PMC 4318T WS Contents Product Program. . . . . . . . . . . . . . . . . . . . . . 2 Mechanical Data. . . . . . . . . . . . . . . . . . . . . . 3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute Maximum Ratings . . . . . . . . . . . . . 4 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Product Qualification Specification. . . . . . . . 5 Safety Specification . . . . . . . . . . . . . . . . . . . 6 Adjusted to 1.0 V out - Data. . . . . . . . . . . . . 7 Adjusted to 1.2 V out - Data. . . . . . . . . . . . 10 Adjusted to 1.5 V out - Data. . . . . . . . . . . . 13 Adjusted to 1.8 V out - Data. . . . . . . . . . . . 16 Adjusted to 2.5 V out - Data. . . . . . . . . . . . 19 Adjusted to 3.3 V out - Data. . . . . . . . . . . . 22 EMC Specification. . . . . . . . . . . . . . . . . . . . 25 Operating Information. . . . . . . . . . . . . . . . . 25 Thermal Considerations . . . . . . . . . . . . . . . 28 Soldering Information . . . . . . . . . . . . . . . . . 29 Delivery Package Information. . . . . . . . . . . 30 Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Compatibility with RoHS requirements. . . . 30 Sales Offices and Contact Information. . . . 31 DC/DC regulator Input 3.0 - 5.5 V Output 10 A Key Features * Wide input, 3.0-5.5 Vdc * Programmable output, 0.75 - 3.6 Vdc * Under voltage protection * Short circuit protection * Remote sense * Remote On/Off * Design for Environment (DfE) * European Commission Directive 2002/95/EC (RoHs) compliant The PMC series of surface mount DC/DC regulators (POL) are intended to be used as local distributed power sources in distributed power architecture level 4. The high efficiency and high reliability of the PMC series makes them particularly suited for the communications equipment of today and tomorrow. These products are manufactured using the most advanced technologies and materials to comply E with environmental requirements. Designed to meet high reliability requirements of systems manufacturers, the PMC responds to world-class specifications. Ericsson Power Modules is an ISO 9001/14001 certified supplier. Datasheet Product Program VO/IO max VI PO max Output 1 Ordering No. Comment 3.0-5.5 V* 0.75-3.3 V/10 A 33 W PMC 4318T WS Standard version 3.0-5.5 V 1.0 V/10 A 10 W PMC 4118N WS On request 3.0-5.5 V 1.2 V/10 A 12 W PMC 4118L WS On request 3.0-5.5 V 1.5 V/10 A 15 W PMC 4118H WS On request 3.0-5.5 V 1.8 V/10 A 18 W PMC 4118G WS On request 3.0-5.5 V 2.5 V/10 A 25 W PMC 4219 WS On request 3.8-5.5 V* 3.3 V/10 A 33 W PMC 4310 WS On request Option Suffix Example Negative Remote Control logic N PMC 4318T WS N * Input voltage limited to 3.8-5.5V for 3.3 Vout and for output voltages of 3.3V and 4.5-5.5 for output voltages above 3.3V. Ordering Information Delivery option M.o.q. Suffix Example Tape & Reel 200 pcs /C PMC 4xxxT WS /C PMC 4318T WS Datasheet EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Mechanical Data 33,00 [1.299] 7,54 [0.297] <> <> 4,83(3x) [0.190] #PUUPN7JFX 7,87 [0.310] max 8,25 [0.324] 7,54 <> 4FOTF 7BEK 0VU (OE Dimensionsin mm[inch] Tolerances(unlessspecified): x,xx 0,25[0,01] Pin true position w ithin 0,4 [0,016] 3,80 <> 3FDPNNFOEFEGPPUQSJOU 5PQ7JFX Weight Connections Pin Designation Function 1 RC Remote Control 2 + In Positive input 3 Gnd Ground 4 + Out Positive output 5 Vadj External output adjust 6 + Sense Positive remote sense PMC 4318T WS Datasheet 2,6 [0.102] *O 3$ 10,29 [0.405] Co-planaritymax 0,1[0,004] <> 2,70(6x) [0.106] 10,92 10,92 [0.430] 1,50(6x) [0.059] 4,83(3x) [0.190] 10,29 [0.405] 13,46 [0.530] 7,87 [0.310] 7g 4FOTF7BEK 0VU(OE 3$ Pins *O Material: Copper Plating: Flash gold over nickel EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Absolute Maximum Ratings Characteristics min typ max Unit Tref Operating Reference Temperature, see pg. 27 -45 +115 C TS Storage temperature -55 +125 C VI Input voltage -0.3 +5.5 Vdc Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner. Input Tref = -30 ... +90 C, VI = 3.0...5.5 V unless otherwise specified Typ values specified at: Tref = +25 C, VInom, Iomax = 10A Characteristics Conditions min typ 3.0 max Unit 5.5 Vdc VI Input voltage range VIoff Turn-off input voltage VIon Turn-on input voltage CI Input capacitance PIi Input idling power Io = 0 A, VI = 5 V 570 mW PRC Input stand-by power (RC active) Non operation, VI = 5 V 7.5 mW VIac Input ripple 1) 20 Hz ... 5 MHz, Iomax, VI = 5 V Ramp from higher voltage, Vout set to 1.0-2.5 V 2.6 Ramp from higher voltage, Vout set to 3.3 V 3.5 Ramp from lower voltage, Vout set to 1.0-2.5 V 2.7 Ramp from lower voltage, Vout set to 3.3 V 3.6 Vdc Vdc 20 300 F mV 1) Measured with 2 x 22 F ceramic capacitors Fundamental Circuit Diagram +OUT +IN +SENSE GND GND Vadj PWM controller Error amplifier Ref RC RC Block GND GND PMC 4318T WS Datasheet EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Product Qualification Specification Characteristics Random Vibration JESD 22-B103-B Frequency Acceleration density 2 ... 500 Hz 0.008 ... 0.2 g2/Hz Sinusoidal vibration JESD 22-B103-B Frequency Acceleration 10 ... 1000 Hz 10 g Mechanical shock (half sinus) JESD 22-B104-B Peak acceleration Duration 200 g 1.5 ms Lead integrity JESD 22-B105-C Weight of 1000 g All terminals Temperature cycling JESD 22-A104-B Temperature Number of cycles -40 ... +125 C 300 Accelerated damp heat JESD 22-A101-B Temperature Humidity Duration Bias +85 C 85 % RH 1000 hours max input voltage Solderability IEC 60068-2-54 (Aged according to JESD 22A101-B, 240h no bias) Solder immersion depth Time for onset of wetting Wetting force 1 mm <4s > 100 mN/m Cold (in operation) IEC 60068-2-1A, test Ad Temperature Duration -45 C 72 h High temperature storage JESD 22-A103-B Temperature Duration +125 C 1000 h PMC 4318T WS Datasheet EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Safety Specification General information. Isolated DC/DC converters. Ericsson Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL 60 950, Safety of Information Technology Equipment. It is recommended that a fast blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions: IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards: * Electrical shock * Energy hazards * Fire * Mechanical and heat hazards * Radiation hazards * Chemical hazards * Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system. * Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating. The galvanic isolation is verified in an electric strength test. The test voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification). Leakage current is less than 1A at nominal input voltage. On-board DC-DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without "Conditions of Acceptability". It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product. 24 V dc systems. The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions. Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 "Safety of information technology equipment". 48 and 60 V dc systems. There are other more product related standards, e.g. IEC612047 "Safety standard for power supplies", IEEE802.3af "Ethernet LAN/MAN Data terminal equipment power", and ETS300132-2 "Power supply interface at the input to telecommunications equipment; part 2: DC", but all of these standards are based on IEC/EN/UL60950 with regards to safety. If the input voltage to Ericsson Power Modules DC/DC converter is 75 V dc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions. Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 V dc. Ericsson Power Modules DC/DC converters and DC/DC regulators are UL 60 950 recognized and certified in accordance with EN 60 950. If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL 60 950. The flammability rating for all construction parts of the products meets UL 94V-0. The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL 60 950. Non-isolated DC/DC regulators. The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions. It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC regulator. PMC 4318T WS Datasheet EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 V out - Data Tref = -30 ... +90 C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 1.00 1.02 V Output voltage adjusted setting Tref = +25 C, VInom, IOmax, Radj 80 k 0.98 Output voltage tolerance band IO = 0.01...1.0 x IOmax 0.97 1.03 V Idling voltage IO = 0 0.98 1.02 V Line regulation VImin ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV 100 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 3.3 V Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOI, IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms tr Fall time, VO x 0.1 IO = IOmax, VInom 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VInom 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 10 s IO Output current POmax Max output power At VO = VOnom 10 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20 Hz ... 5 MHz, IOmax 10 20 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 88.4 % Efficiency - 100% load IO = IOmax, VI = 5 V 87.1 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.0 V, IO = IOmax, Tref = 25 C 3.9 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 84.5 250 1.6 1.8 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Current Derating at 3.3 V input <"> <"> at 5 V input NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW <$> <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Available load current vs. ambient air temperature and airflow at Vin = 3.3 V. See conditions on page 27. Start-Up Output Characteristics <7> 7 7 7 7 <"> Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 3.3 V. Start enabled by connecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Output voltage vs. load current. PMC 4318T WS Datasheet EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.0 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Turn Off Output voltage ripple (20mV/div.) at Tref=+25 C, Vin=3.3 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Turn-off at IO=10 A resistive load at Tref=+25 C, Vin=3.3 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Transient Transient with 150 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 V out - Data Tref = -30 ... +90 C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VInom, IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 1.20 1.224 V Output voltage adjusted setting Tref = +25 C, VInom, IOmax, Radj 42 k 1.176 Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.164 1.236 V Idling voltage IO = 0 1.18 1.22 V Line regulation VImin ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV 100 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 3.3 V Tcoeff Temperature coefficient Tref = -30 ... +90C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOI, IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms tr Fall time, VO x 0.1 IO = IOmax, VInom 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VInom 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s IO Output current POmax Max output power At VO = VOnom 12 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20 Hz ... 5 MHz, IOmax 10 20 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 89.7 % Efficiency - 100% load IO = IOmax, VI = 5 V 88.6 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.0 V, IO = IOmax, Tref = 25 C 4.5 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 86.5 250 10 1.5 1.9 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 V - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Current Derating at 3.3 V input <"> <"> at 5 V input NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW <$> <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Available load current vs. ambient air temperature and airflow at Vin = 3.3 V. See conditions on page 27. Start-Up Output Characteristic <7> 7 7 7 7 <"> Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 3.3 V. Start enabled by connecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Output voltage vs. load current. PMC 4318T WS Datasheet 11 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.2 V - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Turn Off Output voltage ripple (20mV/div.) at Tref=+25 C, Vin=3.3 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Turn-off at IO=10 A resistive load at Tref=+25 C, Vin=3.3 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Transient Transient with 150 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 12 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5 V out - Data Tref = -30 ... +90 C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 1.5 1.53 V Output voltage adjusted setting Tref = +25 C, VInom, IOmax, Radj 23 k 1.47 Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.455 1.545 V Idling voltage IO = 0 1.48 1.52 V Line regulation VImin ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV 100 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 3.3 V Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOI, IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms tr Fall time, VO x 0.1 IO = IOmax, VInom 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VInom 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s IO Output current POmax Max output power At VO = VOnom 15 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20Hz ... 5MHz, IOmax 15 25 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 92 % Efficiency - 100% load IO = IOmax, VI = 5 V 90.5 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.0 V, IO = IOmax, Tref = 25 C 5.5 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 88 250 13 1.6 2.1 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Power Dissipation Efficiency <> <8> 7 7 7 7 7 7 7 7 Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating Output Current Derating at 3.3 V input <"> NT MGN NT MGN <"> at 5 V input NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW Dissipated power vs. load current and input voltage at Tref = +25 C <"> <"> NT MGN NT MGN NT MGN /BU$POW <$> Available load current vs. ambient air temperature and airflow at Vin = 3.3 V. See conditions on page 27. <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Start-Up Output Characteristic <7> 7 7 7 7 <"> Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 3.3 V. Start enabled by connecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Output voltage vs. load current. PMC 4318T WS Datasheet 14 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.5V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Turn Off Output voltage ripple (20mV/div.) at Tref=+25 C, Vin=3.3 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Turn-off at IO=10 A resistive load at Tref=+25 C, Vin=3.3 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Transient Transient with 150 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 15 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 V out - Data Tref = -30...+90 C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 1.80 1.836 V Output voltage adjusted setting Tref = +25 C, VInom, IOmax, Radj 15 k 1.764 Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.746 1.854 V Idling voltage IO = 0 1.78 1.82 V Line regulation VImin ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV 110 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 3.3 V Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOI, IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms tr Fall time, VO x 0.1 IO = IOmax, VInom 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VInom 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s IO Output current POmax Max output power At VO = VOnom 18 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20 Hz ... 5 MHz, IOmax 15 25 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 92.4 % Efficiency - 100% load IO = IOmax, VI = 5 V 92.1 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.0 V, IO = IOmax, Tref = 25 C 6.5 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 90 250 16 1.6 2.0 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 V - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> <"> Dissipated power vs. load current and input voltage at Tref=+25 C Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating Output Current Derating at 3.3 V input <"> <"> at 5 V input NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW <$> <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Available load current vs. ambient air temperature and airflow at Vin = 3.3 V. See conditions on page 27. Start-Up Output Characteristic <7> 7 7 7 7 <"> Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 3.3 V. Start enabled by connecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Output voltage vs. load current. PMC 4318T WS Datasheet 17 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 1.8 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Turn Off Output voltage ripple (20mV/div.) at Tref=+25 C, Vin=3.3 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Turn-off at IO=10 A resistive load at Tref=+25 C, Vin=3.3 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Transient Transient with 150 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 18 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 V out - Data Tref = -30 ... +90 C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VInom. IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 2.5 2.55 V Output voltage adjusted setting Tref = +25 C, VInom, IOmax, Radj 7 k 2.45 Output voltage tolerance band IO = 0.01...1.0 x IOmax 2.425 2.575 V Idling voltage IO = 0 2.48 2.52 V Line regulation VImin ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV 140 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 3.3 V Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOI, IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms tr Fall time, VO x 0.1 IO = IOmax, VInom 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VInom 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s IO Output current POmax Max output power At VO = VOnom 25 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20 Hz ... 5 MHz, IOmax 20 30 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 94 % Efficiency - 100% load IO = IOmax, VI = 5 V 94 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.0 V, IO = IOmax, Tref = 25 C 8.8 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 92 250 19 1.6 2.2 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 7 7 <"> Efficiency vs. load current and input voltage at Tref = +25 C Output Current Derating <"> Dissipated power vs. load current and input voltage at Tref = +25 C Output Current Derating at 3.3 V input <"> <"> at 5 V input NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW NT MGN NT MGN NT MGN NT MGN NT MGN /BU$POW <$> <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Available load current vs. ambient air temperature and airflow at Vin = 3.3 V. See conditions on page 27. Start-Up Output Characteristic <7> 7 7 7 7 <"> Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 3.3 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Output voltage vs. load current. PMC 4318T WS Datasheet 20 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 2.5 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Turn Off Output voltage ripple (20mV/div.) at Tref=+25 C, Vin=3.3 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Turn-off at IO=10 A resistive load at Tref=+25 C, Vin=3.3 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Transient Transient with 150 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 3.3 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. 21 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 V out - Data Tref = -30 ... +90 C, VI = 3.8 ... 5.5 V unless otherwise specified. Input filter 2 x 22 F, Output filter 1 x 150 F Typ values specified at: Tref = +25 C and VI = 5.0 V. IOmax = 10 A. Note: +Sense connected to +Out Characteristics VOi VO Output Conditions Unit min typ max 3.3 3.366 V Output voltage adjusted setting Tref = +25 C, VI > 3.8 V, IOmax, Radj 3.1 k 3.234 Output voltage tolerance band IO = 0.1...1.0 x IOmax 3.201 3.399 V Idling voltage IO = 0 3.28 3.32 V Line regulation VI = 5 V ... VImax, IOmax 11 mV Load regulation IO = 0.01...1.0 x IOmax, VI = 5 V 10 mV 120 mV 60 s Vtr Load transient voltage deviation ttr Load transient recovery time Load step = 0.25 ... 0.75 x IOmax, dI/dt = 5 A/s, CO = 150 F, VI = 5 V Tcoeff Temperature coefficient Tref = -30 ... +90 C, IOmax ts Start-up time From VI connected to VO = 0.9 x VOadj, IO = 0.1 ...1.0 x IOmax, VI = 5 V 8.5 ms tr Ramp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VI = 5 V 4 ms tr Fall time, VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms tr Fall time, VO x 0.1 IO = 0 A, VI = 5 V 5 s tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms tRCon RC start-up time to VO x 0.9 IO = IOmax, VI = 5 V 8 ms tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VI = 5 V 5 s IO Output current POmax Max output power At VO = VOnom 33 Ilim Current limit threshold Tref < Trefmax 16 VOac Output ripple -0.1 0 0 +0.1 10 mV/C A W 20 24 A 20 Hz ... 5 MHz, IOmax 20 30 mVp-p Efficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 95.7 % Efficiency - 100% load IO = IOmax, VI = 5 V 95.4 % Pd Power Dissipation IO = IOmax, VI = 5 V Fo Switching frequency IO = 0 ... 1.0 x IOmax Isense Remote sense current II Static input current VI = 3.8 V, IO = IOmax, Tref = 25 C 9.2 A MTBF Predicted reliability Tref = 40 C 6 million hours PMC 4318T WS Datasheet 93 250 22 1.6 2.5 W 300 350 kHz 8 mA EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Efficiency Power Dissipation <> <8> 7 7 7 7 7 7 <"> <"> Efficiency vs. load current and input voltage at Tref = +25 C Dissipated power vs. load current and input voltage at Tref = +25 C Output Characteristic Output Current Derating <7> <"> at 5 V input NT MGN NT MGN 7 7 7 NT MGN NT MGN NT MGN /BU$POW <"> <$> Available load current vs. ambient air temperature and airflow at Vin = 5 V. See conditions on page 27. Output voltage vs. load current. Start-Up Turn Off Turn-off at IO=10 A resistive load at Tref=+25 C, Vin = 5 V. Turn-off enabled by disconnecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. Start-up at IO = 10 A resistive load at Tref = +25 C, Vin = 5 V. Start enabled by connecting Vin. Top trace: output voltage (1 V/div.). Bottom trace: input voltage (2 V/div.). Time scale: 2 ms/div. PMC 4318T WS Datasheet 23 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Adjusted to 3.3 V out - Typical Characteristics General conditions: Input filter 2 x 22 F, Output filter 1 x 150 F Output Ripple Transient Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 5 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. Output voltage ripple (20mV/div.) at Tref=+25 C, Vin = 5 V, IO=10A resistive load. Band width=5MHz. Time scale: 2s / div. Transient with 150 F output capacitor with 300 F output capacitor Output voltage response to load current step-change (2.5-7.5-2.5 A) at Tref =+25 C, Vin = 5 V. dI/dt = 5A/s Top trace: output voltage (ac) (100 mV/div.). Bottom trace: load current (dc) (10 A/div.) Time scale: 0.1 ms/div. PMC 4318T WS Datasheet 24 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 EMC Specification Operating Information Layout Recommendation Remote Control (RC) The radiated EMI performance of the DC/DC regulator will be optimised by including a ground plane in the PCB area under the DC/DC regulator. This approach will return switching noise to ground as directly as possible, with improvements to both emission and susceptibility. The RC pin may be used to turn on or turn off the regulator using a suitable open collector function. Turn off is achieved by connecting the RC pin to ground. The regulator will run in normal operation when the RC pin is left open. -FWFM < E#"> RC Regulator condition min Low level OFF Open ON referenced to GND typ max Unit -0.3 0.3 V 1.7 5 V +IN L L L . . . . . . . 'S FRVFODZ < )[> +IN RC Module GND Remote Sense All PMC 4000 Series DC/DC regulators have a positive remote sense pin that can be used to compensate for moderate amounts of resistance in the distribution system and allow for voltage regulation at the load or other selected point. The remote sense line will carry very little current and does not need a large cross sectional area. However, the sense line on the PCB should be located close to a ground trace or ground plane. The remote sense circuitry will compensate for up to 10% voltage drop between the sense voltage and the voltage at the output pins from VOnom. If the remote sense is not needed the sense pin should be left open. PMC 4318T WS Datasheet 25 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Operating Information Output Voltage Adjust (Vadj) Input And Output Impedance The output voltage can be set by means of an external resistor, connected to the Vadj pin. Nominal output voltage 0.75 V is set by leaving the Vadj pin open. Adjustment can only be made to increase the output voltage setting. The impedance of both the power source and the load will interact with the impedance of the DC/DC regulator. It is most important to have a low characteristic impedance, both at the input and output, as the regulators have a low energy storage capability. Use capacitors across the input if the source inductance is greater than 4.7 H. Suitable input capacitors are 22 F - 220 F low ESR ceramics. To increase: Connect a resistor between (Vadj) and (Gnd). The output voltage increases with decreasing resistor value as shown in the table below. Note that the maximum output voltage 3.63 V may not be exceeded. Minimum Required External Capacitors External input capacitors are required to increase the lifetime of the internal capacitors and to further reduce the input ripple. A minimum of 44 F external input capacitance with low ESR should be added. Rext up (kohm) = (21.007 / (VO - 0.75225)) - 5.1 Output Voltage (V) Resistor (ohm) 0.75 Open 1.0 79.691 k 1.2 41.817 k 1.5 22.990 k 1.8 14.949 k 2.5 6.919 k 3.3 3.145 k A minimum of 150 F external output capacitance , low ESR, should be added for the converter to operate properly at full load. Maximum Capacitive Load When powering loads with significant dynamic current requirements, the voltage regulation at the load can be improved by addition of decoupling capacitance at the load. The most effective technique is to locate low ESR ceramic capacitors as close to the load as possible, using several capacitors to lower the total ESR. These ceramic capacitors will handle short duration high-frequency components of dynamic load changes. In addition, higher values of capacitors (electrolytic capacitors) should be used to handle the mid-frequency components. It is equally important to use good design practice when configuring the DC distribution system. +Out Sense Low resistance and low inductance PCB layouts and cabling should be used. Remember that when using remote sensing, all resistance (including the ESR), inductance and capacitance of the distribution system is within the feedback loop of the regulator. This can affect on the regulators compensation and the resulting stability and dynamic response performance. Load Vadj Radj GND Increase Very low ESR and high capacitance must be used with care. A "rule of thumb" is that the total capacitance must never exceed typically 500-700 F if only low ESR (< 2 mW) ceramic capacitors are used. If more capacitance is needed, a combination of low ESR type and electrolytic capacitors should be used, otherwise the stability will be affected. Circuit configuration for output voltage adjust Current Limit Protection The PMC 4000 Series DC/DC regulators include current limiting circuitry that allows them to withstand continuous overloads or short circuit conditions on the output. The current limit is of hick-up mode type. The regulator will resume normal operation after removal of the overload. The load distribution system should be designed to carry the maximum output short circuit current specified. PMC 4318T WS Datasheet The PMC 4000 series regulator can accept up to 5 mF of capacitive load on the output at full load. This gives <500 F/A of IO. When using that large capacitance it is important to consider the selection of output capacitors; the resulting behavior is a combination of the amount of capacitance and ESR. 26 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Operating Information A combination of low ESR and output capacitance exceeding 5 mF can cause the regulator into over current protection mode (hick-up) due to high start up current. The output filter must therefore be designed without exceeding the above stated capacitance levels if the ESR is lower than 30-40 mW. Parallel Operation The PMC 4000 Series DC/DC regulators can be connected in parallel with a common input. Paralleling is accomplished by connecting the output voltage pins directly and using a load sharing device on the input. Layout considerations should be made to avoid load imbalance. For more details on paralleling, please consult your local applications support. Input Undervoltage Lockout The PMC 4000 Series DC/DC regulators are equipped with a lockout function for low input voltage.When the input voltage is below the undervoltage lockout limit of the regulator it will shut off. When the input voltage increases above the lockout level the regulator will turn on. PMC 4318T WS Datasheet 27 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Thermal Considerations General Calculation of ambient temperature The PMC 4000 Series DC/DC regulators are designed to operate in a variety of thermal environments, however sufficient cooling should be provided to help ensure reliable operation. Heat is removed by conduction, convection and radiation to the surrounding environment. Increased airflow enhances the heat transfer via convection. Proper cooling can be verified by measuring the temperature at the reference point (Tref). By using the thermal resistance the maximum allowed ambient temperature can be calculated. Tref A. The powerloss is calculated by using the formula ((1/) - 1) x output power = power losses. = efficiency of regulator. Example: 95% = 0.95 B. Find the value of the thermal resistance Rth Tref-A in the diagram by using the airflow speed at the module. Take the thermal resistance x powerloss to get the temperature increase. <$8> (max 115 C) 7JO 7PVU 7JO 7PVU 7JO 7PVU The PMC 4000 thermal testing is performed with the product mounted on an FR4 board 254 x 254 mm with 8 layers of 35 m copper. Thermal resistance vs. airspeed measured at the regulator. C. Max allowed calculated ambient temperature is: Max Tref of DC/DC regulator - temperature increase. AIRFLOW Example: 1.8 V output at 1m/s, full load, 3.3 V in: A. ((1/0.915) - 1) x 18 W = 1.67 W B. 1.67 W x 9 C/W = 15 C C. 115 C - 15 C = max ambient temperature is 100 C The real temperature will be dependent on several factors, like PCB size and type, direction of airflow, air turbulence etc. It is recommended to verify the temperature by testing. PMC 4318T WS Datasheet 28 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Soldering Information Low temperature solder - reflow profile The PMC series DC/DC regulators are intended for reflow soldering processes. Extra precautions must be taken when reflow soldering the module. Neglecting the soldering information given below may result in permanent damage or significant degradation of the power module performance. No responsibility is assumed if these recommendations are not strictly followed. Ramp up, ramp-down rate Pre-heat Soak zone max 3C/s max 0.5C/s For conventional Sn-Pb solder processes (solder melting point 179C -183C), The PMC series is qualified for MSL 1 according to JEDEC standard "J-STD-020c". During reflow, the module temperature must not exceed +225 C at any time. 150 Cooling 100 max 4C/s 50 Temperature interval, time Soak zone Reflow zone 150-200C, 60-180 s Above 220C, 30-80 s max pin temperature @ 225C (Low temp solder) @ 245C (High temp solder) 200 Ramp up, ramp-down rate max 3C/s (solid line)-High temperature solder (dashed line)-Low temperature solder [C] 300 High temperature solders - Reflow profile max 0.5C/s Reflow zone Above 183C, 30-80 s 210-225C, 10-30 s 250 max 3C/s Soak zone 130-170C, 60-120 s Reflow zone The reflow profile should be optimised to avoid solder paste drying and overheating of the module. Most important is to ensure that the interconnection pins on the coldest aera reach sufficient soldering temperature for sufficiently long time. A sufficiently extended soak time is recommended to ensure an even temperature throughout the PCB, for both small and large components. To reduce the risk of overheating the power module, it is also recommended to minimise the time in reflow as much as possible. Reflow zone max 4C/s Peak temperature, time To ensure proper soldering of the regulators the temperature should be monitored on interconnection pin GND. The interconnection GND is considered as representative due to the heavy copper path characterisation. A thermocouple can be attached to the pin GND by means of a suitable adhesive or heat conductive paste, see the mechanical data on page 4. Soak zone Cooling max 3C/s Temperature interval, time The module can be reflow soldered using vapour phase reflow (VPR) or forced convection reflow. Pre-heat Reflow zone reflow ramp-up cooling zone preheat max 3/s soak zone (150C-200C) 60-180s reflow zone 0 Time 70 140 210 280 350 0 Pin temperatures, graph of the 4-zones of reflow soldering. Peak temperature, time Reflow zone 235-245C, 10-30 s For lead free solder processes (solder melting point 217C), the PMC series is qualified for MSL 1 according to JEDEC standard "J-STD-020c". During reflow, the module temperature must not exceed +245 C at any time. PMC 4318T WS Datasheet 29 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Delivery Package Information The PMC 4000 series regulators are delivered in antistatic tape & reel (EIA standards 481-2). Tape & reel specification: Material: Tape width: Tape pitch: Total pocket height: Reel diameter: Reel capacity: Full reel weight: <> " 1*$,10*/5 <> " QJUDI<> 4&$5*0/"" <> <> <> <> <> <> <> Conductive 44 mm [1.73 in.] 24 mm [0.95 in.] 9.1 mm [0.36 in.] 330 mm [13 in.] 200 pieces typ. 2.0 kg 'FFEEJSFDUJPO 3<> %JNFOTJPOTJONN 5BQFMFBEFSNJO<> 5BQFUSBJMFSNJO<> Reliability The Mean Time Between Failure (MTBF) of the PMC 4000 series DC/DC regulator family is calculated to be greater than 6 million hours at full output power and a reference temperature of +40 C using TelCordia SR 332. Compatibility with RoHS requirements The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium. Exemptions in the RoHS directive utilized in Ericsson Power Modules products include: * Lead in high melting temperature type solder (used to solder the die in semiconductor packages) * Lead in glass of electronics components and in electronic ceramic parts (e.g. fill material in chip resistors) * Lead as an alloying element in copper alloy containing up to 4% lead by weight (used in connection pins made of Brass) PMC 4318T WS Datasheet 30 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007 Sales Offices and Contact Information Company Headquarters Italy, Spain (Mediterranean) Ericsson Power Modules AB LM Ericssons vag 30 SE-126 25 Stockholm Sweden Ericsson Power Modules AB Via Cadorna 71 20090 Vimodrone (MI) Italy Phone: +46-8-568-69620 Fax: +46-8-568-69599 Phone: +39-02-265-946-07 Fax: +39-02-265-946-69 China Japan Ericsson Simtek Electronics Co. 33 Fuhua Road Jiading District Shanghai 201 818 China Ericsson Power Modules AB Kimura Daini Building, 3 FL. 3-29-7 Minami-Oomachi, Shinagawa-ka Tokyo 140-0013 Japan Phone: +86-21-5990-3258 Fax: +86-21-5990-0188 Phone: +81-3-5733-5107 Fax: +81-3-5753-5162 Germany, Austria North and South America Ericsson Power Modules AB Muhlhauser Weg 18 85737 Ismaning Germany Ericsson Inc. Power Modules 6300 Legacy Dr. Plano, TX 75024 USA Phone: +49-89-9500-6905 Fax: +49-89-9500-6911 Phone: +1-972-583-5254 +1-972-583-6910 Fax: +1-972-583-7839 Hong Kong (Asia Pacific) Ericsson Ltd. 12/F. Devon House 979 King's Road Quarry Bay Hong Kong All other countries Contact Company Headquarters or visit our website: www.ericsson.com/powermodules Phone: +852-2590-2453 Fax: +852-2590-7152 Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Power Modules. These products are sold only according to Ericsson Power Modules' general conditions of sale, unless otherwise confirmed in writing. Specifications subject to change without notice. PMC 4318T WS Datasheet 31 EN/LZT 146 056 R4A (c) Ericsson Power Modules, March 2007