Publication Release Date: September, 2005
- 1 - Revision A12
W6811
SINGLE-CHANNEL VOICEBAND CODEC
(5V Analog, 3V Digital)
Data Sheet
W6811
Publication Release Date: September, 2005
- 2 - Revision A12
1. GENERAL DESCRIPTION
The W6811 is a general-purpose single channel PCM CODEC with pin-selectable -Law or A-Law
companding. The device is compliant with the ITU G.712 specification. It operates off of separated
analog (5V) and digital (3V) power supplies and is available in 24-pin PDIP, SOG, SSOP, and TSSOP
package options. Functions performed include digitization and reconstruction of voice signals, and
band limiting and smoothing filters required for PCM systems. The filters are compliant with ITU G.712
specification. W6811 performance is specified over the industrial temperature range of –40°C to
+85°C.
The W6811 includes an on-chip precision voltage reference and an additional power amplifier,
capable of driving 300Ω loads differentially up to a level of 6.3V peak-to-peak. The analog section is
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer
protocol supports both long-frame and short-frame synchronous communications for PCM applications,
and IDL and GCI communications for ISDN applications. W6811 accepts seven master clock rates
between 256 kHz and 4.096 MHz, and an on-chip pre-scaler automatically determines the division
ratio for the required internal clock.
2. FEATURES
Power supply:
Analog 4.5 – 5.5V
Digital 2.7 – 3.3V
Typical power dissipation of 25 mW,
power-down mode of 0.5 W
Fully-differential analog circuit design
On-chip precision reference of 1.575 V for
a 0 dBm TLP at 600 Ω
Push-pull power amplifiers with external
gain adjustment with 300 Ω load capability
Seven master clock rates of 256 kHz to
4.096 MHz
Pin-selectable -Law and A-Law
companding (compliant with ITU G.711)
CODEC A/D and D/A filtering compliant
with ITU G.712
Industrial temperature range (–40°C to
+85°C)
Four packages: 24-pin PDIP, SOG, SSOP,
and TSSOP
Pb-Free / RoHS package options available
APPLICATIONS
Digital Telephone Systems
Central Office Equipment (Gateways,
Switches, Routers)
PBX Systems (Gateways, Switches)
PABX/SOHO Systems
Local Loop card
SOHO Routers
VoIP Terminals
Enterprise Phones
ISDN Terminals
Analog line cards
Digital Voice Recorders
W6811
Publication Release Date: September, 2005
- 3 - Revision A12
3. BLOCK DIAGRAM
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
MCLK
256 kHz
8 kHz
512 kHz
Pre - scaler
V
DDA
V
SSA
Power Conditioning
Voltage reference V
AG
PUI
G.712 CODEC
G.711
μ
/A -Law
PAO+
PAO-
PAI
RO
-
AO
AI+
AI-
μ
/A-Law
Tra
ns
mit
PC
M
Int
erf
ace
Re
cei
ve
PC
M
Int
erf
ace
FST
BCLKT
PCMT
FSR
BCLKR
PCMR
V
REF
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
MCLK
256 kHz
8 kHz
Pre - Saler
Power Conditioning
Voltage reference V
AG
G.712 CODEC
G.711
μ
/A -Law
RO
μ
/A-Law
G.712 CODEC
G.711
μ
/A -Law
RO
μ
/A-Law
Transmit
PCM
Interface
Receive
PCM
Interface
BCLKT
BCLKT
BCLKR
V
V
DDD
V
SSD
W6811
Publication Release Date: September, 2005
- 4 - Revision A12
4. TABLE OF CONTENTS
1. GENERAL DESCRIPTION ................................................................................................................. 2
2. FEATURES ......................................................................................................................................... 2
3. BLOCK DIAGRAM............................................................................................................................... 3
4. TABLE OF CONTENTS ...................................................................................................................... 4
5. PIN CONFIGURATION ....................................................................................................................... 6
6. PIN DESCRIPTION............................................................................................................................. 7
7. FUNCTIONAL DESCRIPTION............................................................................................................ 9
7.1. Transmit Path............................................................................................................................. 9
7.2. Receive Path............................................................................................................................ 10
7.3. Power Management................................................................................................................. 11
7.3.1. Analog Supply ................................................................................................................ 11
7.3.2. Digital Supply ................................................................................................................. 11
7.3.3. Analog Ground Reference Bypass................................................................................. 11
7.3.4. Analog Ground Reference Voltage Output .................................................................... 11
7.4. PCM Interface .......................................................................................................................... 11
7.4.1. Long Frame Sync ........................................................................................................... 12
7.4.2. Short Frame Sync .......................................................................................................... 12
7.4.3. GCI Interface .................................................................................................................. 12
7.4.4. IDL Interface................................................................................................................... 13
7.4.5. System Timing................................................................................................................ 13
8. TIMING DIAGRAMS.......................................................................................................................... 14
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 21
9.1. Absolute Maximum Ratings .................................................................................................... 21
9.2. Operating Conditions .............................................................................................................. 21
10. ELECTRICAL CHARACTERISTICS ............................................................................................... 22
10.1. General Parameters............................................................................................................... 22
10.2. Analog Signal Level and Gain Parameters............................................................................ 23
10.3. Analog Distortion and Noise Parameters............................................................................... 24
10.4. Analog Input and Output Amplifier Parameters ..................................................................... 25
10.5. Digital I/O ............................................................................................................................... 27
10.5.1. µ-Law Encode Decode Characteristics........................................................................ 27
10.5.2. A-Law Encode Decode Characteristics........................................................................ 28
10.5.3. PCM Codes for Zero and Full Scale ............................................................................ 29
10.5.4. PCM Codes for 0dBm0 Output .................................................................................... 29
11. TYPICAL APPLICATION CIRCUIT .................................................................................................30
12. PACKAGE SPECIFICATION .......................................................................................................... 32
12.1. 24L TSSOP – 4.4X7.8mm .....................................................................................................32
12.2. 24L SOP – 300mil.................................................................................................................. 33
12.3. 24L SSOP – 209mil ............................................................................................................... 34
12.4. 24L PDIP – 300 mil ................................................................................................................ 35
13. ORDERING INFORMATION........................................................................................................... 36
14. VERSION HISTORY ....................................................................................................................... 37
W6811
Publication Release Date: September, 2005
- 5 - Revision A12
5. PIN CONFIGURATION
PDIP/SOP/SSOP/TSSOP
VAG
AI+
AI-
AO
μ
/A-Law
VSSA
FST
PCMT
BCLKT
MCLK
VSSD
N
C
V
REF
RO
-
PAI
PAO
-
PAO+
V
DDA
FSR
PCMI
BCLKR
PUI
V
DDD
N
C
VAG
AI+
AI-
AO
VSSA
MCLK
VSSD
N
C
V
REF
RO
-
PAI
PAO
-
PAO+
V
DDA
FSR
PCMR
BCLKR
PUI
V
DDD
N
C
V
AG
24
AI+ 23
AI-22
AO 21
μ
/A 20
V
SSA
19
FSX 16
PCMO 15
BCLKT 14
MCLK 13
1 VREF
2 RO-
3 PAI
4 PAO-
5 PAO+
6 VDDA
9 FSR
10 PCMI
11 BCLKR
12 PUI
V
SSD
178 VDDD
N
C 187 NC
24
23
22
21
20
19
16
15
14
13
1
2
3
4
5
6
9
10
11
12
17
8
187
W6811
Publication Release Date: September, 2005
- 6 - Revision A12
6. PIN DESCRIPTION
Pin
Name
Pin
No.
VDD
*Functionality
VREF 1 A This pin is used to bypass the on-chip 2.5V voltage reference. It needs to be
decoupled to VSSA through a 0.1 μF ceramic decoupling capacitor. No
external loads should be tied to this pin.
RO- 2 A Inverting output of the receive smoothing filter. This pin can typically drive a 2
kΩ load to 1.575 volt peak referenced to the analog ground level.
PAI 3 A This pin is the inverting input to the power amplifier. Its DC level is at the VAG
voltage.
PAO- 4 A Inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt
peak referenced to the VAG voltage level.
PAO+ 5 A Non-inverting power amplifier output. This pin can drive a 300 Ω load to 1.575
Volt peak referenced to the VAG voltage level.
VDDA 6 A Analog power supply. This pin should be decoupled to VSSA with a 0.1μF
ceramic capacitor.
NC 7 Not Connected
VDDD 8 D
Digital power supply. This pin should be decoupled to VSSD with a 0.1μF
ceramic capacitor. For correct operation, VDDD value should always be lower
than VDDA.
FSR 9 D 8 kHz Frame Sync input for the PCM receive section. This pin also selects
channel 0 or channel 1 in the GCI and IDL modes. It can also be connected to
the FST pin when transmit and receive are synchronous operations.
PCMR 10 D PCM input data receive pin. The data needs to be synchronous with the FSR
and BCLKR pins.
BCLKR 11 D PCM receive bit clock input pin. This pin also selects the interface mode. The
GCI mode is selected when this pin is tied to VSSD. The IDL mode is selected
when this pin is tied to VDDD. This pin can also be tied to the BCLKT when
transmit and receive are synchronous operations.
PUI 12 D Power up input signal. When this pin is tied to VDDD, the part is powered up.
When tied to VSSD, the part is powered down.
MCLK 13 D System master clock input. Possible input frequencies are 256 kHz, 512 kHz,
1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz. For a better
performance, it is recommended to have the MCLK signal synchronous and
aligned to the FST signal. This is a requirement in the case of 256 and 512
kHz frequencies.
BCLKT 14 D PCM transmit bit clock input pin.
PCMT 15 D PCM output data transmit pin. The output data is synchronous with the FST
and BCLKT pins.
FST 16 D 8 kHz transmit frame sync input. This pin synchronizes the transmit data
bytes.
W6811
Publication Release Date: September, 2005
- 7 - Revision A12
Pin
Name
Pin
No.
VDD
*Functionality
VSSD 17 D This is the digital supply ground. This pin should be connected to 0V.
NC 18 Not Connected
VSSA 19 A This is the analog supply ground. This pin should be connected to 0V.
μ/A-Law 20 D Compander mode select pin. μ-Law companding is selected when this pin is
tied to VDDD. A-Law companding is selected when this pin is tied to VSSD.
AO 21 A Analog output of the first gain stage in the transmit path.
AI- 22 A Inverting input of the first gain stage in the transmit path.
AI+ 23 A Non-inverting input of the first gain stage in the transmit path.
VAG 24 A Mid-Supply analog ground pin, which supplies a 2.5 Volt reference voltage for
all-analog signal processing. This pin should be decoupled to VSSA with a
0.01μF capacitor. This pin becomes high impedance when the chip is
powered down.
* These columns represent whether the pin Is driven by Analog (‘A’) or Digital (‘D’) power supply.
W6811
Publication Release Date: September, 2005
- 8 - Revision A12
7. FUNCTIONAL DESCRIPTION
W6811 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC complies
with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a complete μ-
Law and A-Law compander. The μ-Law and A-Law companders are designed to comply with the
specifications of the ITU-T G.711 recommendation.
The block diagram in section 3 shows the main components of the W6811. The chip consists of a
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample
rate with the external frame sync frequency. The power conditioning block provides the internal power
supply for the digital and the analog section, while the voltage reference block provides a precision
analog ground voltage for the analog signal processing. The main CODEC block diagram is shown in
section 3.
Figure 7.1 The W6811 Signal Path
PAO+
PAO
8
μ
/A-
Cont
AI+
AI -
w
μ
/A-
Cont
o
AO
+
RO -
-
VA
G
7.1. TRANSMIT PATH
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain
setting (see application examples in section 11). The device has an input operational amplifier whose
output is the input to the encoder section. If the input amplifier is not required for operation it can be
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The
input amplifier can be powered down by connecting the AI+ pin to VDDA or VSSA. The AO pin is selected
as an input when AI+ is tied to VDDA and the AI- pin is selected as an input when AI+ is tied to VSSA
(see Table 7.1).
AntAnt -Aliasi
Filter
= 3400
Hz
i
-Aliasi
ng
Filter
f
C= 200
Hz
High
Pas
Filt
Smooth
ng
Filter
2
Hz
Filter
1
Smooth
ng
VAG
8
μ
/A
Control
8
μ
/A-
Control
+ -
- +
+
-
PAI
Ant
AntHigh Pass -Aliasing
Filter
-
Aliasing
Filter
-
Filter
Filter
Smoothing
Filter Filter Filter Filter
Smoothing
Receive Path
Transmit Path
D/A
Converter
+
-
-
A/D
Converter
f
C= 3400Hz
f
C= 3400Hz
C= 200Hz
f
W6811
Publication Release Date: September, 2005
- 9 - Revision A12
AI+ Input Amplifier Input
VDDA Powered Down AO
1.2 to VDDA-1.2 Powered Up AI+, AI-
VSSA Powered Down AI-
Table 7.1 Input Amplifier Modes of operation
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the
analog ground voltage VAG.
The output of the input amplifier is fed through a 3.4 kHz switched capacitor low pass filter to prevent
aliasing of input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low
pass filter is filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed
according to the recommendations in the G.712 ITU-T specification. From the output of the high pass
filter the signal is digitized. The signal is converted into a compressed 8-bit digital representation with
either μ-Law or A-Law format. The μ-Law or A-Law format is pin-selectable through the μ/A-Law pin.
The compression format can be selected according to Table 7.2.
μ/A-Law Pin Format
VSSA A-Law
VDDA μ-Law
Table 7.2. Pin-selectable Compression Format
The digital 8-bit μ-Law or A-Law samples are fed to the PCM interface for serial transmission at the
data rate supplied by the external bit clock BCLKT.
7.2. RECEIVE PATH
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed
through the pin-selectable μ-Law or A-Law expander and converted to analog samples. The mode of
expansion is selected by the μ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is
buffered to provide the receive output signal RO-. The RO- output can be externally connected to the
PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By
using external resistors (see section 11 for examples), various gain settings of this output amplifier can
be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting PAI to
VDDA.
W6811
Publication Release Date: September, 2005
- 10 - Revision A12
7.3. POWER MANAGEMENT
7.3.1. Analog Supply
The power supply for the analog part of the W6811 needs to be 5V +/- 10%. This supply voltage is
connected to the VDDA pin. The VDDA pin needs to be decoupled to ground through a 0.1 μF ceramic
capacitor.
7.3.2. Digital Supply
The power supply for the digital part of the W6811 needs to be 3V +/- 10%. This supply voltage is
connected to the VDDD pin. The VDDD pin needs to be decoupled to ground through a 0.1 μF ceramic
capacitor.
7.3.3. Analog Ground Reference Bypass
The system has an internal precision voltage reference which generates the 2.5V mid-supply analog
ground voltage. This voltage needs to be decoupled to VSSA at the VREF pin through a 0.1 μF ceramic
capacitor.
7.3.4. Analog Ground Reference Voltage Output
The analog ground reference voltage is available for external reference at the VAG pin. This voltage
needs to be decoupled to VSSA through a 0.01 μF ceramic capacitor. The analog ground reference
voltage is generated from the voltage on the VREF pin and is also used for the internal signal
processing.
7.4. PCM INTERFACE
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of
operation of the interface are shown in Table 7.3.
BCLKR FSR Interface Mode
64 kHz to 4.096
MHz
8 kHz Long or Short Frame Sync
VSSD VSSD ISDN GCI with active channel B1
VSSD VDDD ISDN GCI with active channel B2
VDDD VSSD ISDN IDL with active channel B1
VDDD VDDD ISDN IDL with active channel B2
Table 7.3 PCM Interface mode selections
7.4.1. Long Frame Sync
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the BCLKR
or BCLKT pin to a 64 kHz to 4.096 MHz clock and connecting the FSR or FST pin to the 8 kHz frame
sync. The device synchronizes the data word for the PCM interface and the CODEC sample rate on
the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when the FST pin is
W6811
Publication Release Date: September, 2005
- 11 - Revision A12
held HIGH for two consecutive falling edges of the bit-clock at the BCLKT pin. The length of the Frame
Sync pulse can vary from frame to frame, as long as the positive frame sync edge occurs every 125
μsec. During data transmission in the Long Frame Sync mode, the transmit data pin PCMT will
become low impedance when the Frame Sync signal FST is HIGH or when the 8 bit data word is
being transmitted. The transmit data pin PCMT will become high impedance when the Frame Sync
signal FST becomes LOW while the data is transmitted or when half of the LSB is transmitted. The
internal decision logic will determine whether the next frame sync is a long or a short frame sync,
based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be HIGH
impedance for two frame sync cycles after every power down state. More detailed timing information
can be found in the interface timing section.
7.4.2. Short Frame Sync
The W6811 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is HIGH
for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge of the
bit-clock, the W6811 starts clocking out the data on the PCMT pin, which will also change from high to
low impedance state. The data transmit pin PCMT will go back to the high impedance state halfway
through the LSB. The Short Frame Sync operation of the W6811 is based on an 8-bit data word.
When receiving data on the PCMR pin, the data is clocked in on the first falling edge after the falling
edge that coincides with the Frame Sync signal. The internal decision logic will determine whether the
next frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus
collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down
state. More detailed timing information can be found in the interface timing section.
7.4.3. General Circuit Interface (GCI)
The GCI interface mode is selected when the BCLKR pin is connected to VSSD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface
consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.
W6811
Publication Release Date: September, 2005
- 12 - Revision A12
7.4.4. Interchip Digital Link (IDL)
The IDL interface mode is selected when the BCLKR pin is connected to VDDD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface
consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when not
used for data transmission and also in the time slot of the unused channels. For more timing
information, see the timing section.
7.4.5. System Timing
The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz
master clock rates. The system clock is supplied through the master clock input MCLK and can be
derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and an
8 kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency
versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is LOW for
the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the W6811
will enter the low power standby mode. Another way to power down is to set the PUI pin to LOW.
When the system needs to be powered up again, the PUI pin needs to be set to HIGH and the Frame
Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will become
low impedance.
W6811
Publication Release Date: September, 2005
- 13 - Revision A12
8. TIMING DIAGRAMS
FST
BCLKT
D7 D6 D5 D4 D3 D2 D1PCM T
MSB LSB
THID TBCK
D0
TBCKH TBCKL
TFS
TFTFH
TFTRS
TFTRH
THID
TBDTD
TFDTD
01 23 45 7 8 0 1
MSB LSB
FSR
BCLKR
TBCK
D6 D5 D4 D3 D2 D1 D0PCM R D7
TDRH
TDRS
TBCKH TBCKL
TFS
TFRFH
TFRRS
TFRRH
01 2 3 45 6 7 8 0 1
6
MCLK
TFTRHM TFTRSM TMCKH TMCKL
TMCK
TRISE TFA L L
TFSL
TFSL
Figure 8.1 Long Frame Sync PCM Timing
W6811
Publication Release Date: September, 2005
- 14 - Revision A12
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST, FSR Frequency --- 8 --- kHz
TFSL FST / FSR Minimum LOW Width 1TBCK sec
1/TBCK BCLKT, BCLKR Frequency 64 --- 4096 kHz
TBCKH BCLKT, BCLKR HIGH Pulse Width 50 --- --- ns
TBCKL BCLKT, BCLKR LOW Pulse Width 50 --- --- ns
TFTRH BCLKT 0 Falling Edge to FST Rising
Edge Hold Time
20 --- --- ns
TFTRS FST Rising Edge to BCLKT 1 Falling
edge Setup Time
80 --- --- ns
TFTFH BCLKT 2 Falling Edge to FST Falling
Edge Hold Time
50 --- --- ns
TFDTD FST Rising Edge to Valid PCMT Delay
Time
--- --- 60 ns
TBDTD BCLKT Rising Edge to Valid PCMT
Delay Time
--- --- 60 ns
THID Delay Time from the Later of FST
Falling Edge, or
BCLKT 8 Falling Edge to PCMT Output
High Impedance
10 --- 60 ns
TFRRH BCLKR 0 Falling Edge to FSR Rising
Edge Hold Time
20 --- --- ns
TFRRS FSR Rising Edge to BCLKR 1 Falling
edge Setup Time
80 --- --- ns
TFRFH BCLKR 2 Falling Edge to FSR Falling
Edge Hold Time
50 --- --- ns
TDRS Valid PCMR to BCLKR Falling Edge
Setup Time
0 --- --- ns
TDRH PCMR Hold Time from BCLKR Falling
Edge
50 --- --- ns
Table 8.1 Long Frame Sync PCM Timing Parameters
1 TFSL must be at least TBCK
W6811
Publication Release Date: September, 2005
- 15 - Revision A12
D7 D6 D5 D4 D3 D2 D1
MSB LSB
TBCK
D0
TBCKH TBCK L
TFS
TFTRS
TFTRH
THID
TBDTD
01 2 3 45 6 7 8 01
FST
BCLKT
PCM T
TBDTD
TFTFH
-1
TFTFS
MSB LSB
TBCK
D6 D5 D4 D3 D2 D1 D0D7
TDRH
TDRS
TBCKH TBCK L
TFS
TFRRS
TFRRH
01 2 3 45 6 7 8 01
FSR
BCLKR
PCM R
TFRFH
-1
TFRFS
MCLK
TFTRHM TFTRSM TMCKH TMCKL
TMCK
TRISE TFA LL
Figure 8.2 Short Frame Sync PCM Timing
W6811
Publication Release Date: September, 2005
- 16 - Revision A12
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST, FSR Frequency --- 8 --- kHz
1/TBCK BCLKT, BCLKR Frequency 64 --- 4096 kHz
TBCKH BCLKT, BCLKR HIGH Pulse Width 50 --- --- ns
TBCKL BCLKT, BCLKR LOW Pulse Width 50 --- --- ns
TFTRH BCLKT –1 Falling Edge to FST Rising Edge Hold
Time
20 --- --- ns
TFTRS FST Rising Edge to BCLKT 0 Falling edge Setup
Time
80 --- --- ns
TFTFH BCLKT 0 Falling Edge to FST Falling Edge Hold Time 50 --- --- ns
TFTFS FST Falling Edge to BCLKT 1 Falling Edge Setup
Time
50 --- --- ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay Time 10 --- 60 ns
THID Delay Time from BCLKT 8 Falling Edge to PCMT
Output High Impedance
10 --- 60 ns
TFRRH BCLKR –1 Falling Edge to FSR Rising Edge Hold
Time
20 --- --- ns
TFRRS FSR Rising Edge to BCLKR 0 Falling edge Setup
Time
80 --- --- ns
TFRFH BCLKR 0 Falling Edge to FSR Falling Edge Hold Time 50 --- --- ns
TFRFS FSR Falling Edge to BCLKR 1 Falling Edge Setup
Time
50 --- --- ns
TDRS Valid PCMR to BCLKR Falling Edge Setup Time 0 --- --- ns
TDRH PCMR Hold Time from BCLKR Falling Edge 50 --- --- ns
Table 8.2 Short Frame Sync PCM Timing Parameters
W6811
Publication Release Date: September, 2005
- 17 - Revision A12
FST
BCLKT
PCM T
PCM R
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
TFS
TFSRH
TFSFH
TFSRS
TBDTD TBDTD TBDTD TBDTD
THID
THID
TDRS TDRS
TDRH TDRH
BCH = 0
B1 Channel
BCH = 1
B2 Channel
MSB
MSB
MSB
MSB
LSB
LSB
LSB
LSB
TBCK
TBCKH TBCK L
-1
Figure 8.3 IDL PCM Timing
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFS FST Frequency --- 8 --- kHz
1/TBCK BCLKT Frequency 256 --- 4096 kHz
TBCKH BCLKT HIGH Pulse Width 50 --- --- ns
TBCKL BCLKT LOW Pulse Width 50 --- --- ns
TFSRH BCLKT –1 Falling Edge to FST Rising
Edge Hold Time
20 --- --- ns
TFSRS FST Rising Edge to BCLKT 0 Falling edge
Setup Time
60 --- --- ns
TFSFH BCLKT 0 Falling Edge to FST Falling Edge
Hold Time
20 --- --- ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay
Time
10 --- 60 ns
THID Delay Time from the BCLKT 8 Falling
Edge (B1 channel) or BCLKT 18 Falling
Edge (B2 Channel) to PCMT Output High
Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLKT Falling Edge Setup
Time
20 --- --- ns
TDRH PCMR Hold Time from BCLKT Falling
Edge
75 --- --- ns
Table 8.3 IDL PCM Timing Parameters
W6811
Publication Release Date: September, 2005
- 18 - Revision A12
FST
BCLKT
PCM T
PCM R
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
TFS
TFDTD TBDTD TBDTD TBDTD
THID
THID
TDRS TDRS
TDRH TDRH
BCH = 0
B1 Channel
BCH = 1
B2 Channel
MSB
MSB
MSB
MSB
LSB
LSB
LSB
LSB
TFSRH
TFSFH
TFSRS
TBCK
TBCKH TBCK L
234567891011121314151617181920212223242526272829303132333410
Figure 8.4 GCI PCM Timing
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TFST FST Frequency --- 8 --- kHz
1/TBCK BCLKT Frequency 512 --- 6176 kHz
TBCKH BCLKT HIGH Pulse Width 50 --- --- ns
TBCKL BCLKT LOW Pulse Width 50 --- --- ns
TFSRH BCLKT 0 Falling Edge to FST Rising Edge Hold
Time
20 --- --- ns
TFSRS FST Rising Edge to BCLKT 1 Falling edge Setup
Time
60 --- --- ns
TFSFH BCLKT 1 Falling Edge to FST Falling Edge Hold
Time
20 --- --- ns
TFDTD FST Rising Edge to Valid PCMT Delay Time --- --- 60 ns
TBDTD BCLKT Rising Edge to Valid PCMT Delay Time --- --- 60 ns
THID Delay Time from the BCLKT 16 Falling Edge (B1
channel) or BCLKT 32 Falling Edge (B2 Channel) to
PCMT Output High Impedance
10 --- 50 ns
TDRS Valid PCMR to BCLKT Rising Edge Setup Time 20 --- --- ns
TDRH PCMR Hold Time from BCLKT Rising Edge --- --- 60 ns
Table 8.4 GCI PCM Timing Parameters
W6811
Publication Release Date: September, 2005
- 19 - Revision A12
SYMBOL DESCRIPTION MIN TYP MAX UNIT
1/TMCK Master Clock Frequency --- 256
512
1536
1544
2048
2560
4096
--- kHz
TMCKH / TMCK MCLK Duty Cycle for 256 kHz Operation 45% 55%
TMCKH Minimum Pulse Width HIGH for MCLK(512 kHz
or Higher)
50 --- --- ns
TMCKL Minimum Pulse Width LOW for MCLK (512 kHz
or Higher)
50 --- --- ns
TFTRHM MCLK falling Edge to FST Rising Edge Hold
Time
50 --- --- ns
TFTRSM FST Rising Edge to MCLK Falling edge Setup
Time
50 --- --- ns
TRISE Rise Time for All Digital Signals --- --- 50 ns
TFALL Fall Time for All Digital Signals --- --- 50 ns
Table 8.5 General PCM Timing Parameters
W6811
Publication Release Date: September, 2005
- 20 - Revision A12
9. ABSOLUTE MAXIMUM RATINGS
9.1. ABSOLUTE MAXIMUM RATINGS
Condition Value
Junction temperature 1500C
Storage temperature range -650C to +1500C
Voltage Applied to any pin Analog
Digital
(VSSA - 0.3V) to (VDDA + 0.3V)
(VSSD - 0.3V) to (VDDD + 0.3V)
Voltage applied to any pin Analog
(Input current limited to +/-20 mA) Digital
(VSSA – 1.0V) to (VDDA + 1.0V)
(VSSD – 1.0V) to (VDDD + 1.0V)
VDDA - VSSA ; VDDD - VSSD -0.5V to +6V
VDDD – VDDA
2< 0.3V
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.
2. At any time, the digital power supply should not be higher the 0.3V from the analog power supply.
9.2. OPERATING CONDITIONS
Condition Value
Industrial operating temperature -400C to +850C
Analog supply voltage (VDDA) +4.5V to +5.5V
Digital supply voltage (VDDD) +2.7V to +3.3V
Ground voltage (VSSA, VSSD) 0V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely
affect the life and reliability of the device.
W6811
Publication Release Date: September, 2005
- 21 - Revision A12
10. ELECTRICAL CHARACTERISTICS
10.1. GENERAL PARAMETERS
Symbo
l
Parameters Conditions Min (2) Typ (1) Max (2) Units
VIL Input LOW Voltage 0.5 V
VIH Input HIGH Voltage 2.2 V
VOL PCMT Output LOW Voltage IOL = 1.6 mA 0.4 V
VOH PCMT Output HIGH Voltage IOL = -1.6 mA VDDD – 0.5 V
IDDA
IDDD
VDDA Current (Operating) -ADC+DAC PUI = 1
FSX running MCLK
running
5.5
25
8
1000
mA
μA
ISBA
ISBD
VCCA Current (Standby)
PUI = 1
FSX = 0 MCLK running 200
0.2
500
100
nA
μA
IPDA
IPDD
VCCA Current (Power Down)
VCCD Current (Power Down)
PUI = 0
PUI = 0
200
200
500
500
nA
nA
IIL Input Leakage Current VSSD<VIN<VDDD +/-10
μA
IOL PCMT Output Leakage Current VSSA<PCMT<VDDA
High Z State
+/-10
μA
CIN Digital Input Capacitance 10 pF
COUT PCMT Output Capacitance PCMT High Z 15 pF
1. Typical values: TA = 25°C , VDDA = 5.0 V, VDDD = 3.0 V
2. All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
W6811
Publication Release Date: September, 2005
- 22 - Revision A12
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG; MCLK=BCLK= 2.048 MHz;
FST=FSR=8kHz Synchronous operation.
TRANSMIT
(A/D)
RECEIVE
(D/A)
UNIT PARAMETER SYM. CONDITION TYP.
MIN. MAX. MIN. MAX.
Absolute Level LABS 0 dBm0 = 0dBm @ 600Ω 1.096 --- --- --- --- VPK
Max. Transmit
Level
TXMAX 3.17 dBm0 for μ-Law
3.14 dBm0 for A-Law
1.579
1.573
---
---
---
---
---
---
---
---
VPK
VPK
Absolute Gain
(0 dBm0 @
1020 Hz;
TA=+25°C)
GABS 0 dBm0 @ 1020 Hz;
TA=+25°C
0 -0.25 +0.25 -0.25 +0.25 dB
Absolute Gain
variation with
Temperature
GABST TA=0°C to TA=+70°C
TA=-40°C to TA=+85°C
0 -0.03
-0.05
+0.03
+0.05
-0.03
-0.05
+0.03
+0.05
dB
Frequency
Response,
Relative to
0dBm0 @
1020 Hz
GRTV 15 Hz
50 Hz
60 Hz
200 Hz
300 to 3000 Hz
3300 Hz
3400 Hz
3600 Hz
4000 Hz
4600 Hz to 100 kHz
---
---
---
---
---
---
---
---
---
---
---
---
---
-1.0
-0.20
-0.35
-0.8
---
---
---
-40
-30
-26
-0.4
+0.15
+0.15
0
0
-14
-32
-0.5
-0.5
-0.5
-0.5
-0.20
-0.35
-0.8
---
---
---
0
0
0
0
+0.15
+0.15
0
0
-14
-30
dB
Gain Variation
vs. Level Tone
(1020 Hz
relative to –10
dBm0)
GLT +3 to –40 dBm0
-40 to –50 dBm0
-50 to –55 dBm0
---
---
---
-0.3
-0.6
-1.6
+0.3
+0.6
+1.6
-0.2
-0.4
-1.6
+0.2
+0.4
+1.6
dB
W6811
Publication Release Date: September, 2005
- 23 - Revision A12
10.3. ANALOG DISTORTION AND NOISE PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG; MCLK=BCLK= 2.048 MHz;
FST=FSR=8kHz Synchronous operation.
TRANSMIT (A/D) RECEIVE (D/A) PARAMETER SYM. CONDITION
MIN. TYP. MA
X.
MIN. TYP. MAX.
UNIT
Total Distortion vs.
Level Tone (1020 Hz,
μ-Law, C-Message
Weighted)
DLTμ+3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
36
36
29
25
---
---
---
---
---
---
---
---
34
36
30
25
---
---
---
---
---
---
---
---
dBC
Total Distortion vs.
Level Tone (1020 Hz,
A-Law, Psophometric
Weighted)
DLTA +3 dBm0
0 dBm0 to -30 dBm0
-40 dBm0
-45 dBm0
36
36
29
25
---
---
---
---
---
---
---
---
34
36
30
25
---
---
---
---
---
---
---
---
dBp
Spurious Out-Of-Band
at RO- (300 Hz to
3400 Hz @ 0dBm0)
DSPO 4600 Hz to 7600 Hz
7600 Hz to 8400 Hz
8400 Hz to 100000
Hz
---
---
---
---
---
---
---
---
---
---
---
---
---
---
---
-30
-40
-30
dB
Spurious In-Band (700
Hz to 1100 Hz @
0dBm0)
DSPI 300 to 3000 Hz ---
--- -47
---
--- -47
dB
Intermodulation
Distortion (300 Hz to
3400 Hz –4 to –21
dBm0
DIM Two tones
--- --- -41 --- --- -41 dB
Crosstalk (1020 Hz @
0dBm0)
DXT --- --- -75 --- --- -75 dBm0
Absolute Group Delay τABS 1200 Hz --- --- 360 --- --- 240 μsec
Group Delay Distortion
(relative to group
delay @ 1200 Hz)
τD500 Hz
600 Hz
1000 Hz
2600 Hz
2800 Hz
---
---
---
---
---
---
---
---
---
---
750
380
130
130
750
---
---
---
---
---
---
---
---
---
---
750
370
120
120
750
μsec
Idle Channel Noise NIDL μ-Law; C-message
A-Law; Psophometric
---
---
---
---
18
-68
---
---
---
---
13
-78
dBrnc0
dBm0p
W6811
Publication Release Date: September, 2005
- 24 - Revision A12
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER SYM. CONDITION MIN. TYP. MAX. UNIT.
AI Input Offset Voltage VOFF,AI AI+, AI- --- --- ±25 mV
AI Input Current IIN,AI AI+, AI- --- ±0.1 ±1.0 μA
AI Input Resistance RIN,AI AI+, AI- to VAG 10 --- --- MΩ
AI Input Capacitance CIN,AI AI+, AI- --- --- 10 pF
AI Common Mode Input
Voltage Range
VCM,AI AI+, AI- 1.2 --- VDDA-1.2 V
AI Common Mode Rejection
Ratio
CMRRTI AI+, AI- --- 60 --- dB
AI Amp Gain Bandwidth
Product
GBWTI AO, RLD10kΩ --- 2150 --- kHz
AI Amp DC Open Loop Gain GTI AO, RLD10kΩ --- 95 --- dB
AI Amp Equivalent Input
Noise
NTI C-Message
Weighted
--- -24 --- dBrnC
AO Output Voltage Range VTG RLD=10kΩ to VAG
RLD=2kΩ to VAG
0.5
1.0
---
---
VDDA-0.5
VDDA-1.0
V
Load Resistance RLDTGRO AO, RO to VAG 2 --- ---
kΩ
Load Capacitance CLDTGRO AO, RO --- --- 100 pF
AO & RO Output Current IOUT1 0.5 AO,RO-
VDDA-0.5
±1.0 --- --- mA
RO- Output Resistance RRO- RO-, 0 to 3400
Hz
--- 1 ---
Ω
RO- Output Offset Voltage VOFF,RO- RO- to VAG --- --- ±25 mV
Analog Ground Voltage VAG Relative to VSSA 2.429 2.5 2.573 V
VAG Output Resistance RVAG Within ±25mV
change
--- 2.5 12.5
Ω
Power Supply Rejection Ratio
(0 to 100 kHz to VDDA, C-
message)
PSRR Transmit
Receive
30
30
80
75
---
---
dBC
PAI Input Offset Voltage VOFF,PAI PAI --- ---
±20 mV
PAI Input Current IIN,PAI PAI ---
±0.05 ±1.0 μA
PAI Input Resistance RIN,PAI PAI to VAG 10 --- --- MΩ
PAI Amp Gain Bandwidth
Product
GBWPI PAO- no load --- 1000 --- kHz
W6811
Publication Release Date: September, 2005
- 25 - Revision A12
PARAMETER SYM. CONDITION MIN. TYP. MAX. UNIT.
Output Offset Voltage VOFF,PO PAO+ to PAO- --- --- ±50 mV
Load Resistance RLDPO PAO+, PAO-
differentially
300 --- --- Ω
Load Capacitance CLDPO PAO+, PAO-
differentially
--- --- 1000 pF
PO Output Current IOUTPO 0.5 AO,RO-
VDDA-0.5
±10.0 --- --- mA
PO Output Resistance RPO PAO+ to PAO- --- 1 --- Ω
PO Differential Gain GPO RLD=300Ω,
+3dBm0, 1 kHz,
PAO+ to PAO-
-0.2 0 +0.2 dB
PO Differential Signal to
Distortion C-Message
weighted
DPO ZLD=300Ω
ZLD=100nF +
100Ω
ZLD=100nF + 20Ω
45
---
---
60
40
40
---
---
---
dBC
PO Power Supply Rejection
Ratio (0 to 25 kHz to VDDA,
Differential out)
PSRRPO 0 to 4 kHz
4 to 25 kHz
40
---
55
40
---
---
dB
W6811
Publication Release Date: September, 2005
- 26 - Revision A12
10.5. DIGITAL I/O
10.5.1. μ-Law Encode Decode Chatacteristics
Digital Code
D7 D6 D5 D4 D3 D2 D1 D0
Normalized
Encode
Decision
Levels Sign Chord Chord Chord Step Step Step Step
Normalized
Decode
Levels
1 0 0 0 0 0 0 0 8031
:
1 0 0 0 1 1 1 1 4191
:
1 0 0 1 1 1 1 1 2079
:
1 0 1 0 1 1 1 1 1023
:
1 0 1 1 1 1 1 1 495
:
1 1 0 0 1 1 1 1 231
:
1 1 0 1 1 1 1 1 99
:
1 1 1 0 1 1 1 1 33
:
1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 1 1 0
8159
7903
:
4319
4063
:
2143
2015
:
1055
991
:
511
479
:
239
223
:
103
95
:
35
31
:
3
1
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
W6811
Publication Release Date: September, 2005
- 27 - Revision A12
10.5.2. A-Law Encode Decode Characteristics
Digital Code
D7 D6 D5 D4 D3 D2 D1 D0
Normalized
Encode
Decision
Levels
Sign Chord Chord Chord Step Step Step Step
Normalized
Decode
Levels
1 0 1 0 1 0 1 0 4032
:
1 0 1 0 0 1 0 1 2112
:
1 0 1 1 0 1 0 1 1056
:
1 0 0 0 0 1 0 1 528
:
1 0 0 1 0 1 0 1 264
:
1 1 1 0 0 1 0 1 132
:
1 1 1 0 0 1 0 1 66
:
1 1 0 1 0 1 0 1 1
4096
3968
:
2048
2048
:
1088
1024
:
544
512
:
272
256
:
136
128
:
68
64
:
2
0
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
W6811
Publication Release Date: September, 2005
- 28 - Revision A12
10.5.3. PCM Codes for Zero and Full Scale
μ-Law A-Law
Level Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
+ Full Scale 1 000 0000 1 010 1010
+ Zero 1 111 1111 1 101 0101
- Zero 0 111 1111 0 101 0101
- Full Scale 0 000 0000 0 010 1010
10.5.4. PCM Codes for 0dBm0 Output
μ-Law A-Law
Sample Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
Sign bit
(D7)
Chord bits
(D6,D5,D4)
Step bits
(D3,D2,D1,D0)
1 0 001 1110 0 011 0100
2 0 000 1011 0 010 0001
3 0 000 1011 0 010 0001
4 0 001 1110 0 011 0100
5 1 001 1110 1 011 0100
6 1 000 1011 1 010 0001
7 1 000 1011 1 010 0001
8 1 001 1110 1 011 0100
W6811
Publication Release Date: September, 2005
- 29 - Revision A12
11. TYPICAL APPLICATION CIRCUIT
POWER CONTROL
1.0 uF
-
W6811
6
17
12
20
16
14
15
13
10
11
9
21
22
23
24
1
2
5
3
4
819
VDDA
VSSD
PUI
u/A
FST
BCLKT
PCMT
MC LK
PCMR
BCLKR
FSR
AO
AI-
AI+
VAG
VREF
RO-
PAO+
PAI
PAO-
VDDDVSSA
1.0 uF
PCM IN
27K
DIFFERENTIAL
AUDIO IN
2.048 MHz
Bit Clock
27K
27K
0.1 uF
-
27K
0.1 uF
27K
PCM OUT27K
+5VDC +3VDC
+
0.01 uF
0.1 uF
8 KHz Frame Sy nc
+
DIFFERENTIAL
AUDIO OUT
RL > 150 ohms
MODE SELECT
Figure 11.1 Typical circuit for Differential Analog I/O’s
PCM OUT1.0 uF
8 KHz Frame Sy nc
W6811
6
17
12
20
16
14
15
13
10
11
9
21
22
23
24
1
2
5
3
4
819
VDDA
VSSD
PUI
u/A
FST
BCLKT
PCMT
MCLK
PCMR
BCLKR
FSR
AO
AI-
AI+
VAG
VREF
RO-
PAO+
PAI
PAO-
VDDDVSSA
27K
0.1 uF
+3VDC
PCM IN
1.0 uF
0.1 uF
0.01 uF
AUDIO IN
27K
AUDIO OUT
RL > 150
ohms
27K
27K
27K
2.048 MHz
Bit Clock
100 uF
+5VDC
27K
0.1 uF
AUDIO OUT
RL > 2K ohms
POWER CONTROL
MODE SELECT
Figure 11.2 Typical circuit for Single Ended Analog I/O’s
W6811
Publication Release Date: September, 2005
- 30 - Revision A12
100pF3.9K
MICROPHONE
0.1 uF
1.0 uF+
62K
1.5K 1K
1.0 uF
0.1 uF
1.5K
2.048 MHz
Bit Clock
W6811
6
17
12
20
16
14
15
13
10
11
9
21
22
23
24
1
2
5
3
4
819
VDDA
VSSD
PUI
u/A
FST
BCLKT
PCMT
MC LK
PCMR
BCLKR
FSR
AO
AI-
AI+
VAG
VREF
RO-
PAO+
PAI
PAO-
VDDDVSSA
POWER CONTROL
+5VD C
0.01 uF
27K
100pF
SPEAKER
8 KHz Frame Sy nc
0.1 uF
PCM OUT
3.9K
ELECTRET
PCM IN
62K
MODE SELECT
22 uF
+3VDC
27K
27K
Figure 11.3 Handset Interface
0.1 uF PCM IN
W6811
6
17
12
20
16
14
15
13
10
11
9
21
22
23
24
1
2
5
3
4
819
VDDA
VSSD
PUI
u/A
FST
BCLKT
PCMT
MCLK
PCMR
BCLKR
FSR
AO
AI-
AI+
VAG
VREF
RO-
PAO+
PAI
PAO-
VDDDVSSA
PCM OUT
600 OHM 1:1
27K
0.01 uF
2.048 MHz
Bit Clock
TRANSFORMER
0.1 uF
27K
0.1 uF
8 KHz Frame Sy nc
1.0 uF
27K
+5VDC
POWER CONTROL
27K
600
+3VDC
MODE SELECT
B1/B2 SELECT
Figure 11.4 Transformer Interface Circuit in GCI mode
W6811
Publication Release Date: September, September, 2005
- 31 - Revision A12
12. PACKAGE SPECIFICATION
12.1. 24L TSSOP - 4.4X7.8MM
PLASTIC THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) DIMENSIONS
DIMENSION IN MM DIMENSION IN INCH
SYMBOL MIN NOM MAX MIN NOM MAX
A 1.20 0.043
A1 0.05 0.15 0.002 0.006
A2 0.80 0.90 1.05 0.031 0.035 0.041
L 0.50 0.60 0.75 0.020 0.024 0.030
E 6.40 BSC. 0.252 BSC.
HE 4.30 4.40 4.50 0.169 0.173 0.177
D 7.70 7.80 7.90 0.303 0.307 0.311
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
L1 1.0 REF. 0.039 REF
e 0.65 BSC. 0.026 BSC
01 0 8 0 8
W6811
Publication Release Date: September, September, 2005
- 32 - Revision A12
12.2. 24L SOP-300MIL
SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS
DIMENSIONS IN MM DIMENSIONS IN INCH
SYMBOL MIN MAX MIN MAX
A 2.35 2.65 0.093 0.104
A1 0.10 0.30 0.004 0.012
b 0.33 0.51 0.013 0.020
c 0.23 0.32 0.009 0.013
E 7.40 7.60 0.291 0.299
D 12.60 13.00 0.946 0.512
e 1.27 BSC. 0.050 BSC.
HE10.00 1065 0.394 0.419
Y 0.10 0.004
L 0.40 1.27 0.016 0.050
0 0 8 0 8
L
O
c
EH
A1
A
e
b
D
SEATING PLANE
Y
0.25
GAUGE PLANE
E
1
11
10
20
GAUGE PLANE
SEATING PLANE
W6811
Publication Release Date: September, September, 2005
- 33 - Revision A12
12.3. 24L SSOP-209 MIL
SHRINK SMALL OUTLINE PACKAGE
DIMENSIONS
W6811
Publication Release Date: September, September, 2005
- 34 - Revision A12
12.4. 24L PDIP 300 MIL
PLASTIC DUAL INLINE PACKAGE DIMENSIONS
DIMENSION IN MM DIMENSION IN INCH
SYMBOL MIN NOM MAX MIN NOM MAX
A 4.45 0.175
A1 0.25 0.010
A2 3.18 3.30 3.43 0.125 0.130 0.135
B 0.41 0.46 0.56 0.016 0.018 0.022
B1 1.47 1.52 1.63 0.058 0.060 0.064
c 0.20 0.25 0.36 0.008 0.010 0.014
D 31.95 32.26 1.258 1.270
E 7.37 7.62 7.87 0.290 0.300 0.310
E1 6.43 6.55 6.68 0.253 0.258 0.263
e1 2.29 2.54 2.79 0.090 0.100 0.110
L 3.05 3.30 3.56 0.120 0.130 0.140
á 15° 15°
eA8.38 8.89 9.40 0.330 0.350 0.370
S 2.29 0.090
e
A
2
A
c
E
Base Plane
Mounting Plane
1
A
1
e
L
A
S
1
E
D
1
B
B
24
1
12
13
á
W6811
Publication Release Date: September, September, 2005
- 35 - Revision A12
13. ORDERING INFORMATION
Winbond Part Number Description
Product Family
W6811 Product
W6811I _ _
Package Material:
Blank = Standard Package
G = Pb-free (RoHS) Package
Package Type:
W = 24-Lead Plastic Thin Small Outline Package (TSSOP) Type 1
S = 24-Lead Plastic Small Outline Package (SOG/SOP)
R = 24-Lead Plastic Small Outline Package (SSOP)
E = 24-Lead Plastic Dual Inline Package (PDIP)
When ordering W6811 series devices, please refer to the following part numbers.
Part Number
W6811IW
W6811IS
W6811IR
W6811IE
W6811IWG
W6811ISG
W6811IRG
W6811IEG
W6811
Publication Release Date: September, September, 2005
- 36 - Revision A12
14. VERSION HISTORY
VERSION DATE PAGE DESCRIPTION
A7 August 9,
2002
Preliminary
A8 September
26, 2002
A9 October
10, 2002
A10 October
23, 2003
34 Changed the package dimension of the SSOP24 package
A11 April 2005 41 Add Important Notice
A12 September,
2005
2
11, 12
22
23
23
29, 30
35
Added reference to Pb-free RoHS packaging
Capitalized logic HIGH/LOW
Extended conditions on Table 10.2.
Extended conditions on Table 10.3.
Corrected Idle Channel Noise min/max and units.
Improved Application Diagrams
Added G package ordering code
W6811
Publication Release Date: September, September, 2005
- 37 - Revision A12
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control instruments,
airplane or spaceship instruments, transportation instruments, traffic signal instruments,
combustion control instruments, or for other applications intended to support or sustain life.
Further more, Winbond products are not intended for applications wherein failure of Winbond
products could result or lead to a situation wherein personal injury, death or severe property
or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
Headquarters Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.
No. 4, Creation Rd. III 2727 North First Street, San Jose, 27F, 299 Yan An W. Rd. Shanghai,
Science-Based Industrial Park, CA 95134, U.S.A. 200336 China
Hsinchu, Taiwan TEL: 1-408-9436666 TEL: 86-21-62365999
TEL: 886-3-5770066 FAX: 1-408-5441798 FAX: 86-21-62356998
FAX: 886-3-5665577 http://www.winbond-usa.com/
http://www.winbond.com.tw/
Taipei Office Winbond Electronics Corporation Japan Winbond Electronics (H.K.) Ltd.
9F, No. 480, Pueiguang Rd. 7F Daini-ueno BLDG, 3-7-18 Unit 9-15, 22F, Millennium City,
Neihu District, Shinyokohama Kohoku-ku, No. 378 Kwun Tong Rd.,
Taipei, 114, Taiwan Yokohama, 222-0033 Kowloon, Hong Kong
TEL: 886-2-81777168 TEL: 81-45-4781881 TEL: 852-27513100
FAX: 886-2-87153579 FAX: 81-45-4781800 FAX: 852-27552064
The information contained in this datasheet may be subject to change
without notice. It is the responsibility of the customer to check the
Winbond USA website (www.winbond-usa.com) periodically for the latest
version of this document, and an
y
Errata Sheets that ma
be
enerated
Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.