NC
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D1
NC
NC
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D2
NC
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D3
NC
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D[7:4]
NC
NC
NC
D8
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D9
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D10
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
D11
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D12
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D13
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
D14
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
Cb0[10]
Y0[10]
Cr0[10]
Y1[10]
D15
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
Cb0[11]
Y0[11]
Cr0[11]
Y1[11]
D[23:16]
NC
NC
NC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
D[15:8] Y1[7:0] Cb2[7:0] Y2[7:0] Cr2[7:0]
IDCK
Yn-1[7:0] Yn[7:0]
DE
HSYNC
VSYNC
Cb0[7:0] Y0[7:0] Cr0[7:0] Y3[7:0] Cbn-1[7:0] Crn-1[7:0]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
50 SiI-DS-1076-E.01
D[15:8] Y1[9:2] Cb2[9:2] Y2[9:2] Cr2[9:2]
IDCK
Yn-1[9:2] Yn[9:2]
DE
HSYNC
VSYNC
Cb0[9:2] Y0[9:2] Cr0[9:2] Y3[9:2] Cbn-1[9:2] Crn-1[9:2]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
D[3:2] Y1[1:0] Cb2[1:0] Y2[1:0] Cr2[1:0] Yn-1[1:0] Yn[1:0]
Cb0[1:0] Y0[1:0] Cr0[1:0] Y3[1:0] Cbn-1[1:0] Crn-1[1:0]
val val
Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
D[15:8] Y1[11:4] Cb2[11:4] Y2[11:4] Cr2[11:4]
IDCK
Yn-1[11:4] Yn[11:4]
DE
HSYNC
VSYNC
Cb0[11:4] Y0[11:4] Cr0[11:4] Y3[11:4] Cbn-1[11:4] Crn-1[11:4]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
D[3:0] Y1[3:0] Cb2[3:0] Y2[3:0] Cr2[3:0] Yn-1[3:0] Yn[3:0]
Cb0[3:0] Y0[3:0] Cr0[3:0] Y3[3:0] Cbn-1[3:0] Crn-1[3:0]
val val
Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 51
6.11.1.5. YC Mux 4:2:2 Embedded Sync Formats
This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 49, except the
syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293
in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock
cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock
cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures following this
table show only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the
remaining pixels are similar to those shown in the figures of the previous section. 480p, 54 MHz input can be achieved
if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D timings.
See the ITU-R BT.656 Specification.
Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
8-bit Data Bus
10-bit Data Bus
12-bit Data Bus
Clock cycle
Clock cycle
Clock cycle
First
Second
Third
Fourth
First
Second
Third
Fourth
First
Second
Third
Fourth
D0
NC
NC
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D1
NC
NC
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D2
NC
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D3
NC
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D[7:4]
NC
NC
NC
D8
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D9
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D10
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
D11
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D12
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D13
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
D14
Cb0[6]
Y0[6]
Cr0[6]]
Y1[6]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
Cb0[10]
Y0[10]
Cr0[10]
Y1[10]
D15
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
Cb0[11]
Y0[11]
Cr0[11]
Y1[11]
D[23:16]
NC
NC
NC
HSYNC
NC
NC
NC
VSYNC
NC
NC
NC
DE
NC
NC
NC
SAV Pixel 0 Pixel 1
D[15:8] XY Cb0[7:0]
IDCK
Active
video
EAV
Pixel n
00
00FF Y0[7:0] Cr0[7:0] Y1[7:0] Crn-1[7:0] Yn[7:0] XY
00
00FF
Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SAV Pixel 0 Pixel 1
D[15:8] Cb0[9:2]
IDCK
Active
video
EAV
Pixel n
D[3:2]
Y0[9:2] Cr0[9:2] Y1[9:2] Crn-1[9:2] Yn[9:2]
Crn-1[1:0] Yn[1:0]
Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0]
XY
00
00FF XY
00
00FF
XY
00
00FF XY
00
00FF
Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
52 SiI-DS-1076-E.01
SAV Pixel 0 Pixel 1
D[15:8] Cb0[11:4]
IDCK
Active
video
EAV
Pixel n
D[3:0]
Y0[11:4] Cr0[11:4] Y1[11:4] Crn-1[11:4] Yn[11:4]
Crn-1[3:0] Yn[3:0]
Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0]
XY
00
00FF XY
00
00FF
XY
00
00FF XY
00
00FF
Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 53
6.11.1.6. YC 4:2:2 Embedded Sync Dual Edge Format
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge
latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the
same 12 pins. Data signals (Dx]) must change state to meet the setup and hold times, specified for the 12-bit dual edge
mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18
or Table 3.13 on page 19. The syncs are embedded and not explicit. Figure 6.21 lists IDCK latching input data when the
Edge Select bit is set to 1 (first edge is the rising edge).
Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
Pin Name
12-bit Data Bus
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
D0
Y0[0]
Y0[8]
Y1[0]
Y1[8]
D1
Y0[1]
Y0[9]
Y1[1]
Y1[9]
D2
Y0[2]
Y0[10]
Y1[2]
Y1[10]
D3
Y0[3]
Y0[11]
Y13]
Y1[11]
D4
Cb0[0]
Cb0[4]
Cr0[0]
Cr0[4]
D5
Cb0[1]
Cb0[5]
Cr0[1]
Cr0[5]
D6
Cb0[2]
Cb0[6]
Cr0[2]
Cr0[6]
D7
Cb0[3]
Cb0[7]
Cr0[3]
Cr0[7]
D8
Y0[4]
Cb0[8]
Y1[4]
Cr0[8]
D9
Y0[5]
Cb0[9]
Y1[5]
Cr0[9]
D10
Y0[6]
Cb0[10]
Y1[6]
Cr0[10]
D11
Y0[7]
Cb0[11]
Y1[7]
Cr0[11]
D[23:12]
NC
NC
NC
NC
HSYNC
NC
NC
VSYNC
NC
NC
DE
NC
NC
SAV Pixel 0 Pixel 1
D[11:8]
IDCK
Active
video
D[7:4]
D[3:0]
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
nc
nc
nc
nc
nc
nc
nc
nc Y0[3:0] Y0[11:8]
Cb0[3:0] Cb0[7:4]
Y0[7:4] Cb0[11:8]
Y1[3:0] Y1[11:8]
Cr0[3:0] Cr0[7:4]
Y1[7:4] Cr0[11:8]
EAV
D[11:8]
IDCK
D[7:4]
D[3:0]
nc nc nc nc
nc
nc
Pixel n - 1 Pixel n
nc nc nc nc
nc
nc
nc
nc
nc
nc
Yn-1[3:0] Yn-1[11:8]
Cbn-1[3:0] Cbn-1[7:4]
Yn-1[7:4] Cbn-1[11:8]
Yn[3:0] Yn[11:8]
Crn-1[3:0] Crn-1[7:4]
Yn[7:4] Crn-1[11:8]
Active
video
XY
00
00FF
XY
00
00FF
Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
54 SiI-DS-1076-E.01
6.11.1.7. RGB and YCbCr 4:4:4 Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.19 lists the first pixel of n
+ 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in
braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times
specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit
(see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first
edge is the rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships.
Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
12-bit Data Bus
RGB
YCbCr
First Edge
Second Edge
First Edge
Second Edge
D0
B0[0]
G0[4]
Cb0[0]
Y0[4]
D1
B0[1]
G0[5]
Cb0[1]
Y0[5]
D2
B0[2]
G0[6]
Cb0[2]
Y0[6]
D3
B0[3]
G0[7]
Cb0[3]
Y0[7]
D4
B0[4]
R0[0]
Cb0[4]
Cr0[0]
D5
B0[5]
R0[1]
Cb0[5]
Cr0[1]
D6
B0[6]
R0[2]
Cb0[6]
Cr0[2]
D7
B0[7]
R0[3]
Cb0[7]
Cr0[3]
D8
G0[0]
R0[4]
Y0[0]
Cr0[4]
D9
G0[1]
R0[5]
Y0[1]
Cr0[5]
D10
G0[2]
R0[6]
Y0[2]
Cr0[6]
D11
G0[3]
R0[7]
Y0[3]
Cr0[7]
D[23:12]
NC
NC
NC
NC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
Note: Unused inputs should be left not connected.
Figure 6.22 shows IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge).
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[7:4]
D[3:0]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[11:8] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[7:4]
{Cb0[7:4]}
G0[3:0]
{Y0[3:0]}
B0[3:0]
{Cb0[3:0]}
R0[3:0]
{Cr0[3:0]}
R0[7:4]
{Cr0[7:4]}
G0[7:4]
{Y0[7:4]}
Bn-1[7:4]
{Cbn-1[7:4]}
Gn-1[3:0]
{Yn-1[3:0]}
Bn-1[3:0]
{Cbn-1[3:0]}
Rn-1[3:0]
{Crn-1[3:0]}
Rn-1[7:4]
{Crn-1[7:4]}
Gn-1[7:4]
{Yn-1[7:4]}
Bn[7:4]
{Cbn[7:4]}
Gn[3:0]
{Yn[3:0]}
Bn[3:0]
{Cbn[3:0}
Rn[3:0]
{Crn[3:0]}
Rn[7:4]
{Crn[7:4]}
Gn[7:4]
{Yn[7:4]}
B1[7:4]
{Cb1[7:4]}
G1[3:0]
{Y1[3:0]}
B1[3:0]
{Cb1[3:0]}
R1[3:0]
{Cr1[3:0]}
R1[7:4]
{Cr1[7:4]}
G1[7:4]
{Y1[7:4]}
B2[7:4]
{Cb2[7:4]}
G2[3:0]
{Y2[3:0]}
B2[3:0]
{Cb2[3:0]}
R0[3:0]
{Cr2[3:0]}
R2[7:4]
{Cr2[7:4]}
G0[7:4]
{Y2[7:4]}
Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 55
6.11.1.8. YC 4:2:2 Separate Sync Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data
and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the
dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the
Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the
rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships. Pixel values
within braces {} in the figures show the values in Swap mode.
Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
Pin Name
8-bit Data Bus
8-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second
Edge
First Edge
Second
Edge
D[3:0]
NC
NC
NC
NC
NC
NC
NC
NC
D4
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D5
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D6
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D7
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D8
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D9
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D10
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D11
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[11:4]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[7:0]
Cb0[7:0]
{Y0[7:0]}
Y0[7:0]
{Cb0[7:0]} Cr0[7:0]
{Y1[7:0]}
Y1[7:0]
{Cr0[7:0]} Cb2[7:0]
{Y2[7:0]}
Y2[7:0]
{Cb2[7:0]} Crn-1[7:0]Yn-1[7:0] Yn[7:0]
{Cbn-1[7:0]} {Yn-1[7:0]} {Yn[7:0]}
{Crn-1[7:0]}
Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
56 SiI-DS-1076-E.01
Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
Pin Name
10-bit Data Bus
10-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
D[1:0]
NC
NC
NC
NC
NC
NC
NC
NC
D2
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D3
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D4
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D5
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D6
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D7
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D8
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D9
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D10
Y0[8]
Cb0[8]
Y1[8]
Cr0[8]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D11
Y0[9]
Cb0[9]
Y1[9]
Cr0[9]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[11:2]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[9:0]
Cb0[9:0]
{Y0[9:0]}
Y0[9:0]
{Cb0[9:0]} Cr0[9:0]
{Y1[9:0]}
Y1[9:0]
{Cr0[9:0]} Cb2[9:0]
{Y2[9:0]}
Y2[9:0]
{Cb2[9:0]} Crn-1[9:0]Yn-1[9:0] Yn[9:0]
{Cbn-1[9:0]} {Yn-1[9:0]} {Yn[9:0]}
{Crn-1[9:0]}
Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 57
Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
Pin Name
12-bit Data Bus
12-bit Data Bus NB
12-bit Data Bus NB Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
D0
Y0[0]
Y0[8]
Y1[0]
Y1[8]
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D1
Y0[1]
Y0[9]
Y1[1]
Y1[9]
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D2
Y0[2]
Y0[10]
Y1[2]
Y1[10]
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D3
Y0[3]
Y0[11]
Y1[3]
Y1[11]
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D4
Cb0[0]
Cb0[4]
Cr0[0]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D5
Cb0[1]
Cb0[5]
Cr0[1]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D6
Cb0[2]
Cb0[6]
Cr0[2]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D7
Cb0[3]
Cb0[7]
Cr0[3]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D8
Y0[4]
Cb0[8]
Y1[4]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
Cr0[8]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D9
Y0[5]
Cb0[9]
Y1[5]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
Cr0[9]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
D10
Y0[6]
Cb0[10]
Y1[6]
Cr0[10]
Y0[10]
Cb0[10]
Y1[10]
Cr0[10]
Cb0[10]
Y0[10]
Cr0[10]
Y1[10]
D11
Y0[7]
Cb0[11]
Y1[7]
Cr0[11]
Y0[11]
Cb0[11]
Y1[11]
Cr0[11]
Cb0[11]
Y0[11]
Cr0[11]
Y1[11]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[7:4]
D[3:0]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[11:8] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
Y0[3:0] Y0[11:8]
Cb0[3:0] Cb0[7:4]
Y0[7:4] Cb0[11:8]
Y1[3:0] Y1[11:8]
Cr0[3:0] Cr0[7:4]
Y1[7:4] Cr0[11:8]
Y2[3:0] Y2[11:8]
Cb2[3:0] Cb2[7:4]
Y2[7:4] Cb2[11:8] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8]
Yn-1[3:0] Yn-1[11:8 Yn[3:0] Yn[11:8
Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4]
Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[11:0]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[11:0]
Cb0[11:0]
{Y0[11:0]}
Y0[11:0]
{Cb0[11:0]} Cr0[11:0]
{Y1[11:0]}
Y1[11:0]
{Cr0[11:0]} Cb2[11:0]
{Y2[11:0]}
Y2[11:0]
{Cb2[11:0]} Crn-1[11:0]Yn-1[11:0] Yn[11:0]
{Cbn-1[11:0]} {Yn-1[11:0]} {Yn[11:0]}
{Crn-1[11:0]}
Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
58 SiI-DS-1076-E.01
Data Mappings for 49-Ball Package
6.11.2.1. YC 4:2:2 Separate Sync Formats
The YC 4:2:2 format receives one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the
chroma values (Cb and Cr) change only every second pixel. The data bus can only be 16-bits. HSYNC and VSYNC are
driven explicitly on their own pins. Each pair of columns in Table 6.23 lists the first and second pixel of n + 1 pixels in
the line of video. Pixel values within braces {} in the figures show the values in Swap mode. The DE HIGH time must
contain an even number of pixel clocks.
Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package)
Pin
Name
16-bit Data Bus
16-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D0
Y0[0]
Y1[0]
Cb0[0]
Cr0[0]
D1
Y0[1]
Y1[1]
Cb0[1]
Cr0[1]
D2
Y0[2]
Y1[2]
Cb0[2]
Cr0[2]
D3
Y0[3]
Y1[3]
Cb0[3]
Cr0[3]
D4
Y0[4]
Y1[4]
Cb0[4]
Cr0[4]
D5
Y0[5]
Y1[5]
Cb0[5]
Cr0[5]
D6
Y0[6]
Y1[6]
Cb0[6]
Cr0[6]
D7
Y0[7]
Y1[7]
Cb0[7]
Cr0[7]
D8
Cb0[0]
Cr0[0]
Y0[0]
Y1[0]
D9
Cb0[1]
Cr0[1]
Y0[1]
Y1[1]
D10
Cb0[2]
Cr0[2]
Y0[2]
Y1[2]
D11
Cb0[3]
Cr0[3]
Y0[3]
Y1[3]
D12
Cb0[4]
Cr0[4]
Y0[4]
Y1[4]
D13
Cb0[5]
Cr0[5]
Y0[5]
Y1[5]
D14
Cb0[6]
Cr0[6]
Y0[6]
Y1[6]
D15
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
D[15:8]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
D[7:0] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
val val val
Yn-1[7:0] val val val
Yn[7:0]
Cbn-1[7:0] Crn-1[7:0]
{Cb0[7:0]} {Cr0[7:0]} {Cb2[7:0]} {Cr2[7:0]}
{Y0[7:0]} {Y1[7:0]} {Y2[7:0]} {Y3[7:0]} {Yn-1[7:0]} {Yn[7:0]}
{Cbn-1[7:0]} {Crn-1[7:0]}
Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 59
6.11.2.2. YC 4:2:2 Embedded Sync Format
The Embedded Sync format is identical to the YC 4:2:2 Format with Separate Syncs, except that the syncs are
embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.24 lists the first
and second pixel of n + 1 pixels in the line of video.
Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package)
Pin
Name
16-bit Data Bus
Pixel #0
Pixel #1
D0
Y0[0]
Y1[0]
D1
Y0[1]
Y1[1]
D2
Y0[2]
Y1[2]
D3
Y0[3]
Y1[3]
D4
Y0[4]
Y1[4]
D5
Y0[5]
Y1[5]
D6
Y0[6]
Y1[6]
D7
Y0[7]
Y1[7]
D8
Cb0[0]
Cr0[0]
D9
Cb0[1]
Cr0[1]
D10
Cb0[2]
Cr0[2]
D11
Cb0[3]
Cr0[3]
D12
Cb0[4]
Cr0[4]
D13
Cb0[5]
Cr0[5]
D14
Cb0[6]
Cr0[6]
D15
Cb0[7]
Cr0[7]
HSYNC
NC
NC
VSYNC
NC
NC
DE
NC
NC
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
D[15:8]
IDCK
Active
video
EAV
D[7:0]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn-1[7:0] Yn[7:0]
Cbn-1[7:0] Crn-1[7:0]
Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
60 SiI-DS-1076-E.01
6.11.2.3. YC Mux 4:2:2 Separate Sync Format
The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on
page 58. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for
the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.25 lists the four clock cycles for the first two pixels of the line. Pixel values
for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the
second pixel (next two clock cycles). The figure below the table shows how this pattern is extended for the rest of the
pixels in a video line of n + 1 pixels.
Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package)
Pin
Name
8-bit Data Bus
Clock cycle
First
Second
Third
Fourth
D0
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D1
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D2
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D3
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D4
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D5
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D6
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D7
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D[15:8]
NC
HSYNC
HSYNC
VSYNC
VSYNC
DE
DE
D[7:0] Y1[7:0] Cb2[7:0] Y2[7:0] Cr2[7:0]
IDCK
Yn-1[7:0] Yn[7:0]
DE
HSYNC
VSYNC
Cb0[7:0] Y0[7:0] Cr0[7:0] Y3[7:0] Cbn-1[7:0] Crn-1[7:0]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 61
6.11.2.4. YC Mux 4:2:2 Embedded Sync Format
This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Format section on page 60, except the
syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293
in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock
cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock
cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figure following this
table shows only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but
the remaining pixels are similar to those shown in the figure of the previous section. 480p, 54 MHz input can be
achieved if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D
timings. See the ITU-R BT.656 Specification.
Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package)
Pin
Name
8-bit Data Bus
Clock cycle
First
Second
Third
Fourth
D0
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D1
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D2
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D3
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D4
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D5
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D6
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D7
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D[15:8]
NC
HSYNC
NC
VSYNC
NC
DE
NC
SAV Pixel 0 Pixel 1
D[7:0] XY Cb0[7:0]
IDCK
Active
video
EAV
Pixel n
00
00FF Y0[7:0] Cr0[7:0] Y1[7:0] Crn-1[7:0] Yn[7:0] XY
00
00FF
Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
62 SiI-DS-1076-E.01
6.11.2.5. YC 4:2:2 Embedded Sync Dual Edge Format
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge
latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the
same 12 pins. Data signals (Dx) must change state to meet the setup and hold times, specified for the 12-bit dual edge
mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18.
The syncs are embedded and not explicit. Figure 6.31 shows IDCK latching input data when the Edge Select bit is set to
1 (first edge is the rising edge).
Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package)
Pin Name
12-bit Data Bus
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
D[3:0]
NC
NC
NC
NC
D4
Y0[0]
Y0[8]
Y1[0]
Y1[8]
D5
Y0[1]
Y0[9]
Y1[1]
Y1[9]
D6
Y0[2]
Y0[10]
Y1[2]
Y1[10]
D7
Y0[3]
Y0[11]
Y1[3]
Y1[11]
D8
Cb0[0]
Cb0[4]
Cr0[0]
Cr0[4]
D9
Cb0[1]
Cb0[5]
Cr0[1]
Cr0[5]
D10
Cb0[2]
Cb0[6]
Cr0[2]
Cr0[6]
D11
Cb0[3]
Cb0[7]
Cr0[3]
Cr0[7]
D12
Y0[4]
Cb0[8]
Y1[4]
Cr0[8]
D13
Y0[5]
Cb0[9]
Y1[5]
Cr0[9]
D14
Y0[6]
Cb0[10]
Y1[6]
Cr0[10]
D15
Y0[7]
Cb0[11]
Y1[7]
Cr0[11]
HSYNC
NC
NC
VSYNC
NC
NC
DE
NC
NC
SAV Pixel 0 Pixel 1
D[15:12]
IDCK
Active
video
D[11:8]
D[7:4]
XY
00
00FF
XY
00
00FF
nc nc nc nc nc nc nc nc
nc
nc
nc
nc
nc
nc
nc
nc Y0[3:0] Y0[11:8]
Cb0[3:0] Cb0[7:4]
Y0[7:4] Cb0[11:8]
Y1[3:0] Y1[11:8]
Cr0[3:0] Cr0[7:4]
Y1[7:4] Cr0[11:8]
EAV
D[15:12]
IDCK
D[11:8]
D[7:4]
nc nc nc nc
nc
nc
Pixel n - 1 Pixel n
nc nc nc nc
nc
nc
nc
nc
nc
nc
Yn-1[3:0] Yn-1[11:8]
Cbn-1[3:0] Cbn-1[7:4]
Yn-1[7:4] Cbn-1[11:8]
Yn[3:0] Yn[11:8]
Crn-1[3:0] Crn-1[7:4]
Yn[7:4] Crn-1[11:8]
Active
video
XY
00
00FF
XY
00
00FF
Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 63
6.11.2.6. RGB and YCbCr 4:4:4 Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.28 lists the first pixel of n
+ 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in
braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times
specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit
(see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first
edge is the rising edge). See Table 3.12 on page 18 for the required timing relationships.
Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package)
Pin
Name
12-bit Data Bus
RGB
YCbCr
First Edge
Second Edge
First Edge
Second Edge
D[3-0]
NC
NC
NC
NC
D4
B0[0]
G0[4]
Cb0[0]
Y0[4]
D5
B0[1]
G0[5]
Cb0[1]
Y0[5]
D6
B0[2]
G0[6]
Cb0[2]
Y0[6]
D7
B0[3]
G0[7]
Cb0[3]
Y0[7]
D8
B0[4]
R0[0]
Cb0[4]
Cr0[0]
D9
B0[5]
R0[1]
Cb0[5]
Cr0[1]
D10
B0[6]
R0[2]
Cb0[6]
Cr0[2]
D11
B0[7]
R0[3]
Cb0[7]
Cr0[3]
D12
G0[0]
R0[4]
Y0[0]
Cr0[4]
D13
G0[1]
R0[5]
Y0[1]
Cr0[5]
D14
G0[2]
R0[6]
Y0[2]
Cr0[6]
D15
G0[3]
R0[7]
Y0[3]
Cr0[7]
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[11:8]
D[7:4]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[15:12] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[7:4]
{Cb0[7:4]}
G0[3:0]
{Y0[3:0]}
B0[3:0]
{Cb0[3:0]}
R0[3:0]
{Cr0[3:0]}
R0[7:4]
{Cr0[7:4]}
G0[7:4]
{Y0[7:4]}
Bn-1[7:4]
{Cbn-1[7:4]}
Gn-1[3:0]
{Yn-1[3:0]}
Bn-1[3:0]
{Cbn-1[3:0]}
Rn-1[3:0]
{Crn-1[3:0]}
Rn-1[7:4]
{Crn-1[7:4]}
Gn-1[7:4]
{Yn-1[7:4]}
Bn[7:4]
{Cbn[7:4]}
Gn[3:0]
{Yn[3:0]}
Bn[3:0]
{Cbn[3:0}
Rn[3:0]
{Crn[3:0]}
Rn[7:4]
{Crn[7:4]}
Gn[7:4]
{Yn[7:4]}
B1[7:4]
{Cb1[7:4]}
G1[3:0]
{Y1[3:0]}
B1[3:0]
{Cb1[3:0]}
R1[3:0]
{Cr1[3:0]}
R1[7:4]
{Cr1[7:4]}
G1[7:4]
{Y1[7:4]}
B2[7:4]
{Cb2[7:4]}
G2[3:0]
{Y2[3:0]}
B2[3:0]
{Cb2[3:0]}
R0[3:0]
{Cr2[3:0]}
R2[7:4]
{Cr2[7:4]}
G0[7:4]
{Y2[7:4]}
Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
64 SiI-DS-1076-E.01
6.11.2.7. YC 4:2:2 Separate Sync Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data
and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the
dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the
Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the
rising edge). See Table 3.12 on page 18 for the required timing relationships. Pixel values within braces {} in the figures
show the values in Swap mode.
Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
Pin Name
8-bit Data Bus
8-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
D[7:0]
NC
NC
NC
NC
NC
NC
NC
NC
D8
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D9
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D10
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D11
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D12
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D13
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D14
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D15
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[15:8]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[7:0]
Cb0[7:0]
{Y0[7:0]}
Y0[7:0]
{Cb0[7:0]} Cr0[7:0]
{Y1[7:0]}
Y1[7:0]
{Cr0[7:0]} Cb2[7:0]
{Y2[7:0]}
Y2[7:0]
{Cb2[7:0]} Crn-1[7:0]Yn-1[7:0] Yn[7:0]
{Cbn-1[7:0]} {Yn-1[7:0]} {Yn[7:0]}
{Crn-1[7:0]}
Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 65
Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
Pin Name
10-bit Data Bus
10-bit Data Bus Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
First Edge
Second Edge
D[5:0]
NC
NC
NC
NC
NC
NC
NC
NC
D6
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D7
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D8
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D9
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D10
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D11
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D12
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D13
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D14
Y0[8]
Cb0[8]
Y1[8]
Cr0[8]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D15
Y0[9]
Cb0[9]
Y1[9]
Cr0[9]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[15:6]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[9:0]
Cb0[9:0]
{Y0[9:0]}
Y0[9:0]
{Cb0[9:0]} Cr0[9:0]
{Y1[9:0]}
Y1[9:0]
{Cr0[9:0]} Cb2[9:0]
{Y2[9:0]}
Y2[9:0]
{Cb2[9:0]} Crn-1[9:0]Yn-1[9:0] Yn[9:0]
{Cbn-1[9:0]} {Yn-1[9:0]} {Yn[9:0]}
{Crn-1[9:0]}
Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
66 SiI-DS-1076-E.01
Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
Pin Name
12-bit Data Bus
12-bit Data Bus
NB
12-bit Data Bus
NB Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
D[3:0]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
D4
Y0[0]
Y0[8]
Y1[0]
Y1[8]
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D5
Y0[1]
Y0[9]
Y1[1]
Y1[9]
Y0[1]
Cb0[1]
Y1[1]
Cr0[1]
Cb0[1]
Y0[1]
Cr0[1]
Y1[1]
D6
Y0[2]
Y0[10]
Y1[2]
Y1[10]
Y0[2]
Cb0[2]
Y1[2]
Cr0[2]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
D7
Y0[3]
Y0[11]
Y1[3]
Y1[11]
Y0[3]
Cb0[3]
Y1[3]
Cr0[3]
Cb0[3]
Y0[3]
Cr0[3]
Y1[3]
D8
Cb0[0]
Cb0[4]
Cr0[0]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[4]
Cb0[4]
Y0[4]
Cr0[4]
Y1[4]
D9
Cb0[1]
Cb0[5]
Cr0[1]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[5]
Cb0[5]
Y0[5]
Cr0[5]
Y1[5]
D10
Cb0[2]
Cb0[6]
Cr0[2]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[6]
Cb0[6]
Y0[6]
Cr0[6]
Y1[6]
D11
Cb0[3]
Cb0[7]
Cr0[3]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[7]
Cb0[7]
Y0[7]
Cr0[7]
Y1[7]
D12
Y0[4]
Cb0[8]
Y1[4]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
Cr0[8]
Cb0[8]
Y0[8]
Cr0[8]
Y1[8]
D13
Y0[5]
Cb0[9]
Y1[5]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
Cr0[9]
Cb0[9]
Y0[9]
Cr0[9]
Y1[9]
D14
Y0[6]
Cb0[10]
Y1[6]
Cr0[10]
Y0[10]
Cb0[10]
Y1[10]
Cr0[10]
Cb0[10]
Y0[10]
Cr0[10]
Y1[10]
D15
Y0[7]
Cb0[11]
Y1[7]
Cr0[11]
Y0[11]
Cb0[11]
Y1[11]
Cr0[11]
Cb0[11]
Y0[11]
Cr0[11]
Y1[11]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[11:8]
D[7:4]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[15:12] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
Y0[3:0] Y0[11:8]
Cb0[3:0] Cb0[7:4]
Y0[7:4] Cb0[11:8]
Y1[3:0] Y1[11:8]
Cr0[3:0] Cr0[7:4]
Y1[7:4] Cr0[11:8]
Y2[3:0] Y2[11:8]
Cb2[3:0] Cb2[7:4]
Y2[7:4] Cb2[11:8] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8]
Yn-1[3:0] Yn-1[11:8 Yn[3:0] Yn[11:8
Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4]
Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
D[15:4]
IDCK
DE
HSYNC,
VSYNC
val val val val
blank blank
Pixel n
Cbn-1[11:0]
Cb0[11:0]
{Y0[11:0]}
Y0[11:0]
{Cb0[11:0]} Cr0[11:0]
{Y1[11:0]}
Y1[11:0]
{Cr0[11:0]} Cb2[11:0]
{Y2[11:0]}
Y2[11:0]
{Cb2[11:0]} Crn-1[11:0]Yn-1[11:0] Yn[11:0]
{Cbn-1[11:0]} {Yn-1[11:0]} {Yn[11:0]}
{Crn-1[11:0]}
Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 67
7. Design Recommendations
Power Supplies Decoupling
Designers should include adequate decoupling capacitors and a ferrite for each power supply, and an additional
capacitor at each power ball or pin in the layout. These are shown schematically in Figure 7.1. Place these components
as close as possible to the transmitter device balls or pins, and avoid routing through vias if possible, as shown in
Figure 7.2, which represents a typical power connection on the transmitter. Connections in one group (such as AVCC12)
can share C2, the ferrite, and C3, with each ball or pin having a separate C1 placed as close to the package as possible.
Figure 7.2 shows one of the VFBGA packages; the same information applies to the 72-pin package.
Because of the low noise requirements of AVCC12, particular care must be taken to ensure the noise at the pin is less
than 50 mV.
C2C1
L1
VCC Ball
GND
+1.2 V
C3
Figure 7.1. Decoupling and Bypass Schematic
VCC
GND
C1
VCC
Ferrite
Via to GND
C2
C3
L1
Figure 7.2. Decoupling and Bypass Capacitor Placement
High-Speed TMDS Signals
Source Termination
Source termination suppresses signal reflection and overshoot, and at the same time allows the transmitter to provide
strong drive to support longer cables. The SiI9022A/SiI9024A transmitter supports internal source termination, which is
disabled by default and can be enabled by programming. Lattice Semiconductor strongly recommends the use of
internal source termination for applications running over 100 MHz.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
68 SiI-DS-1076-E.01
ESD Protection
The transmitter chip is designed to withstand electrostatic discharge during manufacturing handling. In applications
where higher protection levels are required in the finished product, ESD-limiting components should be placed on all of
the device pins connecting to an external interface. Special care should be taken on the TMDS signals to use low-
capacitance ESD devices to minimize signal degradation. In no case should the capacitance value exceed 3 pF.
Transmitter Layout Guidelines
Place the transmitter chip as closely as possible to the output connector that carries the TMDS signals, and place the
ESD diodes as close as possible to the HDMI connector. Route the differential signal lines together and as directly as
possible from transmitter to connector. Lattice Semiconductor TMDS devices are tolerant of skews between
differential pairs, so spiral skew compensation for path length differences is not required. Avoid passing the TMDS lines
through vias unless absolutely necessary when using the HDMI Type-D micro connector. The distance separating the
two traces of the differential pair should be designed for 100- differential impedance. An example of routing for the
49-ball package is shown in Figure 7.3. For additional ball grid array layout guidelines, refer to Designing with BGA
Packages (listed in References section).
HDMI
Connector
ESD
Diodes
TX2+
TX2-
TX1+
TX1-
TX0+
TX0-
TXC+
TXC-
SiI9022A/
9024A
Figure 7.3. Transmitter to HDMI Connector Routing Top View
Hot Plug Signal Conditioning
The HDMI interface provides a hot plug signal back to the host side from the display. This signal is generated by routing
a 5 V source, in the host, through the cable to the display and back. The specification defines the minimum HIGH level
for the hot plug as 2.0 V at the connector pin. The HPD signal is 5 V tolerant and can be connected to the HPD signal
directly. However, an external pull down resistor of 10 k is required, as shown in the circuit in Figure 7.5 on page 70,
to guarantee that this CMOS input is not floating.
EMI Considerations
Electromagnetic interference is a function of board layout, shielding, receiver component operating voltage, frequency
of operation, and additional factors. To control emissions, it is important not to place any passive components on the
differential signal lines, except for the essential ESD protection described earlier. The differential signaling used in
HDMI is inherently low in EMI, as long as the routing recommendations noted in the Transmitter Layout Guidelines
section are followed.
The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as
possible, with all ground signals of the chip using a common ground.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 69
Typical Circuits
Representative circuits for using the transmitter chip are shown in Figure 7.4 through Figure 7.7. For a detailed review
of your intended circuit implementation, contact your Lattice Semiconductor representative.
Power Supply Decoupling
Excessive noise on AVCC12 can cause improper PLL operation as the PLL tries to stay locked to the incoming video
clock. Keep AVCC12 noise below the maximum allowable value VCCN as specified in Table 3.2. If the ripple is higher than
allowed for in the specifications, Lattice Semiconductor recommends using a separate power source to supply the
AVCC12 inputs. The other power planes are relatively insensitive to ripple. Lattice Semiconductor recommends using
low ESR capacitors. The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
AVCC12
AGND
Place a 0.1 F ceramic capacitor
close to each VCC pin
IOVCC
IOGND
CVCC12
CGND
Ferrite
+1.2 V
+1.8 V or
+3.3 V
+1.2 V
10 F0.1 F
(81-ball: C6, C7)
(49-ball: B4)
(72-pin: 60, 66)
0.1 F
0.1 F
0.1 F0.1 F0.1 F
10 F
0.1 F0.1 F0.1 F0.1 F0.1 F
10 F
F
Provide a minimum of one 0.1 F
decoupling capacitor for each
VCC connection in the 81-ball
and 72-pin package.
(81-ball: CA3, A8)
(49-ball: B3)
(72-pin: 63)
(81-ball: D5, E5, E8, E9)
(49-ball: E3)
(72-pin: 3, 21, 46)
(81-ball: C5, D4, D6)
(49-ball: D3)
(72-pin: 57)
(81-ball: C4, D3, D7, E7, F5, G6)
(49-ball: C4)
(72-pin: 5, 12, 26, 42, 47, 53)
(81-ball: D1, D2, G5, H5, J5)
(49-ball: D4)
(72-pin: 43)
Ferrite
Ferrite
Figure 7.4. Power Supply Decoupling
Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
70 SiI-DS-1076-E.01
HDMI Port Connections
The suggested value for REXT_SWING is specified in the Differential Data Signals section on page 32. The Hot Plug Detect
signal (HPD) is 5 V tolerant, so it is connected directly to the HDMI connector with a 10 kΩ pull-down resistor. No level-
shifting circuit is needed for HPD.
4
3
9
6
8
1
4
3
9
6
8
1
SiI9022A
SiI9024A
HDMI
Connector
+5 V
ESD Clamps
EXT_SWING
DSCL
HPD
DSDA
CEC_A
TX2-
TX2+
TX1-
TX1+
TX0-
TX0+
TXC+
TXC-
TX1-
TX1+
TX0-
TX0+
TXC+
TXC-
DDC SCL
HTPG
DDC SDA
CEC
TX2-
TX2+
2.2 k
(typ)
Voltage swing
adjust resistor
4.3 k or
5.1 k
10 k
RClamp0514M or equivalent
RClamp0514M or equivalent
3.3 V
51 k
Pullup resistor and diode
required only if IOVCC =
1.8 V.
2.2 k
(typ)
Figure 7.5. HDMI Port Connection Schematic
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 71
Control Signal Connections
The general bus interconnection between the host processor and the transmitter is shown in Figure 7.6. The INT output
can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the
enabled interrupts have occurred.
INT
RESET#
CSDA
CSCL
C_SCL
CI2CA
Stuff only one of two 4.7 kresistors
to set chip I2C address (Required for
81-ball VFBGA and 72-pin QFN)
RSVDL
CEC_D
MPEG Chip
Host processor
IOVCC IOVCC
IOVCC =
1.8 V or 3.3 V
4.7 k4.7 k
4.7 k
4.7 k
C_SDA
GPIO
C_CEC
GPIO
SiI9022A/9024A
Transmitter
(For 81-ball and 72-pin packages only)
1.8 V
IO_SEL
Connect IO_SEL to 1.8 V for
1.8-volt IOVCC. Connect to
ground for 3.3-volt IOVCC.
(Required for 81-ball VFBGA
and 72-pin QFN)
(For 81-ball and 72-pin packages only)
(For 81-ball and 72-pin packages only)
Figure 7.6. Controller Connections Schematic
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
72 SiI-DS-1076-E.01
77BDigital Video Input Connections
33
33
33
33
33
33
33
33
DE
HSYNC
VSYNC
IDCK
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
MCLK
SPDIF
SCK
WS
33
SD0
SD1
SD2
SD3
(For 49-ball package
only)
(For 81-ball and 72-pin
packages only)
(For 81-ball and 72-pin
packages only)
Note: Some system designs
may require series resistors
to reduce reflections on the
parallel input bus.
Figure 7.7. Digital Input Schematic
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 73
8. Packaging
49-Ball Package Dimensions
These drawings are not to scale.
B
Top View Bottom View
Detail B Detail A
0.10
0.10
B
CA
C
0.15
0.05
0.08C
0.10C
JEDEC Package Code MO-225
Item
Description
Min
Typ
Max
A
Thickness
0.80
A1
Stand-off
0.13
0.18
0.23
A2
Substrate thickness +
Mold thickness
0.446
0.508
0.560
D
Body size
3.90
4.00
4.10
E
Body size
3.90
4.00
4.10
D1
Footprint
3.00
E1
Footprint
3.00
b
Ball width
0.20
0.25
0.30
e
Ball pitch
0.50
All dimensions are in millimeters.
Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
74 SiI-DS-1076-E.01
36B81-Ball Package Dimensions
These drawings are not to scale.
B
8 9
H
J
Top View Bottom View
Detail B Detail A
B
CA
C
0.15
0.05
0.10
0.10
0.08C
0.10C
JEDEC Package Code MO-225
Item
Description
Min
Typ
Max
A
Thickness
0.80
A1
Stand-off
0.13
0.18
0.23
A2
Substrate thickness +
Mold thickness
0.446
0.508
0.560
D
Body size
3.90
4.00
4.10
E
Body size
3.90
4.00
4.10
D1
Footprint
3.20
E1
Footprint
3.20
b
Ball width
0.20
0.25
0.30
e
Ball pitch
0.40
All dimensions are in millimeters.
Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 75
72-Pin Package Dimensions
These drawings are not to scale.
0.6 max
b
KB
0.10 C
MA
0.05 C
M
0.6 max
R
A1
A2
A
A3
Seating Plane
0.08C
D
D1
EE1
1
2
3
72
A
0.15C
0.15C
BD2
E2
1
2
3
72
e
AL
Top View
Side View
Bottom View
Detail A
0.10C
//
0.10 C
MA B
0.10 C
MA B
JEDEC Package Code MO-220
Item
Description
Min
Typ
Max
Item
Description
Min
Typ
Max
A
Thickness
0.80
0.85
0.90
D2
ePad size
4.55
4.70
4.85
A1
Stand-off
0.00
0.02
0.05
E2
ePad size
4.55
4.70
4.85
A2
Body thickness
0.60
0.65
0.70
b
Plated lead width
0.18
0.23
0.28
A3
0.20 REF
e
Lead pitch
0.50 BSC
D
Footprint
10.00 BSC
K
ePad-to-pin clearance
0.20
E
Footprint
10.00 BSC
L
Lead foot length
0.30
0.40
0.50
D1
Body size
9.75 BSC
R
Lead radius
0.09
E1
Body size
9.75 BSC
Lead foot angle
14°
All dimensions are in millimeters.
Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
76 SiI-DS-1076-E.01
Marking Specification
Marking drawings are not to scale.
902nARBT
LLLLL.LL-L
XXXXXYWW
Logo
Silicon Image Part Number
Lot # (= Job#)
Trace code and Date code
Ball A1 location
Figure 8.4. Marking Diagram (SiI902nARBT)
902nAYBT
LLLLL.LL-L
XXXXXYWW
Logo
Silicon Image Part Number
Lot # (= Job#)
Trace code and Date code
Ball A1 location
Figure 8.5. Marking Diagram (SiI902nAYBT)
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 77
LLLLLL.LL-L
YYWW
XXXXXXX
Logo
Silicon Image Part Number
Lot # (= Job#)
Date code
Trace code
Pin 1 location
Product
Designation
SiInnnnrppp
Package Type
Revision
SiI902nACNU
Figure 8.6. Marking Diagram (SiI902nACNU)
Ordering Information
Part Numbers
Package Type
Pixel Clock Range
Security
Temperature Grade
SiI9022ARBT
81-ball 4 × 4 mm VFBGA
25 MHz 165 MHz
Extended (20 °C to +85 °C)
SiI9022AYBT
49-ball 4 × 4 mm VFBGA
25 MHz 165 MHz
Extended (20 °C to +85 °C)
SiI9022ACNU
72-pin 10 × 10 mm QFN
25 MHz 165 MHz
Extended (20 °C to +85 °C)
SiI9024ARBT
81-ball 4 × 4 mm VFBGA
25 MHz 165 MHz
HDCP
Extended (20 °C to +85 °C)
SiI9024AYBT
49-ball 4 × 4 mm VFBGA
25 MHz 165 MHz
HDCP
Extended (20 °C to +85 °C)
SiI9024ACNU
72-pin 10 × 10 mm QFN
25 MHz 165 MHz
HDCP
Extended (20 °C to +85 °C)
The universal package can be used in both lead-free and ordinary process lines.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
78 SiI-DS-1076-E.01
References
Standards Documents
This is a list of the standards abbreviations appearing in this document.
Abbreviation
Standards publication, organization, and date
HDMI
High Definition Multimedia Interface, Revision 1.4a, HDMI Consortium; March 2010
HCTS
HDMI Compliance Test Specification, Revision 1.4a, HDMI Consortium; March 2010
HDCP
High-bandwidth Digital Content Protection, Revision 1.3, Digital Content Protection, LLC; December 2006
E-EDID
Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000
E-EDID IG
VESA EDID Implementation Guide, Version 1.0, VESA; June 2001
CEA-861-E
A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; March 2008
EDDC
Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004
Standards Groups
For information on the specifications that apply to this document, contact the responsible standards groups appearing
on this list.
Standards Group
Web URL
ANSI/EIA/CEA
http://global.ihs.com
VESA
http://www.vesa.org
DVI
http://www.ddwg.org
HDCP
http://www.digital-cp.com
HDMI
http://www.hdmi.org
Lattice Semiconductor Documents
This is a list of the related documents that are available from your Lattice Semiconductor sales representative.
The Programmer’s Reference requires an NDA with Lattice Semiconductor.
Document
Title
SiI-PR-1032
Transmitter Programming Interface (TPI) Programmer’s Reference
SiI-PR-0020
SiI9020 HDMI PanelLink Transmitter Programmer’s Reference
SiI-PR-0041
CEC Programming Interface (CPI) Programmer’s Reference
SiI-AN-1016
Designing with BGA Packages
SiI-AN-1029
Layout Guidelines and Results for Using HDMI Type-D Micro-Connector with SiI902nA Devices
SiI-UG-1043
CP9022AR/CP9024AR/CP9022AY/CP9024AY HDMI Transmitter Starter Kit User Guide
Technical Support
For assistance, submit a technical support case at www.latticesemi.com/techsupport.
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01 79
Revision History
Revision E.01, August 2016
Formatted to latest template. No content has been changed.
Revision E, October 2015
Updated description of CSCL item in the Configuration and Control Signals section. Updated copyright information and
legal disclaimers.
Revision D.01, January 2011
Updated Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V, Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V,
Table 3.10. I2S Input Port Timings; corrected 1080p 24 Hz 3D lines.
Revision C.01, September 2010
Removed Patent information from DB, rolled the revision for DS.
Revision C, July 2010
Added information about L + D, and Top-and-Bottom modes; added Limitations section.
Revision B.01, April 2010
Update with new features; minor corrections and changes.
Revision B, December 2009
Updated to add 81-ball and 72-pin information; added Pixel Number to Data Mapping tables.
Revision A.01, November 2009
Update specification tables; minor corrections throughout.
Revision A, November 2009
First production release.
7th Floor, 111 SW 5th Avenue
Portland, OR 97204, USA
T 503.268.8000
www.latticesemi.com