AMMP-6545
18 to 40 GHz GaAs MMIC Sub-Harmonic Mixer
in SMT Package
Data Sheet
Description
Avagos AMMP-6545 is an easy-to-use broadband
sub-harmonic mixer, with the LO injected at half the
frequency of that required by a conventional mixer.
MMIC includes an 180° balanced diode based mixer.
The MMIC is fabricated using PHEMT technology. The
surface mount package allows elimination of chip
& wire assembly for lower cost. This MMIC is a cost
e ective alternative to multi-chip solution that have
higher loss and complex assembly.
Applications
Microwave radio systems
Satellite VSAT, DBS up/down link
LMDS & Pt-Pt mmW long haul
Broadband wireless access
(including 802.16 and 802.20 WiMax)
WLL and MMDS loops
Package Diagram
Features
RF Frequency : 18-40 GHz
LO Frequency : 9-20 GHz
IF Frequency : DC-3.5 GHz
5x5 mm Surface Mount Package
Suitable for Up and Down Conversion
Diode Mixer
Performance
Typical 18-30 GHz
Conversion Loss : 11 dB
IIP3 : +11 dBm
2LO-R Leakage : -45 dBm
2LO-I Leakage : -60 dBm
Typical 30-40 GHz
Conversion Loss : 13 dB
IIP3 : +12 dBm
2LO-R Leakage : -40 dBm
2LO-I Leakage : -55 dBm
Functional Block Diagram
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A) : 30V
ESD Human Body Model (Class 0) :100V
Refer to Avago Technologies Application Note A004R:
Electrostatic Discharge, Damage and Control.
PIN
1
2
3
4
5
6
7
8
FUNCTION
NC
NC
IF
RF
NC
NC
NC
LO
765
123
48 x2
LO
NC NC IF
NC NC NC
RF
TOP VIEW
PACKAGE BASE: GND
Note: MSL Rating - Level 2A
RoHS-Exemption
Please refer to hazardous substances table on page 5.
123
756
4
8LO RF
NCNC IF
NCNC NC
2
Electrical Speci cations
1. Small/Large -signal data measured in a fully de-embedded test  xture form TA = 25°C.
2. Pre-assembly into package performance veri ed 100% on-wafer per AMMC-6522 published speci cations.
3. This nal package part performance is veri ed by a functional test correlated to actual performance at one or
more frequencies.
4. Speci cations are derived from measurements in a 50 Ω test environment. Aspects of the ampli er performance
may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise
(opt) matching.
5. NF is measure on-wafer. Additional bond wires (-0.2nH) at Input could improve NF at some frequencies.
Table 1. RF Electrical Characteristics
TA=25°C, Zo=50 Ω, LO=+15dBm, IF=2GHz
Parameter
RF=18-30GHz, LO=9-15GHz RF=30-40GHz, LO=15-20GHz
Unit CommentMin Typ Max Min Typ Max
Conversion Loss, CL [1] 11 12 13 dB
Input Third Order Intercept, IIP3 [1]
RF: 18-24GHz
10.5 11 12 dB
Input Third Order Intercept, IIP3 [1]
RF: 24-30GHz
911 12 dB
2LO-R Leakage, 2LO-R -45 -35 -40 dBm
2LO-I Leakage, 2LO-I -60 -50 -55 dBm
L-R Leakage, L-R -30 -35 dB
L-I Leakage, L-I -35 -30 dB
Note:
1.Production RF tested at 21, 23 and 26 GHz in upconverter con guration
All tested parameters are guaranteed with the following measurement accuracy:
RF=18-24 GHz: ±0.8 dBm for RF-leakage, ±2.5 dBm for IF-leakage, ±1.2dB for Conversion Loss, ±0.5 dBm for IIP3
RF=24-30 GHz: ±0.8 dBm for RF-leakage, ±4.0 dBm for IF-leakage, ±0.6 dB for Conversion Loss, ±0.5 dBm for IIP3
Table 2. Recommended Operating Range
1. Ambient operational temperature TA = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal
Resistance at backside temperature (Tb) = 25°C calculated from measured data.
Parameter Min. Typical Max. Unit Comments
RF Frequency, RFfreq 18 40 GHz
LO Frequency, LOfreq 9 20 GHz
IF Frequency, IFfreq DC 3.5 GHz
LO Power, LO +12 +15 +22 dBm
Min Ambient Operating Temp, Tmin -55 °C
Max Ambient Operating Temp, Tmax +125 °C
Absolute Minimum and Maximum Ratings
Table 3. Minimum and Maximum Ratings
Pin Min. Max. Unit Comments
RF CW Input Power, Pin 10 dB
Storage Temperature, Tstg -65 +150 °C
Maximum Assembly Temperature, Tmax 260 °C 20 second maximum
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
3
AMMP-6545 Typical Performance
(T
A = 25°C, Zin = Zout = 50 ), IF Freq = 2 GHz, LO Power = +15 dBm unless noted)
Figure 1. Up-conversion loss at LO = +13 to +20 dBm
(high side LO)
Figure 6. Down-conversion IIP3 at LO = +13 to +20 dBm
(low side LO)
Figure 5. Down-conversion loss at LO = +13 to +20 dB
(low side LO)
Figure 4. Up-conversion IIP3 at LO = +13 to +20 dBm
(low side LO)
Figure 3. Up-conversion loss at LO = +13 to +20 dBm
(low side LO)
Figure 2. Up-conversion IIP3 at LO = +13 to +20 dBm
(high side LO)
7
11
9
15
13
19
17
23
21
2520 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
RF FREQUENCY (GHz)
UP-CONVERTER TYP. PERFORMANCE
C.L. (dB)
LO = +13 (dB)
LO = +15 (dB)
LO = +17 (dB)
LO = +19 (dB)
LO = +20 (dB)
28
22
24
26
16
14
18
20
8
10
12
2
6
4
020 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
RF FREQUENCY (GHz)
UP-CONVERTER TYP. PERFORMANCE
IIP3 (dBm)
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
7
11
9
15
13
19
17
23
21
2516 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
RF FREQUENCY (GHz)
UP-CONVERTER TYP. PERFORMANCE
C.L. (dB)
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
28
22
24
26
16
14
18
20
8
10
12
2
6
4
0
UP-CONVERTER TYP. PERFORMANCE
IIP3 (dBm)
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
RF FREQUENCY (GHz)
7
11
9
15
13
19
17
23
21
2518 20 22 24 26 28 30 32 34 36 38 40
RF FREQUENCY (GHz)
DOWN-CONVERTER TYP. PERFORMANCE
C.L. (dB)
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
28
22
24
26
16
14
18
20
8
10
12
2
6
4
0
DOWN-CONVERTER TYP. PERFORMANCE
IIP3 (dBm)
18 20 22 24 26 28 30 32 34 36 38 40
RF FREQUENCY (GHz)
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
4
RF FREQUENCY (GHz)
2*LO-R LEAKAGE (dBm)
-35
-30
-45
-40
-55
-50
-65
-60
-7018 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
20
35
30
25
45
40
50 9 101112131415161718192021222324
LO FREQUENCY (GHz)
L-R ISOLATION (dB)
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
2*LO FREQUENCY (GHz)
2LO-I LEAKAGE (dBm)
-55
-40
-45
-50
-65
-60
-75
-70
-85
-80
-9018 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
20
35
30
25
45
40
50 9 101112131415161718192021222324
LO FREQUENCY (GHz)
L-I ISOLATION (dB)
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
AMMP-6545 Typical Performance
(T
A = 25°C, Zin = Zout = 50 ), IF Freq = 2 GHz, LO Power = +15 dBm unless noted)
Figure 7. 2*LO-R leakage at LO = +12 to +17 dBm
Figure 10. L-I isolation at LO = +12 to +17dBm
Figure 9. L-R isolation at LO = +12 to +17dBm
Figure 8. 2*LO-I leakage at LO = +12 to +17 dBm
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV02-0251EN
AV02-1382EN - July 21, 2011
AMMP-6545 Part Number Ordering Information
Part Number
Devices per
Container Container
AMMP-6545-BLKG 10 Antistatic bag
AMMP-6545-TR1G 100 7” Reel
AMMP-6545-TR2G 500 7” Reel
Package Dimension, PCB Layout and Tape and Reel information
Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A).
Names and Contents of the Toxic and Hazardous Substances or Elements in the Products
Part Name
Lead
(Pb)
(Pb)
Mercury
(Hg)
Hg
Cadmium
(Cd)
Cd
Hexavalent
(Cr(VI))
Cr(VI)
Polybrominated
biphenyl (PBB)
PBB
Polybrominated
diphenylether (PBDE)
PBDE
100pF capacitor
: indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is
below the concentration limit requirement as described in SJ/T 11363-2006.
: indicates that the content of the toxic and hazardous substance in at least one homogeneous material of the part
exceeds the concentration limit requirement as described in SJ/T 11363-2006.
(The enterprise may further explain the technical reasons for the “x” indicated portion in the table in accordance with
the actual situations.)
SJ/T 11363-2006
SJ/T 11363-2006
“×”
Note: EU RoHS compliant under exemption clause of “lead in electronic ceramic parts (e.g. piezoelectronic devices)”
Toxic and Hazardous Substances or Elements