BIPOLAR ANALOG INTEGRATED CIRCUIT PC8204TK VARIABLE GAIN AMPLIFIER FOR TRANSMITTER AGC DESCRIPTION The PC8204TK is a silicon monolithic integrated circuit designed as variable gain amplifier. The package is 6-pin lead-less minimold suitable for surface mount. This IC is manufactured using our 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process. This IC is as same circuit current as conventional PC8119T and PC8120T, but operates at higher frequency and wider gain control range. FEATURES * Gain control range : GCR = 40 dB TYP. @ f = 1.9 GHz : GCR = 40 dB TYP. @ f = 2.4 GHz * Maximum power gain : GPMAX = 14.5 dB TYP. @ f = 1.9 GHz : GPMAX = 14.0 dB TYP. @ f = 2.4 GHz * Operating frequency : fin = 0.8 to 2.5 GHz * Supply voltage : VCC = 2.7 to 3.3 V * High-density surface mounting : 6-pin lead-less minimold package APPLICATION * 0.8 to 2.5 GHz transmitter/receiver system (PHS, WLAN and so on) ORDERING INFORMATION Part Number PC8204TK-E2 Order Number PC8204TK-E2-A Package Marking 6-pin lead-less minimold (1511 PKG) (Pb-Free) Note 6E Supplying Form * Embossed tape 8 mm wide * Pin 1, 6 face the perforation side of the tape * Qty 5 kpcs/reel Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office. Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: PC8204TK Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge. Document No. PU10408EJ02V0DS (2nd edition) Date Published October 2005 CP(K) The mark shows major revised points. (c) NEC Compound Semiconductor Devices, Ltd. 2003, 2005 PC8204TK PIN CONNECTIONS (Top View) (Bottom View) 6E 1 2 3 6 6 1 5 5 2 4 4 3 Pin No. Pin Name 1 INPUT 2 GND 3 GND 4 OUTPUT 5 VCC 6 VAGC VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP Parameter 0.95 GHz output port 1.44 GHz output port 1.9 GHz output port 2.4 GHz output port matching frequency matching frequency matching frequency matching frequency ICC GPMAX GCR NF GPMAX GCR NF GPMAX GCR NF GPMAX GCR NF Part No. (mA) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) PC8204TK 11.5 - - - - - - 14.5 40 7.5 14.0 40 7.5 PC8119T 11.0 12.5 50 8.5 13.0 45 7.5 (12.5) (22) (7.2) - - - PC8120T 11.0 13.0 50 9.0 13.5 45 7.5 (13.0) (22) (7.3) - - - Remarks 1. Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. ( ): reference. 2. To know the associated product, please refer to each latest data sheet. 2 Data Sheet PU10408EJ02V0DS PC8204TK CONTENTS 1. PIN EXPLANATION...............................................................................................................................................4 2. ABSOLUTE MAXIMUM RATINGS .......................................................................................................................5 3. RECOMMENDED OPERATING RANGE .............................................................................................................5 4. ELECTRICAL CHARACTERISTICS .....................................................................................................................5 5. TEST CIRCUITS ....................................................................................................................................................6 5. 1 5. 2 6. f = 1.9 GHz...................................................................................................................................................6 5. 1. 1 Test circuit 1..................................................................................................................................6 5. 1. 2 Illustration of the test circuit 1 assembled on evaluation board .....................................................6 5. 1. 3 Component list ..............................................................................................................................6 f = 2.4 GHz...................................................................................................................................................7 5. 2. 1 Test circuit 2..................................................................................................................................7 5. 2. 2 Illustration of the test circuit 2 assembled on evaluation board .....................................................7 5. 2. 3 Component list ..............................................................................................................................7 TYPICAL CHARACTERISTICS.............................................................................................................................8 6. 1 Inductor loading with external bias tee at output port ...................................................................................9 6. 2 Output port matching at f = 1.9 GHz .......................................................................................................... 10 6. 3 Output port matching at f = 2.4 GHz .......................................................................................................... 22 7. PACKAGE DIMENSIONS.................................................................................................................................... 31 8. NOTES ON CORRECT USE ............................................................................................................................. 32 9. RECOMMENDED SOLDERING CONDITIONS ................................................................................................. 32 Data Sheet PU10408EJ02V0DS 3 PC8204TK 1. PIN EXPLANATION Pin Pin No. Name 1 INPUT Applied Pin Voltage (V) Voltage Note (V) - 1.2 Function and Applications Internal Equivalent Circuit RF input pin. This pin should be coupled with capacitor (example 100 pF) for DC cut. Input return loss can be improved with external impedance 2 GND 0 - 3 matching circuit. 5 Ground pin. 4 This pin should be connected to system ground with minimum inductance. Ground pa- ttern on Control circuit the board should be formed as must be connected together with 1 Bias circuit wide ground pattern to decrease 2 wide as possible. Ground pins impedance difference. 4 OUTPUT Voltage - 3 GND RF output pin. as same This pin is de-signed as open as VCC collector of high impedance. This through pin must be externally equipped external with matching circuits. inductor 5 VCC 2.7 to 3.3 - Supply voltage pin. This pin must be equipped with bypass capacitor (example 1 000 pF) to minimize its RF impedance. 6 VAGC 0 to 3.3 - 5 Gain control pin. 6 Control circuit 2 Note Pin voltage is measured at VCC = 3.0 V 4 Data Sheet PU10408EJ02V0DS PC8204TK 2. ABSOLUTE MAXIMUM RATINGS Parameter Symbol Test Conditions Ratings Unit Supply Voltage VCC TA = +25C, Pin 4, 5 3.6 V Total Circuit Current ICC TA = +25C 30 mA Gain Control Voltage VAGC TA = +25C 3.6 V Power Dissipation PD TA = +85C 203 mW Operating Ambient Temperature TA -40 to +85 C Storage Temperature Tstg -55 to +150 C Input Power Pin +5 dBm Note Note Mounted on double-sided copper-clad 50 x 50 x 1.6 mm epoxy glass PWB 3. RECOMMENDED OPERATING RANGE Parameter Supply Voltage Symbol MIN. TYP. MAX. Unit VCC 2.7 3.0 3.3 V Remarks Same voltage should be applied to pin 4 and pin 5. Operating Ambient Temperature TA -40 +25 +85 C Operating Frequency fin 0.8 - 2.5 GHz Gain Control Voltage VAGC 0 - 3.3 V With external output-matching 4. ELECTRICAL CHARACTERISTICS (TA = +25C, VCC = Vout = 3.0 V, ZS = ZL = 50 , external matched output port, unless otherwise specified) Parameter Symbol Circuit Current ICC Maximum Power Gain Gain Control Range GPMAX Note GCR Gain 1 dB Compression Output PO (1 dB) Power Input Return Loss Isolation RLin ISL Noise Figure NF Test Conditions MIN. TYP. MAX. Unit No signal 8.5 11.5 15.0 mA f = 1.9 GHz, Pin = -20 dBm 11.5 14.5 17.5 dB f = 2.4 GHz, Pin = -20 dBm 11.0 14.0 17.0 f = 1.9 GHz, Pin = -20 dBm 35 40 - f = 2.4 GHz, Pin = -20 dBm 35 40 - f = 1.9 GHz, GPMAX +2.0 +5.0 - f = 2.4 GHz, GPMAX +2.0 +5.0 - f = 1.9 GHz, GPMAX 8 11 - f = 2.4 GHz, GPMAX 9 13 - f = 1.9 GHz, GPMAX 25 30 - f = 2.4 GHz, GPMAX 25 30 - f = 1.9 GHz, GPMAX - 7.5 10.0 f = 2.4 GHz, GPMAX - 7.5 10.0 dB dBm dB dB dB Note Gain control range GCR specification : GCR = GPMAX - GPMIN (dB) Conditions GPMAX@VAGC = VCC, GPMIN@VAGC = 0 V Data Sheet PU10408EJ02V0DS 5 PC8204TK 5. TEST CIRCUITS 5. 1 f = 1.9 GHz 5. 1. 1 Test circuit 1 VAGC C3 1 000 pF C5 1 000 pF 6 5 C2 IN C4 1 000 pF L1 2.2 nH 0.75 pF 4 1 100 pF 5. 1. 2 VCC C6 1 000 pF OUT Strip line : 9 mm 2, 3 C1 Illustration of the test circuit 1 assembled on evaluation board C6 VCC C2 In C3 1 000 pF 100 pF C5 1 000 pF C4 1 000 pF 2.2 nH L1 C1 0.75 pF 5. 1. 3 Out Component list Symbol Form Rating Part Number Maker C1 Chip Capacitor 0.75 pF GRM39 Murata C2 Chip Capacitor 100 pF GRM39 Murata C3, C4 Chip Capacitor 1 000 pF GRM39 Murata C5 Chip Capacitor 1 000 pF GRM40 Murata C6 Feed-through Capacitor 1 000 pF DFT301-801X7R102S50 Murata L1 Chip Inductor 2.2 nH LL-2012 TOKO 6 Data Sheet PU10408EJ02V0DS PC8204TK 5. 2 f = 2.4 GHz 5. 2. 1 Test circuit 2 VAGC C6 VCC C8 1 000 pF 1 000 pF C7 1 000 pF C3 20 pF L1 100 nH 6 5 C5 IN 1 100 pF 4 C4 Strip line : 16 mm 100 pF OUT 2, 3 5. 2. 2 C2 2 pF C1 0.75 pF Illustration of the test circuit 2 assembled on evaluation board C8 VCC C5 C6 1 000 pF In 100 pF C7 1 000 pF C3 20 pF C4 L1 100 nH 100 pF Out 2 pF C2 5. 2. 3 0.75 pF C1 Component list Symbol Form Rating Part Number Maker C1 Chip Capacitor 0.75 pF GRM39 Murata C2 Chip Capacitor 2 pF GRM39 Murata C3 Chip Capacitor 20 pF GRM39 Murata C4, C5 Chip Capacitor 100 pF GRM39 Murata C6 Chip Capacitor 1 000 pF GRM39 Murata C7 Chip Capacitor 1 000 pF GRM40 Murata C8 Feed-through Capacitor 1 000 pF DFT301-801X7R102S50 Murata L1 Chip Inductor 100 nH LL-1608 TOKO Data Sheet PU10408EJ02V0DS 7 PC8204TK 6. TYPICAL CHARACTERISTICS (TA = +25C, unless otherwise specified) OUT BLOCK CURRENT AND VCC BLOCK CURRENT vs. GAIN CONTROL VOLTAGE 16 14 14 12 No signals Out Block Current Iout (mA) VCC Block Current IVCC (mA) Circuit Current ICC (mA) CIRCUIT CURRENT vs. SUPPLY VOLTAGE, GAIN CONTROL VOLTAGE 12 10 8 TA = +85C 6 TA = -40C TA = -25C 4 TA = +25C 2 0 0 1 2 3 4 10 3.3 V_lVCC 8 3.0 V_lVCC 2.7 V_lVCC 6 4 2.7 V_lout 2 0 0 Supply Voltage VCC (V), Gain Control Voltage VAGC (V) GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE Gain Control Current IAGC (A) 160 No signals 140 120 VCC = 2.7 V 100 80 VCC = 3.0 V 60 VCC = 3.3 V 40 20 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Gain Control Voltage VAGC (V) Remark The graphs indicate nominal characteristics. 8 3.0 V_lout 3.3 V_lout Data Sheet PU10408EJ02V0DS 1 2 3 Gain Control Voltage VAGC (V) 4 PC8204TK 6. 1 Inductor loading with external bias tee at output port S11-FREQUENCY 1: 45.092 -13.975 5.9941 pF 2: 41.508 -13.176 2.4 GHz S22-FREQUENCY 1 900.000 000 MHz 1: 39.719 -186.87 448.26 fF 2: 29.586 -161.26 2.4 GHz 1 900.000 000 MHz 11 2 1 2 VCC = VAGC = 3.0 V, Pin = -20 dBm VCC = VAGC = 3.0 V, Pin = -20 dBm START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S21-FREQUENCY S21 log MAG 10 dB/ REF 0 dB VCC = 3.0 V, 40 VAGC = 0, 3.0 V, Pin = -20 dBm 20 S11-FREQUENCY 1: 9.2875 dB f = 1.9 GHz 2: 9.2187 dB f = 2.4 GHz S11 log MAG 10 dB/ REF 0 dB f = 1.9 GHz 2: -18.5 dB f = 2.4 GHz VCC = 3.0 V, VAGC = 3.0 V, Pin = -20 dBm 40 1: - 18.309 dB 20 1 VAGC = 3.0 V STOP 3 100.000 000 MHz 2 0 0 1 -20 -20 2 VAGC = 0 V -40 -40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY S12 log MAG 40 10 dB/ REF 0 dB S22 log MAG 10 dB/ REF 0 dB 1: -1.2789 dB 1: -35.369 dB f = 1.9 GHz 2: -35.465 dB f = 2.4 GHz VCC = 3.0 V, VAGC = 3.0 V, Pin = -20 dBm STOP 3 100.000 000 MHz 20 20 0 0 f = 1.9 GHz 2: -1.4481 dB f = 2.4 GHz VCC = 3.0 V, VAGC = 3.0 V, Pin = -20 dBm 40 1 2 -20 -20 1 -40 -40 2 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 9 PC8204TK 6. 2 Output port matching at f = 1.9 GHz S11-FREQUENCY S22-FREQUENCY 1; 35.969 -23.434 3.5746 pF MARKER 1 1.9 GHz 1; 38.654 3.5234 295.14 pH MARKER 1 1.9 GHz 1 1 VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm STOP 3 100.000 000 MHz START 100.000 000 MHz START 100.000 000 MHz S11-FREQUENCY S21-FREQUENCY S21 40 log MAG 10 dB/ S11 log MAG REF 0 dB 1 : 14.578 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 1.9 GHz 10 dB/ REF 0 dB 1 : -11.017 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 40 1 20 VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm STOP 3 100.000 000 MHz 20 VAGC = 3.0 V 0 0 1 VAGC = 0 V -20 -20 -40 -40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY S12 log MAG 10 dB/ REF 0 dB 1 : -30.329 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 40 STOP 3 100.000 000 MHz S22 log MAG 10 dB/ 20 0 0 -20 -20 1 : -18.125 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 40 20 REF 0 dB 1 1 -40 -40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz Remark The graphs indicate nominal characteristics. 10 Data Sheet PU10408EJ02V0DS STOP 3 100.000 000 MHz PC8204TK S11-FREQUENCY S21-FREQUENCY S21 log MAG 2 dB/ VAGC = VCC (GPMAX), 18 Pin = -20 dBm MARKER 1 16 f = 1.9 GHz REF 0 dB 20 1 : 14.611 dB S11 log MAG 5 dB/ 20 REF 0 dB 1 : -11.014 dB VAGC = VCC (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 1 14 10 VCC = 3.3 V 12 10 0 VCC = 3.0 V 8 1 6 4 VCC = 2.7 V VCC = 3.0 V 2 0 START 100.000 000 MHz -20 VCC = 3.3 V STOP 3 100.000 000 MHz START 100.000 000 MHz S12 log MAG 10 dB/ REF 0 dB 1 : -30.494 dB VAGC = VCC (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz S22 log MAG 10 0 0 VCC = 3.3 V VCC = 3.0 V 1 5 dB/ REF 0 dB VCC = 2.7 to 3.3 V -10 1 -20 -40 START 100.000 000 MHz VCC = 2.7 V STOP 3 100.000 000 MHz 1 : -18.488 dB VAGC = VCC (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 20 20 -20 STOP 3 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY 40 VCC = 2.7 V -10 START 100.000 000 MHz STOP 3 100.000 000 MHz Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 11 PC8204TK S21-FREQUENCY S21 log MAG 20 18 16 2 dB/ S11-FREQUENCY REF 0 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz S11 log MAG 1 : 14.508 dB 20 1 TA = -40C 14 5 dB/ REF 0 dB 10 TA = +25C 12 0 10 TA = +25C 8 1 6 -10 4 TA = +85C 2 0 START 100.000 000 MHz TA = +85C TA = -40C -20 STOP 3 100.000 000 MHz START 100.000 000 MHz S12 log MAG 10 dB/ REF 0 dB S22 log MAG 1 : -29.584 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 10 0 0 1 TA = -40C TA = +25C -10 -20 TA = +85C STOP 3 100.000 000 MHz 1 : -17.378 dB TA = -40C TA = +25C TA = +85C START 100.000 000 MHz Remark The graphs indicate nominal characteristics. 12 REF 0 dB 1 -40 START 100.000 000 MHz 5 dB/ VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz 20 20 -20 STOP 3 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY 40 1 : -10.934 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 1.9 GHz Data Sheet PU10408EJ02V0DS STOP 3 100.000 000 MHz PC8204TK S11-FREQUENCY S21-FREQUENCY S21 log MAG 40 20 0 10 dB/ REF 0 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 1.9 GHz 1 : 14.513 dB VAGC = 3.0 V VAGC = 2.2 V 1 VAGC = 1.7 V VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V VAGC = 1.9 V S11 log MAG 10 dB/ REF 0 dB VCC = 3.0 V, 40 Pin = -20 dBm MARKER 1 f = 1.9 GHz 20 VAGC = 3.0 to 2.5 V VAGC = 2.1 V 0 -20 1 : -11.011 dB 1 -20 VAGC = 1.8 V VAGC = 1.1 V VAGC = 0 to 0.8 V -40 START 100.000 000 MHz -40 VAGC = 0 to 1.5 V START 100.000 000 MHz STOP 3 100.000 000 MHz S12-FREQUENCY S12 log MAG 10 dB/ REF 0 dB VCC = 3.0 V, 40 Pin = -20 dBm MARKER 1 f = 1.9 GHz STOP 3 100.000 000 MHz S22-FREQUENCY 1 : -30.587 dB S22 log MAG 20 20 10 0 0 5 dB/ REF 0 dB 1 : -18.049 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 1.9 GHz VAGC = 1.9 V VAGC = 1.5 V VAGC = 2.1 V VAGC = 3.0 to 2.4 V -20 1 VAGC = 0 to 1.4 V -10 VAGC = 3.0 to 2.6 V 1 VAGC = 0 to 1.1 V -20 -40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 13 PC8204TK POWER GAIN vs. GAIN CONTROL VOLTAGE 20 20 15 15 10 10 5 0 5 0 -5 Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V -10 -15 -20 -25 -30 -35 -40 0 1 2 3 4 TA = +25C TA = -25C -5 -10 -15 -20 TA = +85C -25 -30 -35 -40 Pin = -20 dBm f = 1.9 GHz TA = -40C 0 POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE 20 20 15 10 TA = +25C TA = +85C TA = -25C -5 -10 -15 -20 -25 1 2 Pin = -20 dBm, VCC = 3.0 V f = 1.9 GHz 3 4 Power Gain GP (dB) Power Gain GP (dB) 15 TA = -40C 5 0 -30 -35 -40 0 TA = +25C TA = +85C 5 0 -5 -10 -15 -20 -25 -30 -35 -40 0 Gain Control Voltage VAGC (V) 1 TA = -40C TA = -25C Pin = -20 dBm, VCC = 2.7 V f = 1.9 GHz 2 3 4 Gain Control Voltage VAGC (V) Remark The graphs indicate nominal characteristics. 14 2 Gain Control Voltage VAGC (V) Gain Control Voltage VAGC (V) 10 1 Pin = -20 dBm, VCC = 3.3 V f = 1.9 GHz 3 4 Data Sheet PU10408EJ02V0DS ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. INPUT POWER -35 -40 -45 -50 -55 TA = -40C, GPMAX TYP. f = 1.9 GHz 10 TA = -40C 3.3 VPadj 600 k 5 3.0 VPadj 600 k 3.3 VPO 3.0 VPO 0 2.7 VPadj 600 k -5 -60 -65 2.7 VPO -70 -10 2.7 VPadj 900 k -75 -80 3.3 VPadj 900 k -30 -25 -20 -15 Output Power Pout (dBm) -30 OUTPUT POWER vs. INPUT POWER 10 Output Power Pout (dBm) Adjacent Channel Power Leakage Padj (dBc) PC8204TK 5 TA = +25C TA = 85C 0 -5 -10 VCC = VAGC = 3.0 V f = 1.9 GHz 3.0 VPadj 900 k -15 -10 -5 0 -15 -30 -20 -10 0 10 Input Power Pin (dBm) Input Power Pin (dBm) 10 -30 TA = +25C, 3.3 VPO -35 GPMAX TYP. f = 1.9 GHz -40 3.3 VPadj 600 k -45 3.0 VPadj 600 k -50 5 0 -55 3.0 VPO -60 -65 -5 2.7 VPadj 600 k 2.7 VPO -10 -70 2.7 VPadj 900 k 3.3 VPadj 900 k -80 -30 -25 -20 -15 -75 3.0 VPadj 900 k -10 -5 Output Power Pout (dBm) Adjacent Channel Power Leakage Padj (dBc) ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. INPUT POWER -15 0 Input Power Pin (dBm) 10 -30 TA = +85C, -35 GPMAX TYP. -40 f = 1.9 GHz -45 -50 -55 3.3 VPO 3.0 VPO 2.7 VPadj 600 k 5 2.7 VPO 3.0 VPadj 600 k -60 3.3 VPadj 600 k -65 0 -5 -70 -10 -75 2.7 VPadj 900 k 3.0 VPadj 900 k -15 -10 -5 0 -80 3.3 VPadj 900 k -30 -25 -20 -15 Output Power Pout (dBm) Adjacent Channel Power Leakage Padj (dBc) ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. INPUT POWER Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 15 PC8204TK OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 20 10 VAGC = 3.3 V -10 10 VAGC = 1.9 V -20 .7 V =1 GC -30 VA VAGC = 0 V -40 VAGC = 1.5 V -50 -60 -30 Output Power Pout (dBm) Output Power Pout (dBm) 0 -10 VAGC = 1.6 V -20 C VAG -40 -60 -30 -20 OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 VAGC = 3.3 V -10 VAGC = 1.9 V -20 .7 V =1 GC VA -30 .5 V =1 GC VAGC = 0 V VA -40 -50 -60 -30 VAGC = 3.0 V 0 Output Power Pout (dBm) Output Power Pout (dBm) 0 -20 -10 VAGC = 1.7 V -20 -30 VAGC = 1.4 V -40 C VAG VAGC = 0 V .2 =1 V -50 VCC = 3.3 V, TA = +25C f = 1.9 GHz -10 0 10 -60 -30 VCC = 3.0 V, TA = +25C f = 1.9 GHz -10 0 10 -20 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 VAGC = 3.3 V 0 -10 VAGC = 2.0 V -20 .7 V -30 C VAG =1 VAGC = 0 V VAGC = 1.4 V -50 -60 -30 -10 0 -10 VAGC = 3.0 V VAGC = 1.7 V -20 -30 VAGC = 1.4 V -40 .2 V C AG =1 10 -60 -30 Input Power Pin (dBm) VAGC = 0 V V -50 VCC = 3.3 V, TA = +85C f = 1.9 GHz -20 Output Power Pout (dBm) 0 Output Power Pout (dBm) VCC = 3.0 V, TA = -40C f = 1.9 GHz -10 0 10 Input Power Pin (dBm) 10 -20 VCC = 3.0 V, TA = +85C f = 1.9 GHz -10 0 10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 16 VAGC = 0 V VAG Input Power Pin (dBm) -40 .4 V =1 .3 V =1 C -30 -50 VCC = 3.3 V, TA = -40C f = 1.9 GHz -10 0 10 -20 VAGC = 3.0 V 0 Data Sheet PU10408EJ02V0DS PC8204TK OUTPUT POWER vs. INPUT POWER 10 Output Power Pout (dBm) VAGC = 2.7 V 0 -10 VAGC = 1.4 V -20 .2 V =1 V .1 V =1 GC A V -30 C AG -40 -50 -60 -30 -20 VAGC = 0 V VCC = 2.7 V, TA = -40C f = 1.9 GHz -10 0 10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 10 Output Power Pout (dBm) 0 VAGC = 2.7 V VAGC = 1.5 V -10 -20 -30 VAGC = 1.2 V VAGC = 0 V .0 V =1 C -40 VAG -50 -60 -30 -20 VCC = 2.7 V, TA = +25C f = 1.9 GHz -10 0 10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 10 Output Power Pout (dBm) 0 VAGC = 2.7 V -10 VAGC = 1.5 V -20 -30 VAGC = 1.2 V -40 C VAG = VAGC = 0 V V 1.0 -50 VCC = 2.7 V, TA = +85C -60 -30 -20 -10 0 10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 17 Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 OIP3 10 0 Pout (f1, f2) -10 -20 -30 -40 PO (IM3) -50 -60 -70 -80 -30 -25 -20 -15 VCC = 3.3 V, VAGC = 3.3 V (GPMAX) f1 = 1 900 MHz f2 = 1 901 MHz, IM3 = 1 902 MHz, 1 899 MHz -10 -5 0 Input Power Pin (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) PC8204TK OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 0 10 0 -20 -30 -40 -60 -70 -80 -30 OIP3 Pout (f1, f2) -20 -30 PO (IM3) -50 -60 -70 -80 -30 -25 -20 -15 VCC = 2.7 V, VAGC = 2.7 V (GPMAX) f1 = 1 900 MHz f2 = 1 901 MHz, IM3 = 1 902 MHz, 1 899 MHz -10 -5 0 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 18 PO (IM3) -50 -10 -40 Pout (f1, f2) -10 OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 OIP3 10 Data Sheet PU10408EJ02V0DS -25 -20 -15 VCC = 3.0 V, VAGC = 3.0 V (GPMAX) f1 = 1 900 MHz f2 = 1 901 MHz IM3 = 1 902 MHz, 1 899 MHz -10 -5 0 Input Power Pin (dBm) 20 VCC = 3.0 V, 10 VAGC = 1.6 V, 0 GP = -1 dB OIP3 Pout (f1, f2) -10 -20 -30 -40 -50 PO (IM3) -60 -70 -80 -30 -25 -20 -15 f1 = 1 900 MHz f2 = 1 901 MHz, IM3 = 1 902 MHz, 1 899 MHz 0 -10 -5 Input Power Pin (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 VCC = 3.0 V, 10 VAGC = 1.2 V, 0 GP = -20 dB -10 -20 -30 OIP3 Pout (f1, f2) -40 -50 PO (IM3) -60 -70 -80 -30 -25 -20 -15 f1 = 1 900 MHz f2 = 1 901 MHz, IM3 = 1 902 MHz, 1 899 MHz 0 -10 -5 Input Power Pin (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) PC8204TK OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 VCC = 3.0 V, 10 VAGC = 1.4 V, 0 GP = -10 dB -10 OIP3 -20 Pout (f1, f2) -30 -40 -50 -60 PO (IM3) -70 -80 -30 -25 -20 -15 f1 = 1 900 MHz f2 = 1 901 MHz, IM3 = 1 902 MHz, 1 899 MHz 0 -10 -5 Input Power Pin (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 VCC = 3.0 V, 10 VAGC = 0 V, 0 GP = -28 dB f1 = 1 900 MHz -10 f2 = 1 901 MHz, IM3 = 1 902 MHz, -20 1 899 MHz -30 OIP3 Pout (f1, f2) -40 -50 -60 PO (IM3) -70 -80 -30 -25 -20 -15 -10 -5 0 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 19 PC8204TK -55 0 VCC = 3.3 V, Pin = -20 dBm -60 f = 1.9 GHz -10 -20 -65 -30 -70 600 k -40 900 k -75 -50 -80 -55 1 2 3 4 -55 -60 -65 -70 -40C 600 k +25C 600 k -40C 900 k +85C 600 k +85C 900 k +25C 900 k -75 -80 0 0 Pout -10 -70 -30 600 k 900 k -75 1 2 3 -40 4 -50 -55 -60 -65 -40C 600 k +85C 600 k -70 +25C 600 k +85C 900 k -75 +25C 900 k -40C 900 k -80 0 -20 -70 -30 600 k 900 k 2 3 -40 4 -50 Adjacent Channel Power Leakage Padj (dBc) -10 Output Power Pout (dBm) Adjacent Channel Power Leakage Padj (dBc) Pout -65 1 2 3 4 ADJACENT CHANNEL POWER LEAKAGE vs. GAIN CONTROL VOLTAGE 0 -75 1 Gain Control Voltage VAGC (V) -55 VCC = 2.7 V, Pin = -20 dBm -60 f = 1.9 GHz 4 VCC = 3.0 V, Pin = -20 dBm f = 1.9 GHz ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. GAIN CONTROL VOLTAGE -50 VCC = 2.7 V, Pin = -20 dBm f = 1.9 GHz -55 -60 +85C 900 k +25C 600 k -65 -70 -75 +85C 600 k -40C 900 k +25C 900 k -40C 600 k -80 Gain Control Voltage VAGC (V) 0 1 2 3 Gain Control Voltage VAGC (V) Remark The graphs indicate nominal characteristics. 20 3 -50 Gain Control Voltage VAGC (V) 0 2 ADJACENT CHANNEL POWER LEAKAGE vs. GAIN CONTROL VOLTAGE -20 -80 1 ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. GAIN CONTROL VOLTAGE -65 0 VCC = 3.3 V, Pin = -20 dBm f = 1.9 GHz Gain Control Voltage VAGC (V) VCC = 3.0 V, Pin = -20 dBm f = 1.9 GHz -60 -50 Gain Control Voltage VAGC (V) Adjacent Channel Power Leakage Padj (dBc) 0 -80 Output Power Pout (dBm) Pout Adjacent Channel Power Leakage Padj (dBc) ADJACENT CHANNEL POWER LEAKAGE vs. GAIN CONTROL VOLTAGE Output Power Pout (dBm) Adjacent Channel Power Leakage Padj (dBc) Adjacent Channel Power Leakage Padj (dBc) ADJACENT CHANNEL POWER LEAKAGE, OUTPUT POWER vs. GAIN CONTROL VOLTAGE Data Sheet PU10408EJ02V0DS 4 PC8204TK NOISE FIGURE vs. GAIN CONTROL VOLTAGE NOISE FIGURE vs. SUPPLY VOLTAGE 9 VAGC = VCC f = 1.9 GHz Noise Figure NF (dB) Noise Figure NF (dB) 8.5 25 VAGC = VCC f = 1.9 GHz 8 7.5 7 6.5 6 2.6 2.8 3 3.2 3.4 20 VCC = 3.3 V 15 3.0 V 2.7 V 10 5 0 Supply Voltage VCC (V) 0 1 2 3 4 Gain Control Voltage VAGC (V) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 21 PC8204TK 6. 3 Output port matching at f = 2.4 GHz S11-FREQUENCY S22-FREQUENCY 1: 35.053 -17.631 3.7613 pF MARKER 1 2.4 GHz 1: 49.477 -3.582 18.513 pF MARKER 1 2.4 GHz 1 1 VCC = 3.0 V, VAGC = 3.0 V (GPMAX) Pin = -20 dBm STOP 3 100.000 000 MHz START 100.000 000 MHz START 100.000 000 MHz S11-FREQUENCY S21-FREQUENCY 40 S21 log MAG 10 dB/ REF 0 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 2.4 GHz S11 log MAG 1 : 14.409 dB 40 1 20 VCC = 3.0 V, VAGC = 3.0 V (GPMAX) Pin = -20 dBm STOP 3 100.000 000 MHz 10 dB/ REF 0 dB 1 : -13.57 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 20 0 VAGC = 3.0 V 0 1 -20 VAGC = 0 V -20 -40 -40 -60 START 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY S12 log MAG 40 10 dB/ REF 0 dB S22 log MAG 1 : -29.904 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 40 20 20 0 0 -20 10 dB/ REF 0 dB 1 : -25.31 dB VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz -20 1 1 -40 -40 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz Remark The graphs indicate nominal characteristics. 22 STOP 3 100.000 000 MHz Data Sheet PU10408EJ02V0DS STOP 3 100.000 000 MHz PC8204TK S11-FREQUENCY S21-FREQUENCY S21 log MAG 2 dB/ REF 0 dB 20 VCC = 3.0 V, 18 VAGC = 3.0 V (GPMAX), Pin = -20 dBm 16 MARKER 1 f = 2.4 GHz 1: 14.353 dB TA = +25C 1 10 1 : -14.244 dB 10 14 12 S11 log MAG 5 dB/ REF 0 dB VCC = 3.0 V, 20 VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz TA = +85C TA = -40C 0 TA = +85C TA = +25C 1 8 -10 6 4 2 -20 TA = -40C 0 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S12-FREQUENCY S12 log MAG 10 dB/ REF 0 dB VCC = 3.0 V, 40 VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz S22-FREQUENCY 1 : -29.44 dB S22 log MAG 5 dB/ REF 0 dB 1 : -21.973 dB VCC = 3.0 V, 20 VAGC = 3.0 V (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 10 20 0 -20 STOP 3 100.000 000 MHz 0 TA = -40C TA = +25C TA = -40C -10 1 TA = +25C TA = +85C -20 -40 1 TA = +85C START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 23 PC8204TK S11-FREQUENCY S21-FREQUENCY S21 log 20 18 16 14 MAG 2 dB/ REF 0 dB 1: VCC = VAGC (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 14.384 dB S11 log MAG 5 dB/ REF 0 dB 1 : -13.523 dB VCC = VAGC (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 20 1 10 VCC = 3.3 V 12 10 0 VCC = 2.7 V 8 6 VCC = 3.0 V -10 1 4 VCC = 2.7 V 2 0 START 100.000 000 MHz VCC = 3.3 V VCC = 3.0 V -20 STOP 3 100.000 000 MHz START 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY S12 log MAG 10 dB/ 40 REF 0 dB 1 : -29.974 dB S22 log MAG 5 dB/ 10 0 0 VCC = 3.3 V VCC = 3.0 V -40 -20 STOP 3 100.000 000 MHz VCC = 2.7 to 3.3 V START 100.000 000 MHz Remark The graphs indicate nominal characteristics. 24 1 : -25.388 dB -10 1 VCC = 2.7 V START 100.000 000 MHz REF 0 dB VCC = VAGC (GPMAX), 20 Pin = -20 dBm MARKER 1 f = 2.4 GHz VCC = VAGC (GPMAX), Pin = -20 dBm MARKER 1 f = 2.4 GHz 20 -20 STOP 3 100.000 000 MHz Data Sheet PU10408EJ02V0DS 1 STOP 3 100.000 000 MHz PC8204TK S21-FREQUENCY S21 log 40 20 MAG 10 dB/ 1 : 14.448 dB REF 0 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 2.4 GHz S11-FREQUENCY VAGC = 3.0 V S11 log MAG 10 dB/ 1 1.9 V 20 VAGC = 2.0 V 1.6 V 0 0 -20 VAGC = 1.6 V 1 -20 1.2 -40 V 1.0 VAGC = 0 to 1.2 V V -40 VAGC = 3.0 to 2.7 V 0 to 0.7 V START 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S12 log MAG 10 dB/ REF 0 dB STOP 3 100.000 000 MHz S22-FREQUENCY S12-FREQUENCY 40 1 : -13.457 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 2.4 GHz 40 2.2 V 1.5 V 1.4 V 1.3 V REF 0 dB 1 : -29.693 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 2.4 GHz S22 log MAG 5 dB/ 20 20 10 0 0 REF 0 dB 1 : -25.329 dB VCC = 3.0 V, Pin = -20 dBm MARKER 1 f = 2.4 GHz VAGC = 0 to 1.6 V VAGC = 3.0 to 2.4 V -20 VAGC = 2.0 V VAGC = 0 to 1.5 V -10 1 VAGC = 2.3 V VAGC = 3.0 to 2.6 V -40 VAGC = 1.5 V -20 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 25 PC8204TK POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE 15 10 5 0 VCC = 2.7 V Power Gain GP (dB) Power Gain GP (dB) 20 VCC = 3.0 V -5 -10 -15 -20 -25 -30 -35 -40 VCC = 3.3 V Pin = -20 dBm, f = 2.4 GHz 0 1 2 3 4 20 15 10 5 0 TA = +25C -5 -10 TA = +85C -15 -20 TA = -25C -25 -30 -35 -40 0 1 TA = -40C VCC = 3.3 V, Pin = -20 dBm f = 2.4 GHz 2 3 4 Gain Control Voltage VAGC (V) Gain Control Voltage VAGC (V) POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE TA = -40C 15 10 5 0 Power Gain GP (dB) Power Gain GP (dB) 20 -5 -10 -15 -20 -25 -30 -35 -40 TA = +85C TA = +25C TA = -25C 1 2 3 4 TA = +85C TA = -25C -5 -10 -15 -20 -25 -30 -35 -40 VCC = 3.0 V, Pin = -20 dBm f = 2.4 GHz 0 20 15 10 5 0 TA = +25C TA = -40C VCC = 2.7 V, Pin = -20 dBm f = 2.4 GHz 0 1 2 3 4 Gain Control Voltage VAGC (V) Gain Control Voltage VAGC (V) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 5 Vcc = 3.3 V 0 Vcc = 3.0 V -5 Vcc = 2.7 V -10 Output Power Pout (dBm) Output Power Pout (dBm) TA = -40C 5 TA = +25C 0 TA = +85C -5 -10 VCC = VAGC f = 2.4 GHz -15 -30 -20 -10 0 VCC = VAGC = 3.0 V f = 2.4 GHz 10 -15 -30 Input Power Pin (dBm) -10 0 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 26 -20 Data Sheet PU10408EJ02V0DS 10 PC8204TK OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 0 VAGC = 3.0 V -10 VAGC = 1.8 V -20 VAGC = 1.6 V -30 VAGC = 1.5 V -40 -50 - 60 -30 -20 -10 VAGC = 0 V VCC = 3.3 V, TA = -40C f = 2.4 GHz 0 10 Output Power Pout (dBm) Output Power Pout (dBm) 0 VAGC = 3.3 V -10 VAGC = 1.6 V -20 -30 VAGC = 1.4 V VAGC = 1.3 V -40 -50 VAGC = 0 V -60 -30 Input Power Pin (dBm) -20 -10 VCC = 3.0 V, TA = -40C f = 2.4 GHz 0 10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 0 0 VAGC = 1.9 V -10 -20 -30 VAGC = 0 V VAGC = 1.5 V -40 VAGC = 1.7 V -50 -60 -30 -20 -10 Output Power Pout (dBm) Output Power Pout (dBm) VAGC = 3.3 V VCC = 3.3 V, TA = +25C f = 2.4 GHz 0 10 VAGC = 3.0 V -10 VAGC = 1.7 V -20 -30 VAGC = 1.4 V VAGC = 1.2 V -40 VAGC = 0 V -50 -60 -30 -20 -10 VCC = 3.0 V, TA = +25C f = 2.4 GHz 0 10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 10 VAGC = 3.3 V VAGC = 1.9 V -20 VAGC = 0 V -30 VAGC = 1.4 V -40 VAGC = 1.6 V -50 -60 -30 -20 -10 VCC = 3.3 V, TA = +85C f = 2.4 GHz 0 10 Output Power Pout (dBm) Output Power Pout (dBm) -10 VAGC = 3.0 V 0 0 -10 VAGC = 1.7 V -20 -30 VAGC = 1.4 V VAGC = 1.2 V -40 VAGC = 0 V -50 -60 -30 Input Power Pin (dBm) -20 -10 VCC = 3.0 V, TA = +85C f = 2.4 GHz 0 10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 27 PC8204TK OUTPUT POWER vs. INPUT POWER 10 VAGC = 2.7 V Output Power Pout (dBm) 0 -10 VAGC = 1.4 V -20 -30 VAGC = 1.2 V VAGC = 1.1 V VAGC = 0 V -40 -50 -60 -30 -20 -10 VCC = 2.7 V, TA = -40C f = 2.4 GHz 0 10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 10 VAGC = 2.7 V Output Power Pout (dBm) 0 -10 VAGC = 1.4 V -20 VAGC = 0 V -30 VAGC = 1.0 V -40 -50 -60 -30 -20 VAGC = 1.2 V VCC = 2.7 V, TA = +25C f = 2.4 GHz -10 0 10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 10 Output Power Pout (dBm) 0 VAGC = 2.7 V -10 VAGC= 1.5 V -20 VAGC = 0 V -30 VAGC = 1.0 V -40 VAGC = 1.2 V VCC = 2.7 V, TA = +85C f = 2.4 GHz -50 -60 -30 -20 -10 0 10 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. 28 Data Sheet PU10408EJ02V0DS Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 OIP3 10 0 Pout (f1, f2) -10 -20 -30 VCC = 3.3 V, VAGC = 3.3 V (GPMAX) f1 = 2 400 MHz f2 = 2 401 MHz, IM3 = 2 399 MHz, 2 402 MHz -40 -50 PO (IM3) -60 -70 -80 -30 -25 -20 -15 -10 -5 0 Input Power Pin (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) PC8204TK OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 OIP3 10 0 Pout (f1, f2) -10 -20 -30 -40 -50 -60 PO (IM3) -70 -80 -30 -25 -20 -15 VCC = 3.0 V, VAGC = 3.0 V (GPMAX) f1 = 2 400 MHz f2 = 2 401 MHz, IM3 = 2 399 MHz, 2 402 MHz -10 -5 0 Input Power Pin (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 10 OIP3 0 Pout (f1, f2) -10 -20 -30 -40 -50 PO (IM3) -60 -70 -80 -30 -25 -20 -15 VCC = 2.7 V, VAGC = 2.7 V (GPMAX) f1 = 2 400 MHz f2 = 2 401 MHz, IM3 = 2 399 MHz, 2 402 MHz -10 -5 0 Input Power Pin (dBm) Remark The graphs indicate nominal characteristics. Data Sheet PU10408EJ02V0DS 29 20 10 OIP3 0 Pout (f1, f2) -10 -20 -30 -40 PO (IM3) -50 f1 = 2 400 MHz f2 = 2 401 MHz, IM3 = 2 399 MHz, 2 402 MHz -60 VCC = 3.0 V, -70 VAGC = 1.6 V, GP = 0 dB -80 -30 -25 -20 -15 -10 -5 0 Input Power Pin (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 f1 = 2 400 MHz 10 f2 = 2 401 MHz, 0 IM3 = 2 399 MHz, 2 402 MHz -10 -20 OIP3 -30 Pout (f1, f2) -40 -50 PO (IM3) -60 VCC = 3.0 V -70 VAGC = 1.2 V GP = -20 dB -80 -30 -25 -20 -15 -10 -5 0 Input Power Pin (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) Output Power Pout (dBm) 3rd Order Intermodulation Distortion Power PO (IM3) (dBm) Output 3rd Order Intercept Point OIP3 (dBm) PC8204TK OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER 20 10 0 -10 OIP3 Pout (f1, f2) -20 -30 -40 -50 PO (IM3) VCC = 3.0 V, -70 VAGC = 1.4 V, GP = -9 dB -80 -30 -25 -20 -20 OIP3 -30 -40 Pout (f1, f2) -50 -60 VCC = 3.0 V, -70 VAGC = 0 V, GP = -28 dB -80 -30 -25 -20 Noise Figure NF (dB) Noise Figure NF (dB) -15 -10 -5 0 Input Power Pin (dBm) f = 2.4 GHz VCC = 3.0 V 20 VCC = 3.3 V 15 VCC = 2.7 V 10 5 0 2.8 3.0 3.2 3.4 Supply Voltage VCC (V) 0 1 2 3 Gain Control Voltage VAGC (V) Remark The graphs indicate nominal characteristics. 30 PO (IM3) NOISE FIGURE vs. GAIN CONTROL VOLTAGE 6.5 6.0 2.6 0 f1 = 2 400 MHz 10 f2 = 2 401 MHz, 0 IM3 = 2 399 MHz, 2 402 MHz -10 8.5 7.0 -5 20 25 7.5 -10 OUTPUT POWER, PO (IM3), OIP3 vs. INPUT POWER f = 2.4 GHz 8.0 -15 Input Power Pin (dBm) NOISE FIGURE vs. SUPPLY VOLTAGE 9.0 f1 = 2 400 MHz f2 = 2 401 MHz, IM3 = 2 399 MHz, 2 402 MHz -60 Data Sheet PU10408EJ02V0DS 4 PC8204TK 7. PACKAGE DIMENSIONS 6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm) (Bottom View) 0.160.05 0.480.05 0.480.05 1.10.1 0.20.1 0.90.1 0.11+0.1 -0.05 1.30.05 0.550.03 1.50.1 (Top View) Data Sheet PU10408EJ02V0DS 31 PC8204TK 8. NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to the VCC terminal. (4) Impedance matching circuit must be each externally attached to input and output ports. (5) The DC capacitor must be attached to input terminal. 9. RECOMMENDED SOLDERING CONDITIONS This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office. Soldering Method Infrared Reflow Wave Soldering Soldering Conditions Condition Symbol Peak temperature (package surface temperature) : 260C or below Time at peak temperature : 10 seconds or less Time at temperature of 220C or higher : 60 seconds or less Preheating time at 120 to 180C : 12030 seconds Maximum number of reflow processes : 3 times Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below Peak temperature (molten solder temperature) : 260C or below Time at peak temperature : 10 seconds or less IR260 WS260 Preheating temperature (package surface temperature) : 120C or below Partial Heating Maximum number of flow processes : 1 time Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below Peak temperature (terminal temperature) : 350C or below Soldering time (per side of device) : 3 seconds or less Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below Caution Do not use different soldering methods together (except for partial heating). 32 Data Sheet PU10408EJ02V0DS HS350 PC8204TK When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license. * The information in this document is current as of October, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. * No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. * NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. * Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. * While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. * NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4 - 0110 Data Sheet PU10408EJ02V0DS 33 PC8204TK For further information, please contact NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/ E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical) Sales Division TEL: +81-44-435-1573 FAX: +81-44-435-1579 NEC Compound Semiconductor Devices Hong Kong Limited E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general) FAX: +852-3107-7309 TEL: +852-3107-7303 Hong Kong Head Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859 Taipei Branch Office FAX: +82-2-558-5209 TEL: +82-2-558-2120 Korea Branch Office NEC Electronics (Europe) GmbH http://www.ee.nec.de/ TEL: +49-211-6503-0 FAX: +49-211-6503-1327 California Eastern Laboratories, Inc. http://www.cel.com/ TEL: +1-408-988-3500 FAX: +1-408-988-0279 0504 4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500 Facsimile: (408) 988-0279 Subject: Compliance with EU Directives CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE. CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb-free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive. This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information. Restricted Substance per RoHS Concentration Limit per RoHS (values are not yet fixed) Concentration contained in CEL devices -A Not Detected Lead (Pb) < 1000 PPM Mercury < 1000 PPM Not Detected Cadmium < 100 PPM Not Detected Hexavalent Chromium < 1000 PPM Not Detected PBB < 1000 PPM Not Detected PBDE < 1000 PPM Not Detected -AZ (*) If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative. Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis. See CEL Terms and Conditions for additional clarification of warranties and liability. Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: CEL: UPC8204TK-EV24 UPC8204TK-EV19