32kHz TCXO
The temperature sensor, oscillator, and control logic form
the TCXO. The controller reads the output of the on-chip
temperature sensor and uses a lookup table to determine
the capacitance required, adds the aging correction in
AGE register, and then sets the capacitance selection reg-
isters. New values, including changes to the AGE register,
are loaded only when a change in the temperature value
occurs, or when a user-initiated temperature conversion
is completed. Temperature conversion occurs on initial
application of VCC and once every 64 seconds afterwards.
Power Control
This function is provided by a temperature-compensated
voltage reference and a comparator circuit that monitors
the VCC level. When VCC is greater than VPF, the part is
powered by VCC. When VCC is less than VPF but greater
than VBAT, the DS3231 is powered by VCC. If VCC is less
than VPF and is less than VBAT, the device is powered by
VBAT. See Table 1.
To preserve the battery, the first time VBAT is applied
to the device, the oscillator will not start up until VCC
exceeds VPF, or until a valid I2C address is written to
the part. Typical oscillator startup time is less than one
second. Approximately 2 seconds after VCC is applied,
or a valid I2C address is written, the device makes a
temperature measurement and applies the calculated
correction to the oscillator. Once the oscillator is running,
it continues to run as long as a valid power source is avail-
able (VCC or VBAT), and the device continues to measure
the temperature and correct the oscillator frequency every
64 seconds.
On the first application of power (VCC) or when a valid I2C
address is written to the part (VBAT), the time and date
registers are reset to 01/01/00 01 00:00:00 (DD/MM/YY
DOW HH:MM:SS).
VBAT Operation
There are several modes of operation that affect the
amount of VBAT current that is drawn. While the device
is powered by VBAT and the serial interface is active,
active battery current, IBATA, is drawn. When the seri-
al interface is inactive, timekeeping current (IBATT),
which includes the averaged temperature conversion
current, IBATTC, is used (refer to Application Note 3644:
Power Considerations for Accurate Real-Time Clocks
for details). Temperature conversion current, IBATTC, is
specified since the system must be able to support the
periodic higher current pulse and still maintain a valid volt-
age level. Data retention current, IBATTDR, is the current
drawn by the part when the oscillator is stopped (EOSC
= 1). This mode can be used to minimize battery require-
ments for times when maintaining time and date informa-
tion is not necessary, e.g., while the end system is waiting
to be shipped to a customer.
Pushbutton Reset Function
The DS3231 provides for a pushbutton switch to be con-
nected to the RST output pin. When the DS3231 is not in
a reset cycle, it continuously monitors the RST signal for
a low going edge. If an edge transition is detected, the
DS3231 debounces the switch by pulling the RST low.
After the internal timer has expired (PBDB), the DS3231
continues to monitor the RST line. If the line is still low,
the DS3231 continuously monitors the line looking for a
rising edge. Upon detecting release, the DS3231 forces
the RST pin low and holds it low for tRST.
RST is also used to indicate a power-fail condition. When
VCC is lower than VPF, an internal power-fail signal is
generated, which forces the RST pin low. When VCC
returns to a level above VPF, the RST pin is held low for
approximately 250ms (tREC) to allow the power supply
to stabilize. If the oscillator is not running (see the Power
Control section) when VCC is applied, tREC is bypassed
and RST immediately goes high. Assertion of the RST
output, whether by pushbutton or power-fail detection,
does not affect the internal operation of the DS3231.
Real-Time Clock
With the clock source from the TCXO, the RTC provides
seconds, minutes, hours, day, date, month, and year
information. The date at the end of the month is automati-
cally adjusted for months with fewer than 31 days, includ-
ing corrections for leap year. The clock operates in either
the 24-hour or 12-hour format with an AM/PM indicator.
The clock provides two programmable time-of-day alarms
and a programmable square-wave output. The INT/SQW
pin either generates an interrupt due to alarm condition
or outputs a square-wave signal and the selection is con-
trolled by the bit INTCN.
Table 1. Power Control
SUPPLY CONDITION ACTIVE SUPPLY
VCC < VPF, VCC < VBAT VBAT
VCC < VPF, VCC > VBAT VCC
VCC > VPF, VCC < VBAT VCC
VCC > VPF, VCC > VBAT VCC
DS3231 Extremely Accurate I2C-Integrated
RTC/TCXO/Crystal
www.maximintegrated.com Maxim Integrated
│
10