050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 350µA)
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
Units
Volts
µA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
RBSOA
PD
TJ,TSTG
TL
APT25GP120BDQ1(G)
1200
±30
69
33
90
90A @ 960V
417
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1 @ TC = 150°C
Reverse Bias Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MIN TYP MAX
1200
3 4.5 6
3.3 3.9
3.0
350
3000
±100
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
Low Conduction Loss • 100 kHz operation @ 800V, 11A
Low Gate Charge 50 kHz operation @ 800V, 19A
Ultrafast Tail Current shutoff RBSOA Rated
POWER MOS 7® IGBT
1200V
APT25GP120BDQ1
APT25GP120BDQ1G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
®
C
E
G
TO-247
GCE
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
°C/W
gm
MIN TYP MAX
.30
1.18
5.9
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
Symbol
RθJC
RθJC
WT
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
RBSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 600V
IC = 25A
TJ = 150°C, RG = 5Ω, VGE =
15V, L = 100µH,VCE = 960V
Inductive Switching (25°C)
VCC = 600V
VGE = 15V
IC = 25A
RG = 5
TJ = +25°C
Inductive Switching (125°C)
VCC = 600V
VGE = 15V
IC = 25A
RG = 5
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 6
MIN TYP MAX
2090
200
40
7.5
110
15
50
90
12
14
70
39
500
1090
440
12
14
110
90
500
1575
1185
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
TYPICAL PERFORMANCE CURVES
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
VOLTAGE (NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
IC = 25A
TJ = 25°C
250µs PULSE
TEST<0.5 % DUTY
CYCLE
60
50
40
30
20
10
0
100
80
60
40
20
0
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1.10
1.06
1.02
0.98
0.94
0.90
60
50
40
30
20
10
0
16
14
12
10
8
6
4
2
0
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
100
90
80
70
60
50
40
30
20
10
0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120
6 8 10 12 14 16 -25 0 25 50 75 100 125
-50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150
VCE = 480V
VCE =600V
VCE =240V
IC = 50A
IC = 25A
IC = 12.5A
IC = 50A
IC = 25A
IC = 12.5A
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 600V
RG = 5
L = 100 µH
SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (µJ) EOFF, TURN OFF ENERGY LOSS (µJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
VCE = 600V
VGE = +15V
RG = 5
RG = 5, L = 100µH, VCE = 600V
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5
L = 100µH
16
14
12
10
8
6
4
2
0
35
30
25
20
15
10
5
0
3500
3000
2500
2000
1500
1000
500
0
4500
4000
3500
3000
2500
2000
1500
1000
500
0
140
120
100
80
60
40
20
0
120
100
80
60
40
20
0
2500
2000
1500
1000
500
0
3500
3000
2500
2000
1500
1000
500
0
VGE = 15V
VCE = 600V
VGE = +15V
RG = 5
VCE = 600V
VGE = +15V
RG = 5
VCE = 600V
VGE = +15V
TJ = 125°C
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55
0 10 20 30 40 50 0 25 50 75 100 125
RG = 5, L = 100µH, VCE = 600V
TJ = 25 or 125°C,VGE = 15V
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
TJ = 125°C,VGE =15V
TJ = 25°C,VGE =15V
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
Eon2,50A
Eon2,25A
Eon2,12.5A
Eoff,50A
Eoff,25A
Eoff,12.5A
Eon2,50A
Eon2,25A
Eon2,12.5A
Eoff,50A
Eoff,25A
Eoff,12.5A
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
TYPICAL PERFORMANCE CURVES
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
D = 0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0
10,000
5,000
1,000
500
100
50
10
100
90
80
70
60
50
40
30
20
10
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 100 200 300 400 500 600 700 800 900 1000
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
5 10 15 20 25 30 35 40 45 50
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5
182
100
50
10
Cies
0.5
0.1
0.05
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
Coes
Cres
0.128
0.173
0.00833
0.171
RC MODEL
Case temperature(°C)
Junction
temp (°C)
Power
(watts)
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
5 %
tr
Collector Voltage
Collector Current
90%
TJ = 125 °C
5%
td(on)
Gate Voltage
Switching Energy
10%
10%
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
APT15DQ120
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
*DRIVER SAME TYPE AS D.U.T.
I
C
V
CLAMP
100uH
V
TEST
A
A
B
D.U.T.
DRIVER*
V
CE
Figure 24, EON1 Test Circuit
0
tfCollector Voltage
Collector Current
10%
90%
TJ = 125 °C
td(off)
Gate Voltage
Switching Energy
90%
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
TYPICAL PERFORMANCE CURVES
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 127°C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
Symbol
IF(AV)
IF(RMS)
IFSM
Symbol
VF
Characteristic / Test Conditions
IF = 25A
Forward Voltage IF = 50A
IF = 25A, TJ = 125°C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN TYP MAX
3.24
4.03
2.91
APT25GP120BDQ1(G)
15
29
110
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN TYP MAX
- 21
- 240
- 260
- 3 -
- 290
- 960
- 6 -
- 130
- 1340
- 19
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
trr
trr
Qrr
IRRM
trr
Qrr
IRRM
trr
Qrr
IRRM
Test Conditions
IF = 15A, diF/dt = -200A/µs
VR = 800V, TC = 25°C
IF = 15A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
IF = 15A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
ZθJC, THERMAL IMPEDANCE (°C/W)
10-5 10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
1.20
1.00
0.80
0.60
0.40
0.20
0
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
0.676
0.504
0.00147
0.0440
Power
(watts)
RC MODEL
Junction
temp. (°C)
Case temperature. (°C)
D = 0.9
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
400
350
300
250
200
150
100
50
0
25
20
15
10
5
0
Duty cycle = 0.5
TJ = 175°C
0 25 50 75 100 125 150 25 50 75 100 125 150 175
1 10 100 200
35
30
25
20
15
10
5
0
1.2
1.0
0.8
0.6
0.4
0.2
0.0
80
70
60
50
40
30
20
10
0
CJ, JUNCTION CAPACITANCE Kf, DYNAMIC PARAMETERS
(pF) (Normalized to 1000A/µs)
IF(AV) (A)
TJ, JUNCTION TEMPERATURE (°C) Case Temperature (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature Figure 31. Maximum Average Forward Current vs. CaseTemperature
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
Qrr, REVERSE RECOVERY CHARGE IF, FORWARD CURRENT
(nC) (A)
IRRM, REVERSE RECOVERY CURRENT trr, REVERSE RECOVERY TIME
(A) (ns)
TJ = 175°C
TJ = -55°C
TJ = 25°C
TJ = 125°C
0 1 2 3 4 5 0 200 400 600 800 1000 1200
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
TJ = 125°C
VR = 800V
7.5A
15A
30A
TJ = 125°C
VR = 800V
30A
7.5A
15A
60
50
40
30
20
10
0
2500
2000
1500
1000
500
0
TJ = 125°C
VR = 800V 30A
15A
7.5A
trr
Qrr
Qrr
trr
IRRM
VF, ANODE-TO-CATHODE VOLTAGE (V) -diF/dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Forward Current vs. Forward Voltage Figure 27. Reverse Recovery Time vs. Current Rate of Change
-diF/dt, CURRENT RATE OF CHANGE (A/µs) -diF/dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change Figure 29. Reverse Recovery Current vs. Current Rate of ChangeTum tes-
050-7457 Rev A 6-2005
APT25GP120BDQ1(G)
TYPICAL PERFORMANCE CURVES
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
4
3
1
2
5
5
Zero
1
2
3
4
diF/dt - Rate of Diode Current Change Through Zero Crossing.
IF - Forward Conduction Current
IRRM - Maximum Reverse Recovery Current.
trr - Reverse Recovery Time, measured from zero crossing where diode
Qrr - Area Under the Curve Defined by IRRM and trr.
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
Figure 33. Diode Test Circuit
Figure 34, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
diF/dt Adjust
30µH
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
6.15 (.242) BSC
4.50 (.177) Max.
19.81 (.780)
20.32 (.800)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
3.55 (.138)
3.81 (.150)
2.87 (.113)
3.12 (.123)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
2.21 (.087)
2.59 (.102)
0.40 (.016)
0.79 (.031)
Dimensions in Millimeters and (Inches)
2-Plcs.
Collector
(Cathode)
Emitter
(Anode)
Gate
Collector
(Cathode)
APT10078BLL