IS62WV102416FALL/BLL IS65WV102416FALL/BLL NOVEMBER 2018 1Mx16 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM DESCRIPTION KEY FEATURES High-speed access time: 45ns, 55ns CMOS low power operation - Operating Current: 35mA (max.) - CMOS standby Current: 5.5uA (typ.) TTL compatible interface levels Single power supply -1.65V-2.2V VDD (IS62/65WV102416FALL) - 2.2V-3.6V VDD (IS62/65WV102416FBLL) Three state outputs Commercial, Industrial and Automotive temperature support Lead-free available The ISSI IS62/65WV102416FALL/FBLL are high-speed, low power, 16M bit static RAMs organized as 1024K words by 16 bits. It is fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices. When CS1# is HIGH (deselected) or when CS2 is LOW (deselected) or when CS1# is LOW, CS2 is HIGH and both LB# and UB# are HIGH, the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels. Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE#) controls both writing and reading of the memory. A data byte allows Upper Byte (UB#) and Lower Byte (LB#) access. The IS62/65WV102416FALL/FBLL are packaged in the JEDEC standard 48-pin mini BGA (6mm x 8mm). FUNCTIONAL BLOCK DIAGRAM DECODER A0 - A19 1M x 16 MEMORY ARRAY VDD GND I/O0 - I/O7 Lower Byte I/O DATA CIRCUIT I/O8 - I/O15 Upper Byte CS2 CS1# OE# WE# UB# LB# COLUMN I/O CONTROL CIRCUIT Copyright (c) 2018 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized; b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 1 IS62WV102416FALL/BLL IS65WV102416FALL/BLL PIN CONFIGURATIONS 48-Pin mini BGA (6mm x 8mm) 1 2 3 4 5 6 LB# OE# A0 A1 A2 CS2 B I/O8 UB# A3 A4 CS1# I/O0 C I/O9 I/O10 A5 A6 I/O1 I/O2 D VSS I/O11 A17 A7 I/O3 VDD E VDD I/O12 NC A16 I/O4 VSS F I/O14 I/O13 A14 A15 I/O5 I/O6 G I/O15 A19 A12 A13 WE# I/O7 H A18 A8 A9 A10 A11 NC A PIN DESCRIPTIONS A0-A19 I/O0-I/O15 CS1#, CS2 OE# WE# Address Inputs Data Inputs/Outputs Chip Enable Inputs Output Enable Input Write Enable Input LB# Lower-byte Control (I/O0-I/O7) UB# Upper-byte Control (I/O8-I/O15) NC VDD VSS No Connection Power Ground Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 2 IS62WV102416FALL/BLL IS65WV102416FALL/BLL FUNCTION DESCRIPTION SRAM is one of random access memories. Each byte or word has an address and can be accessed randomly. SRAM has three different modes supported. Each function is described below with Truth Table. STANDBY MODE Device enters standby mode when deselected (CS1# HIGH or CS2 LOW or both UB# and LB# are HIGH). The input and output pins (I/O0-15) are placed in a high impedance state. The current consumption in this mode will be ISB1 or ISB2. CMOS input in this mode will maximize saving power. WRITE MODE Write operation issues with Chip selected (CS1# LOW and CS2 HIGH) and Write Enable (WE#) input LOW. The input and output pins (I/O0-15) are in data input mode. Output buffers are closed during this time even if OE# is LOW. UB# and LB# enables a byte write feature. By enabling LB# LOW, data from I/O pins (I/O0 through I/O7) are written into the location specified on the address pins. And with UB# being LOW, data from I/O pins (I/O8 through I/O15) are written into the location. READ MODE Read operation issues with Chip selected (CS1# LOW and CS2 HIGH) and Write Enable (WE#) input HIGH. When OE# is LOW, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted. UB# and LB# enables a byte read feature. By enabling LB# LOW, data from memory appears on I/O0-7. And with UB# being LOW, data from memory appears on I/O8-15. In the READ mode, output buffers can be turned off by pulling OE# HIGH. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used. TRUTH TABLE Mode Not Selected Output Disabled Read Write CS1# CS2 WE# OE# LB# UB# I/O0-I/O7 I/O8-I/O15 H X X L L L L L L L L X L X H H H H H H H H X X X H H H H H L L L X X X H H L L L X X X X X H L X L H L L H L X X H X L H L L H L L High-Z High-Z High-Z High-Z High-Z DOUT High-Z DOUT DIN High-Z DIN High-Z High-Z High-Z High-Z High-Z High-Z DOUT DOUT High-Z DIN DIN Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 VDD Current ISB2 ICC,ICC1 ICC,ICC1 ICC,ICC1 3 IS62WV102416FALL/BLL IS65WV102416FALL/BLL ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE ABSOLUTE MAXIMUM RATINGS(1) Symbol Vt er m Parameter Terminal Voltage with Respect to GND Value -0.5 to VDD + 0.5V Unit V VDD V DD Related to GND -0.3 to 4.0 V tStg Storage Temperature -65 to +150 PT Power Dissipation 1.0 C W Notes: 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. OPERATING RANGE(1) Range Ambient Temperature Commercial 0C to +70C Industrial -40C to +85C Automotive PART NUMBER ~ALL SPEED (MAX) VDD(MIN) VDD(TYP) VDD(MAX) 55 ns 1.65V 1.8V 2.2V 55 ns 1.65V 1.8V 2.2V -40C to +125C 55 ns 1.65V 1.8V 2.2V Commercial 0C to +70C 45ns 2.2V 3.0V 3.6V Industrial -40C to +85C 45ns 2.2V 3.0V 3.6V Automotive -40C to +125C 55ns 2.2V 3.0V 3.6V Note: 1. ~BLL Full device AC operation assumes a 100 s ramp time from 0 to Vcc(min) and 200 s wait time after Vcc stabilization. PIN CAPACITANCE (1) Parameter Symbol Input capacitance DQ capacitance (IO0-IO15) CIN CI/O Test Condition TA = 25C, f = 1 MHz, VDD = VDD(typ) Max Units 6 8 pF pF Note: 1. These parameters are guaranteed by design and tested by a sample basis only. THERMAL CHARACTERISTICS (1) Parameter Thermal resistance (junction to ambient) Thermal resistance (junction to pins) Thermal resistance (junction to case) Symbol RJA RJB RJC Test Conditions Still air, four-layer printed circuit board 48-ball BGA 48.4 23.3 10.8 Units C/W C/W C/W Note: 1. These parameters are guaranteed by design and tested by a sample basis only. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 4 IS62WV102416FALL/BLL IS65WV102416FALL/BLL AC TEST CONDITIONS (OVER THE OPERATING RANGE) Parameter Unit Unit (1.65V~2.2V) (2.2V~3.6V) 0V to VDD 0V to VDD 1V/ns 1V/ns 0.9V 1/2 VDD 13500 1005 10800 820 1.8V VDD Refer to Figure 1 and 2 Input Pulse Level Input Rise and Fall Time Output Timing Reference Level R1 R2 VTM Output Load Conditions OUTPUT LOAD CONDITIONS FIGURES FIGURE 1 FIGURE 2 R1 R1 VTM VTM OUTPUT OUTPUT 30pF, Including jig and scope R2 Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 5pF, Including jig and scope R2 5 IS62WV102416FALL/BLL IS65WV102416FALL/BLL DC ELECTRICAL CHARACTERISTICS IS62(5)WV102416FALL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE) VDD = 1.65V ~ 2.2V Symbol VOH VOL VIH(1) VIL(1) ILI ILO Parameter Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input Leakage Output Leakage Test Conditions I OH = -0.1 mA IOL = 0.1 mA GND < VIN < VDD GND < VIN < VDD, Output Disabled Min. 1.4 -- 1.4 -0.2 -1 -1 Max. -- 0.2 VDD + 0.2 0.4 1 1 Unit V V V V A A Notes: 1. VILL(min) = -1.0V AC (pulse width < 10ns). Not 100% tested. VIHH (max) = VDD + 1.0V AC (pulse width < 10ns). Not 100% tested. IS62(5)WV102416FBLL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE) VDD = 2.2V ~ 3.6V Symbol VOH Parameter Output HIGH Voltage VOL Output LOW Voltage VIH(1) Input HIGH Voltage VIL(1) Input LOW Voltage ILI ILO Input Leakage Output Leakage Test Conditions 2.2 V DD < 2.7, I OH = -0.1 mA 2.7 V DD 3.6, I OH = -1.0 mA 2.2 V DD < 2.7, IOL = 0.1 mA 2.7 V DD 3.6, IOL = 2.1 mA 2.2 V DD < 2.7 2.7 V DD 3.6 2.2 V DD < 2.7 2.7 V DD 3.6 GND < VIN < VDD GND < VIN < VDD, Output Disabled Min. 2.0 2.4 -- -- 1.8 2.0 -0.3 -0.3 -1 -1 Max. -- -- 0.4 0.4 VDD + 0.3 VDD + 0.3 0.6 0.8 1 1 Unit V V V V V V V V A A Notes: 1. VILL(min) = -2.0V AC (pulse width < 10ns). Not 100% tested. VIHH (max) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 6 IS62WV102416FALL/BLL IS65WV102416FALL/BLL IS62(5)WV102416FALL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE) Symbol Parameter ICC VDD Dynamic Operating Supply Current VDD = VDD(max), IOUT = 0mA, f = fmax, ICC1 VDD Static Operating Supply Current VDD = VDD(max), IOUT = 0mA, f=0 CMOS Standby Current (CMOS Inputs) VDD = VDD(max), f = 0, CS1# VDD - 0.2V or CS2 < 0.2V or (LB# and UB#) VDD - 0.2V, VIN 0.2V or VIN VDD - 0.2V ISB2 Notes: 1. 2. Grade Typ(1) Max Com. Ind. Auto. A3 Com. Ind. Auto. A3 - 35 35 35 5 5 5 25C 5.5 8(2) 40C 6.0 10(2) 70C 7.5 14 Ind. 85C 10.5 16 Auto. A3 125C 25 40 Test Conditions Com. Unit mA mA A Typical value indicates the value for the center of distribution at VDD=VDD (Typ.), and not 100% tested. Maximum value at 25C, 40C are guaranteed by design, and not 100% tested IS62(5)WV102416FBLL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE) Symbol Parameter ICC VDD Dynamic Operating Supply Current VDD = VDD(max), IOUT = 0mA, f = fmax, ICC1 VDD Static Operating Supply Current VDD = VDD(max), IOUT = 0mA, f=0 CMOS Standby Current (CMOS Inputs) VDD = VDD(max), f = 0, CS1# VDD - 0.2V or CS2 < 0.2V or (LB# and UB#) VDD - 0.2V, VIN 0.2V or VIN VDD - 0.2V ISB2 Grade Typ(1) Max Com. Ind. Auto. A3 Com. Ind. Auto. A3 - 35 35 35 5 5 5 25C 5.5 8(2) 40C 6.0 10(2) 70C 7.5 14 Ind. 85C 10.5 16 Auto. A3 125C 25 40 Test Conditions Com. Unit mA mA A Notes: 1. Typical value indicates the value for the center of distribution at VDD=VDD (Typ.), and not 100% tested. 2. Maximum value at 25C, 40C are guaranteed by design, and not 100% tested. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 7 IS62WV102416FALL/BLL IS65WV102416FALL/BLL AC CHARACTERISTICS(6) (OVER OPERATING RANGE) READ CYCLE AC CHARACTERISTICS 45ns Max 55ns Min Max Parameter Symbol Read Cycle Time Address Access Time Output Hold Time CS1#, CS2 Access Time UB#, LB# Access Time OE# Access Time tRC tAA tOHA tACS1/ACS2 tBA tDOE 45 10 - 45 45 45 20 55 10 - OE# to High-Z Output OE# to Low-Z Output CS1#, CS2 to High-Z Output CS1#, CS2 to Low-Z Output UB#, LB# to High-Z Output UB#, LB# to Low-Z Output tHZOE tLZOE tHZCS tLZCS tHZB tLZB 5 10 10 15 15 15 - 5 10 10 Min Max Min Min Min unit notes 55 55 55 25 ns ns ns ns ns ns 1,5 1 1 1 1 1 20 20 20 - ns ns ns ns ns ns 2 2 2 2 2 2 unit notes WRITE CYCLE AC CHARACTERISTICS 45ns 55ns Parameter Symbol Write Cycle Time CS1#, CS2 to Write End Address Setup Time to Write End UB#,LB# to Write End Address Hold from Write End tWC tSCS1/SCS2 tAW tPWB tHA 45 35 35 35 0 - 55 40 40 40 0 - ns ns ns ns ns 1,3,5 1,3 1,3 1,3 1,3 Address Setup Time WE# Pulse Width Data Setup to Write End Data Hold from Write End WE# LOW to High-Z Output WE# HIGH to Low-Z Output tSA tPWE tSD tHD tHZWE tLZWE 0 35 20 0 5 15 - 0 40 25 0 5 20 - ns ns ns ns ns ns 1,3 1,3,4 1,3 1,3 2,3 2,3 Notes: 1. Tested with the load in Figure 1. 2. Tested with the load in Figure 2. Transition is measured 500 mV from steady-state voltage. tHZOE, tHZCS, tHZB, and tHZWE transitions are measured when the output enters a high impedance state. Not 100% tested. 3. The internal write time is defined by the overlap of CS1# = LOW, CS2=HIGH, UB# or LB# = LOW, and WE# = LOW. All four conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write. 4. tPWE > tHZWE + tSD when OE# is LOW. 5. Address inputs must meet VIH and VIL SPEC during this period. Any glitch or unknown inputs are not permitted. Unknown input with standby mode is acceptable. 6. Data retention characteristics are defined later in DATA RETENTION CHARACTERISTICS. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 8 IS62WV102416FALL/BLL IS65WV102416FALL/BLL Timing Diagram READ CYCLE NO. 1(1) (ADDRESS CONTROLLED, CS1# = OE# = UB# = LB# = LOW, CS2 = WE# = HIGH) tRC ADDRESS tAA tOHA tOHA I/O0-15 PREVIOUS DATA VALID Low-Z DATA VALID Low-Z Notes: 1. The device is continuously selected. READ CYCLE NO.2(1) (OE# CONTROLLED, WE# = HIGH) tRC ADDRESS tAA tOHA tDOE OE# tHZOE tLZOE CS1# tHZCS1/ tHZCS2 tACS1/tACS2 CS2 tLZCS1/ tLZCS2 UB#,LB# tHZB tBA tLZB DOUT HIGH-Z LOW-Z DATA VALID Notes: 1. Address is valid prior to or coincident with CS1# LOW or CS2 HIGH transition. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 9 IS62WV102416FALL/BLL IS65WV102416FALL/BLL WRITE CYCLE NO.1(1,2) (CS1# , CS2 CONTROLLED, OE# = HIGH OR LOW) tWC ADDRESS tSCS1 tSA CS1# tHA tSCS2 CS2 tAW tPWE WE# tPWB UB#, LB# tHZWE DATA UNDEFINED DOUT HIGH-Z (1) tSD DATA UNDEFINED DIN (2) tLZWE tHD DATA IN VALID Notes: 1. tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE# goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after OE# goes high. 2. During this period the I/Os are in output state. Do not apply input signals. WRITE CYCLE NO. 2(1,2) (WE# CONTROLLED: OE# IS HIGH DURING WRITE CYCLE) tWC ADDRESS tSCS1 CS1# tSCS2 CS2 WE# tHA tAW tPWE tSA tPWB UB#, LB# OE# DOUT tHZOE DATA UNDEFINED HIGH-Z (1) tSD DIN DATA UNDEFINED (2) tHD DATA IN VALID Notes: 1. tHZOE is the time DOUT goes to High-Z after OE# goes high. 2. During this period the I/Os are in output state. Do not apply input signals. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 10 IS62WV102416FALL/BLL IS65WV102416FALL/BLL WRITE CYCLE NO. 3(1) (WE# CONTROLLED: OE# IS LOW DURING WRITE CYCLE) tWC ADDRESS tSCS1 CS1# tHA tSCS2 CS2 tAW WE# tPWE tSA tPWB UB#, LB# tHZWE DOUT DATA UNDEFINED (1) HIGH-Z tSD DIN DATA UNDEFINED (2) tLZWE tHD DATA IN VALID Notes: 1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 11 IS62WV102416FALL/BLL IS65WV102416FALL/BLL WRITE CYCLE NO. 4(1, 2, 3) (UB# & LB# Controlled, OE# = LOW) tWC tWC ADDRESS ADDRESS 1 ADDRESS 2 CS1#=LOW CS2=HIGH OE#=LOW tSA tHA tSA tHA WE# tPWB UB#, LB# tPWB WORD 1 WORD 2 tHZWE DOUT tLZWE HIGH-Z DATA UNDEFINED tHD tSD DIN DATA IN VALID DATA IN VALID Notes: 1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS. 2. Due to the restriction of note1, OE# is recommended to be HIGH during write period. 3. WE# stays LOW in this example. If WE# toggles, tPWE and tHZWE must be considered. Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 12 IS62WV102416FALL/BLL IS65WV102416FALL/BLL DATA RETENTION CHARACTERISTICS Symbol Min. Typ.(1) Max. Unit 1.5 - - V 25C - 5.5 13 85C - - 15 125C - - 38 See Data Retention Waveform 0 - - ns See Data Retention Waveform tRC - - ns Parameter VDR Test Condition VDD for Data Retention IDR Data Retention Current See Data Retention Waveform VDD = VDR (min), CS1# VDD - 0.2V or CS2 0.2V or (LB# and UB#) VDD - 0.2V, VIN 0.2V or VIN VDD - 0.2V Data Retention Setup Time Recovery Time tSDR (2) tRDR Notes: 1. 2. uA Typical value indicates the value for the center of distribution at VDD = VDR (min.), and not 100% tested. VDD power down slope must be longer than 100 us/volt when enter into Data Retention Mode. DATA RETENTION WAVEFORM (CS1# CONTROLLED) tSDR Data Retention Mode tRDR VDD VDR CS1# > VDD - 0.2V CS1# GND DATA RETENTION WAVEFORM (CS2 CONTROLLED) tSDR Data Retention Mode tRDR VDD CS2 VDR CS2 < 0.2V VSS Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 13 IS62WV102416FALL/BLL IS65WV102416FALL/BLL DATA RETENTION WAVEFORM (UB# AND LB# CONTROLLED) tSDR Data Retention Mode tRDR VDD VDR UB#/LB# UB# and LB# > VDD - 0.2V GND Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 14 IS62WV102416FALL/BLL IS65WV102416FALL/BLL ORDERING INFORMATION IS62/65WV102416FALL (1.65V - 2.2V) Industrial Range: -40C to +85C Speed (ns) Order Part No. Package 55 IS62WV102416FALL-55BI mini BGA (6mm x 8mm) 55 IS62WV102416FALL-55BLI mini BGA (6mm x 8mm), Lead-free Automotive (A3) Range: -40C to +125C Speed (ns) Order Part No. Package 55 IS65WV102416FALL-55BA3 mini BGA (6mm x 8mm) 55 IS65WV102416FALL-55BLA3 mini BGA (6mm x 8mm), Lead-free IS62/65WV102416FBLL (2.2V - 3.6V) Industrial Range: -40C to +85C Speed (ns) Order Part No. Package 45 IS62WV102416FBLL-45BI mini BGA (6mm x 8mm) 45 IS62WV102416FBLL-45BLI mini BGA (6mm x 8mm), Lead-free 55 IS62WV102416FBLL-55BI mini BGA (6mm x 8mm) 55 IS62WV102416FBLL-55BLI mini BGA (6mm x 8mm), Lead-free Automotive Range (A3): -40C to +125C Speed (ns) Order Part No. Package 55 IS65WV102416FBLL-55BA3 mini BGA (6mm x 8mm) 55 IS65WV102416FBLL-55BLA3 mini BGA (6mm x 8mm), Lead-free Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 15 IS62WV102416FALL/BLL IS65WV102416FALL/BLL PACKAGE INFORMATION Integrated Silicon Solution, Inc.- www.issi.com Rev. A5 11/26/2018 16