ADAU1701
Rev. B | Page 16 of 52
THEORY OF OPERATION
The core of the ADAU1701 is a 28-bit DSP (56-bit with double-
precision processing) optimized for audio processing. The
program and parameter RAMs can be loaded with a custom
audio processing signal flow built by using SigmaStudio graphical
programming software from Analog Devices, Inc. The values
stored in the parameter RAM control individual signal processing
blocks, such as equalization filters, dynamics processors, audio
delays, and mixer levels. A safeload feature allows for transparent
parameter updates and prevents clicks in the output signals.
The program RAM, parameter RAM, and register contents can
be saved in an external EEPROM, from which the ADAU1701
can self-boot on startup. In this standalone mode, parameters
can be controlled through the on-board multipurpose pins. The
ADAU1701 can accept controls from switches, potentiometers,
rotary encoders, and IR receivers. Parameters such as volume
and tone settings can be saved to the EEPROM on power-down
and recalled again on power-up.
The ADAU1701 can operate with digital or analog inputs and
outputs, or a mix of both. The stereo ADC and four DACs each
have an SNR of at least +100 dB and a THD + N of at least −83 dB.
The 8-channel, flexible serial data input/output ports allow glueless
interconnection to a variety of ADCs, DACs, general-purpose
DSPs, S/PDIF receivers and transmitters, and sample rate con-
verters. The serial ports of the ADAU1701 can be configured in I2S,
left-justified, right-justified, or TDM serial port-compatible modes.
Twelve multipurpose (MP) pins allow the ADAU1701 to receive
external control signals as input and to output flags or controls
to other devices in the system. The MP pins can be configured
as digital I/Os, inputs to the 4-channel auxiliary ADC, or serial data
I/O ports. As inputs, they can be connected to buttons, switches,
rotary encoders, potentiometers, IR receivers, or other external
circuitry to control the internal signal processing program. When
configured as outputs, these pins can be used to drive LEDs,
control other ICs, or connect to other external circuitry in an
application.
The ADAU1701 has a sophisticated control port that supports
complete read/write capability of all memory locations. Control
registers are provided to offer complete control of the configu-
ration and serial modes of the chip. The ADAU1701 can be
configured for either SPI or I2C control, or can self-boot from
an external EEPROM.
An on-board oscillator can be connected to an external crystal
to generate the master clock. In addition, a master clock phase-
locked loop (PLL) allows the ADAU1701 to be clocked from a
variety of different clock speeds. The PLL can accept inputs of
64 × fS, 256 × fS, 384 × fS, or 512 × fS to generate the internal
master clock of the core.
The SigmaStudio software is used to program and control the
SigmaDSP® through the control port. Along with designing and
tuning a signal flow, the tools can be used to configure all of the
DSP registers and burn a new program into the external EEPROM.
The SigmaStudio graphical interface allows anyone with digital
or analog audio processing knowledge to easily design a DSP
signal flow and port it to a target application. At the same time,
it provides enough flexibility and programmability for an expe-
rienced DSP programmer to have in-depth control of the design.
In SigmaStudio, the user can connect graphical blocks (such as
biquad filters, dynamics processors, mixers, and delays), compile
the design, and load the program and parameter files into the
ADAU1701 memory through the control port. Signal processing
blocks available in the provided libraries include
• Single- and double-precision biquad filters
• Processors with peak or rms detection for monochannel
and multichannel dynamics
• Mixers and splitters
• Tone and noise generators
• Fixed and variable gain
• Loudness
• Delay
• Stereo enhancement
• Dynamic bass boost
• Noise and tone sources
• FIR filters
• Level detectors
• GPIO control and conditioning
Additional processing blocks are always being developed.
Analog Devices also provides proprietary and third-party
algorithms for applications such as matrix decoding, bass
enhancement, and surround virtualizers. Contact Analog
Devices for information about licensing these algorithms.
The ADAU1701 operates from a 1.8 V digital power supply
and a 3.3 V analog supply. An on-board voltage regulator can
be used to operate the chip from a single 3.3 V supply. It is
fabricated on a single monolithic, integrated circuit and is
packaged in a 48-lead LQFP for operation over the 0°C to
+70°C temperature range.