(R) RT9183 Ultra Low Dropout 1.5A Linear Regulator General Description Features The RT9183 series are high performance linear voltage regulators that provide ultra low-dropout voltage, high output current with low ground current. It operates from an input of 2.3V to 5.5V and provides output current up to 1.5A thus is suitable to drive digital circuits requiring low voltage at high currents. z The RT9183 has superior regulation over variations in line and load. Also it provides fast respond to step changes in load. Other features include over-current and overtemperature protection. The adjustable version has enable pin to reduce power consumption in shutdown mode. The devices are available in fixed output voltages of 1.2V to 3.3V with 0.1V per step and as an adjustable device with a 0.8V reference voltage. The RT9183 regulators are available in 3-lead SOT-223 and TO-263 packages (fixed output only for the 3-lead option). Also available are 5lead TO-263, TO-252 and fused SOP-8 packages with two z z z z z z z z 330mV Dropout @ 1.5A 380 A Low Ground Pin Current Excellent Line and Load Regulation 0.1 A Quiescent Current in Shutdown Mode Guaranteed 1.5A Output Current Fixed Output Voltages : 1.2V to 3.3V Adjustable Output Voltage from 0.8V to 4.5V Over-Temperature/Over-Current Protection RoHS Compliant and 100% Lead (Pb)-Free Ordering Information RT9183 - external resistors to set the output voltage ranges from 0.8V to 4.5V. Lead Plating System P : Pb Free G : Green (Halogen Free and Pb Free) Applications z z z z Output Voltage Defauit : Adjustable 12 : 1.2V 13 : 1.3V : 32 : 3.2V 33 : 3.3V Battery-Powered Equipment Mother Board/Graphic Card Peripheral Cards PCMCIA Card Marking Information For marking information, contact our sales representative directly or through a Richtek distributor located in your area. Package Type G : SOT-223 GF : SOT-223 (F-Type) S : SOP-8 L: TO-252 LF : TO-252 (F-Type) M : TO-263 M5 : TO-263-5 Only for SOP-8 and TO-263-5 H : Chip Enable High L : Chip Enable Low Note : Richtek products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 is a registered trademark of Richtek Technology Corporation. www.richtek.com 1 RT9183 Pin Configurations (TOP VIEW) 1 2 VIN GND (TAB) 3 VOUT SOT-223 EN 1 2 3 GND VOUT (TAB) 1 8 GND 2 7 GND VOUT 3 6 GND ADJ 4 5 GND 1 2 3 1 GND (TAB) VIN VOUT VIN SOT-223 (F-Type) VIN 2 1 2 3 4 3 VOUT (TAB) GND TO-252 3 2 VIN TO-252 (F-Type) 5 SOP-8 EN VIN VOUT ADJ GND(TAB) VIN VOUT GND(TAB) TO-263-5 TO-263 Typical Application Circuit (SOT-223 & TO-263 & TO-252) VIN VIN = 3.3V RT9183 VOUT VOUT 2.5V, 1.5A GND CIN COUT 10F 10F Figure 1. 3.3V to 2.5V Regulator (SOP-8 & TO-263-5) VIN VIN RT9183 VOUT EN ADJ VOUT R1 Enable C 0.1F CIN 10F GND VOUT = 0.8 x (1 + COUT R2 R1 )Volts R2 10F Note: The value of R2 should be less than 80k to maintain regulation. Figure 2. Adjustable Operation Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 2 is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 (SOP-8 & TO-263-5) VIN Enable C 0.1F CIN 10F VIN RT9183 VOUT EN GND ADJ VOUT COUT 10F Figure 3. Fixed Operation with SOP-8 and TO-263-5 packages Functional Pin Description Pin Name Pin Function EN Chip Enable Control Input. Note that the device will be in the unstable state if the pin is not connected. VIN Supply Input. GND Common Ground. VOUT Regulator Output. The output voltage is set by the internal feedback resistors when this pin ADJ grounded. If external feedback resistors are applied, the output voltage will be : VOUT = 0.8 x (1 + R1 ) Volts R2 Function Block Diagram VIN Current Limit Sensor + 0.8V Reference Error Amplifier - + VOUT EN Shutdown Logic Thermal Shutdown ADJ + Output Mode Comparator Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 100mV GND is a registered trademark of Richtek Technology Corporation. www.richtek.com 3 RT9183 Absolute Maximum Ratings z z z z z z z (Note 1) Supply Input Voltage -----------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2) SOT-223, JA ---------------------------------------------------------------------------------------------------------------SOT-223, JC --------------------------------------------------------------------------------------------------------------SOT-223 (F-Type), JA ---------------------------------------------------------------------------------------------------SOT-223 (F-Type), JC ---------------------------------------------------------------------------------------------------SOP-8, JA -----------------------------------------------------------------------------------------------------------------SOP-8, JC -----------------------------------------------------------------------------------------------------------------TO-252, JA ----------------------------------------------------------------------------------------------------------------TO-252, JC ----------------------------------------------------------------------------------------------------------------TO-252 (F-Type), JA -----------------------------------------------------------------------------------------------------TO-252 (F-Type), JC -----------------------------------------------------------------------------------------------------TO-263, JA ----------------------------------------------------------------------------------------------------------------TO-263, JC ----------------------------------------------------------------------------------------------------------------Power Dissipation, PD@TA = 25C SOT-223 --------------------------------------------------------------------------------------------------------------------SOT-223 (F-Type) ---------------------------------------------------------------------------------------------------------SOP-8 -----------------------------------------------------------------------------------------------------------------------TO-252 ----------------------------------------------------------------------------------------------------------------------TO-252 (F-Type) ----------------------------------------------------------------------------------------------------------TO-263 ----------------------------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3) HBM (Human Body Mode) ---------------------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------------------ Recommended Operating Conditions z z 6V 115C/W 15C/W 135C/W 17C/W 125C/W 20C/W 68C/W 8C/W 75C/W 15C/W 45C/W 8C/W 0.87W 0.74W 0.8W 1.471W 1.333W 2.22W 260C 150C -65C to 150C 2kV 200V (Note 4) Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.3V to 5.5V Junction Temperature Range -------------------------------------------------------------------------------------------- -40C to 125C Electrical Characteristics (VIN = VOUT + 0.7V, CIN = COUT = 10F (Ceramic), TA = 25C unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit -2 0 2 % 0.8 -- 4.5 V Output Voltage Accuracy (Fixed Output Voltage) VOUT Output Voltage Range (Adjustable) VOUT_ADJ Quiescent Current IQ I OUT = 0mA, Enable -- 380 500 A I STBY VIN = 5.5V, Shutdown -- 0.1 1 A Standby Current (Note 5) (Note 6) Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 4 I OUT = 10mA is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 Parameter Symbol Current Limit Dropout Voltage Test Conditions Min Typ Max Unit 2 3.2 4.2 A IOUT = 0.5A -- 110 300 IOUT = 1.0A -- 220 400 IOUT = 1.5A -- 330 500 ILIM (Note 7) VDROP mV Line Regulation VLINE V OUT + 0.7V < VIN < 5.5V IOUT = 10mA -- 0.035 0.18 %/V Load Regulation (Note 8) (Fixed Output Voltage) VLOAD 1mA < IOUT < 1.5A -- 22 45 mV Thermal Shutdown Temperature TSD -- 170 -- C Thermal Shutdown Hysteresis T SD -- 30 -- C -- -- 0.6 1.2 -- -- -- 0.1 1 A 0.784 0.8 0.816 V -- 10 100 nA 0.05 0.1 0.2 V Logic-Low VIL V IN = 5.5V Logic-High VIH V IN = 5.5V IEN V IN = 5.5V, Enable EN Threshold Voltage Enable Pin Current V (Note 9) ADJ Reference Voltage Tolerance VREF Adjust Pin Current IADJ Adjust Pin Threshold VTH(ADJ) V ADJ = VREF Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. JA is measured in natural convection (still air) at TA = 25C with the component mounted on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard. And the copper area of PCB layout is 4mm x 2.5mm on SOT-223, 10mm x 10mm on TO-252, 14mm x 14mm on TO-263 for thermal measurement. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin current. Note 6. Standby current is the input current drawn by a regulator when the output voltage is disabled by a shutdown signal (VEN >1.8V ). It is measured with VIN = 5.5V. Note 7. The dropout voltage is defined as VIN - VOUT, which is measured when VOUT is VOUT(NORMAL) - 100mV. Note 8. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for load regulation in the load range from 10mA to 1.5A. Note 9. The EN threshold should be higher than VIH for turning on. Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 is a registered trademark of Richtek Technology Corporation. www.richtek.com 5 RT9183 Typical Operating Characteristics Output Voltage vs. Temperature Output Voltage vs. Temperature 2.6 VIN = 5V, RL = CIN = COUT = 10F (Ceramic,Y5V) 1.85 Output Voltage (V) Output Voltage (V) 1.9 1.8 1.75 VIN = 5V, RL = CIN = COUT = 10F (Ceramic,Y5V) 2.55 2.5 2.45 RT9183H-18xS RT9183-25xG 2.4 1.7 -50 -25 0 25 50 75 100 -50 125 -25 0 75 100 125 400 Quiescent Current (uA) 1 Quiescent Current (uA) 1 50 Quiescent Current vs. Temperature Quiescent Current vs. Temperature 400 380 360 340 VIN = 5V, RL = CIN = COUT = 10F (Ceramic,Y5V) 320 380 360 340 VIN = 5V, RL = CIN = COUT = 10F (Ceramic,Y5V) 320 RT9183H-18xS 300 RT9183-25xG 300 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (C) 25 50 75 100 125 Temperature (C) Current Limit vs. Temperature Current Limit vs. Temperature 4 4 VIN = 5V, CIN = COUT = 10F(Ceramic,Y5V) VIN = 5V, CIN = COUT = 10F(Ceramic,Y5V) 3.8 Current Limit (A) 3.8 Current Limit (A) 25 Temperature (C) Temperature (C) 3.6 3.4 3.2 3.6 3.4 3.2 RT9183L-33xM5 RT9183-25xG 3 3 -50 -25 0 25 50 75 100 Temperature (C) Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 6 125 -50 -25 0 25 50 75 100 125 Temperature (C) is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 Dropout vs. Voltage Dropout Voltage Load Current Dropout Voltage Load Current Dropoutvs. Voltage 500 500 Dropout Voltage (mV) Dropout Voltage (mV) 1 TJ = 125C TJ = 125C 400 300 TJ = +25C 200 TJ = -40C 100 400 300 TJ = +25C 200 TJ = -40C 100 RT9183-25xG RT9183L-33xM5 0 0 0.6 0.9 1.2 0 1.5 0.3 0.6 0.9 1.2 Load Current (A) Load Current (A) Dropout Voltage vs. Load Current Load Transient Response RT9183H-xS VOUT = 3.3V 1.5 COUT = 47F/Low ESR, ILOAD = 1mA to 750mA TJ= 125C 300 TJ= 25C 1 0.5 0 200 TJ= -40C 100 Output Voltage Deviation(mV) Dropout Voltage (mV) 400 0.3 Load Current (A) 0 20 0 -20 RT9183H-18xS 0 0 0.3 0.6 0.9 1.2 1.5 Time (100s/Div) Load Current (A) Load Transient Regulation Load Current (A) COUT = 47uF/Low ESR, ILOAD = 1mA to 1.5A 2 1 0 Output Voltage Deviation(mV) Load Transient Response RT9183-12xGF 20 0 0 -50 RT9183H-18xS Time (100s/Div) Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 Load Current (mA) Output Voltage Deviation(mV) 50 500 0 ILOAD = 1mA to 750mA COUT = 47F/Low ESR Time (100s/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 7 RT9183 Line Transient Response COUT = 47F/Low ESR 5 COUT = 47F/Low ESR, ILOAD = 100mA 5 4 4 Output Voltage Deviation(mV) Output Voltage Deviation(mV) Input Voltage Deviation(V) ILOAD = 100mA Input Voltage Deviation(V) Line Transient Regulation 10 0 10 0 -10 RT9183H-18xS RT9183-12xGF Time (100s/Div) Time (100s/Div) EN Pin PinShutdown ThresholdThreshold Voltage vs. EN vs. Temperature EN Pin Shutdown Response EN Voltage (V) CIN = COUT = 10F (Ceramic,Y5V) 1 VOUT Off to On ILOAD = 100mA, VIN = 5V, TA =25C 5 0 0.9 Output Voltage (V) EN Pin Threshold Voltage Shutdown Voltage (V) (V) 1 1.1 VOUT On to Off 0.8 2 1 0 RT9183L-33xM5 RT9183H-18xS 0.7 -50 -25 0 25 50 75 100 125 Time (500s/Div) Temperature (C) Reference Voltage vs. Temperature PSRR 20 0.85 0.83 Loading Loading Loading Loading 0 PSRR(dB) Reference Voltage (V) VIN = 5V,CIN = COUT = 10F (Electrolysis) 0.81 0.79 0.77 -20 = 1A = 800mA = 100mA = 10mA -40 -60 RT9183H-xS 0.75 -80 -50 -25 0 25 50 75 100 Temperature (C) Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 8 125 10 100 1000 10000 100000 1000000 Frequency (Hz) is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 Application Information Like any low-dropout regulator, the RT9183 series requires input and output decoupling capacitors. These capacitors must be correctly selected for good performance (see Capacitor Characteristics Section). Please note that linear regulators with a low dropout voltage have high internal loop gains which require care in guarding against oscillation caused by insufficient decoupling capacitance. Input Capacitor An input capacitance of 10F is required between the device input pin and ground directly (the amount of the capacitance may be increased without limit). The input capacitor MUST be located less than 1 cm from the device to assure input stability (see PCB Layout Section). A lower ESR capacitor allows the use of less capacitance, while higher ESR type (like aluminum electrolytic) require more capacitance. Capacitor types (aluminum, ceramic and tantalum) can be mixed in parallel, but the total equivalent input capacitance/ESR must be defined as above to stable operation. There are no requirements for the ESR on the input capacitor, but tolerance and temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will be 10F over the entire operating temperature range. Output Capacitor The RT9183 is designed specifically to work with very small ceramic output capacitors. The recommended minimum capacitance (temperature characteristics X7R or X5R) are 10F to 47F range with 1m to 25m range ceramic capacitors between each LDO output and GND for transient stability, but it may be increased without limit. Higher capacitance values help to improve transient. The output capacitor's ESR is critical because it forms a zero to provide phase lead which is required for loop stability. Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 No Load Stability The device will remain stable and in regulation with no external load. This is specially important in CMOS RAM keep-alive applications. Input-Output (Dropout) Voltage A regulator's minimum input-to-output voltage differential (dropout voltage) determines the lowest usable supply voltage. In battery-powered systems, this determines the useful end-of-life battery voltage. Because the device uses a PMOS, its dropout voltage is a function of drain-tosource on-resistance, RDS(ON), multiplied by the load current : VDROPOUT = VIN - VOUT = RDS(ON) x IOUT Current Limit The RT9183 monitors and controls the PMOS' gate voltage, minimum limiting the output current to 2A . The output can be shorted to ground for an indefinite period of time without damaging the part. Short-Circuit Protection The device is short circuit protected and in the event of a peak over-current condition, the short-circuit control loop will rapidly drive the output PMOS pass element off. Once the power pass element shuts down, the control loop will rapidly cycle the output on and off until the average power dissipation causes the thermal shutdown circuit to respond to servo the on/off cycling to a lower frequency. Please refer to the section on thermal information for power dissipation calculations. Capaacitor Characteristics It is important to note that capacitance tolerance and variation with temperature must be taken into consideration when selecting a capacitor so that the minimum required amount of capacitance is provided over the full operating temperature range. In general, a good tantalum capacitor will show very little capacitance variation with temperature, but a ceramic may not be as good (depending on dielectric type). Aluminum electrolytics also typically have large temperature variation of capacitance value. is a registered trademark of Richtek Technology Corporation. www.richtek.com 9 RT9183 Equally important to consider is a capacitor's ESR change with temperature: this is not an issue with ceramics, as their ESR is extremely low. However, it is very important in tantalum and aluminum electrolytic capacitors. Both show increasing ESR at colder temperatures, but the increase in aluminum electrolytic capacitors is so severe they may not be feasible for some applications. Ceramic : For values of capacitance in the 10F to 100F range, ceramics are usually larger and more costly than tantalums but give superior AC performance for by-passing high frequency noise because of very low ESR (typically less than 10m). However, some dielectric types do not have good capacitance characteristics as a function of voltage and temperature. Z5U and Y5V dielectric ceramics have capacitance that drops severely with applied voltage. A typical Z5U or Y5V capacitor can lose 60% of its rated capacitance with half of the rated voltage applied to it. The Z5U and Y5V also exhibit a severe temperature effect, losing more than 50% of nominal capacitance at high and low limits of the temperature range. X7R and X5R dielectric ceramic capacitors are strongly recommended if ceramics are used, as they typically maintain a capacitance range within 20% of nominal over full operating ratings of temperature and voltage. Of course, they are typically larger and more costly than Z5U/ Y5U types for a given voltage and capacitance. Tantalum : Solid tantalum capacitors are recommended for use on the output because their typical ESR is very close to the ideal value required for loop compensation. They also work well as input capacitors if selected to meet the ESR requirements previously listed. Tantalums also have good temperature stability: a good quality tantalum will typically show a capacitance value that varies less than 10 to 15% across the full temperature range of 125C to -40C. ESR will vary only about 2X going from the high to low temperature limits. Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 10 The increasing ESR at lower temperatures can cause oscillations when marginal quality capacitors are used (if the ESR of the capacitor is near the upper limit of the stability range at room temperature). Aluminum : This capacitor type offers the most capacitance for the money. The disadvantages are that they are larger in physical size, not widely available in surface mount, and have poor AC performance (especially at higher frequencies) due to higher ESR and ESL. Compared by size, the ESR of an aluminum electrolytic is higher than either Tantalum or ceramic, and it also varies greatly with temperature. A typical aluminum electrolytic can exhibit an ESR increase of as much as 50X when going from 25C down to -40C. It should also be noted that many aluminum electrolytics only specify impedance at a frequency of 120Hz, which indicates they have poor high frequency performance. Only aluminum electrolytics that have an impedance specified at a higher frequency (between 20kHz and 100kHz) should be used for the device. Derating must be applied to the manufacturer's ESR specification, since it is typically only valid at room temperature. Any applications using aluminum electrolytics should be thoroughly tested at the lowest ambient operating temperature where ESR is maximum. Thermal Considerations Thermal protection limits power dissipation in RT9183. When the operation junction temperature exceeds 170C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turns on again after the junction temperature cools by 30C. For continuous operation, do not exceed absolute maximum operation junction temperature 125C. The power dissipation definition in device is : PD = (VIN - VOUT) x IOUT + VIN x IQ is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : PD(MAX) = (TJ(MAX) - TA) /JA Where T J(MAX) is the maximum operation junction temperature 125C, TA is the ambient temperature and the JA is the junction to ambient thermal resistance. For recommended operating conditions specification, where TJ(MAX) is the maximum junction temperature of the die (125C) and TA is the maximum ambient temperature. The junction to ambient thermal resistance (JA is layout dependent) for SOT-223 package is 115C/W, SOT-223 package (F-Type) is 135C/W, SOP-8 package is 125C/ W, TO-252 package is 68C/W, TO-252 package (F-Type) is 75C/W and TO-263 package is 45C/W on standard JEDEC 51-3 thermal test board. Maximum power dissipation (mW) The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance JA. The Figure 4 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed. 1600 Good board layout practices must be used or instability can be induced because of ground loops and voltage drops. The input and output capacitors MUST be directly connected to the input, output, and ground pins of the device using traces which have no other currents flowing through them. The best way to do this is to layout CIN and COUT near the device with short traces to the VIN, VOUT, and ground pins. The regulator ground pin should be connected to the external circuit ground so that the regulator and its capacitors have a"single point ground".. It should be noted that stability problems have been seen in applications where "vias" to an internal ground plane were used at the ground points of the device and the input and output capacitors. This was caused by varying ground potentials at these nodes resulting from current flowing through the ground plane. Using a single point ground technique for the regulator and it's capacitors fixed the problem. Since high current flows through the traces going into VIN and coming from VOUT, Kelvin connect the capacitor leads to these pins so there is no voltage drop in series with the input and output capacitors. Optimum performance can only be achieved when the device is mounted on a PC board according to the diagram below : 2400 2000 PCB Layout TO-263 GND TO-252 (F-Type) TO-252 1200 SOT-223 800 400 SOT-223 (F-Type) ADJ + EN SOP-8 0 0 25 50 75 100 125 VOUT Ambient temperature (C) ( ) + + Figure 4 GND VIN GND SOP-8 Board Layout Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 is a registered trademark of Richtek Technology Corporation. www.richtek.com 11 RT9183 Adjustable Operation The adjustable version of the RT9183 has an output voltage range of 0.8V to 4.5V. The output voltage is set by the ratio of two external resistors as shown in Figure 2. The value of R2 should be less than 80k to maintain regulation. In critical applications, small voltage drop is caused by the resistance (RT) of PC traces between the ground pin of the device and the return pin of R2 (See Figure 5 shown on next page). Note that the voltage drop across the external PC trace will add to the output voltage of the device. Optimum regulation will be obtained at the point where the return pin of R2 is connected to the ground pin of the device directly. (SOP-8 & TO-263-5) VIN VIN RT9183 VOUT EN ADJ VOUT R1 Enable C 0.1uF CIN 10uF GND RT R2 COUT 10uF Figure 5. Return Pin of External Resistor Connection Referring to Figure 3 the fixed voltage versions for both SOP-8 and TO-263-5 packages, the ADJ pin is the input to the error amplifier and MUST be tied the ground pin of the device directly otherwise it will be in the unstable state if the pin voltage more than 0.1V with respect to the ground pin itself. Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 12 is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 Outline Dimension Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 1.400 1.800 0.055 0.071 A1 0.020 0.100 0.001 0.004 b 0.600 0.840 0.024 0.033 B 3.300 3.700 0.130 0.146 C 6.700 7.300 0.264 0.287 D 6.300 6.700 0.248 0.264 b1 2.900 3.100 0.114 0.122 e 2.300 0.091 H 0.230 0.350 0.009 0.014 L 1.500 2.000 0.059 0.079 L1 0.800 1.100 0.031 0.043 3-Lead SOT-223 Surface Mount Package Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 is a registered trademark of Richtek Technology Corporation. www.richtek.com 13 RT9183 H A M J B F C I D Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 4.801 5.004 0.189 0.197 B 3.810 3.988 0.150 0.157 C 1.346 1.753 0.053 0.069 D 0.330 0.508 0.013 0.020 F 1.194 1.346 0.047 0.053 H 0.170 0.254 0.007 0.010 I 0.050 0.254 0.002 0.010 J 5.791 6.200 0.228 0.244 M 0.400 1.270 0.016 0.050 8-Lead SOP Plastic Package Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 14 is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 D U C D1 R B T V E S L1 L3 b1 b L2 e b2 A Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 2.184 2.388 0.086 0.094 B 0.889 2.032 0.035 0.080 b 0.508 0.889 0.020 0.035 b1 1.016 Ref. 0.040 Ref. b2 0.457 0.584 0.018 0.023 C 0.457 0.584 0.018 0.023 D 6.350 6.731 0.250 0.265 D1 5.207 5.461 0.205 0.215 E 5.334 6.223 0.210 0.245 e 2.108 2.438 0.083 0.096 L1 9.398 10.414 0.370 0.410 L2 L3 0.508 Ref. 0.635 1.016 0.020 Ref. 0.025 0.040 U 3.810 Ref. 0.150 Ref. V 3.048 Ref. 0.120 Ref. R 0.200 0.850 0.008 0.033 S 2.500 3.400 0.098 0.134 T 0.500 0.850 0.020 0.033 3-Lead TO-252 Surface Mount Package Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. DS9183-19 February 2012 is a registered trademark of Richtek Technology Corporation. www.richtek.com 15 RT9183 C D U B V E L1 b1 L2 e b2 b A Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 4.064 4.826 0.160 0.190 B 1.143 1.676 0.045 0.066 b 0.660 0.914 0.026 0.036 b1 1.143 1.397 0.045 0.055 b2 0.305 0.584 0.012 0.023 C 1.143 1.397 0.045 0.055 D 9.652 10.668 0.380 0.420 E 8.128 9.652 0.320 0.380 e 2.286 2.794 0.090 0.110 L1 14.605 15.875 0.575 0.625 L2 2.286 2.794 0.090 0.110 U 6.223 Ref. 0.245 Ref. V 7.620 Ref. 0.300 Ref. 3-Lead TO- 263 Surface Mount Copyright (c) 2012 Richtek Technology Corporation. All rights reserved. www.richtek.com 16 is a registered trademark of Richtek Technology Corporation. DS9183-19 February 2012 RT9183 C D U B V E L1 L2 b e b2 A Dimensions In Millimeters Symbol Dimensions In Inches Min Max Min Max A 4.064 4.826 0.160 0.190 B 1.143 1.676 0.045 0.066 b 0.660 0.914 0.026 0.036 b2 0.305 0.584 0.012 0.023 C 1.143 1.397 0.045 0.055 D 9.652 10.668 0.380 0.420 E 8.128 9.652 0.320 0.380 e 1.524 1.829 0.060 0.072 L1 14.605 15.875 0.575 0.625 L2 2.286 2.794 0.090 0.110 U 6.223 Ref. 0.245 Ref. V 7.620 Ref. 0.300 Ref. 5-Lead TO-263 Plastic Surface Mount Package Richtek Technology Corporation 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. DS9183-19 February 2012 www.richtek.com 17