SINGLE-CHIP 5-PORT 10/100MBPS SWITCH
CONTROLLER WITH DUAL MII INTERFACES
DataSheet
Rev. 1.2
02 March 2005
Track ID: JATR-1076-21
RTL8305SC
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller ii Track ID: JATR-1076-21 Rev. 1.2
COPYRIGHT
©2005 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any
means without the written permission of Realtek Semiconductor Corp.
TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document
are trademarks/registered trademarks of their respective owners.
DISCLAIMER
Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied,
including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in
this document or in the product described in this document at any time. This document could include
technical inaccuracies or typographical errors.
USING THIS DOCUMENT
This document is intended for use by the software engineer when programming for Realtek RTL8305SC
controller chips. Information pertaining to the hardware design of products using these chips is contained
in a separate document.
Though every effort has been made to assure that this document is current and accurate, more information
may have become available subsequent to the production of this guide. In that event, please contact your
Realtek representative for additional information that may help in the development process.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller iii Track ID: JATR-1076-21 Rev. 1.2
REVISION HISTORY
Revision Release Date Summary
1.0 2004/06/17 First release.
Removed QoS function IPv6 differentiated services and removed Table 147, page 113. 1.1 2004/06/30
Revised LEDMODE[1:0]=00, in Table 4, page 14, Table 7, page 20, Table 19, page 30, and
Table 69, page 59.
Changed four combinations of LED mode to three combinations of LED display mode, page 3.
Corrected section 7.3.10 PHY 2 Register 23: “Port 2 Control Register 1” to “Global Option 1
Register”, page 71.
Revised pull low resister to 1k ohm, Table 5, page 16.
Revised PHY register in Table 64, page 55.
Changed Table 139’s name from PHY 0 to PHY 5, page 87.
Changed Table 140’s name from PHY 8 to PHY 5, page 88.
Add P4PHY_MODE select, in Table 143, page 103.
Corrected Pin52 MTXEN/PRXDV/EN_TRUNK to MTXEN/PRXDV, Pin92
LED_ACT[4]/DISFCAUTOOFF to LED_ACT[4], and Pin115 ENAGBACK/LED_DUP[0] to
LED_DUP[0], in Figure 2, page 7, and Table 1, page 8.
Canceled the description of Pin92 LED_ACT[4]/DISFCAUTOOFF and Pin115
ENAGBACK/LED_DUP[0], section 1, page 2, in Table 9, page 22, and section 8.3.10, page
123.
Reserved PHY 0 Register 18.7 and 18.15, in Table 68, page 58.
Reserved EEPROM Register 4.7, in Table 16, page 28 and Register 5.7, Table 17, page 29.
Corrected QoS based features, section 2, page 4.
Corrected 2SB1188K to 2SB1188 and HVDD18 to DVDD18, in Figure 24, page 132, and
Table 151, page 132.
Corrected “24LC02 must be 1.8Vcompatible” to “24LC02 must be 3.3Vcompatible”, section
8.3.3, page 117.
Corrected TTL Input High Voltage 1.5V to 2.0V and TTL Input Low Voltage 1.0V to 0.8V,
section 9.3, page 134.
Corrected PHY 4 register 18 description, in Table 124, page 81.
1.2 2005/03/02
Add 100Base-TX TD and RD Differential Output Impedance (return loss) columns and delete
10Base-TX TD and RD Differential Output Impedance (return loss) columns, in Section 9.4
AC Characteristics, page 135.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller iv Track ID: JATR-1076-21 Rev. 1.2
Table of Contents
1. GENERAL DESCRIPTION................................................................................................................................................1
2. FEATURES...........................................................................................................................................................................4
3. BLOCK DIAGRAM.............................................................................................................................................................6
4. PIN ASSIGNMENTS ...........................................................................................................................................................7
5. PIN DESCRIPTIONS ..........................................................................................................................................................9
5.1. MEDIA CONNECTION PINS............................................................................................................................................9
5.2. PORT 4 CONFIGURATION PINS ......................................................................................................................................9
5.3. PORT 4 MAC CIRCUIT INTERFACE PINS .....................................................................................................................14
5.4. PORT 4 PHY CIRCUIT INTERFACE PINS ......................................................................................................................16
5.5. MISCELLANEOUS PINS ...............................................................................................................................................19
5.6. PORT LED PINS .........................................................................................................................................................20
5.7. SERIAL EEPROM AND SMI PINS ..............................................................................................................................22
5.8. STRAPPING PINS.........................................................................................................................................................22
5.9. PORT STATUS STRAPPING PINS ...................................................................................................................................24
5.10. POWER PINS ...............................................................................................................................................................26
6. EEPROM DESCRIPTION................................................................................................................................................27
6.1. PORT 0 REGISTERS .....................................................................................................................................................27
6.1.1. Global Control Register0 .....................................................................................................................................27
6.1.2. Global Control Register1 .....................................................................................................................................27
6.1.3. Global Control Register2 .....................................................................................................................................28
6.1.4. Global Control Register3 .....................................................................................................................................28
6.1.5. Global Control Register4 .....................................................................................................................................28
6.1.6. Global Control Register5 .....................................................................................................................................29
6.1.7. Global Control Register6 .....................................................................................................................................29
6.1.8. Global Control Register7 .....................................................................................................................................30
6.1.9. Port 0 Control 0....................................................................................................................................................30
6.1.10. Port 0 Control 1....................................................................................................................................................31
6.1.11. Port 0 Control 2....................................................................................................................................................31
6.1.12. Port 0 Control 3....................................................................................................................................................31
6.1.13. Port 0 Control 4 & VLAN Entry [A].....................................................................................................................32
6.2. PORT 1 REGISTERS .....................................................................................................................................................33
6.2.1. Internal Use Register............................................................................................................................................33
6.2.2. Port 1 Control 0....................................................................................................................................................33
6.2.3. Port 1 Control 1....................................................................................................................................................34
6.2.4. Port 1 Control 2....................................................................................................................................................34
6.2.5. Port 1 Control 3....................................................................................................................................................34
6.2.6. Port 1 Control 4 & VLAN Entry [B].....................................................................................................................35
6.3. PORT 2 REGISTERS .....................................................................................................................................................36
6.3.1. Internal Use Register............................................................................................................................................36
6.3.2. Port 2 Control 0....................................................................................................................................................36
6.3.3. Port 2 Control 1....................................................................................................................................................37
6.3.4. Reserved ...............................................................................................................................................................37
6.3.5. Port 2 Control 2 & VLAN Entry [C] ....................................................................................................................38
6.4. PORT 3 REGISTERS .....................................................................................................................................................39
6.4.1. Switch MAC Address ............................................................................................................................................39
6.4.2. Port 3 Control 0....................................................................................................................................................39
6.4.3. Port 3 Control 1....................................................................................................................................................40
6.4.4. Reserved ...............................................................................................................................................................40
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller v Track ID: JATR-1076-21 Rev. 1.2
6.4.5. Port 3 Control 2 & VLAN Entry [D] ....................................................................................................................40
6.4.6. Internal Use Register............................................................................................................................................41
6.5. PORT 4 REGISTERS .....................................................................................................................................................42
6.5.1. Port 4 Control 0....................................................................................................................................................42
6.5.2. Port 4 Control 1....................................................................................................................................................42
6.5.3. Reserved ...............................................................................................................................................................43
6.5.4. Port 4 Control 2 & VLAN Entry [E].....................................................................................................................43
6.5.5. Internal Use Register............................................................................................................................................44
6.5.6. 802.1p Base Priority.............................................................................................................................................44
6.6. VLAN ENTRIES .........................................................................................................................................................44
6.6.1. VLAN Entry [F]....................................................................................................................................................44
6.6.2. VLAN Entry [G] ...................................................................................................................................................45
6.6.3. VLAN Entry [H] ...................................................................................................................................................45
6.6.4. VLAN Entry [I].....................................................................................................................................................46
6.6.5. VLAN Entry [J] ....................................................................................................................................................46
6.6.6. VLAN Entry [K]....................................................................................................................................................47
6.6.7. VLAN Entry [L] ....................................................................................................................................................47
6.6.8. VLAN Entry [M]...................................................................................................................................................48
6.6.9. VLAN Entry [N]....................................................................................................................................................48
6.6.10. VLAN Entry [O] ...................................................................................................................................................49
6.6.11. VLAN Entry [P]....................................................................................................................................................49
7. REGISTER DESCRIPTIONS ..........................................................................................................................................50
7.1. PHY 0 REGISTERS .....................................................................................................................................................53
7.1.1. PHY 0 Register 0 for Port 0: Control ...................................................................................................................53
7.1.2. PHY 0 Register 1 for Port 0: Status......................................................................................................................54
7.1.3. PHY 0 Register 2 for Port 0: PHY Identifier 1 .....................................................................................................54
7.1.4. PHY 0 Register 3 for Port 0: PHY Identifier 2 .....................................................................................................55
7.1.5. PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement ............................................................................55
7.1.6. PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner Ability...................................................................56
7.1.7. PHY 0 Register 16: Global Control 0...................................................................................................................56
7.1.8. PHY 0 Register 17: Global Control 1...................................................................................................................58
7.1.9. PHY 0 Register 18: Global Control 2...................................................................................................................58
7.1.10. PHY 0 Register 19: Global Control 3...................................................................................................................59
7.1.11. PHY 0 Register 22: Port 0 Control Register 0......................................................................................................60
7.1.12. PHY 0 Register 24: Port 0 Control Register 1 & VLAN ID [A] Membership ......................................................61
7.1.13. PHY 0 Register 25: Port 0 Control Register 2 & VLAN ID [A] ...........................................................................61
7.1.14. PHY 0 Register 26: Reserved or VLAN ID [F] Membership................................................................................62
7.1.15. PHY 0 Register 27: Reserved or VLAN ID [F].....................................................................................................62
7.1.16. PHY 0 Register 28: Reserved or VLAN ID [K] Membership................................................................................63
7.1.17. PHY 0 Register 29: Reserved or VLAN ID [K] ....................................................................................................63
7.1.18. PHY 0 Register 30: Reserved or VLAN ID [P] Membership................................................................................64
7.1.19. PHY 0 Register 31: Reserved or VLAN ID [P].....................................................................................................64
7.2. PHY 1 REGISTERS .....................................................................................................................................................65
7.2.1. PHY 1 Register 0 for Port 1: Control ...................................................................................................................65
7.2.2. PHY 1 Register 1 for Port 1: Status......................................................................................................................65
7.2.3. PHY 1 Register 2 for Port 1: PHY Identifier 1 .....................................................................................................65
7.2.4. PHY 1 Register 3 for Port 1: PHY Identifier 2 .....................................................................................................65
7.2.5. PHY 1 Register 4 for Port 1: Auto-Negotiation Advertisement ............................................................................65
7.2.6. PHY 1 Register 5 for Port 1: Auto-Negotiation Link Partner Ability...................................................................65
7.2.7. PHY 1 Register 16~17: Internal Use Register......................................................................................................65
7.2.8. PHY 1 Register 18~19: Internal Use Register......................................................................................................65
7.2.9. PHY 1 Register 22: Port 1 Control Register 0......................................................................................................66
7.2.10. PHY 1 Register 23: Global Option Register 0......................................................................................................66
7.2.11. PHY 1 Register 24: Port 1 Control Register 1 & VLAN ID [B] Membership ......................................................66
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller vi Track ID: JATR-1076-21 Rev. 1.2
7.2.12. PHY 1 Register 25: Port 1 Control Register 2 & VLAN ID [B] ...........................................................................67
7.2.13. PHY 1 Register 26: Reserved or VLAN ID [G] Membership ...............................................................................67
7.2.14. PHY 1 Register 27: Reserved or VLAN ID [G] ....................................................................................................68
7.2.15. PHY 1 Register 28: Reserved or VLAN ID [L] Membership................................................................................68
7.2.16. PHY 1 Register 29: Reserved or VLAN ID [L].....................................................................................................69
7.3. PHY 2 REGISTERS .....................................................................................................................................................70
7.3.1. PHY 2 Register 0 for Port 2: Control ...................................................................................................................70
7.3.2. PHY 2 Register 1 for Port 2: Status......................................................................................................................70
7.3.3. PHY 2 Register 2 for Port 2: PHY Identifier 1 .....................................................................................................70
7.3.4. PHY 2 Register 3 for Port 2: PHY Identifier 2 .....................................................................................................70
7.3.5. PHY 2 Register 4 for Port 2: Auto-Negotiation Advertisement ............................................................................70
7.3.6. PHY 2 Register 5 for Port 2: Auto-Negotiation Link Partner Ability...................................................................70
7.3.7. PHY 2 Register 16~17: Internal Use Register......................................................................................................70
7.3.8. PHY 2 Register 18~19: Internal Use Register......................................................................................................70
7.3.9. PHY 2 Register 22: Port 2 Control Register 0......................................................................................................71
7.3.10. PHY 2 Register 23: Global Option 1 Register......................................................................................................71
7.3.11. PHY 2 Register 24: Port 2 Control Register 2 & VLAN ID [C] Membership ......................................................71
7.3.12. PHY 2 Register 25: Port 2 Control Register 3 & VLAN ID [C] ...........................................................................72
7.3.13. PHY 2 Register 26: Reserved or VLAN ID [H] Membership ...............................................................................72
7.3.14. PHY 2 Register 27: Reserved or VLAN ID [H] ....................................................................................................73
7.3.15. PHY 2 Register 28: Reserved or VLAN ID [M] Membership...............................................................................73
7.3.16. PHY 2 Register 29: Reserved or VLAN ID [M]....................................................................................................74
7.4. PHY 3 REGISTERS .....................................................................................................................................................75
7.4.1. PHY 3 Register 0 for Port 3: Control ...................................................................................................................75
7.4.2. PHY 3 Register 1 for Port 3: Status......................................................................................................................75
7.4.3. PHY 3 Register 2 for Port 3: PHY Identifier 1 .....................................................................................................75
7.4.4. PHY 3 Register 3 for Port 3: PHY Identifier 2 .....................................................................................................75
7.4.5. PHY 3 Register 4 for Port 3: Auto-Negotiation Advertisement ............................................................................75
7.4.6. PHY 3 Register 5 for Port 3: Auto-Negotiation Link Partner Ability...................................................................75
7.4.7. PHY 3 Register 16~18: Switch MAC Address ......................................................................................................75
7.4.8. PHY 3 Register 19~21: Internal Use Register......................................................................................................76
7.4.9. PHY 3 Register 22: Port 3 Control Register 0......................................................................................................76
7.4.10. PHY 3 Register 24: Port 3 Control Register 1 & VLAN ID [D] Membership ......................................................76
7.4.11. PHY 3 Register 25: Port 3 Control Register 2 & VLAN ID [D]...........................................................................77
7.4.12. PHY 3 Register 26: Reserved or VLAN ID [I] Membership.................................................................................77
7.4.13. PHY 3 Register 27: Reserved or VLAN ID [I]......................................................................................................78
7.4.14. PHY 3 Register 28: Reserved or VLAN ID [N] Membership................................................................................78
7.4.15. PHY 3 Register 29: Reserved or VLAN ID [N] ....................................................................................................79
7.5. PHY 4 REGISTERS .....................................................................................................................................................80
7.5.1. PHY 4 Register 0 for Port 4: Control ...................................................................................................................80
7.5.2. PHY 4 Register 1 for Port 4: Status......................................................................................................................80
7.5.3. PHY 4 Register 2 for Port 4: PHY Identifier 1 .....................................................................................................80
7.5.4. PHY 4 Register 3 for Port 4: PHY Identifier 2 .....................................................................................................80
7.5.5. PHY 4 Register 4 for Port 4: Auto-Negotiation Advertisement ............................................................................80
7.5.6. PHY 4 Register 5 for Port 4: Auto-Negotiation Link Partner Ability...................................................................80
7.5.7. PHY 4 Register 16: Indirect Access Control.........................................................................................................80
7.5.8. PHY 4 Register 17~20: Indirect Access Data.......................................................................................................81
7.5.9. PHY 4 Register 21: 802.1p Base Priority.............................................................................................................81
7.5.10. PHY 4 Register 22: Port 4 Control Register 0......................................................................................................82
7.5.11. PHY 4 Register 24: Port 4 Control Register 1 & VLAN ID [E] Membership ......................................................82
7.5.12. PHY 4 Register 25: Port 4 Control Register 2 & VLAN ID [E] ...........................................................................83
7.5.13. PHY 4 Register 26: Reserved or VLAN ID [J] Membership ................................................................................83
7.5.14. PHY 4 Register 27: Reserved or VLAN ID [J] .....................................................................................................84
7.5.15. PHY 4 Register 28: Reserved or VLAN ID [O] Membership ...............................................................................84
7.5.16. PHY 4 Register 29: Reserved or VLAN ID [O] ....................................................................................................85
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller vii Track ID: JATR-1076-21 Rev. 1.2
7.6. PHY 5 REGISTERS .....................................................................................................................................................86
7.6.1. PHY 5 Register 0 for Port 4 MAC: Control..........................................................................................................86
7.6.2. PHY 5 Register 1 for Port 4 MAC: Status ............................................................................................................87
7.6.3. PHY 5 Register 2 for Port 4 MAC: PHY Identifier 1 ............................................................................................87
7.6.4. PHY 5 Register 3 for Port 4 MAC: PHY Identifier 2 ............................................................................................87
7.6.5. PHY 5 Register 4 for Port 4 MAC: Auto-Negotiation Advertisement...................................................................88
7.6.6. MII Port NWay Mode ...........................................................................................................................................89
7.6.7. MII Port Force Mode ...........................................................................................................................................89
8. FUNCTIONAL DESCRIPTION.......................................................................................................................................90
8.1. SWITCH CORE FUNCTIONAL OVERVIEW.....................................................................................................................90
8.1.1. Applications..........................................................................................................................................................90
8.1.2. Port 4....................................................................................................................................................................90
8.1.3. Port Status Configuration.....................................................................................................................................94
8.1.4. Flow Control ........................................................................................................................................................95
8.1.5. Address Search, Learning, and Aging ..................................................................................................................97
8.1.6. Address Direct Mapping Mode.............................................................................................................................97
8.1.7. Half Duplex Operation .........................................................................................................................................98
8.1.8. InterFrame Gap....................................................................................................................................................98
8.1.9. Illegal Frame........................................................................................................................................................98
8.1.10. Dual MII Interface................................................................................................................................................99
8.2. PHYSICAL LAYE R FUNCTIONAL OVERVIEW..............................................................................................................110
8.2.1. Auto-Negotiation for UTP .................................................................................................................................. 110
8.2.2. 10Base-T Transmit Function .............................................................................................................................. 110
8.2.3. 10Base-T Receive Function ................................................................................................................................ 111
8.2.4. Link Monitor....................................................................................................................................................... 111
8.2.5. 100Base-TX Transmit Function.......................................................................................................................... 111
8.2.6. 100Base-TX Receive Function............................................................................................................................ 111
8.2.7. 100Base-FX........................................................................................................................................................ 111
8.2.8. 100Base-FX Transmit Function.......................................................................................................................... 112
8.2.9. 100Base-FX Receive Function ........................................................................................................................... 112
8.2.10. 100Base-FX FEFI .............................................................................................................................................. 112
8.2.11. Reduced Fiber Interface ..................................................................................................................................... 113
8.2.12. Power Saving Mode............................................................................................................................................ 113
8.2.13. Reg0.11 Power-Down Mode............................................................................................................................... 114
8.2.14. Crossover Detection and Auto Correction.......................................................................................................... 114
8.2.15. Polarity Detection and Correction ..................................................................................................................... 114
8.3. ADVANCED FUNCTIONAL OVERVIEW .......................................................................................................................115
8.3.1. Reset ................................................................................................................................................................... 115
8.3.2. Setup and Configuration..................................................................................................................................... 116
8.3.3. Serial EEPROM Example: 24LC02.................................................................................................................... 117
8.3.4. SMI ..................................................................................................................................................................... 119
8.3.5. Head-Of-Line Blocking ...................................................................................................................................... 119
8.3.6. Port-Based VLAN ............................................................................................................................................... 119
8.3.7. IEEE 802.1Q Tagged-VID Based VLAN.............................................................................................................121
8.3.8. Port VID (PVID).................................................................................................................................................122
8.3.9. Lookup Table Access...........................................................................................................................................123
8.3.10. QoS Function......................................................................................................................................................123
8.3.11. Insert/Remove VLAN Tag....................................................................................................................................125
8.3.12. Filtering/Forwarding Reserved Control Frame .................................................................................................125
8.3.13. Broadcast Storm Control ....................................................................................................................................126
8.3.14. Broadcast In/Out Drop .......................................................................................................................................126
8.3.15. Loop Detection ...................................................................................................................................................127
8.3.16. MAC Local Loopback Return to External ..........................................................................................................128
8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal...........................................................................................129
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller viii Track ID: JATR-1076-21 Rev. 1.2
8.3.18. LEDs...................................................................................................................................................................129
8.3.19. 1.8V Power Generation ......................................................................................................................................132
8.3.20. Crystal/Oscillator...............................................................................................................................................132
9. CHARACTERISTICS .....................................................................................................................................................133
9.1. ABSOLUTE MAXIMUM RATI NG S ...............................................................................................................................133
9.2. OPERATING RANGE ..................................................................................................................................................133
9.3. DC CHARACTERISTICS.............................................................................................................................................134
9.4. AC CHARACTERISTICS.............................................................................................................................................135
9.5. DIGITAL TIMING CHARACTERISTICS.........................................................................................................................136
9.6. THERMAL CHARACTERISTICS...................................................................................................................................139
9.6.1. Package Description ..........................................................................................................................................139
9.6.2. PCB Description.................................................................................................................................................139
9.6.3. Assembly Material..............................................................................................................................................139
9.6.4. Simulation Analysis Conditions..........................................................................................................................140
9.6.5. Results ................................................................................................................................................................140
10. APPLICATION INFORMATION..............................................................................................................................141
10.1. UTP (10BASE-T/100BASE-TX) APPLICATION .........................................................................................................141
10.2. 100BASE-FX APPLICATION ......................................................................................................................................143
11. DESIGN AND LAYOUT GUIDE................................................................................................................................145
12. MECHANICAL DIMENSIONS .................................................................................................................................147
12.1. MECHANICAL DIMENSIONS NOTES ..........................................................................................................................148
13. ORDERING INFORMATION....................................................................................................................................148
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller ix Track ID: JATR-1076-21 Rev. 1.2
List of Tables
TABLE 1. PIN ASSIGNMENTS..........................................................................................................................................................8
TABLE 2. MEDIA CONNECTION PINS .............................................................................................................................................9
TABLE 3. PORT 4 CONFIGURATION PIN DEFINITIONS.....................................................................................................................9
TABLE 4. PORT 4 MAC CIRCUIT INTERFACE PIN DEFINITIONS ...................................................................................................14
TABLE 5. PORT 4 PHY CIRCUIT INTERFACE PIN DEFINITIONS.....................................................................................................16
TABLE 6. MISCELLANEOUS PINS .................................................................................................................................................19
TABLE 7. PORT LED PINS ...........................................................................................................................................................20
TABLE 8. SERIAL EEPROM AND SMI PINS ................................................................................................................................22
TABLE 9. STRAPPING PINS...........................................................................................................................................................22
TABLE 10. PORT STATUS STRAPPING PINS .....................................................................................................................................24
TABLE 11. POWER PINS .................................................................................................................................................................26
TABLE 12. GLOBAL CONTROL REGISTER0 ....................................................................................................................................27
TABLE 13. GLOBAL CONTROL REGISTER1 ....................................................................................................................................27
TABLE 14. GLOBAL CONTROL REGISTER2 ....................................................................................................................................28
TABLE 15. GLOBAL CONTROL REGISTER3 ....................................................................................................................................28
TABLE 16. GLOBAL CONTROL REGISTER4 ....................................................................................................................................28
TABLE 17. GLOBAL CONTROL REGISTER5 ....................................................................................................................................29
TABLE 18. GLOBAL CONTROL REGISTER6 ....................................................................................................................................29
TABLE 19. GLOBAL CONTROL REGISTER 7....................................................................................................................................30
TABLE 20. PORT 0 CONTROL 0 ......................................................................................................................................................30
TABLE 21. PORT 0 CONTROL 1 ......................................................................................................................................................31
TABLE 22. PORT 0 CONTROL 2 ......................................................................................................................................................31
TABLE 23. PORT 0 CONTROL 3 ......................................................................................................................................................31
TABLE 24. PORT 0 CONTROL 4 & VLAN ENTRY [A] ....................................................................................................................32
TABLE 25. INTERNAL USE REGISTER.............................................................................................................................................33
TABLE 26. PORT 1 CONTROL 0 ......................................................................................................................................................33
TABLE 27. PORT 1 CONTROL 1 ......................................................................................................................................................34
TABLE 28. PORT 1 CONTROL 2 ......................................................................................................................................................34
TABLE 29. PORT 1 CONTROL 2 ......................................................................................................................................................34
TABLE 30. PORT 1 CONTROL 4 & VLAN ENTRY [B] ....................................................................................................................35
TABLE 31. INTERNAL USE REGISTER.............................................................................................................................................36
TABLE 32. PORT 2 CONTROL 0 ......................................................................................................................................................36
TABLE 33. PORT 2 CONTROL 1 ......................................................................................................................................................37
TABLE 34. RESERVED....................................................................................................................................................................37
TABLE 35. PORT 2 CONTROL 2 & VLAN ENTRY [C] ....................................................................................................................38
TABLE 36. SWITCH MAC ADDRESS ..............................................................................................................................................39
TABLE 37. PORT 3 CONTROL 0 ......................................................................................................................................................39
TABLE 38. PORT 3 CONTROL 1 ......................................................................................................................................................40
TABLE 39. RESERVED....................................................................................................................................................................40
TABLE 40. PORT 3 CONTROL 2 & VLAN ENTRY [D] ....................................................................................................................40
TABLE 41. INTERNAL USE REGISTER.............................................................................................................................................41
TABLE 42. PORT 4 CONTROL 0 ......................................................................................................................................................42
TABLE 43. PORT 4 CONTROL 1 ......................................................................................................................................................42
TABLE 44. RESERVED....................................................................................................................................................................43
TABLE 45. PORT 4 CONTROL 2 & VLAN ENTRY [E].....................................................................................................................43
TABLE 46. INTERNAL USE REGISTER.............................................................................................................................................44
TABLE 47. 802.1P BASE PRIORITY.................................................................................................................................................44
TABLE 48. VLAN ENTRY [F] ........................................................................................................................................................44
TABLE 49. VLAN ENTRY [G] .......................................................................................................................................................45
TABLE 50. VLAN ENTRY [H] .......................................................................................................................................................45
TABLE 51. VLAN ENTRY [I] .........................................................................................................................................................46
TABLE 52. VLAN ENTRY [J].........................................................................................................................................................46
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller x Track ID: JATR-1076-21 Rev. 1.2
TABLE 53. VLAN ENTRY [K] .......................................................................................................................................................47
TABLE 54. VLAN ENTRY [L]........................................................................................................................................................47
TABLE 55. VLAN ENTRY [M].......................................................................................................................................................48
TABLE 56. VLAN ENTRY [N] .......................................................................................................................................................48
TABLE 57. VLAN ENTRY [O] .......................................................................................................................................................49
TABLE 58. VLAN ENTRY [P] ........................................................................................................................................................49
TABLE 59. REGISTER DESCRIPTIONS .............................................................................................................................................50
TABLE 60. PHY 0 REGISTER 0: CONTROL.....................................................................................................................................53
TABLE 61. PHY 0 REGISTER 1: STATUS ........................................................................................................................................54
TABLE 62. PHY 0 REGISTER 2: PHY IDENTIFIER 1 .......................................................................................................................54
TABLE 63. PHY 0 REGISTER 3: PHY IDENTIFIER 2 .......................................................................................................................55
TABLE 64. PHY 0 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ........................................................................................55
TABLE 65. PHY 0 REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY ..............................................................................56
TABLE 66. PHY 0 REGISTER 16: GLOBAL CONTROL 0..................................................................................................................56
TABLE 67. PHY 0 REGISTER 17: GLOBAL CONTROL 1..................................................................................................................58
TABLE 68. PHY 0 REGISTER 18: GLOBAL CONTROL 2..................................................................................................................58
TABLE 69. PHY 0 REGISTER 19: GLOBAL CONTROL 3..................................................................................................................59
TABLE 70. PHY 0 REGISTER 22: PORT 0 CONTROL REGISTER 0 ...................................................................................................60
TABLE 71. PHY 0 REGISTER 24: PORT 0 CONTROL REGISTER 1 & VLAN ID [A] MEMBERSHIP .................................................61
TABLE 72. PHY 0 REGISTER 25: PORT 0 REGISTER CONTROL 2 & VLAN ID [A]........................................................................61
TABLE 73. PHY 0 REGISTER 26: RESERVED REGISTER .................................................................................................................62
TABLE 74. PHY 0 REGISTER 26: VLAN ID [F] MEMBERSHIP ......................................................................................................62
TABLE 75. PHY 0 REGISTER 27: RESERVED REGISTER .................................................................................................................62
TABLE 76. PHY 0 REGISTER 27: VLAN ID [F] ............................................................................................................................62
TABLE 77. PHY 0 REGISTER 28: RESERVED REGISTER .................................................................................................................63
TABLE 78. PHY 0 REGISTER 28: VLAN ID [K] MEMBERSHIP .....................................................................................................63
TABLE 79. PHY 0 REGISTER 29: RESERVED REGISTER .................................................................................................................63
TABLE 80. PHY 0 REGISTER 29: VLAN ID [K]............................................................................................................................63
TABLE 81. PHY 0 REGISTER 30: RESERVED REGISTER .................................................................................................................64
TABLE 82. PHY 0 REGISTER 30: VLAN ID [P] MEMBERSHIP ......................................................................................................64
TABLE 83. PHY 0 REGISTER 31: RESERVED REGISTER .................................................................................................................64
TABLE 84. PHY 0 REGISTER 31: VLAN ID [P] ............................................................................................................................64
TABLE 85. PHY 1 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................65
TABLE 86. PHY 1 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................65
TABLE 87. PHY 1 REGISTER 23: GLOBAL OPTION REGISTER 0.....................................................................................................66
TABLE 88. PHY 1 REGISTER 24: PORT 1 CONTROL REGISTER 1 & VLAN ID [B] MEMBERSHIP..................................................66
TABLE 89. PHY 1 REGISTER 25: PORT 1 CONTROL REGISTER 2 & VLAN ENTRY [B]..................................................................67
TABLE 90. PHY 1 REGISTER 26: RESERVED REGISTER .................................................................................................................67
TABLE 91. PHY 1 REGISTER 26: VLAN ID [G] MEMBERSHIP .....................................................................................................67
TABLE 92. PHY 1 REGISTER 27: RESERVED REGISTER .................................................................................................................68
TABLE 93. PHY 1 REGISTER 27: VLAN ID [G]............................................................................................................................68
TABLE 94. PHY 1 REGISTER 28: RESERVED REGISTER .................................................................................................................68
TABLE 95. PHY 1 REGISTER 28: VLAN ID [L] MEMBERSHIP......................................................................................................68
TABLE 96. PHY 1 REGISTER 29: RESERVED REGISTER .................................................................................................................69
TABLE 97. PHY 1 REGISTER 29: VLAN ID [L] ............................................................................................................................69
TABLE 98. PHY 2 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................70
TABLE 99. PHY 2 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................70
TABLE 100. PHY 2 REGISTER 23: GLOBAL OPTION REGISTER 1...................................................................................................71
TABLE 101. PHY 2 REGISTER 24: PORT 2 CONTROL REGISTER 2 & VLAN ID [C] MEMBERSHIP................................................71
TABLE 102. PHY 2 REGISTER 25: PORT 2 CONTROL REGISTER 3 & VLAN ID [C]......................................................................72
TABLE 103. PHY 2 REGISTER 26: RESERVED REGISTER ...............................................................................................................72
TABLE 104. PHY 2 REGISTER 26: VLAN ID [H] MEMBERSHIP ...................................................................................................72
TABLE 105. PHY 2 REGISTER 27: RESERVED REGISTER ...............................................................................................................73
TABLE 106. PHY 2 REGISTER 27: VLAN ID [H]..........................................................................................................................73
TABLE 107. PHY 2 REGISTER 28: RESERVED REGISTER ...............................................................................................................73
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller xi Track ID: JATR-1076-21 Rev. 1.2
TABLE 108. PHY 2 REGISTER 28: VLAN ID [M] MEMBERSHIP...................................................................................................73
TABLE 109. PHY 2 REGISTER 29: RESERVED REGISTER ...............................................................................................................74
TABLE 110. PHY 2 REGISTER 29: VLAN ID [M] .........................................................................................................................74
TABLE 111. PHY 3 REGISTER 16~18: SWITCH MAC ADDRESS ....................................................................................................75
TABLE 112. PHY 3 REGISTER 19~21: INTERNAL USE REGISTER ..................................................................................................76
TABLE 113. PHY 3 REGISTER 24: PORT 3 CONTROL REGISTER 1 & VLAN ID [D] MEMBERSHIP................................................76
TABLE 114. PHY 3 REGISTER 25: PORT 3 CONTROL REGISTER 2 & VLAN ID [D]......................................................................77
TABLE 115. PHY 3 REGISTER 26: RESERVED REGISTER ...............................................................................................................77
TABLE 116. PHY 3 REGISTER 26: VLAN ID [I] MEMBERSHIP .....................................................................................................77
TABLE 117. PHY 3 REGISTER 27: RESERVED REGISTER ...............................................................................................................78
TABLE 118. PHY 3 REGISTER 27: VLAN ID [I] ...........................................................................................................................78
TABLE 119. PHY 3 REGISTER 28: RESERVED REGISTER ...............................................................................................................78
TABLE 120. PHY 3 REGISTER 28: VLAN ID [N] MEMBERSHIP ...................................................................................................78
TABLE 121. PHY 3 REGISTER 29: RESERVED REGISTER ...............................................................................................................79
TABLE 122. PHY 3 REGISTER 29: VLAN ID [N]..........................................................................................................................79
TABLE 123. PHY 4 REGISTER 16: INDIRECT ACCESS CONTROL....................................................................................................80
TABLE 124. PHY 4 REGISTER 17~20: INDIRECT ACCESS DATA ....................................................................................................81
TABLE 125. PHY 2 REGISTER 20: 802.1P BASE PRIORITY ............................................................................................................81
TABLE 126. PHY 4 REGISTER 24: PORT 4 CONTROL REGISTER 1 & VLAN ID [E] MEMBERSHIP ................................................82
TABLE 127. PHY 4 REGISTER 25: PORT 4 CONTROL REGISTER 2 & VLAN ID [E] ......................................................................83
TABLE 128. PHY 4 REGISTER 26: RESERVED REGISTER ...............................................................................................................83
TABLE 129. PHY 4 REGISTER 26: VLAN ID [J] MEMBERSHIP.....................................................................................................83
TABLE 130. PHY 4 REGISTER 27: RESERVED REGISTER ...............................................................................................................84
TABLE 131. PHY 4 REGISTER 27: VLAN ID [J]...........................................................................................................................84
TABLE 132. PHY 4 REGISTER 28: RESERVED REGISTER ...............................................................................................................84
TABLE 133. PHY 4 REGISTER 28: VLAN ID [O] MEMBERSHIP ...................................................................................................84
TABLE 134. PHY 4 REGISTER 29: RESERVED REGISTER ...............................................................................................................85
TABLE 135. PHY 4 REGISTER 29: VLAN ID [O]..........................................................................................................................85
TABLE 136. PHY 5 REGISTER 0: CONTROL...................................................................................................................................86
TABLE 137. PHY 5 REGISTER 1: STATUS ......................................................................................................................................87
TABLE 138. PHY 5 REGISTER 2: PHY IDENTIFIER 1 .....................................................................................................................87
TABLE 139. PHY 5 REGISTER 3: PHY IDENTIFIER 2 .....................................................................................................................87
TABLE 140. PHY 5 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ......................................................................................88
TABLE 141. MII PORT NWAY MODE .............................................................................................................................................89
TABLE 142. MII PORT FORCE MODE.............................................................................................................................................89
TABLE 143. MII REGISTER DEFINITION FOR PHY 4 AND PHY 5.................................................................................................103
TABLE 144. PECL DC CHARACTERISTICS ..................................................................................................................................112
TABLE 145. SMI READ/WRITE CYCLES ......................................................................................................................................119
TABLE 146. 802.1Q VLAN TAG FRAME FORMAT .......................................................................................................................124
TABLE 147. IPV4 FRAME FORMAT ..............................................................................................................................................124
TABLE 148. RESERVED MULTICAST ADDRESS .............................................................................................................................125
TABLE 149. LOOP FRAME FORMAT..............................................................................................................................................127
TABLE 150. SPD AND BI-COLOR LINK/ACT TRUTH TABLE ..........................................................................................................130
TABLE 151. AN EXAMPLE USING POWER TRANSISTOR 2SB1188................................................................................................132
TABLE 152. ELECTRICAL CHARACTERISTICS/RATINGS ...............................................................................................................133
TABLE 153. LED TIMING ............................................................................................................................................................136
TABLE 154. MII & SMI DC TIMING...........................................................................................................................................137
TABLE 155. PACKAGE DESCRIPTION ...........................................................................................................................................139
TABLE 156. PCB DESCRIPTION ...................................................................................................................................................139
TABLE 157. ASSEMBLY MATE R I A L ..............................................................................................................................................139
TABLE 158. SIMULATION ANALYSIS CONDITIONS .......................................................................................................................140
TABLE 159. RESULTS...................................................................................................................................................................140
TABLE 160. TRANSFORMER VENDORS ........................................................................................................................................141
TABLE 161. ORDERING INFORMATION.........................................................................................................................................148
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller xii Track ID: JATR-1076-21 Rev. 1.2
List of Figures
FIGURE 1. BLOCK DIAGRAM .........................................................................................................................................................6
FIGURE 2. PIN ASSIGNMENTS ........................................................................................................................................................7
FIGURE 3. PORT 4 OPERATING MODE OVERVIEW........................................................................................................................93
FIGURE 4. TRADITIONAL APPLICATION........................................................................................................................................99
FIGURE 5. DUAL MII APPLICATION DIAGRAM ..........................................................................................................................100
FIGURE 6. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT............101
FIGURE 7. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-FX MODE) INTERFACES APPLICATION CIRCUIT.......101
FIGURE 8. DUAL MII MODE WITH 1 MII-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT .............102
FIGURE 9. DUAL MII MODE WITH 1 SNI-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT.............102
FIGURE 10. RESET.......................................................................................................................................................................115
FIGURE 11. START AND STOP DEFINITION ...................................................................................................................................117
FIGURE 12. OUTPUT ACKNOWLEDGE ..........................................................................................................................................117
FIGURE 13. RANDOM READ ........................................................................................................................................................118
FIGURE 14. SEQUENTIAL READ ...................................................................................................................................................118
FIGURE 15. VLAN GROUPING EXAMPLE....................................................................................................................................120
FIGURE 16. TAGGED AND UNTAGGED PACKET FORWARDING WHEN 802.1Q TAG AWA R E VLAN IS DISABLED ...........................122
FIGURE 17. INPUT DROP VS. OUTPUT DROP ................................................................................................................................126
FIGURE 18. LOOP EXAMPLE ........................................................................................................................................................127
FIGURE 19. PORT 4 LOOPBACK ...................................................................................................................................................128
FIGURE 20. REG. 0.14 LOOPBACK ...............................................................................................................................................129
FIGURE 21. FLOATING AND PULL-DOWN OF LED PINS ...............................................................................................................130
FIGURE 22. TWO PIN BI-COLOR LED FOR SPD FLOATING OR PULL-HIGH ..................................................................................131
FIGURE 23. TWO PIN BI-COLOR LED FOR SPD PULL-DOWN ......................................................................................................131
FIGURE 24. USING A PNP TRANSISTOR TO TRANSFORM 3.3V INTO 1.8V....................................................................................132
FIGURE 25. RECEPTION DATA TIMING OF MII/SNI/SMI INTERFACE ...........................................................................................136
FIGURE 26. TRANSMISSION DATA TIMING OF MII/SNI/SMI INTERFACE .....................................................................................136
FIGURE 27. UTP APPLICATION FOR TRANSFORMER WITH CONNECTED CENTRAL TAP................................................................141
FIGURE 28. UTP APPLICATION FOR TRANSFORMER WITH SEPARATE CENTRAL TAP....................................................................142
FIGURE 29. 100BASE-FX WITH 3.3V FIBER TRANSCEIVER APPLICATION ...................................................................................143
FIGURE 30. 100BASE-FX WITH 5V FIBER TRANSCEIVER APPLICATION ......................................................................................144
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 1 Track ID: JATR-1076-21 Rev. 1.2
1. General Description
The RTL8305SC is a 5-port Fast Ethernet switch controller that integrates memory, five MACs, and five
physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. All ports support
100Base-FX, which shares pins (TX+-/RX+-) with UTP ports and needs no SD+/- pins, a development
using Realtek proprietary technology. To compensate for the lack of auto-negotiation in 100Base-FX
applications, the RTL8305SC can be forced into 100Base-FX half or full duplex mode, and can enable or
disable flow control in fiber mode.
The five ports are separated into three groups (GroupX/GroupY/Port4) for flexible port configuration
using strapping pins upon reset. The SetGroup pin is used to select port members in GroupX and GroupY.
When the port members have been determined, you may use a mode selection pin
(GxMode/Gymode/P4Mode[1:0]) to select operating interfaces such as 10/100Base-TX, 100Base-FX.
Each group has four pins for selecting initial port status upon reset (ANEG/Force, 100/10, Full/Half,
Enable/Disable Flow Control). Upon reset, in addition to using strapping pins, a CPU can also configure
the RTL8305SC via the MDC/MDIO interface.
The fifth port (port 4) supports an external MAC and an external PHY interface. The external MAC
interface can be set to PHY mode MII, PHY mode SNI, or MAC mode MII to work with a routing
engine, HomePNA, or VDSL transceiver. The external PHY interface can be set to PHY mode MII in the
digital interface, and UTP or fiber in the differential interface. In order to accomplish diagnostics in
complex network systems, the RTL8305SC also provides a loopback feature in each port for a variable
CPU system.
The RTL8305SC contains a 1K-entry address lookup table and supports a 16-entry CAM to avoid hash
collisions and to maintain forwarding performance. The 1K-entry table provides read/write access from
the SMI interface, and each of the entries can be configured as a static entry. A static entry indicates that
this entry is controlled by the external management processor and automatic aging and learning of the
entry will not take place. The RTL8305SC supports IEEE 802.3x full-duplex flow control and back-
pressure half-duplex flow control. A broadcast storm filtering function is provided to filter unusual
broadcast storm issues, and an intelligent switch engine prevents Head-Of -Line blocking problems.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 2 Track ID: JATR-1076-21 Rev. 1.2
The RTL8305SC supports 16 VLAN groups. These can be configured as port-based VLANs and/or
IEEE 802.1Q tag-based VLANs. Two ingress filtering and egress filtering options provide flexible
VLAN configuration:
Ingress filtering option 1: The Acceptable Frame Type of the Ingress Process can be set to ‘Admit
All’ or ‘Admit All Tagged’.
Ingress filtering option 2: ‘Admit’ or ‘Discard’ frames associated with a VLAN for which that
port is not in the member set.
Egress filtering option 1: ‘Forward’ or ‘Discard’ ARP broadcast frames.
Egress filtering option 2: ‘Forward’ or ‘Discard’ Leaky VLAN frames.
The RTL8305SC supports several types of QoS functions with two-level priority queues to improve
multimedia or real-time networking applications. The QoS functions are based on:
Port-based priority
802.1Q VLAN priority tag
The TOS/DS (DiffServ) field of TCP/IP
When the QoS function is enabled, a VLAN tag can be inserted or removed at the output port. The
RTL8305SC will insert a Port VID (PVID) for untagged frames or remove the tag from tagged frames.
The RTL8305SC also supports a special insert VLAN tag function to separate traffic from WAN and
LAN sides in Router and Gateway applications.
In router applications, the router may want to know which input port this packet came from. The
RTL8305SC supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress.
Using this function, VID information carried in the VLAN tag will be changed to PVID. The
RTL8305SC also provides an option to admit VLAN tagged packets with a specific PVID only. If this
function is enabled, it will drop non-tagged packets and packets with an incorrect PVID.
Maximum packet length can be 1536 or 1552 bytes according to the initial configuration (strapping upon
reset). The filtering function is supported for the 802.1D specified reserved multicast addresses (01-80-
C2-00-00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F).
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 3 Track ID: JATR-1076-21 Rev. 1.2
The RTL8305SC provides flexible LED functions for diagnostics. These include: Three combinations of
link, activity, speed, duplex and collision, that are ideal for bi-color LED displays. The RTL8305SC also
provides a loop detection function and alarm, for network existence notification, with an output pin that
can be designed as a visual LED or a status input pin for a CPU.
A power saving mode is implemented on a per-port basis. Each port automatically enters power saving
mode 10 seconds after the cable is disconnected from it. The RTL8305SC also implements a power down
mode on a per-port basis. Users can set MII Reg.0.11 to force the corresponding port to enter power down
mode, which disables all transmit/receive functions, except SMI (MDC/MDIO management interface).
Each physical layer channel of the RTL8305SC consists of a 4B5B encoder/decoder, a Manchester
encoder/decoder, a scrambler/de-scrambler, a transmit output driver, output wave shaping filters, a digital
adaptive equalizer, a PLL circuit, and a DC restoration circuit for clock/data recovery. Friendly crossover
auto detection and correction functions are also supported for easy cable connection.
The integrated chip benefits from low power consumption, advanced functions with flexible configuration
for 5-port SOHO switch, Home Gateway, xDSL/Cable router, and other IA applications.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 4 Track ID: JATR-1076-21 Rev. 1.2
2. Features
5-port integrated switch controller with
memory and transceiver for 10Base-T
and 100Base-TX with:
5-port 10/100M UTP or
4-port 10/100M UTP + 1-port
MII/SNI or
4-port 10/100M UTP + 1-port MAC
MII/SNI + 1-port PHY MII
Supports the fifth port MAC circuit as
PHY mode MII, SNI for router
applications, and MAC mode MII for
HomePNA or VDSL solutions
Supports the fifth port PHY circuit as
PHY mode MII for router and Gateway
applications
All ports support 100Base-FX with
optional flow control enable/disable
and full/half-duplex setting
Supports FEFI function for fiber
application
Non-blocking wire-speed reception and
transmission and non-head-of-line-
blocking forwarding
Fully compliant with
IEEE 802.3/802.3u auto-negotiation
function
Built-in high-efficiency SRAM for
packet buffer, with 1K-entry lookup
table and 16-entry CAM
Supports broadcast storm filtering
function
Flow control fully supported:
Half duplex: back pressure flow
control
Full duplex: IEEE 802.3x flow
control
Supports SMI (Serial Management
Interface: MDC/MDIO) for
programming and diagnostics
Supports loop detection function with
one LED to indicate the existence of a
loop
Supports MAC and PHY loopback
function for diagnosis
Supports up to 16 VLAN groups
Flexible 802.1Q port/tag-based VLAN
ARP VLAN for broadcast packets
Leaky VLAN for unicast packets
VLAN tag Insert/Remove function
Supports QoS function on each port:
QoS based on: (1) Port-based,
(2) VLAN tag, (3) TCP/IP header’s
TOS/DS
Supports two-level priority queues
Weighted round robin service
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 5 Track ID: JATR-1076-21 Rev. 1.2
Supports special VLAN tag insert or
remove function on per-port basis
(egress) to separate WAN traffic from
LAN traffic
Optional 1536 or 1552 byte maximum
packet length
Supports reserved control frames
(DID=0180C2000003~0180C200000F)
filtering function
Flexible LED indicators for link,
activity, speed, full/half duplex, and
collision
LEDs blink upon reset for LED
diagnostics
Supports two power reduction methods:
Power saving mode by cable
detection
Power down mode (via PHY
register 0.11)
Robust baseline wander correction for
improved 100Base-TX performance
Optional MDI/MDIX auto crossover
for plug-and-play
Physical layer port Polarity Detection
and Correction function
Optional EEPROM interface for
configuration
25MHz crystal or 3.3V OSC input
Single 3.3V power input can be
transformed to 1.8V via a low-cost
external BJT transistor
Low power, 1.8/3.3V, 0.18µm CMOS
technology, 128-pin PQFP package
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 6 Track ID: JATR-1076-21 Rev. 1.2
3. Block Diagram
10Base-T or
100Base-T
PHYceiver
MAC0
MAC4
MAC3
MAC2
MAC1
Waveform
Shaping
Mode
Select
Circuit
Lookup
Table
LED
Control
Global
Function
Packet
Buffer
LED_BLNK_TIME
EN_RST_BLNK
SEL_MIIMAC
X2
X1
CK25MOUT
RESET#
IBREF
ENBKPRS
DISBRDCTRL
P4MODE[1:0]
LED_SPD[4:0]
Switch
Engine2
Switch
Engine0
Switch
Engine1
Switch
Engine3
Switch
Engine4
RX+-[0]
TX+-[0]
RX+-[1]
TX+-[1]
RX+-[2]
TX+-[2]
RX+-[3]
TX+-[3]
RX+-[4]
TX+-[4]
LED_ACT[4:0]
LED_DUP[4:0]
LED_ADD[4:0]
DISDUALMII
r
PHY
Mode
MII/SNI
MAC
Mode
MII
MCOL/PCOL
MTXC/PRXC
MTXD[3:0]/PRXD[3:0]
MTXEN/PRXDV
MRXC/PTXC
MRXDV/PTXEN
MRXD[3:0]/PTXD[3:0]
P4LNKSTA#
P4DUPSTA/P4FULL
P4SPDSTA/P4SPD100
P4FLCTRL/P4ENFC
PHY
Mode
MII
PHY2PCOL
PHY2PRXC
PHY2PRXD[3:0]
PHY2PRXDV
PHY2PTXC
PHY2PTXEN
PHY2PTXD[3:0]
10Base-T or
100Base-T
PHYceiver
10Base-T or
100Base-T
PHYceiver
10Base-T or
100Base-T
PHYceiver
10Base-T or
100Base-T
PHYceiver
PHY Interface MAC Interface
Figure 1. Block Diagram
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 7 Track ID: JATR-1076-21 Rev. 1.2
4. Pin Assignments
ENFORWARD/LED_ADD[0]
DGND
GYFULL/LED_DUP[1]
GXFULL/LED_SPD[1]
GYSPD100/LED_ACT[1]
GXSPD100/LED_ADD[1]
GYANEG/LED_DUP[2]
DVDD33
GXANEG/LED_SPD[2]
P4ANEG/LED_ACT[2]
BCINDROP/LED_ACT[0]
IBREF
AGND
VCTRL
AGND
X2
X1
AVDD18
HVDD33
LED_DUP[0]
MAX1536/LED_SPD[0]
AVDD18
RXIP[0]
RXIN[0]
AVDD18
MTXD[1]/PRXD[1]/LEDMODE[1]
MRXD[0]/PTXD[0]
MTXD[0]/PRXD[0]/LEDMODE[0]
103
124
123
122
121
125
128
127
126
113
112
111
110
109
108
107
106
105
104
114
120
119
118
117
116
115
90
89
79
83
80
82
84
81
86
85
87
88
102
101
91
95
92
94
96
93
98
97
99
100
78
77
67
71
68
70
72
69
74
73
75
76
66
65
1
11
9
8
7
6
5
4
3
2
10
12
22
21
20
19
18
17
16
15
14
13
23
33
32
31
30
29
28
27
26
25
24
34
38
37
36
35
MTXD[3]/PRXD[3]/P4IRTAG[1]
55
59
56
58
60
57
62
61
63
64
54
53
47
48
50
49
51
52
43
44
46
45
39
40
42
41
MRXC/PTXC
MTXD[2]/PRXD[2]/P4IRTAG[0]
MCOL/PCOL
MRXDV/PTXEN
DVDD33
MRXD[1]/PTXD[1]
DGND
DVDD18
P4SPDSTA/P4SPD100
P4DUPSTA/P4FULL
DGND
P4LNKSTA#
MTXC/PRXC
MTXEN/PRXDV
DVDD18
P4MODE[1]
P4FLCTRL/P4ENFC
P4MODE[0]
DGND
RESET#
DISDUALMII
ITEST4
RTL8305SC
ITEST3
AGND
RXIN[1]
RXIP[1]
AGND
TXOP[1]
TXON[1]
AVDD18
AVDD18
TXON[0]
TXOP[0]
AVDD18
TXON[3]
AVDD18
AVDD18
TXON[2]
TXOP[2]
AGND
RXIP[2]
RXIN[2]
AVDD18
TXOP[3]
AGND
RXIP[4]
RXIN[4]
AVDD18
AVDD18
RXIN[3]
RXIP[3]
AGND
AVDD18
TXON[4]
OSCI
CK25MOUT
TXOP[4]
ITEST1
ITEST2
DTEST2
DTEST1
LED_ADD[2]/DISLEAKY
LOOPLED#/ENDEFER
D I SPOR TPR I [ 3] (PHY2PTXD[2])
EN_AUTOXOVER
PHY2PRXDV/DISBRDCTRL
PHY2PRXD[1]/GXENFC
PHY2PRXD[2]/GYENFC
PHY2PCOL/LED_BLNK_TIME
D I SPOR TPR I [ 0] (PHY2PTXEN)
PHY2PTXC/QWEIGHT[1]
D I SPOR TPR I [ 1] (PHY2PTXD[0])
D I SPOR TPR I [ 2] (PHY2PTXD[1])
DVDD33
D I SPOR TPR I [ 4] (PHY2PTXD[3])
MRXD[3]/PTXD[3]
EN_RST_BLNK
SEL _ M I I M A C# / D I SD SPR I
DVDD18
SCL _M D C
PHY2PRXD[0]/ENEEPROM
MRXD[2]/PTXD[2]
ITEST5
DGND
LED_ADD[4]/DISTAGPRI
LED_DUP[4]/SETGROUP
LED_ACT[4]
DGND
LED_ADD[3]/GXMODE
LED_SPD[4]/DISVLAN
LED_SPD[3]/DISARP
LED_ACT[3]/EN48PASS1
LED_DUP[3]/GYMODE
DVDD18
PHY2PRXC/QWEIGHT[0]
DGND
PHY2PRXD[3]/ENBKPRS
SD A _M D I O
ITEST6
Figure 2. Pin Assignments
Note: When DISDUALMII=1, the function of pins 83~86 and pin 88 follows the names before the
parenthesis ‘( )’.
When DISDUALMII=0, pin names in parenthesis ‘( )’ will become functional and original pin functions
will not apply.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 8 Track ID: JATR-1076-21 Rev. 1.2
‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output,
PU=Internal pull-up, PD=Internal pull-down.
Table 1. Pin Assignments
Name Pin No. Type Name Pin No. Type
AVDD18
RXIN[0]
RXIP[0]
AGND
TXOP[0]
TXON[0]
AVDD18
AVDD18
TXON[1]
TXOP[1]
AGND
RXIP[1]
RXIN[1]
AVDD18
AVDD18
RXIN[2]
RXIP[2]
AGND
TXOP[2]
TXON[2]
AVDD18
AVDD18
TXON[3]
TXOP[3]
AGND
RXIP[3]
RXIN[3]
AVDD18
AVDD18
RXIN[4]
RXIP[4]
AGND
TXOP[4]
TXON[4]
AVDD18
ITEST1
ITEST2
ITEST3
DGND
RESET#
ITEST4
DISDUALMII
DVDD18
P4MODE[1]
P4MODE[0]
P4FLCTRL/P4ENFC
P4SPDSTA/P4SPD100
P4DUPSTA/P4FULL
P4LNKSTA#
DGND
MTXC/PRXC
MTXEN/PRXDV/Internal
DVDD18
MTXD[0]/PRXD[0]/LEDMODE[0]
MTXD[1]/PRXD[1]/LEDMODE[1]
MTXD[2]/PRXD[2]/P4IRTAG[0]
MTXD[3]/PRXD[3]/P4IRTAG[1]
MCOL/PCOL
MRXC/PTXC
MRXDV/PTXEN
MRXD[0]/PTXD[0]
DVDD33
MRXD[1]/PTXD[1]
DGND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
AVDD
AI
AI
AGND
AO
AO
AVDD
AVDD
AO
AO
AGND
AI
AI
AVDD
AVDD
AI
AI
AGND
AO
AO
AVDD
AVDD
AO
AO
AGND
AI
AI
AVDD
AVDD
AI
AI
AGND
AO
AO
AVDD
DGND
I
IPU
DVDD
IPU
IPU
IPU
IPU
IPU
IPU
DGND
I/OPU
I/OPU
DVDD
I/OPU
I/OPU
I/OPU
I/OPU
I/OPD
I/OPU
IPD
IPU
DVDD
IPU
DGND
ITEST5
MRXD[2]/PTXD[2]
MRXD[3]/PTXD[3]
SEL_MIIMAC#/DISDSPRI
EN_AUTOXOVER
DVDD18
EN_RST_BLNK
ITEST6
PHY2PRXD[0]/ENEEPROM
SCL_MDC
SDA_MDIO
PHY2PRXD[1]/GXENFC
PHY2PRXD[2]/GYENFC
PHY2PRXD[3]/ENBKPRS
DGND
PHY2PRXDV/DISBRDCTRL
PHY2PRXC/QWEIGHT[0]
PHY2PTXC/QWEIGHT[1]
DISPORTPRI[0] (PHY2PTXEN)
DISPORTPRI[1] (PHY2PTXD[0])
DISPORTPRI[2] (PHY2PTXD[1])
DISPORTPRI[3] (PHY2PTXD[2])
DVDD33
DISPORTPRI[4] (PHY2PTXD[3])
PHY2PCOL/LED_BLNK_TIME
LOOPLED#/ENDEFER
LED_ADD[4]/DISTAGPRI
LED_ACT[4]
LED_SPD[4]/DISVLAN
DGND
LED_DUP[4]/SETGROUP
LED_ADD[3]/GXMODE
LED_ACT[3]/EN48PASS1
LED_SPD[3]/DISARP
LED_DUP[3]/GYMODE
DVDD18
LED_ADD[2]/DISLEAKY
DGND
LED_ACT[2]/P4ANEG
LED_SPD[2]/GXANEG
LED_DUP[2]/GYANEG
DVDD33
LED_ADD[1]/GXSPD100
LED_ACT[1]/GYSPD100
LED_SPD[1]/GXFULL
LED_DUP[1]/GYFULL
LED_ADD[0]/ENFORWARD
DGND
LED_ACT[0]/BCINDROP
LED_SPD[0]/MAX1536
LED_DUP[0]
CK25MOUT
OSCI
HVDD33
AVDD18
X1
X2
AGND
VCTRL
DTEST2
DTEST1
AGND
IBREF
AVDD18
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
IPU
IPU
I/OPU
IPU
DVDD
IPU
IPU
I/OPU
I/OPU
IPU
IPU
IPU
DGND
IPU
IPU
IPU
IPU
IPU
IPU
IPU
DVDD
IPU
IPU
I/OPU
I/OPU
I/OPU
I/OPU
DGND
I/OPU
I/OPU
I/OPU
I/OPU
I/OPU
DVDD
I/OPU
DGND
I/OPU
I/OPU
I/OPU
DVDD
I/OPU
I/OPU
I/OPU
I/OPU
I/OPU
DGND
I/OPU
I/OPU
I/OPU
O
I
AVDD
AVDD
I
O
AGND
O
AGND
A
AVDD
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 9 Track ID: JATR-1076-21 Rev. 1.2
5. Pin Descriptions
‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output,
PU=Internal pull-up, PD=Internal pull-down.
Upon Reset: Defined as a short time after the end of a hardware reset.
After Reset: Defined as the time after the specified ‘Upon Reset’ time.
5.1. Media Connection Pins
Table 2. Media Connection Pins
Pin Name Pin No. Type Drive (mA) Description
RXIP[4:0]
RXIN[4:0]
2, 3, 12, 13,
16, 17, 26,
27, 30, 31
I Differential Receive Data Input
Shared by 100Base-TX, 10Base-T, and 100Base-FX.
UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0].
TXOP[4:0]
TXON[4:0]
5, 6, 9, 10,
19, 20, 23,
24, 33, 34
O Differential Transmit Data Output
Shared by 100Base-TX, 10Base-T, and 100Base-FX.
UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0].
5.2. Port 4 Configuration Pins
Table 3. Port 4 Configuration Pin Definitions
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
DISDUALMII 42 IPU Disable Dual MII Interface Function
This pin disables or enables the Dual MII interface function of
port 4.
1: Disable
0: Enable
When enabled, the MAC circuit of port 4 can be set as MAC
mode MII, PHY mode MII, or PHY mode SNI. The PHY
circuit of port 4 is set as PHY mode MII.
The PHY circuit of port 4 can optionally be set as UTP or fiber
mode according to the P4MOD[1:0] configuration.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 10 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
P4MODE[1:0] 44, 45 IPU When DISDUALMII=1:
Select Port 4 MAC Circuit Operating Mode:
11: UTP/MAC mode MII 10: 100Base-FX mode
01: PHY mode MII 00: PHY mode SNI
When DISDUALMII=0,
I. Select Port 4 MAC Circuit Operating Mode:
1x: MAC mode MII
01: PHY mode MII 00: PHY mode SNI
11: Port 4 PHY Circuit Operating Mode:
Note: Provides PHY mode MII only when DISDUALMII=0.
P4LNKSTA# 49 IPU Port 4 Link Status for MAC
This pin determines the link status of the Port 4 MAC in real-
time when the Port 4 MAC is in MAC mode MII/PHY mode
MII/PHY mode SNI regardless of whether the Port 4 PHY
circuit interface is disabled or enabled in PHY mode MII. This
pin is low active. Pulling this pin down sets the link status of
the PHY 5 MII register to 1.2.
1: No Link
0: Link
P4MODE[1:0]=11 and DISDUALMII=1 (UTP/MAC
mode MII)
This pin determines the link status of MAC mode MII only in
real time. The link status of UTP mode is provided by the
internal PHY in real time. If both the UTP and MII ports are
linked OK, UTP has higher priority.
P4MODE[1:0]=11 and DISDUALMII=0 (MAC mode MII)
This pin determines the link status of MAC mode MII only in
real time.
P4MODE[1:0]=10 (100Base-FX mode)
This pin does nothing. The internal PHY will provide the link
status to the MAC in real time.
P4MODE[1:0]=01 (PHY mode MII)
This pin determines the link status of Port 4 in real time.
P4MODE[1:0]=00 (PHY mode SNI)
This pin determines the link status of Port 4 in real time.
When DISDUALMII=1, this pin should be left floating in UTP
or FX mode, and pulled down in MAC mode MII/PHY mode
MII/PHY mode SNI.
Regardless of whether DISDUALMII=1 or=0, this pin provides
the link status to the Port 4 MAC part in PHY 5 MII register
1.2 when the Port 4 MAC part is configured in MAC mode
MII/PHY mode MII/PHY mode SNI.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 11 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
P4DUPSTA 48 IPU Port 4 Duplex Status
Port 4 initial configuration pin for duplex upon reset for PHY
in UTP or FX mode, and strap duplex status for MAC of other
modes upon reset.
1: Full duplex
0: Half duplex
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial duplex configuration of the PHY
part upon reset when Port 4 operates in UTP mode. If Port 4
operates in MAC mode MII, this pin straps the initial duplex
status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
This pin provides the initial duplex register configuration of the
PHY part upon reset (FX). The duplex status of the MAC part
is provided by the internal PHY in real time after reset.
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial duplex status of Port 4 upon reset.
P4MODE[1:0]=00 (PHY mode SNI)
This pin straps the initial duplex status of Port 4 upon reset.
In MAC mode MII/PHY mode MII/PHY mode SNI, the
configuration of this pin will set the duplex status of the
internal register upon reset.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 12 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
P4SPDSTA 47 IPU Port 4 Speed Status
Port 4 initial configuration pin for speed status upon reset for
PHY of UTP mode only, and strap speed status for MAC of
other modes upon reset.
1: 100Mbps
0: 10Mbps
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial speed configuration of the PHY
part upon reset when Port 4 operates in UTP mode. If Port 4
operates in MAC mode MII, this pin straps the initial speed
status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
The speed is dedicated to 100M and this pin should be left
floating as it is irrelevant.
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial speed status of Port 4 upon reset.
P4MODE[1:0]=00 (PHY mode SNI)
The speed is dedicated to 10MHz. This pin should be pulled
down.
In order to provide 100M as the default value for PHY, this pin
is set as high active.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 13 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
P4FLCTRL/
P4EnFC
46 IPU Port 4 Flow Control
Port 4 initial configuration pin for flow control upon reset for
PHY of UTP and FX mode, and strap flow control status for
MAC of other modes upon reset.
1: Enable Flow Control ability
0: Disable Flow Control ability
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial flow control configuration of the
PHY part upon reset when Port 4 operates in UTP mode. If Port
4 operates in MAC mode MII, this pin straps the initial flow
control status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
This pin provides the initial configuration of flow control for
the PHY part upon reset (FX).
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial flow control status of Port 4 upon
reset.
P4MODE[1:0]=00 (PHY mode SNI)
Flow control should be disabled. This pin must be pulled down.
In order to enable flow control ability for the PHY, this pin is
set as high active.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 14 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
Port 4 Configuration Pin Definitions
SEL_MIIMAC#/
DisDSPri
/(P4PHY_
MODE)
68 I/OPU 4 Output After Reset = SEL_MIIMAC# used for LED
When P4MODE[1:0]=11 and DISDUALMII=1, this pin
indicates whether the UTP path or the MII MAC path is
selected. Otherwise, this pin has no use.
The LED statuses are represented as active-low or high
depending on input strapping
If Input=1: Output 0=MII MAC port is selected. 1=UTP is
selected.
If Input=0: Output 1=MII MAC port is selected. 0=UTP is
selected.
When P4MODE[1:0]=11 and DISDUALMII=1, the
RTL8305SC supports UTP/MII MAC auto-detection function
via the link status of Port 4 UTP and the P4LNKSTA# pin
setting. UTP has higher priority than MAC mode MII.
Input Upon Reset when DISDUALMII=1, DisDSPri. Disable
Differentiated Service Priority.
1: Disable DS priority
0: Enable DS priority
Input Upon Reset when DISDUALMII=0, P4PHY_MODE.
Select the operating mode of Port 4 differential pair.
1: UTP mode
0: FX mode
5.3. Port 4 MAC Circuit Interface Pins
The external device must be 3.3V compatible since the digital output of the RTL8305SC is 3.3V.
Table 4. Port 4 MAC Circuit Interface Pin Definitions
Pin Name Pin No. Type Drive (mA) Description
MRXD[3:0]/
PTXD[3:0]
61, 63,
66, 67
IPU For MAC mode MII, these pins are MRXD[3:0], MII receive
data nibble.
For PHY mode MII, these pins are PTXD[3:0], MII transmit data
nibble.
For PHY mode SNI, PTXD[0] is serial transmit data.
MRXDV/PTXEN
60 IPD For MAC mode MII, this pin represents MRXDV, MII receive
data valid.
For PHY mode MII, this pin represents PTXEN, MII transmit
enable.
For PHY mode SNI, this pin represents PTXEN, transmit enable.
MRXC/PTXC
59 I/OPU 8 For MAC mode MII, this is a receive clock (MRXC acts as
input).
For PHY mode MII/PHY mode SNI, it is a transmit clock (PTXC
acts as output).
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 15 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
MCOL/PCOL
58 I/OPD 4 For MAC mode MII, this pin represents MCOL collision (acts as
input).
For PHY mode MII/PHY mode SNI, this pin represents PCOL
collision (acts as output).
MTXD[3]/PRXD[3]
/P4IRTag[1]
MTXD[2]/PRXD[2]
/P4IRTag[0]
57
56
I/OPU 4 Output After Reset.
For MAC mode MII (P4MODE[1:0]=11), these pins are
MTXD[3:0], MII transmit data of MAC.
For PHY mode MII (P4MODE[1:0]=01), these pins are
PRXD[3:0], MII receive data of PHY.
For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial
receive data.
Input Upon Reset: P4IRTag[1:0]
Insert/Remove VLAN tags of Port 4.
11=Do not insert/remove VLAN tags to/from packets.
10=Insert VLAN tags to non-tagged packets.
01=Remove tag from tagged packet.
00=Replace the VLAN tags for tagged packets and insert a
VLAN tag to non-tagged packets.
These pins are used for Port 4 only. Use serial EEPROM for
other ports.
MTXD[1]/PRXD[1]
/LEDMODE[1]
MTXD[0]/PRXD[0]
/LEDMODE[0]
55
54
I/OPU 4 Output After Reset.
For MAC mode MII (P4MODE[1:0]=11), these pins are
MTXD[3:0], MII transmit data of MAC.
For PHY mode MII (P4MODE[1:0]=01), these pins are
PRXD[3:0], MII receive data of PHY.
For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial
receive data.
Input Upon Reset: LEDMODE[1:0]
Each port has four LED indicator pins. Each pin has different
indicator meanings set by pins, LEDMODE[1:0].
LEDMODE[1:0]=11: Speed + Link/Act + Duplex/Col +
Link/Act/Spd.
LEDMODE[1:0]=10: Speed + Act + Duplex/Col+Bi-color
Link/Active.
LEDMODE[1:0]=01: Speed + RxAct + TxAct + Link.
LEDMODE[1:0]=00: Reserved.
All LED statuses are represented as active-low or high depending
on input strapping, except Bi-color Link/Act in Bi-color LED
mode, whose polarity depends on Spd status.
Link/Act/Spd: Link, Activity, and Speed Indicator. ON for link
established. Blinking every 43ms when the corresponding port is
transmitting or receiving at 100Mbps. Blinking every 120ms
when the port is transmitting or receiving at 10Mbps.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 16 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
MTXEN/PRXDV
/Internal
52 I/OPD 4 Output After Reset.
For MAC mode MII, this pin represents MTXEN, MII transmit
enable.
For PHY mode MII, this pin represents PRXDV, MII received data
valid.
For PHY mode SNI, this pin represents PRXDV, received data
valid.
Input Upon Reset.
Internal Use
MTXC/PRXC
51 I/OPU 8 For MAC mode MII, it is a transmit clock (MTXC acts as input).
For PHY mode MII/PHY mode SNI, it is a receive clock (PRXC
acts as output).
5.4. Port 4 PHY Circuit Interface Pins
The external device must be 3.3V compatible as the digital output of the RTL8305SC is 3.3V.
Table 5. Port 4 PHY Circuit Interface Pin Definitions
Pin Name Pin No. Type Drive (mA) Description
DISPORTPRI[4]
(PHY2PTXD[3])
88 IPU - DISDUALMII=1, Enable Port based priority QoS function of
port 4.
DisPortPri[4]: 1=Disable port 4 priority. 0=Enable port 4 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[3]. DISPORTPRI[4]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISPORTPRI[3]
(PHY2PTXD[2])
86 IPU -
DISDUALMII=1, Enable Port based priority QoS function of
port 3.
DisPortPri[3]: 1=Disable port 3 priority. 0=Enable port 3 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[2]. DISPORTPRI[3]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISPORTPRI[2]
(PHY2PTXD[1])
85 IPU -
DISDUALMII=1, Enable Port based priority QoS function of
port 2.
DisPortPri[2]: 1=Disable port 2 priority. 0=Enable port 2 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[1]. DISPORTPRI[2]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 17 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
DISPORTPRI[1]
(PHY2PTXD[0])
84 IPU -
DISDUALMII=1, Enable Port based priority QoS function of
port 1.
DisPortPri[1]: 1=Disable port 1 priority. 0=Enable port 1 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[0]. DISPORTPRI[1]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISPORTPRI[0]
(PHY2PTXEN)
83 IPU -
DISDUALMII=1, Enable Port based priority QoS function of
port 0.
DisPortPri[0]: 1=Disable port 0 priority. 0: Enable port 0 priority.
DISDUALMII=0, PHY mode MII Transmit Data Enable.
For PHY mode MII, this pin is PHY2PTXEN. DISPORTPRI[0]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
For Dual MII application, this pin should be pulled low (about
1k ohm) in the external circuit.
PHY2PCOL
/LED_BLNK_
TIME
89 I/OPU 4 Output After Reset: DISDUALMII=0, PHY mode MII PCOL.
For PHY mode MII, this pin represents PCOL collision (acts as
output).
Input Upon Reset: LED Blink Time.
This pin selects the blinking speed of the activity and collision
LEDs.
1: On 43ms, then Off 43ms
0: On 120ms, then Off 120ms
Power on strapping is independent of DISDUALMII
configuration.
PHY2PTXC
/QWEIGHT[1]
PHY2PRXC
/QWEIGHT[0]
82
81
I/OPU 8 Output After Reset: DISDUALMII=0, PHY mode MII Transmit/
Receive Data Clock.
For PHY mode MII, this is transmit/receive data clock,
PTXC/PRXC (acts as output).
Input Upon Reset: Weighted round robin ratio of priority queue.
The frame service rate of High-priority queue: Low-priority queue
QWEIGHT[1:0]=11: 16:1
QWEIGHT[1:0]=10: Always high priority queue first
QWEIGHT[1:0]=01: 8:1
QWEIGHT[1:0]=00: 4:1
Power on strapping is independent of DISDUALMII
configuration.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 18 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
PHY2PRXD[3]
/ENBKPRS
78 I/OPU 4 Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[3].
Input Upon Reset: Enable Back Pressure.
This pin sets back pressure in half duplex mode on all UTP ports.
1: Enable
0: Disable
Power on strapping is independent of DISDUALMII
configuration.
PHY2PRXD[2]
/GYENFC
77 I/OPU 4 Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[2].
Input Upon Reset: GroupY Enable Flow Control ability.
1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Enable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Disable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
Strap after reset for initial value of Group Y ‘UTP NWAY Full’, or
‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’.
Power on strapping is independent of DISDUALMII
configuration.
PHY2PRXD[1]
/GXENFC
76 I/OPU 4 Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[1].
Input Upon Reset: GroupX Enable Flow Control ability:
1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Enable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Disable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
Strap after reset for initial value of Group X ‘UTP NWAY Full’, or
‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’.
Power on strapping is independent of DISDUALMII
configuration.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 19 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
PHY2PRXD[0]
/ENEEPROM
73 I/OPU 4 DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as
output).
For PHY mode MII, this pin is PHY2PRXD[0].
Enable EEPROM: This pin sets the RTL8305SC to enable loading
of the serial EEPROM upon reset.
1: Enable
0: Disable
These pins have internal 75k ohm pull-high resistors.
Power on strapping is independent of DISDUALMII
configuration.
PHY2PRXDV
/DISBRDCTRL
80 I/OPU 4 DISDUALMII=0, PHY mode MII Receive Data Valid.
For PHY mode MII, this pin represents PRXDV.
Disable Broadcast Storm Control.
1: Disable
0: Enable
The RTL8305SC will disable this function when pin DISBRDCTRL
is left floating.
This pin has an internal 75k ohm pull-high resistor.
Power on strapping is independent of DISDUALMII
configuration.
5.5. Miscellaneous Pins
Table 6. Miscellaneous Pins
Pin Name Pin No. Type Drive (mA) Description
X1 120 I A 25MHz crystal input
The clock tolerance is +-50ppm. When using an oscillator, this pin
should be tied to ground.
X2 121 O For crystal input
When using an oscillator, this pin should be left floating.
OSCI 117 I A 25MHz clock from oscillator is fed to this pin
The X1 should be tied to ground and X2 should be left floating in
this application.
If a 25MHz clock is from crystal via X1 and X2, this pin should be
left floating.
CK25MOUT 116 O 8 A 25MHz clock output
This pin is used to support an extra 25M clock for an external
device (for example: HomePNA PHY). If this clock output is not
used, this pin should be left floating.
RESET# 40 I Active low reset signal
To complete the reset function, this pin must be asserted for at least
1ms. After reset, about 30ms is needed for the RTL8305SC to
complete internal test functions and initialization.
This pin is a Schmitt input.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 20 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
IBREF 127 A Control transmit output waveform Vpp
This pin should be grounded through a 1.96K resistor.
VCTRL 123 O 4 Voltage control to external regulator
This signal controls a power PNP transistor to generate the 1.8V
power supply.
ITEST1 36 Reserved pin for internal use. Should be left floating
ITEST2 37 Reserved pin for internal use. Should be left floating
ITEST3 38 Reserved pin for internal use. Should be left floating
ITEST4 41 Reserved pin for internal use. Should be left floating
ITEST5 65 Reserved pin for internal use. Should be left floating
ITEST6 72 Reserved pin for internal use. Should be left floating
DTEST2 124 Reserved pin for internal use. Should be left floating
DTEST1 125 Reserved pin for internal use. Should be left floating
5.6. Port LED Pins
Each port has four LED indicator pins. Each pin may have different indicator meanings as set by pins
LEDMODE[1:0].
All LED statuses are represented as active-low or high depending on input strapping, except Bi-color
Link/Act in Bi-color LED mode, whose polarity depends on Spd status.
Those pins that are dual function pins are output for LED or input for strapping. Below are LED
descriptions only.
Table 7. Port LED Pins
Pin Name Pin No. Type Drive (mA) Description
LED_SPD[4:0]/… 93,
98,
104,
109,
114
I/OPU 4 Output After Reset = Used for 1st LED.
LEDMode[1:0]=11 -> Speed (On=100, Off=10)
LEDMode[1:0]=10 -> Speed (On=100, Off=10)
LEDMode[1:0]=01 -> Speed (On=100, Off=10)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
LED_ACT[4:0]/… 92,
97,
103,
108,
113
I/OPU 4 Output After Reset = Used for 2nd LED.
LEDMode[1:0]=11 -> Link/Act: (On=Link, Off=No Link,
Flash=Tx or Rx activity)
LEDMode[1:0]=10 -> Act: (Off=No activity, On=Tx or Rx
activity)
LEDMode[1:0]=01 -> RxAct: (Off=No activity, On=Rx activity)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 21 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
LED_DUP[4:0]/… 95,
99,
105,
110,
115
I/OPU 4 Output After Reset = Used for 3rd LED.
LEDMode[1:0]=11 -> Duplex/Col: (On=Full, Off=Half with no
collision, Flash=Collision)
LEDMode[1:0]=10 -> Duplex/Col: (On=Full, Off=Half with no
collision, Flash=Collision)
LEDMode[1:0]=01 -> TxAct: (Off=No activity, On=Tx activity)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
LED_ADD[4:0]/.. 91,
96,
101,
107,
111
I/OPU 4 Output After Reset = Used for 4th LED.
LEDMode[1:0]=11 -> Link/Act/Spd: On for link established.
Blinking every 43ms when the corresponding port is transmitting
or receiving at 100Mbps. Blinking every 120ms when the port is
transmitting or receiving at 10Mbps.
LEDMode[1:0]=10 -> Bi-color Link/Active: polarity depends on
Spd status.
LEDMode[1:0]=01 -> Link: (On=Link, Off=No Link)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
LoopLED#
/EnDefer
90 I/OPU 4 Output After Reset = LoopLED# used for LED.
If the Loop detection function is enabled, this pin indicates
whether a Network loop is detected or not. Otherwise, this pin is of
no use.
The LED statuses are represented as active-low or high depending
on input strapping.
=> If Input=1: Output 0=Network loop is detected. 1=No loop.
=> If Input=0: Output 1=Network loop is detected. 0=No loop.
Input Upon Reset = Enable defer
1: Enable Carrier Sense Deferring function for half duplex back
pressure.
0: Disable Carrier Sense Deferring function for half duplex back
pressure.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 22 Track ID: JATR-1076-21 Rev. 1.2
5.7. Serial EEPROM and SMI Pins
As the output of the RTL8305SC is 3.3V, the serial EEPROM and external device must be 3.3V
compatible.
Table 8. Serial EEPROM and SMI Pins
Pin Name Pin No. Type Drive (mA) Description
SCL_MDC 74 I/OPU 4 SCL or MDC
This pin is tri state when pin RESET#=0.
When pin EnEEPROM=1, this pin becomes SCL (output) to load the
serial EEPROM upon reset. Then this pin changes to MDC (input)
after reset.
When pin EnEEPROM=0, this pin is MDC (input): 0 to 25MHz clock,
sourced by an external device to sample MDIO.
SDA_MDIO 75 I/OPU 4 SDA or MDIO
This pin is tri state when RESET#=0.
When pin EnEEPROM=1, this pin becomes SDA (input/output) to
load the serial EEPROM upon reset. Then this pin changes to MDIO
(input/output) after reset. It should be pulled-high by an external
resistor.
When pin EnEEPROM=0, this pin is MDIO (input/output). It should
be pulled-high by an external resistor.
5.8. Strapping Pins
Pins that are dual function pins are outputs for LED or inputs for strapping. Below are strapping
descriptions only.
Table 9. Strapping Pins
Pin Name Pin No. Type Drive (mA) Description
EN_AUTOXOVER 69 IPU Enable Auto crossover function
1: Enable auto crossover detection
0: Disable auto crossover detection. MDI only
EN_RST_BLNK 71 IPU Enable Reset Blink
This enables blinking of the LEDs upon reset for diagnostic
purposes.
1: Enable reset LED blinking
0: Disable reset LED blinking
DisTagPri
/LED_ADD[4]
91 I/OPU 4 Input Upon Reset = Disable 802.1p VLAN Tag priority based
QoS function.
1: Disable
0: Enable
Output After Reset = Used for LED.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 23 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
DISVLAN
/LED_SPD[4]
93 I/OPU 4 Input Upon Reset = Disable VLAN function
1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration
by internal register is port 4 overlapped with all the other ports,
to form 4 individual VLANs. This default membership
configuration may be modified by setup internal registers via the
SMI interface or EEPROM
Output After Reset = Used for LED.
En48pass1
/LED_ACT[3]
97 I/OPU 4 Input Upon Reset = Enable 48 pass 1
1: 48 pass 1, continuously collides 48 input packets then passes 1
packet to retain system resource and avoid the partition in
repeater when the packet buffer in 8305SC is full
0: Continuously collides to avoid packet loss when the packet
buffer in 8305SC is full
Output After Reset = Used for LED.
DisARP
/LED_SPD[3]
98 I/OPU 4 Input Upon Reset = Disable ARP broadcast to all VLANs
1: Disables ability to broadcast ARP broadcast packets to all
VLANs
0: Enables ability to broadcast ARP broadcast packets to all
VLANs
ARP broadcast frame: DID is all F.
Output After Reset = Used for LED.
DisLeaky
/LED_ADD[2]
101 I/OPU 4 Input Upon Reset = Disable Leaky VLAN
1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Broadcast and multicast frames adhere to the VLAN
configuration.
Output After Reset = Used for LED.
EnForward
/LED_ADD[0]
111 I/OPU 4 Input Upon Reset = Enable to forward 802.1D specified reserved
multicast addresses frame
1: Forward reserved control frames, with DID=01-80-C2-00-00-
02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F
0: Filter reserved control packets, with DID=01-80-C2-00-00-02
and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F
Output After Reset = Used for LED.
BCInDrop
/LED_ACT[0]
113 I/OPU 4 Input Upon Reset = Broadcast Input Drop
1: Use Broadcast Input drop mechanism
0: Use Broadcast Output drop mechanism
Output After Reset = Used for LED.
Max1536
/LED_SPD[0]
114 I/OPU 4 Input Upon Reset = Maximum Frame Length
1: 1536 Bytes
0: 1552 Bytes
Output After Reset = Used for LED.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 24 Track ID: JATR-1076-21 Rev. 1.2
5.9. Port Status Strapping Pins
Pins that are dual function pins are outputs for LEDs or inputs for strapping. Below are strapping
descriptions only.
Table 10. Port Status Strapping Pins
Pin Name Pin No. Type Drive (mA) Description
SetGroup
/LED_DUP[4]
95 I/OPU 4 Input Upon Reset = Set group of port 1
1: Port 0 is group X. Port 1, 2, and 3 are group Y
0: Port 0, and 1 are group X. Port 2, and 3 are group Y
Output After Reset = Used for LED.
GxMode
/LED_ADD[3]
96 I/OPU 4 Input Upon Reset = Group X operating mode
1: UTP mode
0: FX mode
Output After Reset = Used for LED.
GyMode
/LED_DUP[3]
99 I/OPU 4 Input Upon Reset = Group Y operating mode
1: UTP mode
0: FX mode
Output After Reset = Used for LED.
P4ANEG
/LED_ACT[2]
103 I/OPU 4 Input Upon Reset = Port 4 Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Port 4. Strap after reset for initial
value of Port 4 UTP mode only. This pin is not used for Port 4 FX,
MAC mode MII, PHY mode MII, and PHY mode SNI.
Output After Reset = Used for LED.
GxANEG
/LED_SPD[2]
104 I/OPU 4 Input Upon Reset = GroupX Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Group X. Strap after reset for
initial value of UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
GyANEG
/LED_DUP[2]
105 I/OPU 4 Input Upon Reset = GroupY Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Group Y. Strap after reset for
initial value of UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 25 Track ID: JATR-1076-21 Rev. 1.2
Pin Name Pin No. Type Drive (mA) Description
GxSpd100
/LED_ADD[1]
107 I/OPU 4 Input Upon Reset = GroupX 10Base-T/100Base-TX ability
GxSpd100=1, GxFull=1
=> MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
GxSpd100=1, GxFull=0
=> MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
GxSpd100=0, GxFull=1;
=> MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
GxSpd100=0, GxFull=0;
=> MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and
GxFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value
of Group X UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
GySpd100
/LED_ACT[1]
108 I/OPU 4 Input Upon Reset = GroupY 10Base-T/100Base-TX ability
GySpd100=1, GyFull=1
=> MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
GySpd100=1, GyFull=0
=> MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
GySpd100=0, GyFull=1;
=> MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
GySpd100=0, GyFull=0;
=> MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and
GyFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value
of Group Y UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
GxFull
/LED_SPD[1]
109 I/OPU 4 Input Upon Reset = GroupX Full Duplex ability
Upon reset, this pin sets the default value of Reg.0.8. In addition, on
reset, this pin also sets NWay full-duplex ability on Reg.4.8 and
Reg.4.6. Strap after reset for initial value of Group X UTP or FX
mode. FX can be Force 100 Full or Force 100 Half.
Output After Reset = Used for LED.
GyFull
/LED_DUP[1]
110 I/OPU 4 Input Upon Reset = GroupY Full Duplex ability
Upon reset, this pin sets the default value of Reg.0.8. On reset, this pin
also sets NWay full-duplex ability on Reg.4.8 and Reg.4.6.
Strap after reset for initial value of Group Y UTP or FX mode. FX can
be Force 100 Full or Force 100 Half.
Output After Reset = Used for LED.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 26 Track ID: JATR-1076-21 Rev. 1.2
5.10. Power Pins
Table 11. Power Pins
Pin Name Pin No. Type Drive (mA) Description
AVDD18 1, 7, 8, 14, 15,
21, 22, 28, 29,
35, 119, 128
P 1.8V Analog Power
HVDD33 118 P 3.3V Analog Power
AGND 4, 11, 18, 25,
32, 122, 126
P Analog Ground
DVDD18 43, 53, 70, 100 P 1.8V Digital Power
DVDD33 62, 87, 106 P 3.3V Digital Power
DGND 39, 50, 64, 79,
94, 102, 112
P Digital Ground
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 27 Track ID: JATR-1076-21 Rev. 1.2
6. EEPROM Description
6.1. Port 0 Registers
6.1.1. Global Control Register0
Table 12. Global Control Register0
Name Byte.bit Description Default
EEPROM Existence 0.7 1: EEPROM does not exist (pin EnEEPROM=0 or pin EnEEPROM=1 but
EEPROM does not exist)
0: EEPROM exists (pin EnEEPROM=1 and EEPROM exists)
0
Reserved 0.6 1
Internal Use 0.5 1
Internal Use 0.4 1
Internal Use 0.3 1
Enable Loop
Detection Function
0.2 1: Enable loop detection function
0: Disable loop detection function
0
Reserved 0.1 1
Internal Use 0.0 0
6.1.2. Global Control Register1
Table 13. Global Control Register1
Name Byte.bit Description Default
Page selection 1.7 1: Select the registers in page 1
0: Select the registers in page 0
0
Reserved 1.6 0
Lookup table
accessible enable
1.5 1: Lookup table is accessible via indirect access registers
0: Lookup table is not accessible
0
Internal Use 1.4 0
Reserved 1.3 0
Disable 802.1Q
tag aware VLAN
1.2 1: Disable 802.1Q tagged-VID Aware function. The RTL8305SC will not
check the tagged VID on received frames to perform tagged-VID VLAN
mapping. Under this configuration, the RTL8305SC only uses the per port
VLAN index register to perform Port-Based VLAN mapping
0: Enable the Member Set Filtering function of VLAN Ingress Rule. The
RTL8305SC checks the tagged VID on received frames with the
VIDA[11:0]~VIDH[11:0] to index to a member set, then performs VLAN
mapping. The RTL8305SC uses tagged-VID VLAN mapping for tagged
frames but still uses Port-Based VLAN mapping for priority-tagged and
untagged frames
1
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 28 Track ID: JATR-1076-21 Rev. 1.2
Name Byte.bit Description Default
Disable VLAN
member set
ingress filtering
1.1 1: The switch will not drop the received frame if the ingress port of this
packet is not included in the matched VLAN member set. It will still forward
the packet to the VLAN members specified in the matched member set. This
setting works on both port-based and tag-based VLAN configurations
0: The switch will drop the received frame if the ingress port of this packet is
not included in the matched VLAN member set
1
Disable VLAN
tag admit control
1.0 1: The switch accepts all frames it receives whether tagged or untagged.
0: The switch will only accept tagged frames and will drop untagged frames.
1
6.1.3. Global Control Register2
Table 14. Global Control Register2
Name Byte.bit Description Default
Internal Use 2.7 0
Internal Use 2.6 0
Internal Use 2.5~2.0 11 1111
6.1.4. Global Control Register3
Table 15. Global Control Register3
Name Byte.bit Description Default
Internal Use 3.7 0
Internal Use 3.6 0
Internal Use 3.5~3.0 11 1111
6.1.5. Global Control Register4
Table 16. Global Control Register4
Name Byte.bit Description Default
Reserved 4.7
1
Enable defer 4.6 1: Enable carrier sense deferring for half duplex back pressure
0: Disable carrier sense deferring for half duplex back pressure
1
LED blink time 4.5 1: On 43ms, then Off 43ms
0: On 120ms, then Off 120ms
1
Queue weight 4.4~4.3 The frame service ratio between the high priority queue and low priority
queue is:
11=16:1
10=Always high priority queue first
01=8:1
00=4:1
11
Disable broadcast
storm control
4.2 1: Disable Broadcast Storm Control
0: Enable Broadcast Storm Control
1
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 29 Track ID: JATR-1076-21 Rev. 1.2
Name Byte.bit Description Default
Enable power-on
blinking
4.1 1: Enable power-on LED blinking for diagnosis
0: Disable power-on LED blinking for diagnosis
1
Reserved 4.0 1
6.1.6. Global Control Register5
Table 17. Global Control Register5
Name Byte.bit Description Default
Reserved 5.7 1
Maximum Frame
Length
5.6 1: 1536 Byte
0: 1552 Byte
1
Enable broadcast
drop
5.5 1: Use Broadcast Input drop mechanism
0: Use Broadcast Output drop mechanism
1
Forward 802.1D
reserved MAC
addresses frame.
5.4 1: Forward reserved control frames, which DID=01-80-C2-00-00-02 and 01-
80-C2-00-00-04 to 01-80-C2-00-00-0F packets
0: Filter reserved control packets, which DID=01-80-C2-00-00-02 and 01-
80-C2-00-00-04 to 01-80-C2-00-00-0F
1
Disable leaky
VLAN
5.3 1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Broadcast and multicast frames adhere to the VLAN configuration.
1
Disable ARP
VLAN
5.2 1: Disable to broadcast the ARP broadcast packet to all VLANs
0: Enable to broadcast the ARP broadcast packet to all VLANs
ARP broadcast frame: DID is all F.
1
Enable 48 pass 1 5.1 1: 48 pass 1, continuously collides 48 input packets then passes 1 packet to
retain system resource and avoid partition in the repeater when the packet
buffer is full
0: Continuously collides to avoid packet loss when the packet buffer is full
1
Disable VLAN 5.0 1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration by internal
register is port 4 overlapped with all the other ports, to form 4 individual
VLANs. This default membership configuration may be modified by setup
internal registers via the SMI interface or EEPROM
1
6.1.7. Global Control Register6
Table 18. Global Control Register6
Name Byte.bit Description Default
Reserved 6.7~6.0 1111
1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 30 Track ID: JATR-1076-21 Rev. 1.2
6.1.8. Global Control Register7
Table 19. Global Control Register 7
Name Byte.bit Description Default
Reserved 7.7~7.6 11
LED Mode[1:0] 7.5~7.4 11=Mode 3: Speed, Link+Act, Duplex+Col, Link/Act/Speed
10=Mode 2: Speed, Act, Duplex/Col, Bi-color Link/Activity
01=Mode 1: Speed, RxAct, TxAct, Link
00=Mode 0: Reserved
11
Internal Use 7.3 1
Disable dual MII
interface of port 4
7.2 1: Disable dual MII interface of port 4. Only provides MII interface for the
MAC circuit of port 4
0: Enable dual MII interface of port 4. Not only provides MII interface for
the MAC circuit of port 4 but provides MII interface for the PHY circuit of
port 4
1
Reserved 7.1~7.0 11
6.1.9. Port 0 Control 0
Table 20. Port 0 Control 0
Name Byte.bit Description Default
Reserved 8.7 0
Internal Use 8.6 1
Internal Use 8.5~8.4 11
Internal Use 8.3 1
Internal Use 8.2 1
VLAN tag insert
and remove
8.1~8.0 For port 0 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
11
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 31 Track ID: JATR-1076-21 Rev. 1.2
6.1.10. Port 0 Control 1
Table 21. Port 0 Control 1
Name Byte.bit Description Default
Reserved 9.7 1
Internal Use 9.6 0
Local loopback 9.5 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
0
Internal Use 9.4 0
Discard Non
PVID packets
9.3 1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
0
Disable 802.1p
priority
9.2 1: Disable 802.1p priority classification for ingress packets on port 0
0: Enable 802.1p priority classification on port 0
1
Disable Diffserv
priority
9.1 1: Disable Diffserv priority classification for ingress packets on port 0
0: Enable Diffserv priority classification
1
Disable port-
based priority on
port 0
9.0 1: Disable port based priority QoS function on port 0
0: Enable port based priority QoS function on port 0. Ingress packets on port
0 will be classed as high priority
1
6.1.11. Port 0 Control 2
Table 22. Port 0 Control 2
Name Byte.bit Description Default
Reserved 10.7~10.0 0000
0000
6.1.12. Port 0 Control 3
Table 23. Port 0 Control 3
Name Byte.bit Description Default
Reserved 11.7~11.0 0000
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 32 Track ID: JATR-1076-21 Rev. 1.2
6.1.13. Port 0 Control 4 & VLAN Entry [A]
Table 24. Port 0 Control 4 & VLAN Entry [A]
Name Byte.bit Description Default
VLAN Entry [A]
Internal Use 12.7 1
Internal Use 12.6 1
Reserved 12.5 0
VLAN ID [A]
membership Bit
[4:0]
12.4~12.0 This 5-bit field specifies which ports are the members of VLAN A. If a
destination address look up fails, the packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN A
10010 means port 4 and 1 are the members of VLAN A
11111 means all 5 ports are the members of VLAN A
1 0001
Port 0 Control 4
Port 0 VLAN
index [3:0]
13.7~13.5 In a port-based VLAN configuration, this register indexes port 0’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [P] Membership”. Port 0 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
0000
Internal Use 13.3 1
Internal Use 13.2 1
Internal Use 13.1 1
Reserved 13.0 0
VLAN Entry [A]
VLAN ID [A]
[7:0]
14.7~14.0 This register along with byte 15.3~15.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A
0000
0000
Port 0 Control 4 & VLAN Entry [A]
Internal Use 15.7 1
Internal Use 15.6 1
Internal Use 15.5 1
Internal Use 15.4 1
VLAN ID [A]
[11:8]
15.3~15.0 This register along with byte 14.7~14.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 33 Track ID: JATR-1076-21 Rev. 1.2
6.2. Port 1 Registers
6.2.1. Internal Use Register
Table 25. Internal Use Register
Name Byte.bit Description Default
Internal Use 16.7~16.0 Internal Use 0xFF
Internal Use 17.7~17.0 Internal Use 0xFF
Internal Use 18.7~18.0 Internal Use 0xFF
Internal Use 19.7~19.0 Internal Use 0xFF
Internal Use 20.7~20.0 Internal Use 0xFF
Internal Use 21.7~21.0 Internal Use 0xFF
Internal Use 22.7~22.0 Internal Use 0xFF
Internal Use 23.7~23.0 Internal Use 0xFF
6.2.2. Port 1 Control 0
Table 26. Port 1 Control 0
Name Byte.bit Description Default
Reserved 24.7 0
Internal Use 24.6 1
Internal Use 24.5~24.4 11
Internal Use 24.3 1
Internal Use 24.2 1
VLAN tag insert
and remove
24.1~24.0 For port 1 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
11
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 34 Track ID: JATR-1076-21 Rev. 1.2
6.2.3. Port 1 Control 1
Table 27. Port 1 Control 1
Name Byte.bit Description Default
Reserved 25.7 1
Internal Use 25.6 0
Local loopback 25.5 1: Perform local loopback, i.e. loopback MAC’s RX back to TX
0: Normal operation
0
Internal Use 25.4 0
Discard Non
PVID packets
25.3 1: If the received packets are tagged, the switch will discard packets whose VID
does not match the ingress port’s PVID
0: No packets will be dropped
0
Disable 802.1p
priority
25.2 1: Disable 802.1p priority classification for ingress packets on port 1
0: Enable 802.1p priority classification on port 1
1
Disable Diffserv
priority
25.1 1: Disable Diffserv priority classification for ingress packets on port 1
0: Enable Diffserv priority classification
1
Disable port-
based priority on
port 1
25.0 1: Disable port based priority QoS function on port 1
0: Enable port-based priority QoS function on port 1. Ingress packets on port 1
will be classed as high priority
1
6.2.4. Port 1 Control 2
Table 28. Port 1 Control 2
Name Byte.bit Description Default
Internal Use 26.7 0
Reserved 26.6~ 26.5 10
Internal Use 26.4 1
Reserved 26.3~ 26.0
1111
6.2.5. Port 1 Control 3
Table 29. Port 1 Control 2
Name Byte.bit Description Default
Reserved 27.7 1
Internal Use 27.6 0
Reserved 27.5~
27.0
00 1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 35 Track ID: JATR-1076-21 Rev. 1.2
6.2.6. Port 1 Control 4 & VLAN Entry [B]
Table 30. Port 1 Control 4 & VLAN Entry [B]
Name Byte.bit Description Default
VLAN Entry [B]
Internal Use 28.7 1
Internal Use 28.6 1
Reserved 28.5 0
VLAN ID [B]
Membership Bit
[4:0]
28.4~
28.0
This 5-bit field specifies which ports are the members of VLAN B. If a
destination address look up fails, the packet associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN B
10010 means port 4 and 1 are the members of VLAN B
11111 means all 5 ports are members of VLAN B.
1 0010
Port 1 Control 4
Port 1 VLAN
index [3:0]
29.7~
29.5
In a port-based VLAN configuration, this register indexes to port 1’s ‘Port
VLAN Membership’, which may be defined in one of the registers ‘VLAN ID
[A] Membership’ to ‘VLAN ID [P] Membership’. Port 1 can only communicate
with members within this VLAN. This register also indexes to a default Port
VID (PVID) for each port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0001, which indexes to the VLAN entry [B]
that is composed of VLAN ID [B] Membership Bit [4:0] in PHY1 Reg.24.[4:0]
and VLAN ID [B] in PHY1 Reg.25.[11:0].
0001
Internal Use 29.3 1
Internal Use 29.2 1
Internal Use 29.1 1
Reserved 29.0 0
VLAN Entry [B]
VLAN ID [B]
[7:0]
30.7~
30.0
This register, along with byte 31.3~31.0, defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN B.
0000
0001
Port 1 Control 4 & VLAN Entry [B]
Internal Use 31.7 1
Internal Use 31.6 1
Internal Use 31.5 1
Internal Use 31.4 1
VLAN ID [B]
[11:8]
31.3~
31.0
This register, along with byte 30.7~30.0, defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN B.
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 36 Track ID: JATR-1076-21 Rev. 1.2
6.3. Port 2 Registers
6.3.1. Internal Use Register
Table 31. Internal Use Register
Name Byte.bit Description Default
Internal Use Register
Internal Use 32.7~32.0 0xFF
Internal Use 33.7~33.0 0xFF
Internal Use 34.7~34.0 0xFF
Internal Use 35.7~35.0 0xFF
Internal Use 36.7~36.0 0xFF
Internal Use 37.7~37.0 0xFF
Internal Use 38.7~38.0 0xFF
Internal Use 39.7~39.0 0xFF
6.3.2. Port 2 Control 0
Table 32. Port 2 Control 0
Name Byte.bit Description Default
Reserved 40.7 0
Internal Use 40.6 1
Internal Use 40.5~40.4 11
Internal Use 40.3 1
Internal Use 40.2 1
VLAN tag insert
and remove
40.1~40.0 For port 2 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
11
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 37 Track ID: JATR-1076-21 Rev. 1.2
6.3.3. Port 2 Control 1
Table 33. Port 2 Control 1
Name Byte.bit Description Default
Reserved 41.7 1
Internal Use 41.6 0
Local loopback 41.5 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
0
Internal Use 41.4 0
Discard Non
PVID packets
41.3 1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
0
Disable 802.1p
priority
41.2 1: Disable 802.1p priority classification for ingress packets on port 2
0: Enable 802.1p priority classification on port 2
1
Disable Diffserv
priority
41.1 1: Disable Diffserv priority classification for ingress packets on port 2
0: Enable Diffserv priority classification
1
Disable port-
based priority on
port 2
41.0 1: Disable port based priority QoS function on port 2
0: Enable port based priority QoS function on port 2. Ingress packets on
port 2 will be classed as high priority
1
6.3.4. Reserved
Table 34. Reserved
Name Byte.bit Description Default
Reserved 42.7~42.0 0x20
Reserved 43.7~43.0 0x00
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 38 Track ID: JATR-1076-21 Rev. 1.2
6.3.5. Port 2 Control 2 & VLAN Entry [C]
Table 35. Port 2 Control 2 & VLAN Entry [C]
Name Byte.bit Description Default
VLAN Entry [C]
Internal Use 44.7 1
Internal Use 44.6 1
Reserved 44.5 0
VLAN ID [C]
Membership Bit
[4:0]
44.4~44.
0
This 5-bit field specifies which ports are the members of VLAN C. If a
destination address look up fails, the packet associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.
10001 means port 4 and 0 are the members of VLAN C
10010 means port 4 and 1 are the members of VLAN C
11111 means all 5 ports are the members of VLAN C
1 0100
Port 2 Control 2
Port 2 VLAN
index [3:0]
45.7~45.
5
In a port-based VLAN configuration, this register indexes to port 2’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN ID
[A] Membership’ to ‘VLAN ID [P] Membership’. Port 2 can only communicate
with members within this VLAN. This register also indexes to a default Port
VID (PVID) for each port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0010, which indexes to the VLAN entry [C]
that is composed of VLAN ID [C] Membership Bit [4:0] in PHY2 Reg.24.[4:0]
and VLAN ID [C] in PHY2 Reg.25.[11:0].
0010
Internal Use 45.3 1
Internal Use 45.2 1
Internal Use 45.1 1
Reserved 45.0 0
VLAN Entry [C]
VLAN ID [C]
[7:0]
46.7~46.
0
This register along with byte 47.3~47.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN C
0000
0010
Port 2 Control 2 & VLAN Entry [C]
Internal Use 47.7 1
Internal Use 47.6 1
Internal Use 47.5 1
Internal Use 47.4 1
VLAN ID [C]
[11:8]
47.3~47.
0
This register along with byte 46.7~46.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN C
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 39 Track ID: JATR-1076-21 Rev. 1.2
6.4. Port 3 Registers
6.4.1. Switch MAC Address
The Switch MAC address is used as the source address in MAC pause control frames.
Table 36. Switch MAC Address
Name Byte.bit Description Default
Switch MAC
Address [47:40]
48.7~48.0 Switch MAC Address Byte 5 0x52
Switch MAC
Address [39:32]
49.7~49.0 Switch MAC Address Byte 4 0x54
Switch MAC
Address [31:24]
50.7~50.0 Switch MAC Address Byte 3 0x4C
Switch MAC
Address [23:16]
51.7~51.0 Switch MAC Address Byte 2 0x83
Switch MAC
Address [15:8]
52.7~52.0 Switch MAC Address Byte 1 0x05
Switch MAC
Address [7:0]
53.7~53.0 Switch MAC Address Byte 0 0xC0
6.4.2. Port 3 Control 0
Table 37. Port 3 Control 0
Name Byte.bit Description Default
Reserved 54.7 0
Internal Use 54.6 1
Internal Use 54.5~54.4 11
Internal Use 54.3 1
Internal Use 54.2 1
VLAN tag insert
and remove
54.1~54.0 For port 3 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
11
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 40 Track ID: JATR-1076-21 Rev. 1.2
6.4.3. Port 3 Control 1
Table 38. Port 3 Control 1
Name Byte.bit Description Default
Reserved 55.7 1
Internal Use 55.6 0
Local loopback 55.5 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
0
Internal Use 55.4 0
Discard Non PVID
packets
55.3 1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
0
Disable 802.1p
priority
55.2 1: Disable 802.1p priority classification for ingress packets on port 3
0: Enable 802.1p priority classification on port 3
1
Disable Diffserv
priority
55.1 1: Disable Diffserv priority classification for ingress packets on port 3
0: Enable Diffserv priority classification
1
Disable port-based
priority on port 3
55.0 1: Disable port-based priority QoS function on port 3
0: Enable port-based priority QoS function on port 3. Ingress packets on
port 3 will be classed as high priority
1
6.4.4. Reserved
Table 39. Reserved
Name Byte.bit Description Default
Reserved 56.7~56.0 0x00
Reserved 57.7~57.0 0x00
6.4.5. Port 3 Control 2 & VLAN Entry [D]
Table 40. Port 3 Control 2 & VLAN Entry [D]
Name Byte.bit Description Default
VLAN Entry [D]
Internal Use 58.7 1
Internal Use 58.6 1
Reserved 58.5 0
VLAN ID [D]
Membership Bit
[4:0]
58.4~58.0 This 5-bit field specifies which ports are the members of VLAN D. If a
destination address look up fails, the packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN D
10010 means port 4 and 1 are the members of VLAN D
11111 means all 5 ports are the members of VLAN D
1 1000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 41 Track ID: JATR-1076-21 Rev. 1.2
Port 3 Control 2
Port 3 VLAN
index [3:0]
59.7~59.5 In a port-based VLAN configuration, this register indexes to port 3’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 3 can only
communicate with the members within this VLAN. This register also
indexes to a default Port VID (PVID) for each port. The PVID is used in
tag insertion and filtering if the tagged VID is not the same as the PVID.
The default value of this register is 0011, which indexes to the VLAN entry
[D] that is composed of VLAN ID [D] Membership Bit [4:0] in PHY3
Reg.24.[4:0] and VLAN ID [D] in PHY3 Reg.25.[11:0].
0011
Internal Use 59.3 1
Internal Use 59.2 1
Internal Use 59.1 1
Reserved 59.0 0
VLAN Entry [D]
VLAN ID [D]
[7:0]
60.7~60.0 This register along with byte 61.3~61.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN D
0000
0011
Port 3 Control 2 & VLAN Entry [D]
Internal Use 61.7 1
Internal Use 61.6 1
Internal Use 61.5 1
Internal Use 61.4 1
VLAN ID [D]
[11:8]
61.3~61.0 This register along with byte 60.7~60.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN D
0000
6.4.6. Internal Use Register
Table 41. Internal Use Register
Name Byte.bit Description Default
Internal Use 62.7~62.0 0x00
Internal Use 63.7~63.0 0x00
Internal Use 64.7~64.0 0x00
Internal Use 65.7~65.0 0x00
Internal Use 66.7~66.0 0x00
Internal Use 67.7~67.0 0x00
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 42 Track ID: JATR-1076-21 Rev. 1.2
6.5. Port 4 Registers
6.5.1. Port 4 Control 0
Table 42. Port 4 Control 0
Name Byte.bit Description Default
Reserved 68.7 0
Internal Use 68.6 1
Internal Use 68.5~68.4 11
Internal Use 68.3 1
Internal Use 68.2 1
VLAN tag insert
and remove
68.1~68.0 For port 4 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
11
6.5.2. Port 4 Control 1
Table 43. Port 4 Control 1
Name Byte.bit Description Default
Reserved 69.7 1
Internal Use 69.6 0
Local loopback 69.5 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
0
Internal Use 69.4 0
Discard Non
PVID packets
69.3 1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
0
Disable 802.1p
priority
69.2 1: Disable 802.1p priority classification for ingress packets on port 4
0: Enable 802.1p priority classification on port 4
1
Disable Diffserv
priority
69.1 1: Disable Diffserv priority classification for ingress packets on port 4
0: Enable Diffserv priority classification
1
Disable port-
based priority on
port 4
69.0 1: Disable port based priority QoS function on port 4
0: Enable port based priority QoS function on port 4. Ingress packet on port
4 will be classified as high priority
1
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 43 Track ID: JATR-1076-21 Rev. 1.2
6.5.3. Reserved
Table 44. Reserved
Name Byte.bit Description Default
Reserved 70.7~70.0 0x00
Reserved 71.7~71.0 0x00
6.5.4. Port 4 Control 2 & VLAN Entry [E]
Table 45. Port 4 Control 2 & VLAN Entry [E]
Name Byte.bit Description Default
VLAN Entry [E]
Internal Use 72.7 1
Internal Use 72.6 1
Reserved 72.5 0
VLAN ID [E]
Membership Bit
[4:0]
72.4~72.0 This 5-bit field specifies which ports are the members of VLAN E. If a
destination address look up fails, a packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN E
10010 means port 4 and 1 are the members of VLAN E
11111 means all 5 ports are the members of VLAN E
1 1111
Port 4 Control 2
Port 4 VLAN
index [3:0]
73.7~73.5 In a port-based VLAN configuration, this register indexes to port 4’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 4 can only
communicate with the members within this VLAN. This register also
indexes to a default Port VID (PVID) for each port. The PVID is used in
tag insertion and filtering if the tagged VID is not the same as the PVID.
The default value of this register is 0100, which indexes to the VLAN entry
[E] that is composed of VLAN ID [E] Membership Bit [4:0] in PHY4
Reg.24.[4:0] and VLAN ID [E] in PHY4 Reg.25.[11:0].
0100
Internal Use 73.3 1
Internal Use 73.2 1
Internal Use 73.1 1
Reserved 73.0 0
VLAN Entry [E]
VLAN ID [E]
[7:0]
74.7~74.0 This register, along with byte 75.3~75.0, defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E
0000
0100
Port 4 Control 2 & VLAN Entry [E]
Internal Use 75.7 1
Internal Use 75.6 1
Internal Use 75.5 1
Internal Use 75.4 1
VLAN ID [E]
[11:8]
75.3~75.0 This register, along with byte 74.7~74.0, defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 44 Track ID: JATR-1076-21 Rev. 1.2
6.5.5. Internal Use Register
Table 46. Internal Use Register
Name Byte.bit Description Default
Reserved 76.7 0
Internal Use 76.6~76.4 100
Reserved 76.3 0
Internal Use 76.2~76.0 000
6.5.6. 802.1p Base Priority
Table 47. 802.1p Base Priority
Name Byte.bit Description Default
802.1p base
priority
77.7~77.5 Classifies priority for incoming 802.1Q packets, if 802.1p priority
classification is enabled. “User priority” compared against this value.
>=: Classify as high priority
<: Classify as low priority
100
Reserved 77.4~77.0 0 0000
6.6. VLAN Entries
6.6.1. VLAN Entry [F]
Table 48. VLAN Entry [F]
Name Byte.bit Description Default
VLAN Entry [F]
Reserved 78.7~78.5 000
VLAN ID [F]
Membership Bit
[4:0]
78.4~78.0 This 5-bit field specifies which ports are the members of VLAN F. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN F
10010 means port 4 and 1 are the members of VLAN F
11111 means all 5 ports are the members of VLAN F
1 0001
Reserved 79.7~79.0 0101
0000
VLAN ID [F]
[7:0]
80.7~80.0 This register along with byte 81.3~81.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN F
0000
0101
Reserved 81.7~81.4 1111
VLAN ID [F]
[11:8]
81.3~81.0 This register along with byte 80.7~80.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN F
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 45 Track ID: JATR-1076-21 Rev. 1.2
6.6.2. VLAN Entry [G]
Table 49. VLAN Entry [G]
Name Byte.bit Description Default
VLAN Entry [G]
Reserved 82.7~82.5 000
VLAN ID [G]
membership Bit
[4:0]
82.4~82.0 This 5-bit field specifies which ports are the members of VLAN G. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN G
10010 means port 4 and 1 are the members of VLAN G
11111 means all 5 ports are the members of VLAN G
1 0010
Reserved 83.7~83.0 0110
0000
VLAN ID [G]
[7:0]
84.7~84.0 This register along with byte 85.3~85.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN G
0000
0110
Reserved 85.7~85.4 1111
VLAN ID [G]
[11:8]
85.3~85.0 This register along with byte 84.7~84.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN G
0000
6.6.3. VLAN Entry [H]
Table 50. VLAN Entry [H]
Name Byte.bit Description Default
VLAN Entry [H]
Reserved 86.7~86.5 000
VLAN ID [H]
membership Bit
[4:0]
86.4~86.0 This 5-bit field specifies which ports are the members of VLAN H. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN H
10010 means port 4 and 1 are the members of VLAN H
11111 means all 5 ports are members of VLAN H
1 0100
Reserved 87.7~87.0 0111
0000
VLAN ID [H]
[7:0]
88.7~88.0 This register along with byte 89.3~89.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN H
0000
0111
Reserved 89.7~89.4 1111
VLAN ID [H]
[11:8]
89.3~89.0 This register along with byte 88.7~88.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN H
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 46 Track ID: JATR-1076-21 Rev. 1.2
6.6.4. VLAN Entry [I]
Table 51. VLAN Entry [I]
Name Byte.bit Description Default
VLAN Entry [I]
Reserved 90.7~90.5 000
VLAN ID [I]
membership Bit
[4:0]
90.4~90.0 This 5-bit field specifies which ports are the members of VLAN I. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN I
10010 means port 4 and 1 are the members of VLAN I
11111 means all 5 ports are the members of VLAN I
1 1000
Reserved 91.7~91.0 1000
0000
VLAN ID [I]
[7:0]
92.7~92.0 This register along with byte 93.3~93.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN I
0000
1000
Reserved 93.7~93.4 1111
VLAN ID [I]
[11:8]
93.3~93.0 This register along with byte 92.7~92.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN I
0000
6.6.5. VLAN Entry [J]
Table 52. VLAN Entry [J]
Name Byte.bit Description Default
VLAN Entry [I]
Reserved 94.7~94.5 000
VLAN ID [J]
membership Bit
[4:0]
94.4~94.0 This 5-bit field specifies which ports are the members of VLAN J. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN J
10010 means port 4 and 1 are the members of VLAN J
11111 means all 5 ports are members of VLAN J
1 1111
Reserved 95.7~95.0 1001
0000
VLAN ID [J]
[7:0]
96.7~96.0 This register along with byte 97.3~97.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN J
0000
1001
Reserved 97.7~97.4 1111
VLAN ID [J]
[11:8]
97.3~97.0 This register along with byte 96.7~96.0 defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN J
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 47 Track ID: JATR-1076-21 Rev. 1.2
6.6.6. VLAN Entry [K]
Table 53. VLAN Entry [K]
Name Byte.bit Description Default
Reserved 98.7~98.5 000
VLAN ID [K]
Membership
Bit [4:0]
98.4~98.0 This 5-bit field specifies which ports are the members of VLAN K. If a
destination address look up fails, the packet associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN K
10010 means port 4 and 1 are the members of VLAN K
11111 means all 5 ports are the members of VLAN K
1 0001
Reserved 99.7~99.0 1010
0000
VLAN ID [K]
[7:0]
100.7~100.
0
This register along with byte 101.3~101.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN K
0000
1010
Reserved 101.7~101.
4
1111
VLAN ID [K]
[11:8]
101.3~101.
0
This register along with byte 100.7~100.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN K
0000
6.6.7. VLAN Entry [L]
Table 54. VLAN Entry [L]
Name Byte.bit Description Default
VLAN Entry [L]
Reserved 102.7~102.5 000
VLAN ID [L]
membership Bit
[4:0]
102.4~102.0 This 5-bit field specifies which ports are the members of VLAN L. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN L
10010 means port 4 and 1 are the members of VLAN L
11111 means all 5 ports are members of VLAN L
1 0010
Reserved 103.7~103.0 1011
0000
VLAN ID [L]
[7:0]
104.7~104.0 This register along with byte 105.3~105.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN L
0000
1011
Reserved 105.7~105.4 1111
VLAN ID [L]
[11:8]
105.3~105.0 This register along with byte 104.7~104.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN L
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 48 Track ID: JATR-1076-21 Rev. 1.2
6.6.8. VLAN Entry [M]
Table 55. VLAN Entry [M]
Name Byte.bit Description Default
VLAN Entry [M]
Reserved 106.7~106.5 000
VLAN ID [M]
membership Bit
[4:0]
106.4~106.0 This 5-bit field specifies which ports are the members of VLAN M. If a
destination address look up fails, the packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN M
10010 means port 4 and 1 are the members of VLAN M
11111 means all 5 ports are members of VLAN M
1 0100
Reserved 107.7~107.0 1100
0000
VLAN ID [M]
[7:0]
108.7~108.0 This register along with byte 109.3~109.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN M
0000
1100
Reserved 109.7~109.4 1111
VLAN ID [M]
[11:8]
109.3~109.0 This register along with byte 108.7~108.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN M
0000
6.6.9. VLAN Entry [N]
Table 56. VLAN Entry [N]
Name Byte.bit Description Default
VLAN Entry [N]
Reserved 110.7~110.5 000
VLAN ID [N]
membership Bit
[4:0]
110.4~110.0 This 5-bit field specifies which ports are the members of VLAN N. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN N
10010 means port 4 and 1 are the members of VLAN N
11111 means all 5 ports are the members of VLAN N
1 1000
Reserved 111.7~111.0 1101
0000
VLAN ID [N]
[7:0]
112.7~112.0 This register along with byte 113.3~113.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN N
0000
1101
Reserved 113.7~113.4 1111
VLAN ID [N]
[11:8]
113.3~113.0 This register along with byte 112.7~112.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN M
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 49 Track ID: JATR-1076-21 Rev. 1.2
6.6.10. VLAN Entry [O]
Table 57. VLAN Entry [O]
Name Byte.bit Description Default
VLAN Entry [O]
Reserved 114.7~114.5 000
VLAN ID [O]
membership Bit
[4:0]
114.4~114.0 This 5-bit field specifies which ports are the members of VLAN O. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN O
10010 means port 4 and 1 are the members of VLAN O
11111 means all 5 ports are members of VLAN O
1 1111
Reserved 115.7~115.0 1110
0000
VLAN ID [O]
[7:0]
116.7~116.0 This register along with byte 117.3~117.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN O
0000
1110
Reserved 117.7~117.4 1111
VLAN ID [O]
[11:8]
117.3~117.0 This register along with byte 116.7~116.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN O
0000
6.6.11. VLAN Entry [P]
Table 58. VLAN Entry [P]
Name Byte.bit Description Default
VLAN Entry [P]
Reserved 118.7~118.5 000
VLAN ID [P]
Membership
Bit [4:0]
118.4~118.0 This 5-bit field specifies which ports are the members of VLAN P. If a
destination address look up fails, packets associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN P
10010 means port 4 and 1 are the members of VLAN P
11111 means all 5 ports are members of VLAN P
1 0001
Reserved 119.7~119.0 1111
0000
VLAN ID [P]
[7:0]
120.7~120.0 This register along with byte 27.3~27.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN P
0000
1111
Reserved 121.7~121.4 1111
VLAN ID [P]
[11:8]
121.3~121.0 This register along with byte 26.7~26.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN P
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 50 Track ID: JATR-1076-21 Rev. 1.2
7. Register Descriptions
Hardware Reset: pin RESET#=0 to 1. Reset all then load EEPROM and Pin registers with serial
EEPROM and Pin strapping.
Soft Reset: Write bit12 of Reg16 of PHY0 as 1. Reset all except loading EEPROM and Pin Registers
with serial EEPROM and Pins. After updating the EEPROM or Pin registers via SMI, the external device
must do a soft reset in order to allow the configuration change to take affect.
Note: In this section the following abbreviations are used:
RO: Read Only LH: Latch High until clear
RW: Read/Write SC: Self Clearing
LL: Latch Low until clear
Table 59. Register Descriptions
Name PHY Page Register Register Description
0 Control Register
1 Status Register
2 PHY Identifier 1
3 PHY Identifier 2
4 Auto-Negotiation Advertisement Register
5 Auto-Negotiation Link Partner Ability Register
6 Auto-Negotiation Expansion Register
16~19 Global Control Register
22 Port 0 Control Register 0
24 Port 0 Control Register 1 & VLAN ID [A] Membership
0
25 Port 0 Control Register 2 & VLAN ID [A]
0 26 Reserved
1 26 VLAN ID [F] Membership
0 27 Reserved
1 27 VLAN ID [F]
0 28 Reserved
1 28 VLAN ID [K] Membership
0 29 Reserved
1 29 VLAN ID [K]
0 30 Reserved
1 30 VLAN ID [P] Membership
0 31 Reserved
Port 0 PHY
Register
0
1 31 VLAN ID [P]
0 Control Register
1 Status Register
2 PHY Identifier 1
Port 1 PHY
Register
1 0
3 PHY Identifier 2
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 51 Track ID: JATR-1076-21 Rev. 1.2
Name PHY Page Register Register Description
4 Auto-Negotiation Advertisement Register
5 Auto-Negotiation Link Partner Ability Register
6 Auto-Negotiation Expansion Register
16~17 Internal Use Register
18~19 Internal Use Register
22 Port 1 Control Register 0
23 Global Option Register 0
24 Port 1 Control Register 1 & VLAN ID[B] Membership
25 Port 1 Control Register 2 & VLAN ID[B]
0 26 Reserved
1 26 VLAN ID [G] Membership
0 27 Reserved
1 27 VLAN ID [G]
0 28 Reserved
1 28 VLAN ID [L] Membership
0 29 Reserved
1 29 VLAN ID [L]
0 Control Register
1 Status Register
2 PHY Identifier 1
3 PHY Identifier 2
4 Auto-Negotiation Advertisement Register
5 Auto-Negotiation Link Partner Ability Register
6 Auto-Negotiation Expansion Register
16~17 Internal Use Register
18~19 Internal Use Register
22 Port 2 Control Register 0
24 Port 2 Control Register 1 & VLAN ID[C] Membership
0
25 Port 2 Control Register 2 & VLAN ID [C]
0 26 Reserved
1 26 VLAN ID [H] Membership
0 27 Reserved
1 27 VLAN ID [H]
0 28 Reserved
1 28 VLAN ID [M] Membership
0 29 Reserved
Port 2 PHY
Register
2
1 29 VLAN ID [M]
0 Control Register
1 Status Register
2 PHY Identifier 1
3 PHY Identifier 2
4 Auto-Negotiation Advertisement Register
5 Auto-Negotiation Link Partner Ability Register
Port 3 PHY
Register
3 0
6 Auto-Negotiation Expansion Register
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 52 Track ID: JATR-1076-21 Rev. 1.2
Name PHY Page Register Register Description
16~18 Switch MAC Address
19~21 Internal Use Register
22 Port 3 Control Register 0
24 Port 3 Control Register 1 & VLAN ID[D] Membership
25 Port 3 Control Register 2 & VLAN ID [D]
0 26 Reserved
1 26 VLAN ID [I] Membership
0 27 Reserved
1 27 VLAN ID [I]
0 28 Reserved
1 28 VLAN ID [N] Membership
0 29 Reserved
1 29 VLAN ID [N]
0 Control Register
1 Status Register
2 PHY Identifier 1
3 PHY Identifier 2
4 Auto-Negotiation Advertisement Register
5 Auto-Negotiation Link Partner Ability Register
6 Auto-Negotiation Expansion Register
16 Indirect Access Control
17~20 Indirect Access Data
21 Internal Use Register
22 Port 4 Control Register 0
24 Port 4 Control Register 1 & VLAN ID[E] Membership
0
25 Port 4 Control Register 2 & VLAN ID [E]
0 26 Reserved
1 26 VLAN ID [J] Membership
0 27 Reserved
1 27 VLAN ID [J]
0 28 Reserved
1 28 VLAN ID [O] Membership
0 29 Reserved
Port 4 PHY
Register
4
1 29 VLAN ID [O]
0 Control Register
1 Status Register
2 PHY Identifier 1
3 PHY Identifier 2
PHY Register
for Port 4
MAC
5 0
4 Auto-Negotiation Advertisement Register
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 53 Track ID: JATR-1076-21 Rev. 1.2
7.1. PHY 0 Registers
7.1.1. PHY 0 Register 0 for Port 0: Control
Table 60. PHY 0 Register 0: Control
Reg.bit Name Mode Description Default
0.15 Reset RW/SC 1: PHY reset. This bit is self-clearing 0
0.14 Loopback
(Digital loopback)
RW 1: Enable loopback. This will loopback TXD to RXD and
ignore all activity on the cable media
0: Normal operation
This function is usable only when this PHY is operated in
10Base-T full duplex or 100Base-TX full duplex.
0
0.13 Speed Select RW 1: 100Mbps
0: 10Mbps
When NWay is enabled, this bit reflects the result of auto-
negotiation (Read only).
When NWay is disabled, this bit can be set through SMI.
(Read/Write).
When 100FX mode is enabled, this bit=1 (Read only).
From pin
0.12 Auto Negotiation
Enable
RW 1: Enable auto-negotiation process
0: Disable auto-negotiation process
This bit can be set through SMI (Read/Write).
When 100FX mode is enabled, this bit=0 (Read only).
100FX must be in Force Mode. In order to avoid errors, the
RTL8305SC will ignore the action of this bit when writing
Reg0.12 as 1 in 100FX mode.
From pin
0.11 Power Down RW 1: Power down. All functions will be disabled except SMI
function
0: Normal operation
0
0.10 Isolate RW 1: Electrically isolates the PHY from MII. PHY is still able
to respond to MDC/MDIO
0: Normal operation
0
0.9 Restart Auto
Negotiation
RW/SC 1: Restart Auto-Negotiation process
0: Normal operation
0
0.8 Duplex Mode RW 1: Full duplex operation
0: Half duplex operation
When NWay is enabled (Reg0.12=1), this bit reflects the
result of auto-negotiation (Read only).
When NWay is disabled (Reg0.12=0, force mode of UTP or
100FX), this bit can be set through SMI (Read/Write).
100FX must be in Force Mode. In order to avoid errors, the
RTL8305SC will ignore the action to this bit when writing
Reg0.12 as 1 in 100FX mode.
From pin
0.[7:0] Reserved 0000
0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 54 Track ID: JATR-1076-21 Rev. 1.2
7.1.2. PHY 0 Register 1 for Port 0: Status
Table 61. PHY 0 Register 1: Status
Reg.bit Name Mode Description Default
1.15 100Base_T4 RO 0: No 100Base-T4 capability 0
1.14 100Base_TX_FD RO 1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
1
1.13 100Base_TX_HD RO 1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
1
1.12 10Base_T_FD RO 1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
1
1.11 10Base_T_HD RO 1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
1
1.[10:7] Reserved RO 0000
1.6 MF Preamble
Suppression
RO The RTL8305SC will accept management frames with
preamble suppressed.
(The RTL8305SC accepts management frames without
preamble. Minimum preamble of 32 bits is required for the
first SMI read/write transaction after reset. One idle bit is
required between any two management transactions as
defined in IEEE 802.3u).
1
1.5 Auto-negotiate
Complete
RO 1: Auto-negotiation process completed. MII Reg.4 and 5 are
valid if this bit is set
0: Auto-negotiation process not completed
0
1.4 Remote Fault RO/LH 1: Remote fault condition detected
0: No remote fault
When in 100FX mode, this bit means in-band signal Far-End-
Fault is detected
0
1.3 Auto-Negotiation
Ability
RO 1: NWay auto-negotiation capable (permanently=1) 1
1.2 Link Status RO/LL
1: Link is established. If the link fails, this bit will be 0 until
after reading this bit again
0: Link has failed
0
1.1 Jabber Detect RO/LH 0: No Jabber detected
The RTL8305SC does not support this function.
0
1.0 Extended Capability RO 1: Extended register capable (permanently=1) 1
7.1.3. PHY 0 Register 2 for Port 0: PHY Identifier 1
Table 62. PHY 0 Register 2: PHY Identifier 1
Reg.bit Name Mode Description Default
2.[15:0] OUI RO
Composed of the 3rd to 18th bits of the Organizationally Unique
Identifier (OUI), respectively
0x001C
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 55 Track ID: JATR-1076-21 Rev. 1.2
7.1.4. PHY 0 Register 3 for Port 0: PHY Identifier 2
Table 63. PHY 0 Register 3: PHY Identifier 2
Reg.bit Name Mode Description Default
3.[15:10] OUI RO Assigned to the 19th through 24th bits of the OUI 110010
3.[9:4] Model Number RO Manufacturers model number (05: Indicates RTL8305 000101
3.[3:0] Revision Number RO Manufacturer’s revision number (02: Indicates SC 0010
7.1.5. PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement
Note: Each time the link ability of the RTL8305SC is reconfigured, the auto-negotiation process should be
executed to allow the configuration to take effect.
Table 64. PHY 0 Register 4: Auto-Negotiation Advertisement
Reg.bit Name Mode Description Default
4.15 Next Page RO 1: Next Page enabled
0: Next Page disabled (Permanently=0)
0
4.14 Acknowledge RO Permanently=0 0
4.13 Remote Fault RW 1: Advertises that the RTL8305SC has detected a remote fault
0: No remote fault detected
0
4.[12:11] Reserved RO 00
4.10 Pause RW
1: Advertises that the RTL8305SC possesses 802.3x flow
control capability
0: No flow control capability
From pin
4.9 100Base-T4 RO Technology not supported. (Permanently=0) 0
4.8 100Base-TX-FD RW 1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
From pin
4.7 100Base-TX RW 1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
From pin
4.6 10Base-T-FD RW 1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
From pin
4.5 10Base-T RW 1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
1
4.[4:0] Selector Field RW [00001]=IEEE 802.3 00001
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 56 Track ID: JATR-1076-21 Rev. 1.2
7.1.6. PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner
Ability
Table 65. PHY 0 Register 5: Auto-Negotiation Link Partner Ability
Reg.bit Name Mode Description Default
5.15 Next Page RO 1: Link partner desires Next Page transfer
0: Link partner does not desire Next Page transfer
0
5.14 Acknowledge RO
1: Link Partner acknowledges reception of Fast Link Pulse (FLP)
words
0: Not acknowledged by Link Partner
0
5.13 Remote Fault RO 1: Remote Fault indicated by Link Partner
0: No remote fault indicated by Link Partner
0
5.[12:11] Reserved RO 00
5.10 Pause RO 1: Flow control supported by Link Partner
0: Flow control not supported by Link Partner
0
5.9 100Base-T4 RO 1: 100Base-T4 supported by Link Partner
0: 100Base-T4 not supported by Link Partner
0
5.8 100Base-TX-FD RO 1: 100Base-TX full duplex supported by Link Partner
0: 100Base-TX full duplex not supported by Link Partner
For 100FX mode, this bit will be set if Reg.0.8=1 or Full=1 after
link is established
When auto negotiation is disabled, this bit will be set if
Reg0.13=1 and Reg0.8=1 after link is established.
0
5.7 100Base-TX RO 1: 100Base-TX half duplex supported by Link Partner
0: 100Base-TX half duplex not supported by Link Partner
For 100FX mode, this bit is set when Reg.0.8=1 or Full=1 after
link established.
When auto negotiation is disabled, this bit will be set if
Reg0.13=1 and Reg0.8=0 after link is established.
0
5.6 10Base-T-FD RO 1: 10Base-TX full duplex supported by Link Partner
0: 10Base-TX full duplex not supported by Link Partner
When auto negotiation is disabled, this bit will be set if
Reg0.13=0 and Reg0.8=1 after link is established.
0
5.5 10Base-T RO 1: 10Base-TX half duplex supported by Link Partner
0: 10Base-TX half duplex not supported by Link Partner
When auto negotiation is disabled, this bit will be set if
Reg0.13=0 and Reg0.8=0 after link is established.
0
5.[4:0] Selector Field RO [00001]=IEEE 802.3 00001
7.1.7. PHY 0 Register 16: Global Control 0
Table 66. PHY 0 Register 16: Global Control 0
Reg.bit Name Mode Description Default
16.15 Page selection RW 1: Select the registers in page 1
0: Select the registers in page 0
0
16.14 Reserved 0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 57 Track ID: JATR-1076-21 Rev. 1.2
Reg.bit Name Mode Description Default
16.13 Lookup table
accessible enable
RW 1: Lookup table is accessible via indirect access registers
0: Lookup table is not accessible
0
16.12 Software Reset RW
SC
1: Soft reset. This bit is self-clearing
If this bit is set to 1, the RTL8305SC will reset all internal
registers except PHY registers, and will not load configurations
from EEPROM or strapping pins. Software reset is designed to
provide a convenient way for users to change the configuration
via SMI. After changing register values in the RTL8305SC
(except PHY registers) via SMI, the external device must
execute a soft reset (by setting this bit to 1) in order to update
the configuration.
0
16.11 Reserved 0
16.10 Disable 802.1Q tag
aware VLAN
RW 1: Disable 802.1Q tagged-VID Aware function. The
RTL8305SC will not check the tagged VID on received frames
to perform tagged-VID VLAN mapping. Under this
configuration, the RTL8305SC only uses the per-port VLAN
index register to perform Port-Based VLAN mapping
0: Enable the Member Set Filtering function of the VLAN
Ingress Rules. The RTL8305SC checks the tagged VID on
received frames with the VIDA[11:0]~VIDH[11:0] to index to a
member set, then performs VLAN mapping. The RTL8305SC
uses tagged-VID VLAN mapping for tagged frames but still
uses Port-Based VLAN mapping for priority-tagged and
untagged frames
1
16.9 Disable VLAN
member set ingress
filtering
RW 1: The switch will not drop the received frame if the ingress port
of this packet is not included in the matched VLAN member set.
It will still forward the packet to the VLAN members specified
in the matched member set. This setting both works on port-
based and tag-based VLAN configurations
0: The switch will drop the received frame if the ingress port of
this packet is not included in the matched VLAN member set
1
16.8 Disable VLAN tag
admit control
RW 1: The switch accepts all frames it receives whether tagged or
untagged
0: The switch will only accept tagged frames and will drop
untagged frames
1
16.7 EEPROM
existence
RO 1: EEPROM does not exist (pin EnEEPROM=0 or pin
EnEEPROM=1 but EEPROM does not exist)
0: EEPROM exists (pin EnEEPROM=1 and EEPROM exists)
1
16.6 Internal Use RW 1
16.5 Internal Use RW 1
16.4 Internal Use RW 1
16.3 Internal Use RW 1
16.2 Enable loop
detection function
RW 1: Enable loop detection function
0: Disable loop detection function
0
16.1 Reserved RW 1
16.0 Internal Use RW 0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 58 Track ID: JATR-1076-21 Rev. 1.2
7.1.8. PHY 0 Register 17: Global Control 1
Table 67. PHY 0 Register 17: Global Control 1
Reg.bit Name Mode Description Default
17.15 Internal Use RW 0
17.14 Internal Use RW 0
17.[13:8] Internal Use RW 11 1111
17.7 Internal Use RW 0
17.6 Internal Use RW 0
17.[5:0] Internal Use RW 11 1111
7.1.9. PHY 0 Register 18: Global Control 2
Table 68. PHY 0 Register 18: Global Control 2
Reg.bit Name Mode Description Default
18.15 Reserved RW Default=1
18.14 Maximum Frame
Length
RW 1: 1536Bytes
0: 1552Bytes
Pin Max1536
strap option
Default=1
18.13 Enable broadcast
drop
RW 1: Use Broadcast Input drop mechanism
0: Use Broadcast Output drop mechanism
Pin
BCInDrop
strap option
Default=1
18.12 Forward 802.1D
reserved MAC
addresses frame.
RW 1: Forward reserved control frames, whose DID=01-80-C2-00-
00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F packets
0: Filter reserved control packets, whose DID=01-80-C2-00-
00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F
Pin
EnForward
strap option
Default=1
18.11 Disable leaky
VLAN
RW 1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Broadcast and multicast frames adhere to the VLAN
configuration
Pin DisLeaky
strap option
Default=1
18.10 Disable ARP
VLAN
RW 1: Disable broadcasting of ARP broadcast packets to all
VLANs
0: Enable broadcasting of ARP broadcast packets to all VLANs
ARP broadcast frame DID is all F
Pin DisARP
strap option
Default=1
18.9 Enable 48 pass 1 RW 1: 48 pass 1. Continuously collides 48 input packets then
passes 1 packet to retain system resources and avoid partition
in the repeater when the packet buffer is full
0: Continuously collides to avoid packet loss when the packet
buffer is full
Pin
En48pass1
strap option
Default=1
18.8 Disable VLAN RW 1: Disable VLAN
0: Enable VLAN. The default VLAN membership
configuration by internal register is port 4 overlapped with all
the other ports, to form 4 individual VLANs. This default
membership configuration may be modified by setting up
internal registers via the SMI interface or EEPROM
Pin
DISVLAN
strap option
Default=1
18.7 Reserved RW Default=1
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 59 Track ID: JATR-1076-21 Rev. 1.2
Reg.bit Name Mode Description Default
18.6 Enable defer RW 1: Enable carrier sense deferring for half duplex back pressure
0: Disable carrier sense deferring for half duplex back pressure
Pin EnDefer
strap option
Default=1
18.5 LED blink time RW 1: On for 43ms, then Off for 43ms
0: On for 120ms, then Off for 120ms
Pin
LED_BLNK_
TIME strap
option
Default=1
18.[4:3] Queue weight RW The frame service ratio between the high priority queue and
low priority queue is:
11=16:1
10=Always high priority queue first
01=8:1
00=4:1
Pin
QWeight[1:0]
strap option
Default=11
18.2 Disable broadcast
storm control
RW 1: Disable Broadcast Storm Control
0: Enable Broadcast Storm Control
Pin
DisBrdCtrl
strap option
Default=1
18.1 Enable power-on
blinking
RW 1: Enable power-on LED blinking for diagnosis
0: Disable power-on LED blinking for diagnosis
Pin
En_Rst_Blnk
strap option
Default=1
18.0 Reserved 1
7.1.10. PHY 0 Register 19: Global Control 3
Table 69. PHY 0 Register 19: Global Control 3
Reg.bit Name Mode Description Default
19.[15:14
]
Reserved 11
19.[13:12
]
LED Mode[1:0] RW 11=Mode 3: Speed, Link+Act, Duplex+Col, Link/Act/Speed
10=Mode 2: Speed, Act, Duplex/Col, Bi-color Link/Activity
01=Mode 1: Speed, RxAct, TxAct, Link
00=Mode 0: Reserved
Pin
LEDMode[1:0]
strap option
Default=11
19.11 Internal Use RW Default=1
19.10 Disable dual MII
interface of
Port 4
RW 1: Disable dual MII interface of port 4. Only provides MII
interface for the MAC circuit of port 4
0: Enable dual MII interface of port 4. Provides MII interface
for the MAC circuit of port 4, and also provides MII interface
for the PHY circuit of port 4
Pin
DISDUALMII
strap option
Default=1
19.[9:0] Reserved 11 1111 1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 60 Track ID: JATR-1076-21 Rev. 1.2
7.1.11. PHY 0 Register 22: Port 0 Control Register 0
Table 70. PHY 0 Register 22: Port 0 Control Register 0
Reg.bit Name Mode Description Default
22.15 Reserved 1
22.14 Internal Use RW 0
22.13 Port 0 Local
loopback
RW 1: Perform ‘local loopback’, i.e. loop MACs RX back to TX.
0: Normal operation
0
22.12 Internal Use RW 0
22.11 Port 0 Non PVID
packets Discard
RW 1: If the received packets are tagged, the switch will discard
packets whose VID does not match the ingress port default VID,
which is indexed by port 0’s ‘Port based VLAN index’
0: No packets will be discarded
0
22.10 Port 0 802.1p
priority Disable
RW 1: Disable 802.1p priority classification for ingress packets on
port 0
0: Enable 802.1p priority classification
Pin
DisTagPri
strap option
Default=1
22.9 Port 0 Diffserv
priority Disable
RW 1: Disable Diffserv priority classification for ingress packets on
port 0
0: Enable Diffserv priority classification
Pin DisDSPri
strap option
Default=1
22.8 Port 0 port-based
priority Disable
RW 1: Disable port-based priority QoS function on port 0
0: Enable port-based priority QoS function on port 0. Ingress
packet on port 0 will be classified as high priority
Pin
DisPortPri[0]
strap option
Default=1
22.7 Reserved 0
22.6 Internal Use RW 1
22.[5:4] Internal Use RW 1
22.3 Internal Use RW 1
22.2 Internal Use RW 1
22.[1:0] Port 0 VLAN tag
insert and remove
RW 11=Do not insert or remove VLAN tags to/from packets that are
output on this port
10=The switch will add VLAN tags to packets, if they are not
tagged when these packets are output on this port. The switch
will not add tags to packets already tagged. The inserted tag is
the ingress port’s ‘Default tag’, which is indexed by port 0’s
‘Port based VLAN index’
01=The switch will remove VLAN tags from packets if they are
tagged when these packets are output on port 0. The switch will
not modify packets received without tags
00=The switch will remove VLAN tags from packets then add
new tags to them. The inserted tag is the ingress port’s ‘Default
tag’, which is indexed by port 0’s ‘Port based VLAN index’.
This is a replacement processing for tagged packets and an
insertion for untagged packets
11
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 61 Track ID: JATR-1076-21 Rev. 1.2
7.1.12. PHY 0 Register 24: Port 0 Control Register 1 & VLAN ID [A]
Membership
Table 71. PHY 0 Register 24: Port 0 Control Register 1 & VLAN ID [A] Membership
Reg.bit Name Mode Description Default
24.[15:12
]
Port 0 VLAN index
[3:0]
RW In a port-based VLAN configuration, this register indexes to
port 0’s ‘Port VLAN Membership’, which can be defined in
one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID
[P] Membership’.
Port 0 can only communicate with members within this VLAN.
This register also indexes to a default Port VID (PVID) for
each port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0000, which indexes to the
VLAN entry [A] that is composed of VLAN ID[A]
Membership Bit [4:0] in PHY0 Reg.24.[4:0], and VLAN ID
[A] in PHY0 Reg.25.[11:0].
0000
24.11 Internal Use RW 1
24.10 Internal Use RW 1
24.9 Internal Use RW 1
24.8 Internal Use RO 0
24.7 Internal Use RW 1
24.6 Internal Use RW 1
24.5 Reserved 0
24.[4:0] VLAN ID [A]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of
VLAN A. If a destination address look up fails, the packet
associated with this VLAN will be broadcast to the ports
specified in this field. Bit 0 stands for port 0, bit 4 stands for
port 4.E.g.:
10001 means port 4 and 0 are the members of VLAN A
10010 means port 4 and 1 are the members of VLAN A
11111 means all 5 ports are the members of VLAN A
1 0001
7.1.13. PHY 0 Register 25: Port 0 Control Register 2 & VLAN ID [A]
Table 72. PHY 0 Register 25: Port 0 Register Control 2 & VLAN ID [A]
Reg.bit Name Mode Description Default
25.15 Internal Use RW 1
25.14 Internal Use RW 1
25.13 Internal Use RW 1
25.12 Internal Use RW 1
25.[11:0] VLAN ID [A] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN A 0x000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 62 Track ID: JATR-1076-21 Rev. 1.2
7.1.14. PHY 0 Register 26: Reserved or VLAN ID [F] Membership
7.1.14.1 PHY 0 Register 26: Reserved Register (Page=0)
Table 73. PHY 0 Register 26: Reserved Register
Reg.bit Name Mode Description Default
26.[15:0] Reserved 0x5105
7.1.14.2 PHY 0 Register 26: VLAN ID [F] Membership (Page=1)
Table 74. PHY 0 Register 26: VLAN ID [F] Membership
Reg.bit Name Mode Description Default
26.[15:5] Reserved 1111 1111
111
26.[4:0] VLAN ID [F]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
F. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN F
10010 means port 4 and 1 are the members of VLAN F
11111 means all 5 ports are the members of VLAN F
1 0001
7.1.15. PHY 0 Register 27: Reserved or VLAN ID [F]
7.1.15.1 PHY 0 Register 27: Reserved Register (Page=0)
Table 75. PHY 0 Register 27: Reserved Register
Reg.bit Name Mode Description Default
27.[15:0] Reserved 0x0000
7.1.15.2 PHY 0 Register 27: VLAN ID [F] (Page=1)
Table 76. PHY 0 Register 27: VLAN ID [F]
Reg.bit Name Mode Description Default
27.[15:12
]
Reserved 1111
27.[11:0] VLAN ID [F] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN F 0000 0000
0101
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 63 Track ID: JATR-1076-21 Rev. 1.2
7.1.16. PHY 0 Register 28: Reserved or VLAN ID [K] Membership
7.1.16.1 PHY 0 Reg.28: Reserved Register (Page=0)
Table 77. PHY 0 Register 28: Reserved Register
Reg.bit Name Mode Description Default
28.[15:0] Reserved 0x0020
7.1.16.2 PHY 0 Register 28: VLAN ID [K] Membership (Page=1)
Table 78. PHY 0 Register 28: VLAN ID [K] Membership
Reg.bit Name Mode Description Default
28.[15:5] Reserved 1111 1111
111
28.[4:0] VLAN ID [K]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of
VLAN K. If a destination address look up fails, the packet
associated with this VLAN will be broadcast to the ports
specified in this field. Bit 0 stands for port 0, bit 4 stands for
port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN K
10010 means port 4 and 1 are the members of VLAN K
11111 means all 5 ports are the members of VLAN K
1 0001
7.1.17. PHY 0 Register 29: Reserved or VLAN ID [K]
7.1.17.1 PHY 0 Register 29: Reserved Register (Page=0)
Table 79. PHY 0 Register 29: Reserved Register
Reg.bit Name Mode Description Default
29.[15:0] Reserved
7.1.17.2 PHY 0 Register 29: VLAN ID [K] (Page=1)
Table 80. PHY 0 Register 29: VLAN ID [K]
Reg.bit Name Mode Description Default
29.[15:12
]
Reserved 1111
29.[11:0] VLAN ID [K] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN K 0000 0000
1010
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 64 Track ID: JATR-1076-21 Rev. 1.2
7.1.18. PHY 0 Register 30: Reserved or VLAN ID [P] Membership
7.1.18.1 PHY 0 Register 30: Reserved Register (Page=0)
Table 81. PHY 0 Register 30: Reserved Register
Reg.bit Name Mode Description Default
30.[15:0] Reserved
7.1.18.2 PHY0 Register 30: VLAN ID [P] Membership (Page=1)
Table 82. PHY 0 Register 30: VLAN ID [P] Membership
Reg.bit Name Mode Description Default
30.[15:5] Reserved 1111 1111
111
30.[4:0] VLAN ID [P]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of
VLAN P. If a destination address look up fails, the packet
associated with this VLAN will be broadcast to the ports
specified in this field. Bit 0 stands for port 0, bit 4 stands for
port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN P
10010 means port 4 and 1 are the members of VLAN P
11111 means all 5 ports are the members of VLAN P
1 0001
7.1.19. PHY 0 Register 31: Reserved or VLAN ID [P]
7.1.19.1 PHY 0 Register 31: Reserved Register (Page=0)
Table 83. PHY 0 Register 31: Reserved Register
Reg.bit Name Mode Description Default
31.[15:0] Reserved
7.1.19.2 PHY 0 Register 31: VLAN ID [P] (Page=1)
Table 84. PHY 0 Register 31: VLAN ID [P]
Reg.bit Name Mode Description Default
31.[15:12
]
Reserved 1111
31.[11:0] VLAN ID [P] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN P 0000 0000
1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 65 Track ID: JATR-1076-21 Rev. 1.2
7.2. PHY 1 Registers
7.2.1. PHY 1 Register 0 for Port 1: Control
This register has the same definition as PHY 0 Register 0 for Port 0: Control, page 53.
7.2.2. PHY 1 Register 1 for Port 1: Status
This register has the same definition as PHY 0 Register 1 for Port 0: Status, page 54.
7.2.3. PHY 1 Register 2 for Port 1: PHY Identifier 1
This register has the same definition as PHY 0 Register 2 for Port 0: PHY Identifier 1, page 54.
7.2.4. PHY 1 Register 3 for Port 1: PHY Identifier 2
This register has the same definition as PHY 0 Register 3 for Port 0: PHY Identifier 2, page 55.
7.2.5. PHY 1 Register 4 for Port 1: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement,
page 55.
7.2.6. PHY 1 Register 5 for Port 1: Auto-Negotiation Link Partner
Ability
This register has the same definition as PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner
Ability, page 56.
7.2.7. PHY 1 Register 16~17: Internal Use Register
Table 85. PHY 1 Register 16~17: Internal Use Register
Reg.bit Name Mode Description Default
16 Internal Use RW 0xFFFF
17 Internal Use RW 0xFFFF
7.2.8. PHY 1 Register 18~19: Internal Use Register
Table 86. PHY 1 Register 18~19: Internal Use Register
Reg.bit Name Mode Description Default
18 Internal Use RW 0xFFFF
19 Internal Use RW 0xFFFF
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 66 Track ID: JATR-1076-21 Rev. 1.2
7.2.9. PHY 1 Register 22: Port 1 Control Register 0
This register has the same definition as PHY 0 Register 22: Port 0 Control Register 0page 60.
Note: Reg 22.8 is pin DisPortPri[1] strap option for port 1. Default value for 22.8 is 1.
7.2.10. PHY 1 Register 23: Global Option Register 0
Table 87. PHY 1 Register 23: Global Option Register 0
Reg.bit Name Mode Description Default
23.15 Reserved 1
23.14 Internal Use RW 0
23.[13:8] Reserved 00 1111
23.7 Internal Use RW 0
23.[6:5] Reserved 10
23.4 Internal Use RW 1
23.[3:0] Reserved 1111
7.2.11. PHY 1 Register 24: Port 1 Control Register 1 & VLAN ID [B]
Membership
Table 88. PHY 1 Register 24: Port 1 Control Register 1 & VLAN ID [B] Membership
Reg.bit Name Mode Description Default
24.[15:12
]
Port 1 VLAN index
[3:0]
RW In a port-based VLAN configuration, this register indexes to
port 1’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to “VLAN ID [P]
Membership”. Port 1can only communicate with members
within this VLAN.
This register also indexes to a default Port VID (PVID) for each
port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0001, which indexes to the
VLAN entry [B] that is composed of VLAN ID [B]
Membership Bit [4:0] in PHY1 Reg.24.[4:0] and VLAN ID [B]
in PHY1 Reg.25.[11:0].
0001
24.11 Internal Use RW 1
24.10 Internal Use RW 1
24.9 Internal Use RW 1
24.8 Internal Use RO 0
24.7 Internal Use RW 1
24.6 Internal Use RW 1
24.5 Reserved 0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 67 Track ID: JATR-1076-21 Rev. 1.2
Reg.bit Name Mode Description Default
24.[4:0] VLAN ID [B]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
B. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN B
10010 means port 4 and 1 are the members of VLAN B
11111 means all 5 ports are members of VLAN B
1 0010
7.2.12. PHY 1 Register 25: Port 1 Control Register 2 & VLAN ID [B]
Table 89. PHY 1 Register 25: Port 1 Control Register 2 & VLAN Entry [B]
Reg.bit Name Mode Description Default
25.15 Internal Use RW 1
25.14 Internal Use RW 1
25.13 Internal Use RW 1
25.12 Internal Use RW 1
25.[11:0] VLAN ID [B] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN B 0000 0000
0001
7.2.13. PHY 1 Register 26: Reserved or VLAN ID [G] Membership
7.2.13.1 PHY 1 Register 26: Reserved Register (Page=0)
Table 90. PHY 1 Register 26: Reserved Register
Reg.bit Name Mode Description Default
26.[15:0] Reserved 0x031F
7.2.13.2 PHY 1 Register 26: VLAN ID [G] Membership (Page=1)
Table 91. PHY 1 Register 26: VLAN ID [G] Membership
Reg.bit Name Mode Description Default
26.[15:5] Reserved 1111 1111
111
26.[4:0] VLAN ID [G]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN G.
If a destination address look up fails, the packet associated with
this VLAN will be broadcast to the ports specified in this field.
Bit 0 stands for port 0, bit 4 stands for Port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN G
10010 means port 4 and 1 are the members of VLAN G
11111 means all 5 ports are members of VLAN G
1 0010
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 68 Track ID: JATR-1076-21 Rev. 1.2
7.2.14. PHY 1 Register 27: Reserved or VLAN ID [G]
7.2.14.1 PHY 1 Register 27: Reserved Register (Page=0)
Table 92. PHY 1 Register 27: Reserved Register
Reg.bit Name Mode Description Default
27.[15:0] Reserved 0x1F10
7.2.14.2 PHY 1 Register 27: VLAN ID [G] (Page=1)
Table 93. PHY 1 Register 27: VLAN ID [G]
Reg.bit Name Mode Description Default
27.[15:12
]
Reserved 1111
27.[11:0] VLAN ID [G] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN G 0000 0000
0110
7.2.15. PHY 1 Register 28: Reserved or VLAN ID [L] Membership
7.2.15.1 PHY 1 Register 28: Reserved Register (Page=0)
Table 94. PHY 1 Register 28: Reserved Register
Reg.bit Name Mode Description Default
28.[15:0] Reserved 0x0012
7.2.15.2 PHY 1 Register 28: VLAN ID [L] Membership (Page=1)
Table 95. PHY 1 Register 28: VLAN ID [L] Membership
Reg.bit Name Mode Description Default
28.[15:5] Reserved 1111 1111
111
28.[4:0] VLAN ID [L]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of
VLAN L. If a destination address look up fails, the packet
associated with this VLAN will be broadcast to the ports
specified in this field. Bit 0 stands for port 0, bit 4 stands for
port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN L
10010 means port 4 and 1 are the members of VLAN L
11111 means all 5 ports are members of VLAN L
1 0010
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 69 Track ID: JATR-1076-21 Rev. 1.2
7.2.16. PHY 1 Register 29: Reserved or VLAN ID [L]
7.2.16.1 PHY 1 Register 29: Reserved (Page=0)
Table 96. PHY 1 Register 29: Reserved Register
Reg.bit Name Mode Description Default
29.[15:0] Reserved 0x02C5
7.2.16.2 PHY 1 Register 29: VLAN ID [L] (Page=1)
Table 97. PHY 1 Register 29: VLAN ID [L]
Reg.bit Name Mode Description Default
29.[15:12
]
Reserved 1111
29.[11:0] VLAN ID [L] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN L 0000 0000
1011
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 70 Track ID: JATR-1076-21 Rev. 1.2
7.3. PHY 2 Registers
7.3.1. PHY 2 Register 0 for Port 2: Control
This register has the same definition as PHY 0 Register 0 for Port 0: Control, page 53.
7.3.2. PHY 2 Register 1 for Port 2: Status
This register has the same definition as PHY 0 Register 1 for Port 0: Status, page 54.
7.3.3. PHY 2 Register 2 for Port 2: PHY Identifier 1
This register has the same definition as PHY 0 Register 2 for Port 0: PHY Identifier 1, page 54.
7.3.4. PHY 2 Register 3 for Port 2: PHY Identifier 2
This register has the same definition as PHY 0 Register 3 for Port 0: PHY Identifier 2, page 55.
7.3.5. PHY 2 Register 4 for Port 2: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement,
page 55.
7.3.6. PHY 2 Register 5 for Port 2: Auto-Negotiation Link Partner
Ability
This register has the same definition as PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner
Ability, page 56.
7.3.7. PHY 2 Register 16~17: Internal Use Register
Table 98. PHY 2 Register 16~17: Internal Use Register
Reg.bit Name Mode Description Default
16 Internal Use RW 0xFFFF
17 Internal Use RW 0xFFFF
7.3.8. PHY 2 Register 18~19: Internal Use Register
Table 99. PHY 2 Register 18~19: Internal Use Register
Reg.bit Name Mode Description Default
18 Internal Use RW 0xFFFF
19 Internal Use RW 0xFFFF
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 71 Track ID: JATR-1076-21 Rev. 1.2
7.3.9. PHY 2 Register 22: Port 2 Control Register 0
This register has the same definition as PHY 0 Register 22: Port 0 Control Register 0, on page 60.
Note: Reg 22.8 is pin DisPortPri[2] strap option for port 2. Default value for 22.8 is 1.
7.3.10. PHY 2 Register 23: Global Option 1 Register
Table 100. PHY 2 Register 23: Global Option Register 1
Reg.bit Name Mode Description Default
23.[15:12
]
Reserved 0000
23.11 Internal Use RW 0
23.10 Internal Use RW 0
23.9 Internal Use RW 0
23.[8:0] Reserved 0 0010 0000
7.3.11. PHY 2 Register 24: Port 2 Control Register 2 & VLAN ID [C]
Membership
Table 101. PHY 2 Register 24: Port 2 Control Register 2 & VLAN ID [C] Membership
Reg.bit Name Mode Description Default
24.[15:12
]
Port 2 VLAN index
[3:0]
RW In a port-based VLAN configuration, this register indexes to
port 2’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P]
Membership’. Port 2 can only communicate with members
within this VLAN.
This register also indexes to a default Port VID (PVID) for each
port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0010, which indexes to the
VLAN entry [C] that is composed of VLAN ID [C]
Membership Bit [4:0] in PHY2 Reg.24.[4:0], and VLAN ID [C]
in PHY2 Reg.25.[11:0].
0010
24.11 Internal Use RW 1
24.10 Internal Use RW 1
24.9 Internal Use RW 1
24.8 Internal Use RO 0
24.7 Internal Use RW
1
24.6 Internal Use RW 1
24.5 Reserved 0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 72 Track ID: JATR-1076-21 Rev. 1.2
Reg.bit Name Mode Description Default
24.[8:0] VLAN ID [C]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
C. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN C
10010 means port 4 and 1 are the members of VLAN C
11111 means all 5 ports are the members of VLAN C
1 0100
7.3.12. PHY 2 Register 25: Port 2 Control Register 3 & VLAN ID [C]
Table 102. PHY 2 Register 25: Port 2 Control Register 3 & VLAN ID [C]
Reg.bit Name Mode Description Default
25.15 Internal Use RW 1
25.14 Internal Use RW 1
25.13 Internal Use RW 1
25.12 Internal Use RW 1
25.[11:0] VLAN ID [C] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN C 0000 0000
0010
7.3.13. PHY 2 Register 26: Reserved or VLAN ID [H] Membership
7.3.13.1 PHY 2 Register 26: Reserved Register (Page=0)
Table 103. PHY 2 Register 26: Reserved Register
Reg.bit Name Mode Description Default
26.[15:0] Reserved 0x0052
7.3.13.2 PHY 2 Register 26: VLAN ID [H] Membership (Page=1)
Table 104. PHY 2 Register 26: VLAN ID [H] Membership
Reg.bit Name Mode Description Default
26.[15:5] Reserved 1111 1111
111
26.[4:0] VLAN ID [H]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
H. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN H
10010 means port 4 and 1 are the members of VLAN H
11111 means all 5 ports are the members of VLAN H
1 0100
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 73 Track ID: JATR-1076-21 Rev. 1.2
7.3.14. PHY 2 Register 27: Reserved or VLAN ID [H]
7.3.14.1 PHY 2 Register 27: Reserved Register (Page=0)
Table 105. PHY 2 Register 27: Reserved Register
Reg.bit Name Mode Description Default
27.[15:0] Reserved 0xA9CD
7.3.14.2 PHY 2 Register 27: VLAN ID [H] (Page=1)
Table 106. PHY 2 Register 27: VLAN ID [H]
Reg.bit Name Mode Description Default
27.[15:12
]
Reserved 1111
27.[11:0] VLAN ID [H] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN H 0000 0000
0111
7.3.15. PHY 2 Register 28: Reserved or VLAN ID [M] Membership
7.3.15.1 PHY 2 Register 28: Reserved Register (Page=0)
Table 107. PHY 2 Register 28: Reserved Register
Reg.bit Name Mode Description Default
28.[15:0] Resreved 0xB029
7.3.15.2 PHY 2 Register 28: VLAN ID [M] Membership (Page=1)
Table 108. PHY 2 Register 28: VLAN ID [M] Membership
Reg.bit Name Mode Description Default
28.[15:5] Reserved 1111 1111
111
28.[4:0] VLAN ID [M]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
M. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN M
10010 means port 4 and 1 are the members of VLAN M
11111 means all 5 ports are the members of VLAN M
1 0100
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 74 Track ID: JATR-1076-21 Rev. 1.2
7.3.16. PHY 2 Register 29: Reserved or VLAN ID [M]
7.3.16.1 PHY 2 Register 29: Reserved Register (Page=0)
Table 109. PHY 2 Register 29: Reserved Register
Reg.bit Name Mode Description Default
29.[15:0] Reserved 0xB01F
7.3.16.2 PHY 2 Register 29: VLAN ID [M] (Page=1)
Table 110. PHY 2 Register 29: VLAN ID [M]
Reg.bit Name Mode Description Default
29.[15:12
]
Reserved 1111
29.[11:0] VLAN ID [M] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN M. 0000 0000
1100
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 75 Track ID: JATR-1076-21 Rev. 1.2
7.4. PHY 3 Registers
7.4.1. PHY 3 Register 0 for Port 3: Control
This register has the same definition as PHY 0 Register 0 for Port 0: Control, page 53.
7.4.2. PHY 3 Register 1 for Port 3: Status
This register has the same definition as PHY 0 Register 1 for Port 0: Status, page 54.
7.4.3. PHY 3 Register 2 for Port 3: PHY Identifier 1
This register has the same definition as PHY 0 Register 2 for Port 0: PHY Identifier 1, page 54.
7.4.4. PHY 3 Register 3 for Port 3: PHY Identifier 2
This register has the same definition as PHY 0 Register 3 for Port 0: PHY Identifier 2, page 55.
7.4.5. PHY 3 Register 4 for Port 3: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement,
page 55.
7.4.6. PHY 3 Register 5 for Port 3: Auto-Negotiation Link Partner
Ability
This register has the same definition as PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner
Ability, page 56.
7.4.7. PHY 3 Register 16~18: Switch MAC Address
The Switch MAC address is used as the source address in MAC pause control frames.
Table 111. PHY 3 Register 16~18: Switch MAC Address
Reg.bit Name Mode Description Default
16 Switch MAC
Address [47:32]
RW 16.[15:8] = Switch MAC Address Byte 4
16.[7:0] = Switch MAC Address Byte 5
0x5452
17 Switch MAC
Address [31:16]
RW 17.[15:8] = Switch MAC Address Byte 2
17.[7:0] = Switch MAC Address Byte 3
0x834C
18 Switch MAC
Address [15:0]
RW 18.[15:8] = Switch MAC Address Byte 0
18.[7:0] = Switch MAC Address Byte 1
0xC005
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 76 Track ID: JATR-1076-21 Rev. 1.2
7.4.8. PHY 3 Register 19~21: Internal Use Register
Table 112. PHY 3 Register 19~21: Internal Use Register
Reg.bit Name Mode Description Default
19 Internal Use RW 0x0000
20 Internal Use RW 0x0000
21 Internal Use RW 0x0000
7.4.9. PHY 3 Register 22: Port 3 Control Register 0
This register has the same definition as PHY 0 Register 22: Port 0 Control Register 0, on page 60.
Note: Reg 22.8 is pin DisPortPri[3] strap option for port 3. Default value for 22.8 is 1.
7.4.10. PHY 3 Register 24: Port 3 Control Register 1 & VLAN ID [D]
Membership
Table 113. PHY 3 Register 24: Port 3 Control Register 1 & VLAN ID [D] Membership
Reg.bit Name Mode Description Default
24.[15:12
]
Port 3 VLAN index
[3:0]
RW In a port-based VLAN configuration, this register indexes to
port 3’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P]
Membership’. Port 3 can only communicate with members
within this VLAN.
This register also indexes to a default Port VID (PVID) for each
port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0011, which indexes to the
VLAN entry [D] that is composed of VLAN ID [D]
Membership Bit [4:0] in PHY3 Reg.24.[4:0], and VLAN ID [D]
in PHY3 Reg.25.[11:0].
0011
24.11 Internal Use RW 1
24.10 Internal Use RW 1
24.9 Internal Use RW 1
24.8 Internal Use RO 0
24.7 Internal Use RW From pin
Default=1
24.6 Internal Use RW 1
24.5 Reserved 0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 77 Track ID: JATR-1076-21 Rev. 1.2
Reg.bit Name Mode Description Default
24.[4:0] VLAN ID [D]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
D. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN D
10010 means port 4 and 1 are the members of VLAN D
11111 means all 5 ports are the members of VLAN D
1 1000
7.4.11. PHY 3 Register 25: Port 3 Control Register 2 & VLAN ID [D]
Table 114. PHY 3 Register 25: Port 3 Control Register 2 & VLAN ID [D]
Reg.bit Name Mode Description Default
25.15 Internal Use RW 1
25.14 Internal Use RW 1
25.13 Internal Use RW 1
25.12 Internal Use RW 1
25[11:0] VLAN ID [D] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN D 0000 0000
0011
7.4.12. PHY 3 Register 26: Reserved or VLAN ID [I] Membership
7.4.12.1 PHY 3 Register 26: Reserved Register (Page=0)
Table 115. PHY 3 Register 26: Reserved Register
Reg.bit Name Mode Description Default
26.[15:0] Reserved 0x9668
7.4.12.2 PHY 3 Register 26: VLAN ID [I] Membership (Page=1)
Table 116. PHY 3 Register 26: VLAN ID [I] Membership
Reg.bit Name Mode Description Default
26.[15:5] Reserved 1111 1111
111
26.[4:0] VLAN ID [I]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
I. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN I
10010 means port 4 and 1 are the members of VLAN I
11111 means all 5 ports are the members of VLAN I
1 1000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 78 Track ID: JATR-1076-21 Rev. 1.2
7.4.13. PHY 3 Register 27: Reserved or VLAN ID [I]
7.4.13.1 PHY 3 Register 27: Reserved Register (Page=0)
Table 117. PHY 3 Register 27: Reserved Register
Reg.bit Name Mode Description Default
27.[15:0] Reserved 0xA464
7.4.13.2 PHY 3 Register 27: VLAN ID [I] (Page=1)
Table 118. PHY 3 Register 27: VLAN ID [I]
Reg.bit Name Mode Description Default
27.[15:12
]
Reserved 1111
27.[11:0] VLAN ID [I] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN I 0000 0000
1000
7.4.14. PHY 3 Register 28: Reserved or VLAN ID [N] Membership
7.4.14.1 PHY 3 Register 28: Reserved Register (Page=0)
Table 119. PHY 3 Register 28: Reserved Register
Reg.bit Name Mode Description Default
28.[15:0] Reserved 0x9458
7.4.14.2 PHY 3 Register 28: VLAN ID [N] Membership (Page=1)
Table 120. PHY 3 Register 28: VLAN ID [N] Membership
Reg.bit Name Mode Description Default
28.[15:5] Reserved 1111 1111
111
28.[4:0] VLAN ID [N]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of
VLAN N. If a destination address look up fails, the packet
associated with this VLAN will be broadcast to the ports
specified in this field. Bit 0 stands for port 0, bit 4 stands for
port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN N
10010 means port 4 and 1 are the members of VLAN N
11111 means all 5 ports are the members of VLAN N
1 1000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 79 Track ID: JATR-1076-21 Rev. 1.2
7.4.15. PHY 3 Register 29: Reserved or VLAN ID [N]
7.4.15.1 PHY 3 Register 29: Reserved Register (Page=0)
Table 121. PHY 3 Register 29: Reserved Register
Reg.bit Name Mode Description Default
29.[15:0] Reserved 0x2154
7.4.15.2 PHY 3 Register 29: VLAN ID [N] (Page=1)
Table 122. PHY 3 Register 29: VLAN ID [N]
Reg.bit Name Mode Description Default
29.[15:12
]
Reserved 1111
29.[11:0] VLAN ID [N] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN N. 0000 0000
1101
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 80 Track ID: JATR-1076-21 Rev. 1.2
7.5. PHY 4 Registers
7.5.1. PHY 4 Register 0 for Port 4: Control
This register has the same definition as PHY 0 Register 0 for Port 0: Control, page 53.
7.5.2. PHY 4 Register 1 for Port 4: Status
This register has the same definition as PHY 0 Register 1 for Port 0: Status, page 54.
7.5.3. PHY 4 Register 2 for Port 4: PHY Identifier 1
This register has the same definition as PHY 0 Register 2 for Port 0: PHY Identifier 1, page 54.
7.5.4. PHY 4 Register 3 for Port 4: PHY Identifier 2
This register has the same definition as PHY 0 Register 3 for Port 0: PHY Identifier 2, page 55.
7.5.5. PHY 4 Register 4 for Port 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement,
page 55.
7.5.6. PHY 4 Register 5 for Port 4: Auto-Negotiation Link Partner
Ability
This register has the same definition as PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner
Ability, page 56.
7.5.7. PHY 4 Register 16: Indirect Access Control
PHY 4 register 16 is used for reading or writing data to the MAC address table.
Table 123. PHY 4 Register 16: Indirect Access Control
Reg.bit Name Mode Description Default
16.[15:2] Reserved 0000 0000
0000 00
16.1 Command
execution
RW 1: Trigger a command to read or write lookup table
0: Indicate this command is done
0
16.0 Read or write
operation
RW 1: Read cycle
0: Write cycle
0
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 81 Track ID: JATR-1076-21 Rev. 1.2
7.5.8. PHY 4 Register 17~20: Indirect Access Data
Table 124. PHY 4 Register 17~20: Indirect Access Data
Reg.bit Name Mode Description Default
17 Indirect Data 0
[15:0]
RW Indirect Data 0 [6] = If this bit is 1, indicates this entry is static
and will never be aged out. If this bit is 0, indicates this entry is
dynamically learned, aged, updated, and deleted.
Indirect Data [5:4] = 2-bit counter for internal aging.
(10->11->01->00)
Indirect Data [3:0] = The source port of this Source MAC
Address ID learned
Indirect Data 0 [15:7] = Reserved.
0x00
18 Indirect Data 1
[15:0]
RW Indirect Data 1 [15:8] = Source MAC Address [7:0] (Byte 5)
Indirect Data 1 [7:0] = Source MAC Address [15:8] (Byte 4)
Indirect Data 1 [1:0] and Indirect Data 1 [15:8] of this register
also determine the Entry Index [9:0] in the lookup table of this
accessed data.
Indirect Data 1 [1:0] = Entry Index [9:8]
Indirect Data 1 [15:8] = Entry Index [7:0]
In the write cycle: Entry Index [9:0] indirectly maps to an entry
in the lookup table for writing. The written data must be the
Source MAC Address [47:10] and Entry Index [9:0].
In the read cycle: Entry Index [9:0] indirectly maps to an entry
in the lookup table for reading. The read back data will be
shown in Indirect Data 0, 1, 2, and 3.
0x00
19 Indirect Data 2
[15:0]
RW Indirect Data 2 [7:0] = Source MAC Address [31:24] (Byte 3)
Indirect Data 2 [15:8] = Source MAC Address [23:16] (Byte 2)
0x00
20 Indirect Data 3
[15:0]
RW Indirect Data 3 [7:0] = Source MAC Address [47:40] (Byte 1)
Indirect Data 3 [15:8] = Source MAC Address [39:32] (Byte 0)
0x00
7.5.9. PHY 4 Register 21: 802.1p Base Priority
Table 125. PHY 2 Register 20: 802.1p Base Priority
Reg.bit Name Mode Description Default
21.[15.13
]
802.1p base
priority
RW Classifies priority for incoming IEEE 802.1Q packets, if
IEEE 802.1p priority classification is enabled.
‘User priority’ is compared against this value.
>=: Classify as high priority
<: Classify as low priority
100
21.[12:7] Reserved 0 0000 0
21.[6:4] Internal Use RW 100
21.3 Reserved 0
21.[2:0] Internal Use RW 000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 82 Track ID: JATR-1076-21 Rev. 1.2
7.5.10. PHY 4 Register 22: Port 4 Control Register 0
This register has the same definition as PHY 0 Register 22: Port 0 Control Register 0, on page 60.
Note: Reg 22.8 is not pin DisPortPri[4] strap option for port 4. Default value for 22.8 is 1.
7.5.11. PHY 4 Register 24: Port 4 Control Register 1 & VLAN ID [E]
Membership
Table 126. PHY 4 Register 24: Port 4 Control Register 1 & VLAN ID [E] Membership
Reg.bit Name Mode Description Default
24.[15:12
]
Port 4 VLAN index
[3:0]
RW In a port-based VLAN configuration, this register indexes to
port 4’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P]
Membership’. Port 4 can only communicate with members
within this VLAN.
This register also indexes to a default Port VID (PVID) for each
port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0100, which indexes to the
VLAN entry [E] that is composed of VLAN ID [E] Membership
Bit [4:0] in PHY4 Reg.24.[4:0], and VLAN ID [E] in PHY4
Reg.25.[11:0].
0100
24.11 Internal Use RW 1
24.10 Internal Use RW 1
24.9 Internal Use RW 1
24.8 Internal Use RO 0
24.7 Internal Use RW 1
24.6 Internal Use RW 1
24.5 Reserved 0
24.[4:0] VLAN ID [E]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
E. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN E
10010 means port 4 and 1 are the members of VLAN E
11111 means all 5 ports are the members of VLAN E
1 1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 83 Track ID: JATR-1076-21 Rev. 1.2
7.5.12. PHY 4 Register 25: Port 4 Control Register 2 & VLAN ID [E]
Table 127. PHY 4 Register 25: Port 4 Control Register 2 & VLAN ID [E]
Reg.bit Name Mode Description Default
25.15 Internal Use RW 1
25.14 Internal Use RW 1
25.13 Internal Use RW 1
25.12 Internal Use RW 1
25.[11:0] VLAN ID [E] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN E 0000 0000
0100
7.5.13. PHY 4 Register 26: Reserved or VLAN ID [J] Membership
7.5.13.1 PHY 4 Register 26: Reserved Register (Page=0)
Table 128. PHY 4 Register 26: Reserved Register
Reg.bit Name Mode Description Default
26.[15:0] Reserved 0x07D0
7.5.13.2 PHY 4 Register 26: VLAN ID [J] Membership (Page=1)
Table 129. PHY 4 Register 26: VLAN ID [J] Membership
Reg.bit Name Mode Description Default
26.[15:5] Reserved 1111 1111
111
26.[4:0] VLAN ID [J]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
J. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN J
10010 means port 4 and 1 are the members of VLAN J
11111 means all 5 ports are the members of VLAN J
1 1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 84 Track ID: JATR-1076-21 Rev. 1.2
7.5.14. PHY 4 Register 27: Reserved or VLAN ID [J]
7.5.14.1 PHY 4 Register 27: Reserved Register (Page=0)
Table 130. PHY 4 Register 27: Reserved Register
Reg.bit Name Mode Description Default
27.[15:0] Reserved
7.5.14.2 PHY 4 Register 27: VLAN ID [J] (Page=1)
Table 131. PHY 4 Register 27: VLAN ID [J]
Reg.bit Name Mode Description Default
27.[15:12
]
Reserved 1111
27.[11:0] VLAN ID [J] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN J 0000 0000
1001
7.5.15. PHY 4 Register 28: Reserved or VLAN ID [O] Membership
7.5.15.1 PHY 4 Register 28: Reserved Register (Page=0)
Table 132. PHY 4 Register 28: Reserved Register
Reg.bit Name Mode Description Default
28.[15:0] Reserved
7.5.15.2 PHY 4 Register 28: VLAN ID [O] Membership (Page=1)
Table 133. PHY 4 Register 28: VLAN ID [O] Membership
Reg.bit Name Mode Description Default
28.[15:5] Reserved 1111 1111
111
28.[4:0] VLAN ID [O]
Membership Bit
[4:0]
RW This 5-bit field specifies which ports are the members of VLAN
O. If a destination address look up fails, the packet associated
with this VLAN will be broadcast to the ports specified in this
field. Bit 0 stands for port 0, bit 4 stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN O
10010 means port 4 and 1 are the members of VLAN O
11111 means all 5 ports are the members of VLAN O
1 1111
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 85 Track ID: JATR-1076-21 Rev. 1.2
7.5.16. PHY 4 Register 29: Reserved or VLAN ID [O]
7.5.16.1 PHY 4 Register 29: Reserved Register (Page=0)
Table 134. PHY 4 Register 29: Reserved Register
Reg.bit Name Mode Description Default
29.[15:0] Reserved
7.5.16.2 PHY 4 Register 29: VLAN ID [O] (Page=1)
Table 135. PHY 4 Register 29: VLAN ID [O]
Reg.bit Name Mode Description Default
29.[15:12
]
Reserved 1111
29.[11:0] VLAN ID [O] RW Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN O 0000 0000
1110
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 86 Track ID: JATR-1076-21 Rev. 1.2
7.6. PHY 5 Registers
7.6.1. PHY 5 Register 0 for Port 4 MAC: Control
Note: This register only works in MII PHY and SNI PHY mode. In MII MAC mode, these registers have
no meaning.
Table 136. PHY 5 Register 0: Control
Reg.bit Name Mode Description Default
0.15 Reset RO 0: No reset allowed (permanently=0) 0
0.14 Loopback
(digital loopback)
RO 0: Normal operation (permanently=0) 0
0.13 Speed Select RW 1: 100Mbps
0: 10Mbps
When NWay is enabled, this bit reflects the result of auto-
negotiation (Read only).
When NWay is disabled, this bit can be set through SMI
(Read/Write).
Pin
P4SPDSTA
strap option
0.12 Auto Negotiation
Enable
RW 1: Enable auto-negotiation process
0: Disable auto-negotiation process
This bit can be set through SMI (Read/Write).
Pin P4ANEG
strap option
0.11 Power Down RO 0: Normal operation (permanently=0) 0
0.10 Isolate RO 0: Normal operation (permanently=0) 0
0.9 Restart Auto
Negotiation
RO 0: Normal operation (permanently=0) 0
0.8 Duplex Mode RW 1: Full duplex operation
0: Half duplex operation
When NWay is enabled, this bit reflects the result of auto-
negotiation (Read only).
When NWay is disabled, this bit may be set through SMI
(Read/Write).
Pin
P4DUPSTA
strap option
0.[7:0] Reserved 0000 0000
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 87 Track ID: JATR-1076-21 Rev. 1.2
7.6.2. PHY 5 Register 1 for Port 4 MAC: Status
Note: This register only works in MII PHY and SNI PHY mode. In MII MAC mode, these registers have
no meaning.
Table 137. PHY 5 Register 1: Status
Reg.bit Name Mode Description Default
1.15 100Base_T4 RO 0: No 100Base-T4 capability 0
1.14 100Base_TX_FD RO 1: 100Base-TX full duplex capable (permanently=1) 1
1.13 100Base_TX_HD RO 1: 100Base-TX half duplex capable (permanently=1) 1
1.12 10Base_T_FD RO 1: 10Base-TX full duplex capable (permanently=1) 1
1.11 10Base_T_HD RO 1: 10Base-TX half duplex capable (permanently=1) 1
1.[10:7] Reserved RO 0
1.6 MF Preamble
Suppression
RO The RTL8305SC will accept management frames with preamble
suppressed (permanently=1)
1
1.5 Auto-negotiate
Complete
RO 1: Auto-negotiation process completed. MII Reg.4, 5 are valid if
this bit is set (permanently=1)
1
1.4 Remote Fault RO 0: No remote fault (permanently=0) 0
1.3 Auto-Negotiation
Ability
RO 1: NWay auto-negotiation capable (permanently=1) 1
1.2 Link Status RO 1: Link is established
0: Link is failed
This bit reflects the status of pin P4LNKSTA# in real time.
Pin
P4LNKSTA#
strap option
1.1 Jabber Detect RO 0: No Jabber detected (permanently=0) 0
1.0 Extended
Capability
RO 1: Extended register capable (permanently=1) 1
7.6.3. PHY 5 Register 2 for Port 4 MAC: PHY Identifier 1
Table 138. PHY 5 Register 2: PHY Identifier 1
Reg.bit Name Mode Description Default
2.[15:0] OUI RO Composed of the 3rd to 18th bits of the Organizationally Unique
Identifier (OUI), respectively
0x001C
7.6.4. PHY 5 Register 3 for Port 4 MAC: PHY Identifier 2
Table 139. PHY 5 Register 3: PHY Identifier 2
Reg.bit Name Mode Description Default
3.[15:10] OUI RO Assigned to the 19th through 24th bits of the OUI 1100 10
3.[9:4] Model Number RO Manufacturer’s model number (05: Indicates RTL8305 00 0101
3.[3:0] Revision Number RO Manufacturers revision number (02: Indicates SC 0010
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 88 Track ID: JATR-1076-21 Rev. 1.2
7.6.5. PHY 5 Register 4 for Port 4 MAC: Auto-Negotiation
Advertisement
Note: This register only works in PHY mode MII and PHY mode SNI. In MAC mode MII, these registers
have no meaning.
Table 140. PHY 5 Register 4: Auto-Negotiation Advertisement
Reg.bit Name Mode Description Default
4.15 Next Page RO 1: Next Page enabled
0: Next Page disabled (Permanently=0)
0
4.14 Acknowledge RO Permanently=0. 0
4.13 Remote Fault RO 1: Advertises that the RTL8305SC has detected a remote fault
0: No remote fault detected
0
4.[12:11] Reserved RO 0
4.10 Pause RW
1: Advertises that the RTL8305SC possesses 802.3x flow control
capability
0: No flow control capability
Pin
P4FLCTRL
strap option
4.9 100Base-T4 RO Technology not supported (Permanently=0) 0
4.8 100Base-TX-FD RW 1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
Pin
P4DUPSTA
and
P4SPDSTA
strap option
4.7 100Base-TX RW 1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
Pin
P4SPDSTA
strap option
4.6 10Base-T-FD RW 1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
Pin
P4DUPSTA
or
P4SPDSTA
strap option
4.5 10Base-T RW 1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
1
4.[4:0] Selector Field RO [00001]=IEEE 802.3 0 0001
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 89 Track ID: JATR-1076-21 Rev. 1.2
7.6.6. MII Port NWay Mode
Table 141. MII Port NWay Mode
Event Description
Upon Reset Strapping P4SPDSTA=1 and P4DUPSTA=1 Reg0.13=1, Reg0.8=1
Strapping P4SPDSTA=1 and P4DUPSTA=0 Reg0.13=1, Reg0.8=0
Strapping P4SPDSTA=0 and P4DUPSTA=1 Reg0.13=0, Reg0.8=1
Strapping P4SPDSTA=0 and P4DUPSTA=0 Reg0.13=0, Reg0.8=0
Defau1t value of Reg4.10 is strapped from pin P4FLCTRL
Default value of Reg1.2 is strapped from pin P4LNKSTA#
P4LNKSTA# pulled down Reg1.2=1
P4LNKSTA# pulled up Reg1.2=0
After Reset If PHY 5 register 4 is configured as Reg4.8=1, Reg4.7=1, Reg4.6=1, Reg4.5=1, the RTL8305SC will
reflect this configuration in PHY 8 register 0 as Reg0.13=1 and Reg0.8=1
If PHY 5 register 4 is configured as Reg4.8=0, Reg4.7=1, Reg4.6=1, Reg4.5=1, the RTL8305SC will
reflect this configuration in PHY 8 register 0 as Reg0.13=1 and Reg0.8=0
If PHY 5 register 4 is configured as Reg4.8=0, Reg4.7=0, Reg4.6=1, Reg4.5=1, the RTL8305SC will
reflect this configuration in PHY 8 register 0 as Reg0.13=0 and Reg0.8=1
If PHY 5 register 4 is configured as Reg4.8=0, Reg4.7=0, Reg4.6=0, Reg4.5=1, the RTL8305SC will
reflect this configuration in PHY 8 register 0 as Reg0.13=0 and Reg0.8=0
If the CPU polls register 5, the RTL8305SC replies with the contents in register 4
If the CPU polls register 4, the RTL8305SC replies with the contents in register 4
7.6.7. MII Port Force Mode
Table 142. MII Port Force Mode
Event Description
Upon Reset Strapping P4SPDSTA=1 and P4DUPSTA=1 Reg0.13=1, Reg0.8=1
Strapping P4SPDSTA=1 and P4DUPSTA=0 Reg0.13=1, Reg0.8=0
Strapping P4SPDSTA=0 and P4DUPSTA=1 Reg0.13=0, Reg0.8=1
Strapping P4SPDSTA=0 and P4DUPSTA=0 Reg0.13=0, Reg0.8=0
Defau1t value of Reg4.10 is strapped from pin P4FLCTRL
Default value of Reg1.2 is strapped from pin P4LNKSTA#
P4LNKSTA# pulled down Reg1.2=1
P4LNKSTA# pulled up Reg1.2=0
After Reset The CPU only writes register 0.13 and 0.8 to propose a link configuration, then reads register 1.2 to
determine whether the link partner can accept this link configuration
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 90 Track ID: JATR-1076-21 Rev. 1.2
8. Functional Description
8.1. Switch Core Functional Overview
8.1.1. Applications
The RTL8305SC is a 5-port Fast Ethernet switch controller that integrates memory, five MACs, and five
physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. All ports support
100Base-FX, which shares pins (TX+-/RX+-) with UTP ports and needs no SD+/- pins, a development
using Realtek proprietary technology. To compensate for the lack of auto-negotiation in 100Base-FX
applications, the RTL8305SC can be forced into 100Base-FX half or full duplex mode, and can enable or
disable flow control in fiber mode.
The five ports are separated into three groups (GroupX/GroupY/Port4) for flexible port configuration
using strapping pins upon reset. The SetGroup pin is used to select the port numbers for GroupX and
GroupY (SetGroup=1: GroupX = Port0; GroupY = Ports 1, 2, and 3. SetGroup=0: GroupX = Ports 0
and 1; GroupY = Ports 2 and 3). The GxMode/GyMode/P4Mode[1:0] pins are used to select the operation
mode (UTP/FX for GroupX and GroupY, UTP/FX/PHY mode MII/PHY mode SNI/MAC mode MII for
Port 4). Upon reset, in addition to using strapping pins, the RTL8305SC can be configured with an
EEPROM or read/write operation by a CPU via the MDC/MDIO interface.
For more detailed system application circuits, refer to Application Information, page 141.
Note:
Upon Reset: Defined as a short time after the end of a hardware reset.
After Reset: Defined as the time after the specified ‘Upon Reset’ time.
8.1.2. Port 4
Operating Mode of Port 4
Each port has two parts: MAC and PHY. In UTP and FX mode, Port 4 uses both the MAC and internal
PHY parts like the other ports. In other modes, Port 4 uses only the MAC part, which provides an external
interface to connect to the external MAC or PHY. Two pins are used for these operation mode
configurations: P4MODE[1:0].
Port 4 supports an external MAC interface which can be set to PHY mode MII, PHY mode SNI, or MAC
mode MII to work with the external MAC of a routing engine, PHY of a HomePNA, or other physical
layer transceiver.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 91 Track ID: JATR-1076-21 Rev. 1.2
If the MAC part of Port 4 connects with an external MAC, such as the processor of a router application, it
will act as a PHY. This is PHY mode MII, or PHY mode SNI. In PHY mode MII or PHY mode SNI,
Port 4 uses the MAC part only, and provides an external MAC interface to connect MACs of external
devices. In order to connect both MACs, the MII of the switch MAC should be reversed into PHY mode.
If the MAC part of Port 4 connects with an external PHY, such as the PHY of a HomePNA application,
Port 4 will act as a MAC. This is MAC mode MII. In MAC mode MII, Port 4 uses its MAC to connect to
an external PHY and ignores the internal PHY part.
External MAC Interface
In order to act as a PHY when Port 4 is in PHY mode, some pins of the external MAC interface must be
changed. For example, TXC are input pins for MAC, but output pins for PHY. The MTXC/PRXC pin is
input for MAC mode and output for PHY mode. Refer to Figure 3, page 93 to check the relationship
between the RTL8305SC and the external device.
Tip: Connect the input of the RTL8305SC to the output of the external device. The RTL8305SC has no
RXER, TXER, and CRS pins for MII signaling. Because the RTL8305SC does not support pin CRS, it is
necessary to connect the MTXEN/PRXDV (output) of PHY mode to both CRS and RXDV (input) of the
external device.
Port 4 Status Pins
When P4MODE[1:0]=11, Port 4 can be either UTP or MAC mode MII. Port 4 will automatically detect
the link status of UTP from the internal PHY, and the link status of MAC mode MII from both the TXC
of the external PHY and from P4LNKSTA#. If both UTP and MII port are linked OK, UTP has higher
priority and the RTL8305SC will ignore the signal of the MII port.
In UTP and FX mode, the internal PHY will provide the port status (Link/Speed/Duplex/Full Flow
Control ability) in real time. In order to provide the initial configuration of Port 4’s PHY (UTP or FX
mode), four pins (P4ANEG, P4Full, P4Spd100, P4EnFC) are used to strap upon reset. However, three of
these pins are also used for Port 4’s MAC (the other three modes) in real time after reset (P4Spd100 ->
P4SpdSta, P4Full -> P4DupSta, P4EnFC -> P4FLCTRL).
In the other three modes, four pins (P4LNKSTA#, P4SpdSta, P4DupSta, P4FLCTRL) are necessary in
order to provide the port status to Port 4’s MAC. That means that the external MAC or PHY should be
forced to the same port status as Port 4’s MAC.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 92 Track ID: JATR-1076-21 Rev. 1.2
Related Pins
When Port 4 is in UTP or FX mode, the LEDs of Port 4 are used to display PHY status. When Port 4 is in
other modes, the LEDs of Port 4 are used to display MAC status.
Four parallel LEDs corresponding to port 4 can be tri-stated (disable LED functions) for MII port
application by setting ENP4LED in EEPROM to 0. In UTP applications, this bit should be 1.
The SEL_MIIMAC# pin can be used to indicate MII MAC port active after reset for the purposes of
UTP/MII auto-detection.
One 25MHz clock output (pin CK25MOUT) can be used as a clock source for the underlying
HomePNA/other PHY physical devices.
PHY Mode MII/PHY Mode SNI
In routing applications, the RTL8305SC cooperates with a routing engine to communicate with the WAN
(Wide Area Network) through MII/SNI. In such applications, P4LNKSTA# =0 and P4MODE[1] is pulled
low upon reset. P4MODE[0] determines whether MII or SNI mode is selected.
In MII (nibble) mode (P4MODE[0]=1), P4SPDSTA=1 results in MII operating at 100Mbps with MTXC,
and MRXC runs at 25MHz; however, P4SPDSTA=0 leads to MII operating at 10Mbps with MTXC, and
MRXC runs at 2.5MHz.
In SNI (serial) mode (P4MODE[0]=0), P4SPDSTA has no effect and should be pulled-down. SNI mode
operates at 10Mbps only, with MTXC and MRXC running at 10MHz. In SNI mode the RTL8305SC does
not loopback an RXDV signal as a response to TXEN, and does not support the heartbeat function
(asserting COL signal for each complete TXEN signal).
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 93 Track ID: JATR-1076-21 Rev. 1.2
59-MRXC/PTXC
60-MRXDV/PTXEN
67~61-MRXD[3:0]/PTXD[3:0]
51-MTXC/PRXC
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
58-MCOL/PCOL
RXC
CRS
RXDV
RXD[3:0]
TXC
TXEN
TXD
COL
4
4
VDSL/
HomePNA/
Single PHY
44-P4MODE[1]
45-P4MODE[0]
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
46-P4FLCTRL/P4ENFC
Floating=High
Floating=High
Note 1
Note 2
Note 3
68-SELMIIMAC#/DISDSPRI
LED Indication
MAC Mode MII
Pull Down=Link On
59-MRXC/PTXC
60-MRXDV/PTXEN
67~61-MRXD[3:0]/PTXD[3:0]
51-MTXC/PRXC
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
58-MCOL/PCOL
RXC
CRS
RXDV
RXD[3:0]
TXC
TXEN
TXD
COL
4
4
CPU/
Processor/
Routing
Engine
44-P4MODE[1]
45-P4MODE[0]
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
46-P4FLCTRL/P4ENFC
Pull Down
Floating=High
Pull Down=Link On
Note 1
Note 2
Note 3
PHY Mode MII
25MHz
59-MRXC/PTXC
60-MRXDV/PTXEN
61-MRXD[0]/PTXD[0]
51-MTXC/PRXC
52-MTXEN/PRXDV
54-MTXD[0]/PRXD[0]
58-MCOL/PCOL
44-P4MODE[1]
45-P4MODE[0]
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
46-P4FLCTRL/P4ENFC
Note 1
Note 2
Note 3
PHY Mode SNI
10MHz
Pull Down RXC
CRS
RXDV
RXD
TXC
TXEN
TXD
COL
CPU/
Processor/
Routing
Engine
Pull Down=Link On
Figure 3. Port 4 Operating Mode Overview
Note 1: Pulled high or floating to set speed to 100Mbps, and pulled low to set speed to 10Mbps.
Note 2: Pulled high or floating to set to full duplex, and pulled low to set to half duplex.
Note 3: Pulled high or floating to enable flow control in full duplex, and pulled low to disable.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 94 Track ID: JATR-1076-21 Rev. 1.2
MAC Mode MII
In HomePNA or other PHY applications, the RTL8305SC provides the MII interface to the underlying
HomePNA or other physical device in order to communicate with other types of LAN media. In such
applications, the P4MODE[1:0] pins are floating upon reset and the RTL8305SC supports the UTP/MII
auto-detection function. When both UTP and MII are active (link on), the UTP port has higher priority
than the MII port.
In HomePNA applications P4SPDSTA must be pulled down, as HomePNA is half-duplex only.
P4DUPSTA should also be pulled down. P4LNKSTA# must be pulled down instead of being wired to the
LINK LED pin of the HomePNA because of the unstable link state of HomePNA, a characteristic of the
HomePNA 1.0 standard.
Because the HomePNA PHY physical layer is half duplex and can only detect a collision event during the
AID header interval (the time when transmitting the Ethernet preamble), the back pressure flow control
algorithm is not suitable for the HomePNA network and the P4FLCTRL pin should be pulled down.
For other PHY applications, P4SPDSTA, P4DUPSTA, and P4FLCTRL depend on the application.
8.1.3. Port Status Configuration
The RTL8305SC supports flexible port status configuration for PHY by pin (GxANeg/GyANeg/P4ANeg,
GxSpd100/ GySpd100/P4Spd100, and GxFull/GyFull/P4Full) on a group basis upon reset, or by internal
registers (Reg0.12, Reg0.13, Reg0.8, and Reg4.5/4.6/4.7/4.8) via SMI on a per-port basis after reset.
Those pins are used to assign the initial value of MII register 0 and 4 (PHY registers) upon reset. The
registers can be updated via SMI on a per-port basis after reset. For example, the initial value of register
0.12 of Port 4 will be 0 when pin P4Aneg is 1 upon reset.
All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins
(Realtek patent). 100Base-FX can be forced into half or full duplex mode with optional flow control
ability. In order to operate correctly, both sides of the connection should be set to the same settings. In
100Base-FX, duplex and flow control ability can be set via strapped pins upon reset, or via SMI after
reset.
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation.
Pins GxANeg/GyANeg/P4Aneg as well as GxSpd100/GySpd100/P4Spd100 are not used for 100Base-FX
mode and can be left floating while in 100Base-FX mode. For example, Port 4 will be forced into full
duplex 100Base-FX with flow control ability when P4Mode[1:0]=10, P4Full=1, P4EnFC=1 upon reset
(regardless of P4Spd100 and P4ANeg).
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 95 Track ID: JATR-1076-21 Rev. 1.2
When Auto-Negotiation ability is enabled in UTP mode, the RTL8305SC supports Auto-Negotiation and
parallel detection of 10Base-T/100Base-TX to automatically determine line speed, duplex, and flow
control. The parallel detection process is used when connecting a device that does not support auto-
negotiation.
For example: port0 is UTP with all abilities (default for normal switch applications: GxMode=1,
GxANeg=1, GxSpd100=1, GxFull=1, GxEnFC=1. The content of MII registers will be Reg0.12=1,
Reg4.5=1, Reg4.6=1, Reg4.7=1, Reg4.8=1, and Reg4.10=1). If the connecting device supports auto-
negotiation, 10Full with 802.3x flow control ability, port0 will enter the auto-negotiation process. The
result will be 10Full with 802.3x flow control ability for both devices. If the other device is 10M without
auto-negotiation, port0 will enter the parallel detection process. The result will be 10Half without 802.3x
flow control ability for port0.
Note: Each port can operate at 10Mbps or 100Mbps in full-duplex or half-duplex mode independently of
others when auto-negotiation is on.
The port status for the PHY on a group basis can easily be set by pin configuration. For example, when
group X is 100FX (GxMode=0), group X can be set as force mode half duplex by setting pin GxFull to 0.
Group Y can also be set as UTP mode NWAY mode 10Full by setting GyMode=1, GyANeg=1,
GySpd100=0, GyFull=1. Refer to section 5 Pin Descriptions for details.
8.1.4. Flow Control
The RTL8305SC supports IEEE 802.3x full duplex flow control, Force mode Full duplex Flow Control,
and optional half duplex back pressure.
IEEE 802.3x Full Duplex Flow Control
For UTP with auto-negotiation ability (GxANeg/GyANeg/P4Aneg set to 1), the pause ability (Reg.4.10)
of full duplex flow control is enabled by pins GxEnFC/GyEnFC/P4EnFC on a group basis upon reset, or
internal registers via SMI on a per-port basis after reset. For UTP with auto-negotiation ability,
IEEE 802.3x flow control’s ability is auto-negotiated between the remote device and the RTL8305SC. If
the auto-negotiation result of the 802.3x pause ability is ‘Enabled’ (Reg.4.10=1 and Reg.5.10=1), the full
duplex 802.3x flow control function is enabled. Otherwise, the full duplex 802.3x flow control function is
disabled.
Force Mode Full Duplex Flow Control
For UTP without auto-negotiation ability (GxANeg/GyANeg/P4Aneg is 0) and 100Base-FX,
IEEE 802.3x flow control’s ability can be forced to ‘Enabled’ by pins GxEnFC/GyEnFC/P4EnFC on a
group basis upon reset, or internal registers (Reg.5.10) via SMI on a per-port basis after reset. For
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 96 Track ID: JATR-1076-21 Rev. 1.2
example, port 4 will be forced to 10Full UTP with forced mode full duplex flow control ability,
regardless of the connected device, when P4Mode[1:0]=10, P4Aneg=0, P4Spd100=0, P4Full=1,
P4EnFC=1. Port 0 will be forced to 100Full FX with forced mode full duplex flow control ability,
regardless of the connected device, when SetGroup=1, GxMode=0, GxFull=1, GxEnFC=1.
Regardless of IEEE 802.3x full duplex flow control or Force mode Full duplex Flow Control, when full
duplex flow control is enabled, the RTL8305SC will only recognize the 802.3x flow control PAUSE
ON/OFF frames with DA=0180C2000001, type = 8808, OP-code=01, PAUSE Time = maximum to zero,
and with a good CRC.
If a PAUSE frame is received from any PAUSE flow control enabled port set to DA=0180C2000001, the
corresponding port of the RTL8305SC will stop its packet transmission until the PAUSE timer times out
or another PAUSE frame with zero PAUSE time is received. The RTL8305SC will not forward any
802.3x PAUSE frames received from any port.
Half Duplex Back Pressure
If pin EnDefer is 1, the RTL8305SC will send a preamble to defer the other station’s transmission when
there is no packet to send. Otherwise, if pin EnDefer is 0, the RTL8305SC will force a collision with the
other station’s transmission when the buffer is full.
If pin 48pass1 is 0, the RTL8305SC will always collide with JAM (Continuous collision). Otherwise, if
pin 48pass1 is 1, the RTL8305SC will try to forward one packet successfully after 48 forced collisions
(48pass1), to avoid the connected repeater being partitioned due to excessive collisions.
NWay Mode
For UTP with auto-negotiation ability, pins GxEnFC/GyEnFC/P4EnFC are effective only in full duplex
mode. Therefore, for UTP in half duplex mode, half duplex back pressure flow control is controlled by
the ENBKPRS pin strap upon hardware reset.
Force Mode
For UTP without auto-negotiation ability, or in 100Base-FX mode, the operation mode can be forced to
half duplex. Half duplex back pressure flow control can be forced to ‘enabled’ on the RTL8305SC side
by pin GxEnFC/GyEnFC/P4EnFC on a group basis upon reset.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 97 Track ID: JATR-1076-21 Rev. 1.2
8.1.5. Address Search, Learning, and Aging
When a packet is received, the RTL8305SC will use the least 10 bits of the destination MAC address to
index the 1024-entry lookup table, and at the same time will compare the destination MAC address with
the contents of the 16-entry CAM. If the indexed entry is valid, or the CAM comparison is matched, the
received packet will be forwarded to the corresponding destination port. Otherwise, the RTL8305SC will
broadcast the packet. This is the ‘Address Search’.
The RTL8305SC then extracts the least 10 bits of the source MAC address to index the 1024-entry
lookup table. If the entry is not already in the table it will record the source MAC address and add
switching information. If this is an occupied entry, it will update the entry with new information. This is
called ‘Learning’. If the indexed location has been occupied by a different MAC address (hash collision),
the new source MAC address will be recorded into the 16-entry CAM. The 16-entry CAM reduces
address hash collisions and improves switching performance.
Address aging is used to keep the contents of the address table correct in a dynamic network topology.
The lookup engine will update the time stamp information of an entry whenever the corresponding source
MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed
by the address learning process during the aging time period. The aging time of the RTL8305SC is
between 200 and 300 seconds.
8.1.6. Address Direct Mapping Mode
The RTL8305SC uses the least 10 bits of the MAC address to index the 1024-entry lookup table. For
example: the index of MAC address ‘12 34 56 78 90 ab’ will be 0xab.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 98 Track ID: JATR-1076-21 Rev. 1.2
8.1.7. Half Duplex Operation
In half duplex mode, the CSMA/CD media access method is the means by which two or more stations
share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the
medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If
the message collides with that of another station, then each transmitting station intentionally transmits for
an additional predefined period to ensure propagation of the collision throughout the system. The station
remains silent for a random amount of time (backoff) before attempting to transmit again.
When a transmission attempt has terminated due to a collision, it is retried until it is successful. A
controlled randomization process called ‘truncated binary exponential backoff’ determines the scheduling
of the retransmissions. At the end of enforcing a collision (jamming), the switch delays before attempting
to retransmit the frame. The delay is an integer multiple of slotTime (512 bit times). The number of slot
times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer
‘r’ in the range:
0 r < 2k
where:
k = min (n, backoffLimit). IEEE 802.3 defines the backoffLimit as 10.
8.1.8. InterFrame Gap
The InterFrame Gap is 9.6µs for 10Mbps Ethernet and 960ns for 100Mbps Fast Ethernet.
8.1.9. Illegal Frame
Illegal frames such as CRC error packets, runt packets (length < 64 bytes), and oversize packets (length >
maximum length), will be discarded.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 99 Track ID: JATR-1076-21 Rev. 1.2
8.1.10. Dual MII Interface
Home Gateways, broadband access routers, and SOHO routers generally contain a powerful Network
Processor, with many I/O interfaces, including MII and SNI interfaces. Traditionally, this system
connects one of the MII interfaces to a single PHY as the WAN port, and another interface connects to a
multi-port switch as the LAN ports. In order to meet application demands, Realtek offers an advanced
dual MII interface for this application. This eliminates the need for a single PHY.
Figure 4 shows the traditional design of a SOHO router. In this case, the router needs an extra single PHY
as the WAN port. A traditional 5-port switch has five MAC and five PHY circuits on a single chip. When
port 4 is configured as MII-MAC/MII-PHY/SNI-PHY, we only use the MAC part of port 4.
P0
MAC
P1
MAC
P2
MAC
P3
MAC
P4
MAC
P0
PHY
P1
PHY
P2
PHY
P3
PHY
P4
PHY
P4_MII
LAN
WAN
5 Port Switch
Switch Core CPU
with Dual MII
MII_1
MII_2
Single
PHY
Figure 4. Traditional Application
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 100 Track ID: JATR-1076-21 Rev. 1.2
The RTL8305SC has pin 42, DISDUALMII, to support both port 4 PHY and MAC circuits. When the
Dual MII feature is enabled, the port 4 PHY may be used as the WAN interface as shown in Figure 5.
P0
MAC
P1
MAC
P2
MAC
P3
MAC
P4
MAC
P0
PHY
P1
PHY
P2
PHY
P3
PHY
P4
PHY
P4_MII
P2_MII
LAN WAN
RTL8305SC
Switch Core CPU
with Dual MII
MII_1
MII_2
Figure 5. Dual MII Application Diagram
Dual MII Interfaces Configuration
Port 4 of the RTL8305SC is able to separate the MAC and PHY circuits via the DISDUALMII
configuration. When DISDUALMII is configured as 0, the port 4 MAC circuit supports MAC mode MII,
PHY mode MII, or PHY mode SNI interface. The port 4 PHY circuit supports an MII on the MAC side,
and a UTP or fiber interface in the PHY transceiver. Four pins define the mode of the dual MII interface,
DISDUALMII (pin-42), P4MODE[0] (pin-45), P4MODE[1] (pin-44), and P4PHY_MODE (pin-68).
DISDUALMII: Enable dual MII interface feature, pull high = disable, and pull low = enable.
P4MODE[1:0]: When DISDUALMII is enabled:
11b/10b = P4MAC is MAC mode MII
01b = P4MAC is PHY mode MII
00b = P4MAC is PHY mode SNI
P4PHY_MODE: When DISDUALMII is enabled:
1b = P4PHY is UTP mode
0b = P4PHY is Fiber mode
The following figures show the four types of configuration for the RTL8305SC with a CPU application.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 101 Track ID: JATR-1076-21 Rev. 1.2
59-MRXC/PTXC
60-MRXDV/PTXEN
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
51-MTXC/PRXC
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
58-MCOL/PCOL
MAC1_RXC
MAC1_CRS
MAC1_RXDV
MAC1_RXD[3:0]
MAC1_TXC
MAC1_TXEN
MAC1_TXD[3:0]
MAC1_COL
RTL8305SC
MAC2_RXC
MAC2_CRS
MCA2_RXDV
MAC2_RXD[3:0]
MAC2_TXC
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
10K ohm
82-PHY2TXC
83PHY2TXEN
88, 86~84-PHY2TXD[3:0]
81-PHY2RXC
80-PHY2RXDV
78~76, 73-PHY2RXD[3:0]
89-PHY2COL
46-P4FLCTRL
User Defined
48-P4DUPSTA
User Defined
47-P4SPDSTA
User Defined
49-P4LNKSTA#
42-DISDUALMII
10K ohm
44-P4MODE[1]
45-P4MODE[0]
Floating=High
4
4
4
4
MAC Mode MII Interface
PHY Mode MII Interface
PHY Mode MII Interface
MAC Mode MII Interface
Floating=High
CPU/
Processor/
Routing Engine
68-P4PHY_MODE
Floating=High
Figure 6. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
59-MRXC/PTXC
60-MRXDV/PTXEN
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
51-MTXC/PRXC
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
58-MCOL/PCOL
RTL8305SC
MAC2_RXC
MAC2_CRS
MCA2_RXDV
MAC2_RXD[3:0]
MAC2_TXC
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
10K ohm
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
81-PHY2RXC
80-PHY2RXDV
78~76, 73-PHY2RXD[3:0]
89-PHY2COL
46-P4FLCTRL/P4ENFC
48-P4DUPSTA/P4SPD100
47-P4SPDSTA/P4FULL
User Defined
49-P4LNKSTA#
42-DISDUALMII
10K ohm
44-P4MODE[1]
45-P4MODE[0]
4
4
4
4
MAC Mode MII Interface
PHY Mode MII Interface
of 100Base-FX Mode
PHY Mode MII Interface
MAC Mode MII Interface
Irrelevant
MAC1_RXC
MAC1_CRS
MAC1_RXDV
MAC1_RXD[3:0]
MAC1_TXC
MAC1_TXEN
MAC1_TXD[3:0]
MAC1_COL
CPU/
Processor/
Routing Engine
User Defined
User Defined
Irrelevant
10K ohm
68-P4PHY_MODE
Figure 7. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-FX Mode) Interfaces Application Circuit
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 102 Track ID: JATR-1076-21 Rev. 1.2
59-MRXC/PTXC
60-MRXDV/PTXEN
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
51-MTXC/PRXC
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
58-MCOL/PCOL
RTL8305SC
MAC2_RXC
MAC2_CRS
MCA2_RXDV
MAC2_RXD[3:0]
MAC2_TXC
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
10K ohm
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
81-PHY2RXC
80-PHY2RXDV
78~76, 73-PHY2RXD[3:0]
89-PHY2COL
46-P4FLCTRL
48-P4DUPSTA
47-P4SPDSTA
User Defined
49-P4LNKSTA#
42-DISDUALMII
10K ohm
44-P4MODE[1]
10K ohm
45-P4MODE[0]
Floating=High
PHY Mode MII Interface 1
PHY Mode MII Interface 2
4
4
4
4
MAC Mode MII Interface 1
MAC Mode MII Interface 2
MAC1_RXC
MAC1_CRS
MAC1_RXDV
MAC1_RXD[3:0]
MAC1_TXC
MAC1_TXEN
MAC1_TXD[3:0]
MAC1_COL CPU/
Processor/
Routing Engine
User Defined
User Defined
68-P4PHY_MODE
Floating=High
Figure 8. Dual MII Mode with 1 MII-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
59-MRXC/PTXC
60-MRXDV/PTXEN
61-MRXD[0]/PTXD[0]
51-MTXC/PRXC
52-MTXEN/PRXDV
54-MTXD[0]/PRXD[0]
58-MCOL/PCOL
RTL8305SC
MAC2_RXC
MAC2_CRS
MCA2_RXDV
MAC2_RXD[3:0]
MAC2_TXC
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
81-PHY2RXC
80-PHY2RXDV
78~76, 73-PHY2RXD[3:0]
89-PHY2COL
4
4
PHY Mode SNI Interface
PHY Mode MII Interface
MAC Mode SNI Interface
MAC Mode MII Interface
10K ohm
46-P4FLCTRL
48-P4DUPSTA
User Defined
47-P4SPDSTA
49-P4LNKSTA#
42-DISDUALMII
10K ohm
10K ohm
MAC1_RXC
MAC1_CRS
MAC1_RXDV
MAC1_RXD
MAC1_TXC
MAC1_TXEN
MAC1_TXD
MAC1_COL
44-P4MODE[1]
10K ohm
10K ohm
45-P4MODE[0]
CPU/
Processor/
Routing Engine
User Defined
68-P4PHY_MODE
Floating=High
Figure 9. Dual MII Mode with 1 SNI-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 103 Track ID: JATR-1076-21 Rev. 1.2
Dual MII Registers Definition
For RTL8305SC single MII interface applications (DISDUALMII=1), PHY 5 MII registers represent the
Port 4 MAC part.
For RTL8305SC dual MII interface applications (DISDUALMII=0), PHY4 registers represent the Port 4
PHY part (Read/Write), and PHY5 registers represent the Port 4 MAC part (Reg.013, 0.12, 0.8, 4.10,
4.8~4.5 are Read/Write; others are Read-Only). The 100Base-FX mode of the PHY circuit
(P4MODE[1:0]=10) only supports 100Mbps and full duplex. The PHY circuit of UTP mode only
supports full ability NWay (Flow control enabled, both 10/100Mbps, both Full/Half duplex).
The RTL8305SC support four status pins to provide the link status or initial configuration for the MAC
circuit. A brief description of the function follows:
P4LNKSTA#: Determines the link status of Port 4 MAC in real-time
P4SPDSTA: Provides initial configuration pin for speed ability upon reset
P4DUPSTA: Provides initial configuration pin for duplex ability upon reset
P4FLCTRL: Provides initial configuration pin for flow control ability upon reset
Table 143 shows the MII PHY registers of PHY4 and PHY5 definitions when P4MODE[1:0] and
DISDUALMII are configured in various combinations.
Table 143. MII Register Definition for PHY 4 and PHY 5
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
1 11
P4LNKSTA#=1
or
P4LNKSTA#=0
but UTP link
on:
UTP Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=P4FLCTRL
Reg. 4.8~4.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
Reg. 5.10=NWay result
Reg. 5.8~5.5=NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
N/A UTP
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 104 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
P4LNKSTA#=0
and UTP link
off:
MAC:
MAC
mode
MII
PHY:
N/A
UTP:
N/A
N/A Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5.
Port 4
MAC
1 10 MAC: N/A
PHY: N/A
UTP: 100Base-FX
(Fiber)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=P4DUPSTA
Reg. 1.2=Signal detection
Reg. 4.10=P4FLCTRL
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5= Reg. 4.8~4.5
After Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=Configurable
Reg. 1.2=Signal detection
Reg. 4.10=Configurable
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5=Reg. 4.8~4.5
N/A Fiber
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 105 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
1 01 MAC: PHY mode MII
PHY: N/A
UTP: N/A
N/A Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5= Keep
the contents identical to Reg.
4.10 and 4.8~4.5.
Port 4
MAC
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 106 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
1 00 MAC: PHY mode SNI
PHY: N/A
UTP: N/A
N/A Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5= Keep
the contents identical to Reg.
4.10 and 4.8~4.5.
Port 4
MAC
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 107 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
0 11
P4PHY_MODE (pin
68)=1
MAC: MAC mode MII
PHY: PHY mode MII
UTP: 100Base-TX
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Port 4
PHY
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 108 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
0 10
P4PHY_MODE
(pin 68)=0
MAC: MAC mode MII
PHY: PHY mode MII
UTP: 100Base-FX
(Fiber)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=1
Reg. 5.8~5.5=1111
After Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=Configurable
Reg. 1.2=Signal detection
Reg. 4.10=Configurable
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5=1111
Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Fiber
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 109 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
0 01 MAC: PHY mode MII
PHY: PHY mode MII
UTP: 100Base-TX
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Port 4
PHY
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 110 Track ID: JATR-1076-21 Rev. 1.2
Dis
DualMII
P4MODE
[1:0]
Port 4 Mode PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
PHY5
(Reg0, 1, 2, 3, 4, 5)
Port 4
LED
0 00 MAC: PHY mode SNI
PHY: PHY mode MII
UTP: 100Base-TX
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
4.8~4.5
P4
SPDSTA
P4
DUPSTA
1111 1 1
0111 1 0
0011 0 1
0001 0 0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Port 4
PHY
8.2. Physical Layer Functional Overview
8.2.1. Auto-Negotiation for UTP
The RTL8305SC obtains the states of duplex, speed, and flow control ability for each port in UTP mode
through the auto-negotiation mechanism defined in the IEEE 802.3u specifications. During auto-
negotiation, each port advertises its ability to its link partner and compares its ability with advertisements
received from its link partner. By default, the RTL8305SC advertises full capabilities (100Full, 100Half,
10Full, 10Half) together with flow control ability.
8.2.2. 10Base-T Transmit Function
The output 10Base-T waveform is Manchester-encoded before it is driven into the network media. The
internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external
filter.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 111 Track ID: JATR-1076-21 Rev. 1.2
8.2.3. 10Base-T Receive Function
The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit
detects the signal level is above squelch level.
8.2.4. Link Monitor
The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of
valid link pulses. Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN
signal pairs.
8.2.5. 100Base-TX Transmit Function
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling,
NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then
scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such
that EMI effects can be reduced significantly.
The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit
stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level
signaling technology moves the power spectrum energy from high frequency to low frequency, which
also reduces EMI emissions.
8.2.6. 100Base-TX Receive Function
The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to
compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to
convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error
rate. A De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL
circuit. Finally, the converted parallel data is fed into the MAC.
8.2.7. 100Base-FX
All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins.
100Base-FX can be forced to half or full duplex with optional flow control ability.
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to
operate correctly, both sides of the connection should be set to the same duplex and flow control ability.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 112 Track ID: JATR-1076-21 Rev. 1.2
A scrambler is not needed in 100Base-FX. Compared to common 100Base-FX applications, the
RTL8305SC removes a pair of differential SD (Signal Detect) signals that provide a link monitoring
function, which reduces the pin count (Realtek patent).
8.2.8. 100Base-FX Transmit Function
In 100Base-FX transmission, di-bits of TXD are processed as 100Base-TX except without being
scrambled before the NRZI stage. Instead of converting to MLT-3 signals as in 100Base-TX, the serial
data stream is driven out as NRZI PECL (Positive Emitter Coupled Logic) signals, which enter the fiber
transceiver in differential-pairs form. The fiber transceiver may be 3.3V or 5V capable. Refer to 100Base-
FX Application, on page 143 for an example application.
Table 144. PECL DC Characteristics
Parameter Symbol Min Max Unit
PECL Input High Voltage Vih Vdd-1.16 Vdd-0.88 V
PECL Input Low Voltage Vil Vdd-1.81 Vdd-1.47 V
PECL Output High Voltage Voh Vdd-1.02 V
PECL Output Low Voltage Vol Vdd-1.62 V
8.2.9. 100Base-FX Receive Function
Signals are received through Positive Emitter Coupled Logic (PECL) receiver inputs from a fiber
transceiver and directly passed to a clock recovery circuit for data/clock recovery. Scrambling/de-
scrambling is bypassed in 100Base-FX.
8.2.10. 100Base-FX FEFI
When 100FX is enabled, PHY Reg.1.4 (Remote Fault) is the Far-End-Fault-Indicator (FEFI) bit for ports,
and indicates that a FEFI has been detected. The FEFI is an alternative in-band signaling that is composed
of 84 consecutive 1’s followed by one 0. When the RTL8305SC has detected this pattern three times,
Reg.1.4 will be set, which means the transmit path (Remote side’s receive path) has problems. On the
other hand, to send an FEFI stream pattern, the following condition needs to be satisfied; the incoming
signal causes link failure, which in turn causes the remote side to detect a Far-End-Fault. This means that
the receive path has a problem from the view of the RTL8305SC. The FEFI mechanism is used only in
100Base-FX.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 113 Track ID: JATR-1076-21 Rev. 1.2
During detection of the FEFI, PHY Reg.1.4 should be set to 1. It should remain 1, even after it is read, as
long as FEFI is continuously detected by the RTL8305SC. PHY Reg.1.4 should not be cleared until the
FEFI has disappeared.
If there is no FEFI, then PHY Reg.1.4 should be 0. In normal conditions where there is no optical or
electrical input signal; OPT-PHY should not detect Far-End-Fault signals since there is no such signal at
the optical input.
When Optical Receiving Fiber is disconnected from RTL8305SC, the FEFI cannot be detected by the
RTL8305SC and also cannot be reflected on PHY Reg.1.4 since there is no FEFI. If there is a FEFI
before Optical Receiving Fiber is disconnected, Reg.1.4 should be kept on 1. This bit should be cleared
to 0 after it is read (read and clear).
The OPT-PHY of RTL8305SC will not reflect the FEFI (Reg.1.4=1) when Optical Fiber is disconnected
at power up, in spite of No-Far-End-Fault signals. After power on, the default value of PHY Reg1.4 will
appear as ‘0’.
8.2.11. Reduced Fiber Interface
The RTL8305SC ignores the underlying SD signal of the fiber transceiver to complete link detection and
connection. This is achieved by monitoring RD signals from the fiber transceiver and checking whether
any link integrity events are met. This significantly reduces pin-count, especially for high-port PHY
devices. This is a Realtek patent-pending technology and available only with Realtek product solutions.
8.2.12. Power Saving Mode
The RTL8305SC implements power saving mode on a per-port basis. A port automatically enters power
saving mode 10 seconds after the cable is disconnected from it. Once a port enters power saving mode, it
transmits normal link pulses only on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins
to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or
Auto-Negotiation’s FLP (Fast Link Pulse). After it detects any incoming signals, it wakes up from power
saving mode and operates in normal mode according to the result of the connection.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 114 Track ID: JATR-1076-21 Rev. 1.2
8.2.13. Reg0.11 Power-Down Mode
The RTL8305SC implements power-down mode on a per-port basis. Setting MII Reg.0.11 forces the
corresponding port of the RTL8305SC to enter power-down mode. This disables all transmit/receive
functions, except SMI (Serial Management Interface: MDC/MDIO, also known as MII Management
Interface).
8.2.14. Crossover Detection and Auto Correction
During the link setup phase, the RTL8305SC checks whether it receives active signals on every port in
order to determine if a connection can be established. In cases where the receiver data pin pair is
connected to the transmitter data pin pair of the peer device and vice versa, the RTL8305SC automatically
changes its configuration and swaps receiver/transmitter data pins as required. If a port is connected to a
PC or NIC with MDI-X interface with a crossover cable, the RTL8305SC will reconfigure the port to
ensure proper connection. This replaces the DIP switch commonly used for reconfiguring a port on a hub
or switch.
By pulling-up EN_AUTOXOVER, the RTL8305SC identifies the type of connected cable and sets the
port to MDI or MDIX. When switching to MDI mode, the RTL8305SC uses TXOP/N as transmit pairs;
when switching to MDIX mode, the RTL8305SC uses RXIP/N as transmit pairs. This function is port-
based. Pulling-down EN_AUTOXOVER disables this function, the RTL8305SC operates in MDI mode,
in which TXOP/N represents transmit pairs, and RXIP/N represents receive pairs.
IEEE 802.3 compliant forced mode 100M ports with Autoxover have link issues with NWay (Auto-
Negotiation) ports. It is recommended to not use Autoxover for forced 100M.
8.2.15. Polarity Detection and Correction
For better noise immunity and lower interference to ambient devices, the Ethernet electrical signal on a
twisted pair cable is transmitted in differential form. That is, the signal is transmitted on two wires in each
direction with inverse polarities (+/-). If wiring on the connector is faulty or a faulty transformer is used,
the two inputs to a transceiver may carry signals with opposite but incorrect polarities. As a direct
consequence, the transceiver will not work properly.
When the RTL8305SC operates in 10Base-T mode, it automatically reverses the polarity of its two
receiver input pins if it detects that the polarities of the incoming signals on the pins is incorrect.
However, this feature is unnecessary when the RTL8305SC is operating in 100Base-TX mode.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 115 Track ID: JATR-1076-21 Rev. 1.2
8.3. Advanced Functional Overview
8.3.1. Reset
The whole or just part of the RTL8305SC is initialized depending on the reset type. There are several
ways to reset the RTL8305SC: hardware reset for the whole chip by pin RESET#, soft reset for all except
PHY by register SoftReset, and PHY software reset for each PHY by register reset.
Hardware Reset: Pin RESET#=0 set to RESET#=1 (for at least 1ms). The RTL8305SC resets the whole
chip and then gets initial values from pins and serial EEPROM.
Soft Reset: Write bit12 of Reg16 of PHY0 as 1. The RTL8305SC resets all except PHY and does not
load EEPROM and Pin Registers with serial EEPROM and Pins. The SoftReset, EEPROM, and Pin
registers are designed to provide a convenient way for users who want to use SMI to change the
configuration. After changing the EEPROM or Pin registers via SMI (Serial Management Interface), the
external device has to perform a soft reset in order to update the configuration.
PHY Software Reset: Write bit15 of Reg0 of a PHY as 1. The RTL8305SC will then reset this PHY.
Hardware Reset
Soft Reset: After loading EEPROM completely,
the user may access EEPROM/Pin registers via
SMI. A Soft Reset to reset all except PHY is
required to update pin/EEPROM configuration.
Strap pin
upon reset
Load EEPROM
upon reset
Figure 10. Reset
Some setting values for operation modes are latched from those corresponding mode pins upon hardware
reset. ‘Upon reset’ is defined as a short time after the end of a hardware reset. Other advanced
configuration parameters may be latched from serial EEPROM if pin EnEEPROM=1.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 116 Track ID: JATR-1076-21 Rev. 1.2
8.3.2. Setup and Configuration
The RTL8305SC can be configured easily and flexibly by hardware pins upon reset, optional serial
EEPROM upon reset, and internal registers (including PHY registers for each port and MAC register for
global) via SMI (Serial Management Interface: MDC/MDIO, also known as MII Management Interface).
There are three methods of configuration:
1. Only hardware pins for normal switch applications
2. Hardware pins and serial EEPROM for advanced switch applications
3. Hardware pins and internal registers via SMI for applications with processor
Three types of pins, each with internal pull-high resistors, are used for configuration:
1. Input pins used for strapping upon reset (unused after reset)
2. Input/Output pins (MTXD[3:2]/PRXD[3:2]/P4IRTag[1:0], MTXD[1:0]/PRXD[1:0]/LEDMode[1:0])
used for strapping upon reset and used as output pins after reset
3. Input/Output pins (all LEDs) used for strapping upon reset and used as LED indicator pins after reset.
The LED statuses are represented as active-low or high depending on input strapping, except Bi-color
Link/Act in Bi-color LED mode, whose polarity depends on Spd status
Pins with default value=1 are internal pull-high and use I/O pads. They can be left floating to set input
value as high, but should not be connected to GND without a pull-down resistor.
The serial EEPROM shares two pins, SCL_MDC and SDA_MDIO, with SMI, and is optional for
advanced configuration. SCL_MDC and SDA_MDIO are tri-state during hardware reset (pin
RESET#=0). The RTL8305SC will try to automatically find the serial EEPROM upon reset only if pin
EnEEPROM=1. If the first byte of the serial EEPROM is not 0xFF (NoEEPROM bit of the first byte=0),
the RTL8305SC will load all contents of the serial EEPROM into internal registers. Otherwise, the
RTL8305SC will use the default internal values.
Internal registers can still be accessed after reset via SMI (pin SCL_MDC and SDA_MDIO). Serial
EEPROM signals and SMI signals must not exist at the same time. In order to use the SMI to flexibly
change configuration, internal registers include the contents of some pins and all serial EEPROM. These
registers do not work in real time and a Soft Reset is necessary after changing the EEPROM or pin
registers.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 117 Track ID: JATR-1076-21 Rev. 1.2
8.3.3. Serial EEPROM Example: 24LC02
The 24LC02 interface is a 2-wire serial EEPROM interface providing 2K bits of storage space. The
24LC02 must be 3.3V compatible.
8.3.3.1 24LC02 Device Operation
Clock and Data transitions: The SDA pin is normally pulled high with an external resistor. Data on the
SDA pin may change only during SCL low time periods. Data changes during SCL high periods will
indicate a start or stop condition as defined below.
Start Condition: A high-to-low transition of SDA with SCL high is the start condition and must precede
any other command.
Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition.
Acknowledge: All addresses and data are transmitted serially to and from the EEPROM in 8-bit words.
The 24LC02 sends a zero to acknowledge that it has received each word. This happens during the ninth
clock cycle.
Random Read: A random read requires a ‘dummy’ byte write sequence to load in the data word address.
Sequential Read: For the RTL8305SC, the sequential reads are initiated by a random address read. After
the 24LC02 receives a data word, it responds with an acknowledgement. As long as the 24LC02 receives
an acknowledgement, it will continue to increment the data word address and clock out sequential data
words in series.
SDA
SCL
START STOP
Figure 11. Start and Stop Definition
SCL
DATA IN
DATA OUT
START ACKNOWLEDGE
189
Figure 12. Output Acknowledge
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 118 Track ID: JATR-1076-21 Rev. 1.2
SDA
Device
Address
Dummy Write
Word
Address n
Device
Address
Data n
Stop
ACK ACKACK NO ACKR/W
Start StartWrite Read
Figure 13. Random Read
SDA
Device
Address
Stop
NO ACK
Data n+xData n+1Data n
ACKR/W
Read ACK ACK
ACKACK
Figure 14. Sequential Read
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 119 Track ID: JATR-1076-21 Rev. 1.2
8.3.4. SMI
The SMI (Serial Management Interface) is also known as the MII Management Interface, and consists of
two signals (MDIO and MDC). It allows external devices with SMI master mode (MDC is output) to
control the state of the PHY and internal registers (SMI slave mode: MDC is input). MDC is an input
clock for the RTL8305SC to latch MDIO on its rising edge. The clock can run from DC to 25MHz.
MDIO is a bi-directional connection used to write data to, or read data from the RTL8305SC. The PHY
address is from 0 to 4.
Table 145. SMI Read/Write Cycles
Preamble
(32 bits)
Start
(2 bits)
OP Code
(2 bits)
PHYAD
(5 bits)
REGAD
(5 bits)
Turn Around
(2 bits)
Data
(16 bits)
Idle
Read 1……..1 01 10 A4A3A2A1A0 R4R3R2R1R0 Z0 D15…….D0 Z*
Write 1……..1 01 01 A4A3A2A1A0 R
4R3R2R1R0 10 D15…….D0 Z*
Note: Z*: high-impedance. During idle time MDIO state is determined by an external 1.5K
pull-up resistor.
The RTL8305SC supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles
without preamble bits. However, for the first cycle of MII management after power-on reset, a 32-bit
preamble is needed.
To guarantee the first successful SMI transaction after power-on reset, the external device should delay at
least 1second before issuing the first SMI Read/Write Cycle relative to the rising edge of reset.
8.3.5. Head-Of-Line Blocking
The RTL8305SC incorporates an advanced mechanism to prevent Head-Of-Line blocking problems when
flow control is disabled. When the flow control function is disabled, the RTL8305SC first checks the
destination address of the incoming packet. If the destination port is congested, the RTL8305SC will
discard this packet to avoid blocking the next packet, which is going to a non-congested port.
8.3.6. Port-Based VLAN
If the VLAN function is enabled by pulling down the strapping pin DisVLAN, the default VLAN
membership configuration by internal register is port 4 overlapped with all the other ports to form four
individual VLANs. This default configuration of the input port could be modified via an attached serial
EEPROM or SMI interface. The 16 VLAN membership registers designed into the RTL8305SC provide
full flexibility for users to configure the input ports to associate with different VLAN groups. Each input
port can join more than one VLAN group.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 120 Track ID: JATR-1076-21 Rev. 1.2
Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a
VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to
determine their VLAN association. All the packets received on a given input port will be forwarded to
this port’s VLAN members. The RTL8305SC supports five VLAN indexes for each port to individually
index this port to one of the 16 VLAN membership registers. These 16 VLAN membership registers,
VLAN ID [A] membership bit [4:0] ~ VLAN ID [P] membership bit [4:0], describe which ports are the
members of this VLAN. The RTL8305SC forwards packets to the members of this VLAN only
(excluding the input port of this frame). A port that is not included in a VLAN’s member set cannot
transmit packets to this VLAN.
Figure 15 illustrates a typical application. VLAN indexes and VLAN member definitions are set to form
three different VLAN groups.
VLAN 1 VLAN 2
Port 0 VLAN Index=0000
Port 1 VLAN Index=0000
Port 4 VLAN Index=0001
Port 3 VLAN Index=0001
Port 2 VLAN Index=0000
RTL8305SC
P0
P1
P2
P3
P4
Membership [A] 0 0 1 1 1
Membership [C] 0 0 0 0 0
Membership [B] 1 1 0 0 0
Membership [P] 0 0 0 0 0
Figure 15. VLAN Grouping Example
For port-based VLAN configuration, each ingress port is allotted an index register to index to this port’s
‘Port VLAN Membership’ register, which can be defined in one of the registers from ‘VLAN ID [A]
Membership bit [4:0]’ to ‘VLAN ID [P] Membership bit [4:0]’ register.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 121 Track ID: JATR-1076-21 Rev. 1.2
Using the default value as an example:
Port 0 VLAN Index[3:0]=2’b0000 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
Port 1 VLAN Index[3:0]=2’b0001 means the member set of port 0 is defined
in the ‘VLAN ID [B] Membership’ register
Port 2 VLAN Index[3:0]=2’b0010 means the member set of port 0 is defined
in the ‘VLAN ID [C] Membership’ register
Port 3 VLAN Index[3:0]=2’b0011 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
Port 4 VLAN Index[3:0]=2’b0100 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
For non-VLAN tagged frames, the RTL8305SC performs port-based VLAN. It will use ‘Port n VLAN
Index [3:0]’ register to index to a VLAN membership. The VLAN ID associated with this indexed
VLAN membership is the Port VID (PVID) of this port.
8.3.7. IEEE 802.1Q Tagged-VID Based VLAN
The RTL8305SC supports 16 VLAN entries to perform 802.1Q tagged-VID based VLAN mapping. In
802.1Q VLAN mapping, the RTL8305SC uses a 12-bit explicit identifier in the VLAN tag to associate
received packets with a VLAN. The 16 groups of VLAN membership registers, ‘VLAN ID [A]
membership [4:0] ~ VLAN ID [P] membership [4:0]’, consist of the ports that are in the same VLAN
corresponding to the registers defined in register ‘VLAN ID [A] [11:0] ~ VLAN ID [P] [11:0]’. If the
VID of a VLAN-tagged frame does not hit any one of the registers in ‘VLAN ID [A] [11:0] ~ VLAN ID
[P] [11:0]’, the RTL8305SC will perform port-based VLAN mapping to the member set indexed by
register ‘Port n VLAN index [3:0]’. Otherwise, the RTL8305SC compares the explicit identifier in the
VLAN tag with the 16 VLAN ID registers to determine the VLAN association of this packet, and then
forwards this packet to the member set of this VLAN. Two VIDs are reserved for special purposes. One
of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority
tag. A priority-tagged frame should be treated as an untagged frame.
When ‘802.1Q tag aware VLAN’ at PHY0 Reg.16.10 is enabled, the RTL8305SC performs 802.1Q tag-
based VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged
frames. If ‘802.1Q tag aware VLAN’ is disabled, the RTL8305SC performs only port-based VLAN
mapping both on non-tagged and tagged frames. Figure 16 illustrates the processing flow when ‘802.1Q
tag aware VLAN’ is disabled.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 122 Track ID: JATR-1076-21 Rev. 1.2
P0VLANIndex=0000
VID [P]=0x00f
RTL8305SC
Tagged
VID [C]=0x002
VID [B]=0x001
VID [A]=0x000
Search
VID
Table
P0
P1
P2
P3
P4
Un-tagged
Membership [A] 1 0 0 0 1
Membership [C] 1 0 1 0 0
Membership [B] 1 0 0 1 0
Membership [I] 1 0 0 0 1
------ DASA
802.1Q
Tag
Length/
Type
------ DASA
Length/
Type
------ DASA
802.1Q
Tag
Length/
Type
------ DASA
Length/
Type
Figure 16. Tagged and Untagged Packet Forwarding when 802.1Q Tag Aware VLAN is Disabled
Two VLAN ingress filtering functions are supported by the RTL8305SC in registers. One is the ‘VLAN
tag admit control’ defined in PHY0 Reg.16.8, which provides the ability to receive VLAN-tagged frames
only. Untagged or priority tagged (VID=0) frames will be dropped. The other is ‘VLAN member set
ingress filtering’ defined in PHY0 Reg.16.9, which will drop frames if the receive port is not in the
member set.
There are also two optional egress filtering functions supported by the RTL8305SC through strapping.
One is ‘Leaky VLAN’ at PHY0 Reg18.11, which e . That is, if the layer 2 lookup table search has a hit,
then the unicast packet will be forwarded to the egress port, ignoring the egress rule. The other is ‘ARP
VLAN’ at PHY0 Reg.18.10, which will broadcast ARP packets to all other ports, ignoring the egress rule.
8.3.8. Port VID (PVID)
In a router application, the router may want to know which input port this packet came from. The
RTL8305SC supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on an egress
packet. The VID information carried in the VLAN tag will be changed to a PVID. The RTL8305SC also
provides an option to admit VLAN tagged packets with a specific PVID only. When this function is
enabled, packets with an incorrect PVID, and non-tagged packets will be dropped.
The RTL8305SC uses an internal register, Port n VLAN index [3:0,] to index to one of the 16 VLAN
entries. The VLAN ID associated with this indexed VLAN entry is the PVID for this port. Users may
select VLAN insert/remove type 10 or 00 to insert a PVID on egress packets.
In 802.1Q tag-based VLAN applications, do not use a port-based VLAN PVID applications as the VID
information carried in the VLAN tag will be replaced with a PVID.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 123 Track ID: JATR-1076-21 Rev. 1.2
8.3.9. Lookup Table Access
The RTL8305SC supports registers for the CPU to read or write an internal 1024-entry lookup table via
the SMI interface. Before reading/writing from/to the internal forwarding table, the contents of internal
register, Indirect Access Control [15:0] at PHY4 Register 16, should be filled correctly.
In the write cycle, the user must assign the write data in register Indirect Access Data 0, 1, 2, and 3 at
PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a 10-bit field (Entry Index
[9:0]), which is indirectly mapped to an entry in the lookup table. To execute write access, bit 0 in the
Indirect Access Control register should be set to 0, and bit 1 should be set to 1. The CPU will poll bit 1 in
Indirect Access Control to determine whether the write access is complete on not.
In the read cycle, the user only has to enter the read address of the lookup table in register Indirect Access
Data 0, 1, 2, and 3 at PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a
10-bit field (Entry Index [9:0]). To execute read access, bit 0 in the Indirect Access Control register
should be set to 1, and bit 1 should be set to 1 to trigger this command. The CPU will poll bit 1 in Indirect
Access Control to determine whether read access is complete or not.
8.3.10. QoS Function
The RTL8305SC can recognize the QoS priority information of incoming packets to give a different
egress service priority. The RTL8305SC identifies the packets as high priority based on several types of
QoS priority information:
Port-based priority
802.1p/Q VLAN priority tag
TCP/IP’s TOS/DiffServ (DS) priority field
There are two priority queues; a high-priority queue, and a low-priority queue. The queue service rate is
based on the Weighted Round Robin algorithm, the packet-based service weight ratio of the high-priority
queue and low-priority queue can be set to 4:1, 8:1, 16:1 or ‘Always high priority first’ by hardware pins
upon reset, or internal register via SMI after reset.
Port-Based Priority
When port-based priority is applied, packets received from the high-priority port are sent to the high-
priority queue of the destination port. High priority ports can be partially set by hardware pins, and
wholly configured by registers.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 124 Track ID: JATR-1076-21 Rev. 1.2
802.1p-Based Priority
When 802.1p VLAN tag priority is enabled, the RTL8305SC recognizes the 802.1Q VLAN tag frames
and extracts the 3-bit User Priority information from the VLAN tag. The RTL8305SC default sets the
threshold of User Priority as 4. Therefore, VLAN tagged frames with User Priority value = 4~7 will be
treated as high priority frames, and User Priority values=0~3 will be treated as low priority frames
(follows the IEEE 802.1p standard). The threshold value can be modified in internal registers via an SMI
interface or configured in EEPROM.
DiffServ-Based Priority
When TCP/IP’s TOS/DiffServ(DS) based priority is enabled, the RTL8305SC recognizes TCP/IP
Differentiated Services Codepoint (DSCP) priority information from the DS-field defined in RFC 2474.
The DS field byte in IPv4 is a Type-of-Service (TOS) octet. The recommended DiffServ Codepoint is
defined in RFC 2597 to classify the traffic into different service classes. The RTL8305SC extracts the
codepoint value of DS-fields from IPv4 packets, and identifies the priority of the incoming IP packet
according to the following definition:
High priority: Where the DS-field = (EF, Expected Forwarding:) 101110 or
(AF, Assured Forwarding:) 001010; 010010; 011010; 100010 or
(Network Control:) 110000 and 111000.
Low priority: Where the DS-field = Other values.
The VLAN-tagged frame and 6-bit DS-field in the IPv4 frame format are shown below:
Table 146. 802.1Q VLAN Tag Frame Format
6 bytes 6 bytes 2 bytes 3 bits
DA SA 81-00 User-Priority
(0~3: Low-pri; 4~7: High-pri)
----
Table 147. IPv4 Frame Format
6 bytes 6 bytes 4 bytes 2 bytes 4 bits 4 bits 6 bits
DA SA
802.1Q Tag
(optional)
08-00 Version IPv4=
0100
IHL TOS[0:5]= DS-
field
----
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 125 Track ID: JATR-1076-21 Rev. 1.2
8.3.11. Insert/Remove VLAN Tag
The RTL8305SC supports four types of insert/remove VLAN packet tags, controlled by internal registers
on a per-port basis. They are classified as follows:
Type 11: Do not change packets (Default).
Type 10: Insert input port’s VLAN tags for non-tagged packets. Do not change packets if they are
already tagged.
Type 01: Remove VLAN tags from tagged packets. Do not change packets if they are not tagged.
Type 00: Remove VLAN tags from tagged packets, then insert the input port’s VLAN tags. For non-
tagged packets, insert the input port’s VLAN tags.
If a tagged frame is less than 64 bytes after removal of the tag, it will be padded with an 0x20 pattern
before the packet’s CRC field to fit the 64-byte minimum packet length of the IEEE 802.3 spec. The
RTL8305SC will recalculate the FCS (Frame Check Sequence) if the frame has been changed.
8.3.12. Filtering/Forwarding Reserved Control Frame
The RTL8305SC supports the ability to forward or drop the frames of the IEEE 802.1D specified
reserved multicast addresses.
Table 148. Reserved Multicast Address
Address Function Control Bit Control Bit=0 Control Bit=1
01-80-C2-00-00-00 Bridge Group Address N/A Broadcast
01-80-C2-00-00-01 Pause Control Frame N/A Drop
01-80-C2-00-00-03 IEEE802.1X Control Frame N/A Broadcast
01-80-C2-00-00-02 and
01-80-C2-00-00-04 to
01-80-C2-00-00-0F
Reserved EnForward Drop *Broadcast
Any other multicast Address - N/A Broadcast
Note: * Indicates the default setting.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 126 Track ID: JATR-1076-21 Rev. 1.2
8.3.13. Broadcast Storm Control
According to the latched value of the DISBRDCTRL pin upon reset, the RTL8305SC determines whether
or not to proceed with broadcast storm control. Once enabled (DISBRDCTRL=0), after 64 consecutive
broadcast packets (DID=FF-FF-FF-FF-FF-FF) are received by a particular port, this port will discard
following incoming broadcast packets for approximately 800ms. Any non-broadcast packet can reset the
time window and broadcast counter such that the scheme restarts.
Note: Trigger condition: consecutive 64 DID = FF-FF-FF-FF-FF-FF packets. Release condition: receive
non-broadcast packet on or after 800ms.
8.3.14. Broadcast In/Out Drop
If some destination ports are blocking and the buffer is full, broadcast frames are dropped according to
configuration.
1. Input Drop: Do not forward to any port and drop the frame directly
2. Output Drop: Forward only to non-blocking ports (Broadcast becomes multicast)
Port 0 1 2 3 4
Rx:
Full
Input Drop
1. Broadcast packet from Port0
2. Buffer of Port4 is full, others are not full
Rx:
Full
Output Drop
Port 0 1 2 3 4
Figure 17. Input Drop vs. Output Drop
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 127 Track ID: JATR-1076-21 Rev. 1.2
8.3.15. Loop Detection
Loops should be avoided between switch applications. The simplest loop as shown below results in:
1) Unicast frame duplication; 2) Broadcast frame multiplication; 3) Address table non-convergence.
Frames may be transmitted from Switch1 to Switch 2 via Link 1, then returned to Switch 1 via Link 2.
Switch 1
Link 1
Switch 2
Link 2
Figure 18. Loop Example
When the loop detection function is enabled, the RTL8305SC periodically sends out a broadcast 64-byte
packet every 3~5 minutes and automatically detects whether there is a network loop (or bridge loop). If a
loop is detected, the LoopLED# will be ON (active low or high). The LED goes out when both
RTL8305SC ports of the loop are unplugged. The Loop frame length is 64 bytes and its format is shown
below.
Table 149. Loop Frame Format
FFFF FFFF FFFF SID 8899 0300 000…0000 CRC
In order to achieve loop detection, each switch device needs a unique SID (the source MAC address). If
the EEPROM is not used, a unique SID should be assigned via SMI after reset, and the default SID (52-
54-4c-83-05-c0) should not be used.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 128 Track ID: JATR-1076-21 Rev. 1.2
8.3.16. MAC Local Loopback Return to External
Each port supports loopback of the MAC (return to external device) for diagnostic purposes.
Example 1: If the internal register, PHY4 Reg.22.13=0 (Local loopback), the RTL8305SC will forward
local and broadcast packets from the input of Port 4 to the output of Port 4, and drop unicast packets from
the input of Port 4. Other ports can still forward broadcast or unicast packets to Port 4.
Example 2: If the internal register, PHY3 Reg.22.13=0 (Local loopback), the RTL8305SC will “forward
local and broadcast packets from the input of Port3 to the output of Port3” and “drop unicast packets from
the input of Port3”. Other ports can still forward broadcast or unicast packets to port3.
This is especially useful for router applications performing mass production tests. This function is
independent of PHY type (GxMode/GyMode/P4Mode[1:0]) and can be done on each mode. Below are
two examples: In Example 1 the external device (CPU) is connected to the MII or SNI interface of Port 4.
In Example 2, the external device (CPU) does not have an MII or SNI interface, so it uses the PCI
interface to connect an RTL8139 to the UTP port of Port 4.
CPUUTP
Example 2: LoopBack in UTP Mode
RTL8139 PCI
RTL8305SC
Example 1: LoopBack in External PHY Mode
RTL8305SC CPUMII/SNI
Figure 19. Port 4 Loopback
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 129 Track ID: JATR-1076-21 Rev. 1.2
8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal
The digital loopback mode of the PHY (return to internal MAC) may be enabled on a per-port basis by
setting MII Reg.0.14 to 1. In digital loopback mode, the TXD of PHY is transferred directly to the RXD
of PHY with TXEN changed to CRS_DV, and returns to MAC via an internal MII. The data stream
coming from the MAC will not egress to the physical medium, and an incoming data stream from the
network medium will be blocked in this mode. The packets will be looped back in 10Mbps full duplex or
100Mbps full duplex mode. This function is especially useful for diagnostic purposes. For example, a
NIC can be used to send broadcast frames into port0 of the RTL8305SC and set Port1 to Reg0.14
Loopback. The frame will be looped back to port 0, so the received packet count can be checked to verify
that the switch device is good. In this example, port0 can be 10M or 100M and full or half duplex.
MAC PHYInternal MII
Figure 20. Reg. 0.14 Loopback
As the RTL8305SC only supports digital loopback in full duplex mode, PHY Reg.0.8 for each port will
always be kept on 1 when digital loopback is enabled. The digital loopback only functions on broadcast
packets (DA=FF-FF-FF-FF-FF-FF). In loopback mode, the link LED of the loopback port should always
be ON, and the Speed and Duplex LED combined to reflect the link status (100full/10full) correctly,
regardless of what the previous status of this loopback port was.
Consider a case where a port is initially unlinked. When we set this port to digital loopback mode, the
RTL8305SC can get this port linked up within 100ms at the configured speed, and will block the sending
of UTP or Fiber signals from this port.
8.3.18. LEDs
The RTL8305SC supports four parallel LEDs for each port, and two special LEDs (SELMIIMAC# and
LOOPLED#). Each port has four LED indicator pins. Each pin may have different indicator meanings set
by pins LEDMode[1:0]. Refer to the pin descriptions for details (Port LED Pins, on page 20). Upon reset,
the RTL8305SC supports chip diagnostics and LED functions by blinking all LEDs once for 320ms. This
function can be disabled by asserting EN_RST_LINK to 0. LED_BLINK_TIME determines the LED
blinking period for activity and collision (1=43ms and 0=120ms). The parallel LEDs corresponding to
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 130 Track ID: JATR-1076-21 Rev. 1.2
port 4 can be tri-stated (disable LED functions) for MII port application by setting ENP4LED in
EEPROM to 0. In UTP applications, this bit should be set to 1.
All LED pins are dual function pins: input operation for configuration upon reset, and output operation
for LED after reset. If the pin input is floating upon reset, the pin output is active low after reset.
Otherwise, if the pin input is pulled down upon reset, the pin output is active high after reset.
Exception: Bi-color Link/Act mode of pin LED_ADD[4:0] when LEDMode[1:0]=10.
Below is an example circuit for LEDs. The typical values for pull-down resistors are 10K.
LED Pin
Pull Down
10K ohm
330 ohm
RTL8305SC
RTL8305SC
LED Pin
Floating
330 ohm
3.3V
Figure 21. Floating and Pull-Down of LED Pins
For two-pin Bi-color LED mode (LEDMode[1:0]=10), Bi-color Link/Act (pin LED_ADD) and Spd (pin
LED_SPD) can be used for one Bi-color LED package, which is a single LED package with two LEDs
connected in parallel with opposite polarity. When LEDMode[1:0]=10, the active status of LED_ADD is
the opposite of LED_SPD.
Table 150. Spd and Bi-Color Link/Act Truth Table
Spd: Input=Floating, Active Low.
Bi-color Link/Act: The active status
of LED_ADD is the opposite of
LED_SPD and does not interact with
input upon reset.
Spd: Input=Pull-down, Active High.
Bi-color Link/Act: The active status
of LED_ADD is the opposite of
LED_SPD and does not interact with
input upon reset.
Indication Bi-Color State
Spd Link/Act Spd Link/Act
No Link Both Off 1 1 0 0
100M Link Green On 0 1 1 0
10M Link Yellow On 1 0 0 1
100M Act Green Flash 0 Flash 1 Flash
10M Act Yellow Flash 1 Flash 0 Flash
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 131 Track ID: JATR-1076-21 Rev. 1.2
Yellow
Green
LED_SPD LED_ADD
Figure 22. Two Pin Bi-color LED for SPD Floating or Pull-high
Yellow
Green
L ED_SPD
LED_ADD
Figure 23. Two Pin Bi-color LED for SPD Pull-down
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 132 Track ID: JATR-1076-21 Rev. 1.2
8.3.19. 1.8V Power Generation
The RTL8305SC can use a PNP transistor to generate 1.8V from a 3.3V power supply. This 1.8V is used
for the digital core and analog receiver circuits. Do not use one PNP transistor for more than one
RTL8305SC chip, even if the rating is enough. Use one transistor for each RTL8305SC chip.
Do not connect an inductor (bead) directly between the collector of the PNP transistor and AVDD18. This
will adversely affect the stability of the 1.8V power to a significant degree.
RTL8305SC
VCTRL
DVDD33
AVDD18
HVDD33, DVDD33: 3.3V
DVDD18, AVDD18: 1.8V
1.8V
47uF/10uF/0.1uF
2SB1188
Ic(max.) = 2A DVDD18
Bead
0 Ω
3.3V
HVDD33
Bead
1N4001
Diode
Figure 24. Using a PNP Transistor to Transform 3.3V Into 1.8V
Table 151. An Example Using Power Transistor 2SB1188
Parameter Symbol Limits Unit
Collector-base voltage VCBO -40 V
Collector-emitter voltage VCEO -32 V
Emitter-base voltage VEBO -5 V
Collector current IC -2 A(DC)
Collector power dissipation PC 0.5 W
Junction temperature Tj 150
°C
Storage temperature Tstg -55~+150
°C
Note: Absolute maximum ratings (Ta=25
°
C).
For more information, refer to http://www.rohm.com
8.3.20. Crystal/Oscillator
The frequency is 25Mhz. The maximum Frequency Tolerance is +/-50ppm. The maximum Jitter is 150ps
Peak-to-Peak.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 133 Track ID: JATR-1076-21 Rev. 1.2
9. Characteristics
9.1. Absolute Maximum Ratings
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to
the device, or device reliability will be affected. All voltages are specified reference to GND unless
otherwise specified.
Table 152. Electrical Characteristics/Ratings
Parameter Min Max Units
Vcc Supply Referenced to GND -0.5 +4.0 V
Digital Input Voltage -0.5 VDD V
DC Output Voltage -0.5 VDD V
9.2. Operating Range
Parameter Min Max Units
Storage Temperature -55 +150 °C
Ambient Operating Temperature (Ta) 0 +70 °C
3.3V Vcc Supply Voltage Range (HVDD33,
DVDD33)
3.15 3.45 V
1.8V Vcc Supply Voltage Range (DVDD18,
AVDD18)
1.71 1.95 V
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 134 Track ID: JATR-1076-21 Rev. 1.2
9.3. DC Characteristics
Parameter SYM Condition Min Typical Max Units
Power Supply Current
for 1.8V
Icc 10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
40
500
460
470
40
40
45
525
470
480
45
45
50
550
480
490
50
50
mA
Power Supply Current
for 3.3V
Icc 10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
110
100
110
100
60
60
120
110
120
110
65
65
130
120
130
120
70
70
mA
Total Power
Consumption for all
Ports
PS 10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
295
1230
1191
1176
270
270
477
1308
1242
1227
295.5
295.5
519
1386
1293
1278
321
321
mW
TTL Input High Voltage Vih 2.0 V
TTL Input Low Voltage Vil 0.8 V
TTL Input Current Iin -10 10 uA
TTL Input Capacitance Cin 3 pF
Output High Voltage Voh 2.25 V
Output Low Voltage Vol 0.4 V
Output Three State
Leakage Current
|IOZ| 10 uA
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 135 Track ID: JATR-1076-21 Rev. 1.2
9.4. AC Characteristics
Parameter SYM Condition Min Typical Max Units
Transmitter, 100Base-TX
Differential Output
Voltage, Peak-to-Peak
VOD 50 from each output to Vcc, Best-fit over 14
bit times
1.007 V
Differential Output
Voltage Symmetry
VOS 50 from each output to Vcc, |Vp+|/ |Vp-| 99.1 %
Differential Output
Overshoot VOO Percent of Vp+ or Vp- 3.1 %
Rise/Fall Time tr ,tf 10-90% of Vp+ or Vp- 4.1 ns
Rise/Fall Time Imbalance |tr - tf| 0.17 ns
Duty Cycle Distortion Deviation from best-fit time-grid, 010101 …
Sequence
0.2 ns
Timing Jitter Idle pattern 0.87 ns
TD Differential Output
Impedance (return loss)
Return loss margin from 2Hz to 80MHz for
reference resistance of 100. The margin is
the minimum difference between the limit line
and the return loss curve
4.6 dB
RD Differential Output
Impedance (return loss)
Return loss margin from 2Hz to 80MHz for
reference resistance of 100. The margin is
the minimum difference between the limit line
and the return loss curve
4.6 dB
Transmitter, 10Base-T
Differential Output
Voltage, Peak-to-Peak
VOD 50 from each output to Vcc, all pattern 2.36 V
TP_IDL Silence Duration Period of time from start of TP_IDL to link
pulses or period of time between link pulses
10.48 ms
TD Short Circuit Fault
Tolerance
Peak output current on TD short circuit
for 10 seconds.
24 mA
TD Common-Mode
Output Voltage
Ecm Terminate each end with 50 resistive load 43.2 mV
Transmitter Output Jitter 6 ns
Harmonic Content dB below fundamental, 20 cycles of all ones
data
28 dB
Start-of-idle Pulse Width TP_IDL width 256 ns
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 136 Track ID: JATR-1076-21 Rev. 1.2
9.5. Digital Timing Characteristics
Table 153. LED Timing
Parameter SYM Condition Min Typical Max Units
LED Timing
LED On Time tLEDon While LED blinking 43 120 ms
LED Off Time tLEDoff While LED blinking 43 120 ms
Th
Ts
MRXC/PTXC,
PHY2PTXC,
MDC
MRXD/PTXD[3: 0],
PHY2PTXD[3: 0],
MRXDV/PTXEN,
PHY2PTXEN,
MCOL, PHY2PCOL,
MDIO
Figure 25. Reception Data Timing of MII/SNI/SMI Interface
Tcyc Tos
MTXC/PRXC,
PHY2PRXC,
MDC
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV,
PCOL, PHY2PCOL,
MDIO
Toh
Figure 26. Transmission Data Timing of MII/SNI/SMI Interface
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 137 Track ID: JATR-1076-21 Rev. 1.2
Table 154. MII & SMI DC Timing
Parameter SYM Condition I/O Min Type Max Units
MAC Mode MII Timing
100BaseT MTXC/MRXC,
MRXC/PTXC
Tcyc MTXC/MRXC, MRXC/PTXC clock cycle
time
I 40±50
ppm
ns
10BaseT MTXC/MRXC,
MRXC/PTXC
Tcyc MTXC/MRXC, MRXC/PTXC clock cycle
time
I 400±50
ppm
ns
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Setup Time
Tos Output Setup time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV
O 34 34.8 36 ns
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Hold Time
Toh Output Hold time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV
O 4 5.2 6 ns
MRXD[3:0]/PTXD[3:0],
MRXDV/PTXEN,
MCOL/PCOL Setup Time
Ts MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
I 4 ns
MRXD/PTXD,
MRXDV/PTXEN,
MCOL/PCOL Hold Time
Th MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
I 2 ns
PHY Mode MII Timing
100BaseT MTXC/MRXC,
MRXC/PTXC,
PHY2PTXC, PHY2PRXC
Tcyc MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
O 40±50
ppm
ns
10BaseT MTXC/PRXC,
MRXC/PTXC,
PHY2PTXC, PHY2PRXC
Tcyc MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
O 400±50
ppm
ns
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV
MCOL/PCOL,
PHY2PCOL Output Setup
Time
Tos Output Setup time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
PHY2PRXD[3:0], MTXEN/PRXDV,
PHY2PRXDV MCOL/PCOL, PHY2PCOL
O 17.2 18.2 19.2 ns
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV
MCOL/PCOL,
PHY2PCOL Output Hold
Time
Toh Output Hold time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
PHY2PRXD[3:0], MTXEN/PRXDV,
PHY2PRXDV MCOL/PCOL, PHY2PCOL
O 20.8 21.8 22.8 ns
MRXD/PTXD[3:0],
PHY2PTXD[3:0],
MRXDV/PTXEN,
PHY2PTXEN Setup Time
Ts MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
I 4 ns
MRXD/PTXD[3:0],
PHY2PTXD[3:0],
MRXDV/PTXEN,
PHY2PTXEN Hold Time
Th MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
I 2 ns
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 138 Track ID: JATR-1076-21 Rev. 1.2
Parameter SYM Condition I/O Min Type Max Units
PHY Mode SNI Timing
MTXC/MRXC,
MRXC/PTXC
Tcyc MTXC/PRXC, MRXC/PTXC clock cycle
time
O 100±50
ppm
ns
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Setup Time
Tos Output Setup time from MTXC/PRXC rising
edge to MTXD[0]/PRXD[0],
MTXEN/PRXDV, MCOL/PCOL
O 36 38 40 ns
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Hold Time
Toh Output Hold time from MTXC/PRXC rising
edge to MTXD[0]/PRXD[0],
MTXEN/PRXDV, MCOL/PCOL
O 59 60 61 ns
MRXD/PTXD[0],
MRXDV/PTXEN Setup
Time
Ts MRXD[0]/PTXD[0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
I 4 ns
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Hold Time
Th MTXD[0]/PRXD[0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
I 2 ns
SMI Timing
MDC Tcyc MDC clock cycle I 40 ns
MDIO Setup Time Ts Write cycle I 10 ns
MDIO Hold Time Th Write cycle I 10 ns
MDIO Output Delay
Relative to Rising Edge of
MDC
Tov Read cycle O 10 µs
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 139 Track ID: JATR-1076-21 Rev. 1.2
9.6. Thermal Characteristics
9.6.1. Package Description
Table 155. Package Description
Item Parameter
Type QFP128
Device RTL8305SC
Dimension (L x W) 14 x 20 mm
Thickness 2.85 mm
9.6.2. PCB Description
Table 156. PCB Description
Item Parameter
Dimension (L x W) 50 x 70 mm
Number of Cu Layer 2 layers (80% of Cu trace coverage of top/bottom layer)
9.6.3. Assembly Material
Table 157. Assembly Material
Item Material Thermal Conductivity K (w/m-k)
Die Silicon 147
Lead Frame C7025 168
Silver Paste AG03*7 2.0
Mold Compound 6300HG 0.63
FR4 0.21 PCB
Cu 393
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 140 Track ID: JATR-1076-21 Rev. 1.2
9.6.4. Simulation Analysis Conditions
Table 158. Simulation Analysis Conditions
Item Parameter
Air Flow Rate 0, 1, 2, 3 m/s
Control Condition Power=1.386 W
Ambient Temperature 60°C
9.6.5. Results
Table 159. Results
Air Flow (m/s) 0 1 2 3
Tj (°C) 117.3 112.1 109.6 108.2
Tc (°C) 111.0 104.7 101.8 100.2
θJA (°C/W) 41.3 37.6 35.8 34.8
ψJT (°C/W) 4.51 5.33 5.61 5.79
Where:
Tj is the maximum junction temperature.
Tc is the maximum case temperature.
θJA is the junction-to-ambient thermal resistance.
θJC is the junction-to-case thermal resistance.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 141 Track ID: JATR-1076-21 Rev. 1.2
10. Application Information
10.1. UTP (10Base-T/100Base-TX) Application
In reviewing this material, please be advised that the center-tap on the primary side of the transformer
must be left floating and should not be connected to ground through capacitors.
Table 160. Transformer Vendors
Vendor Quad Single
Pulse H1164 H1102
Magnetic 1 ML164 ML102
Two types of transformers are generally used for the RTL8305SC. One is a Quad (4 port) transformer
with one common pin on both sides for an internal connected central tap. Another is a Single (1 port)
transformer with two pins on both sides for a separate central tap.
RTL8305SC
1
4
3
2
5
8
7
6
RXIN
TXOP
TXON
IBREF
RXIP Transformer RJ-45
1:1
1:1
Chassis GND
1.96ΚΩ, 1%
0.1uF
50pF/2KV
50Ω
1%
75Ω
50Ω
1%
50Ω
1%
50Ω
1%
AGND
AGND
0.1uF
AGND
75Ω 75Ω
AGND
0.1uF
1.8V
Figure 27. UTP Application for Transformer with Connected Central Tap
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 142 Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
1
4
3
2
5
8
7
6
RXIN
TXOP
TXON
IBREF
RXIP
Pulse H1102
Transformer RJ-45
1:1
1:1
Chassis GND
50pF/2KV
AGND
0.1uF
75Ω 75Ω
75Ω
75Ω
1.96ΚΩ, 1%
1.8V
50Ω
1%
50Ω
1%
50Ω
1%
50Ω
1%
1.8V
0.1uF
AGND
AGND
Figure 28. UTP Application for Transformer with Separate Central Tap
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 143 Track ID: JATR-1076-21 Rev. 1.2
10.2. 100Base-FX Application
The following is an example of an RTL8305SC connecting to a 3.3V fiber transceiver application circuit
with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300 nm LED
Fast Ethernet/FDDI/ATM Optical Transceiver Module).
1 GND_RX
2 RD+
3 RD-
4 SD
5 VCC_RX
6 VCC_TX
7 TD-
8 TD+
9 GND_TX
100Base-FX
Fiber Transceiver
Chassis GND
RXIP
RXIN
TXON
TXOP
Fiber_RX_3V
Fiber_TX_3V
Fiber_RX_3.3V
Fiber_RX_3.3V
AGND
RTL8305SC
130Ω
130Ω
130Ω
130Ω
82Ω
82Ω
82Ω
82Ω
AGND
AGND
AGND
Figure 29. 100Base-FX with 3.3V Fiber Transceiver Application
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 144 Track ID: JATR-1076-21 Rev. 1.2
Figure 30 shows an example of an RTL8305SC connected to a 5V fiber transceiver application circuit
with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300nm LED
Fast Ethernet/FDDI/ATM Optical Transceiver Module).
RTL8305SC
1 GND_RX
2 RD+
3 RD-
4 SD
5 VCC_RX
6 VCC_TX
7 TD-
8 TD+
9 GND_TX
100Base-FX
Fiber Transceiver
Chassis GND
RXIP
RXIN
TXON
TXOP
82Ω 82Ω
50Ω 50Ω
130Ω 130Ω
250Ω 250Ω
Fiber_RX_5V
Fiber_TX_5V
Fiber_TX_5V
Fiber_RX_5V
100Ω100Ω
82Ω 82Ω
Figure 30. 100Base-FX with 5V Fiber Transceiver Application
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 145 Track ID: JATR-1076-21 Rev. 1.2
11. Design and Layout Guide
In order to achieve maximum performance using the RTL8305SC, good design attention is required
throughout the design and layout process. The following are some suggestions to implement a high
performance system.
General Guidelines
Provide a good power source, minimizing noise from switching power supply circuits (<50mV).
Verify the ability of critical components, e.g. clock source and transformer, to meet application
requirements.
Keep power and ground noise levels below 50mV.
Use bulk capacitors (4.7µF-10µF) between the power and ground planes.
Use 0.1µF de-coupling capacitors to reduce high-frequency noise on the power and ground planes.
Keep de-coupling capacitors as close as possible to the RTL8305SC chip.
Differential Signal Layout Guidelines
Keep differential pairs as close as possible and route both traces as identically as possible.
Avoid vias and layer changes if possible.
Keep transmit and receive pairs away from each other. Run orthogonal or separate by a ground
plane.
Clock Circuit
If possible, surround the clock by ground trace to minimize high-frequency emissions.
Keep the crystal or oscillator as close to the RTL8305SC as possible.
1.8V Power
Do not connect a bead directly between the collector of the PNP transistor and AVDD18. This
will significantly affect the stability of the 1.8V power supply.
Use a bulk capacitor (4.7µF-10µF) between the collector of the PNP transistor and the ground
plane.
Do not use one PNP transistor for more than one RTL8305SC chip, even if the rating is enough.
Use one transistor for each RTL8305SC chip.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 146 Track ID: JATR-1076-21 Rev. 1.2
Power Plane
Divide the power plane into 1.8V digital, 3.3V digital, and 1.8V analog.
Use 0.1µF decoupling capacitors and bulk capacitors between each power plane and the ground
plane.
Power line connects from the source to the RTL8305SC pin should be at least 10 mil wide.
Ground Plane
Keep the system ground region as one continuous, unbroken plane that extends from the primary
side of the transformer to the rest of the board.
Place a moat (gap) between the system ground and chassis ground.
Ensure the chassis ground area is voided at some point such that no ground loop exists on the
chassis ground area.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 147 Track ID: JATR-1076-21 Rev. 1.2
12. Mechanical Dimensions
SEE DETAIL “A”
SEE DETAIL “F”
GAGE PLANE
DETAIL “A”
BASE
METAL
WITH
PLATING
SEATING
PLANE DETAIL “F”
See the Mechanical Dimensions notes on the next page.
RTL8305SC
Datasheet
5-port 10/100Mbps Single-Chip Dual MII Switch Controller 148 Track ID: JATR-1076-21 Rev. 1.2
12.1. Mechanical Dimensions Notes
Symbol Dimensions in inches Dimensions in mm Notes:
Min Typical Max Min Typical Max 1. Dimensions D & E do not include interlead flash.
A - - 0.134 - - 3.40 2. Dimension b does not include dambar rotrusion/intrusion.
A1 0.004 0.010 0.036 0.10 0.25 0.91 3. Controlling dimension: Millimeter
A2 0.102 0.112 0.122 2.60 2.85 3.10 4. General appearance spec. Should be based on final visual
b 0.005 0.009 0.013 0.12 0.22 0.32 inspection.
c 0.002 0.006 0.010 0.05 0.15 0.25
D 0.541 0.551 0.561 13.75 14.00 14.25 TITLE: PQFP-128
E 0.778 0.787 0.797 19.75 20.00 20.25 -CU L/F, FOOTPRINT 3.2 mm
e 0.010 0.020 0.030 0.25 0.5 0.75 LEADFRAME MATERIAL:
HD 0.665 0.677 0.689 16.90 17.20 17.50 APPROVE DOC. NO.
HE 0.902 0.913 0.925 22.90 23.20 23.50 VERSION 1.2
L 0.027 0.035 0.043 0.68 0.88 1.08 PAGE
L1 0.053 0.063 0.073 1.35 1.60 1.85 CHECK DWG NO. Q128 - 1
y - - 0.004 - - 0.10 DATE 12 February 2003
θ 0° - 12° 0° - 12° REALTEK SEMICONDUCTOR CORP.
13. Ordering Information
Table 161. Ordering Information
Part Number Package Status
RTL8305SC 128-pin PQFP
RTL8305SC-LF 128-pin PQFP Lead (Pb)-Free package
Realtek Semiconductor Corp.
Headquarters
No. 2, Industry East Road IX, Science-based
Industrial Park, Hsinchu, 300, Taiwan, R.O.C.
Tel: 886-3-5780211 Fax: 886-3-5776047
www.realtek.com.tw